PRODUCTS AND SPECIFICATIONS DISC USSED HEREIN ARE FOR EVAL UATION AND REFERENCE PURPOSES ONLY AND ARE SU BJECT TO CHANGE BY
MICRON WITHOUT NOTICE. PRODUC TS ARE ONLY WARRANTED BY MICR ON TO MEET MIC RON’S PRODUC TION DATA SHEET S PE CIFICATIONS.
09005aef80906b6e
256mb_512mbSDRAM_twindie_1.fm - Rev. C 10/03 EN 1©2003 Micron Technolog y, Inc. All rights reserv ed.
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
SYNCHRONOUS
DRAM
MT48LC32M16S2 MT48LC16M16T2 MT48LC16M16B2
MT48V32M16S2 MT48V16M16T2 MT48V16M16B2
MT48H32M16S2 MT48H16M16T2 MT48H16M16B2
Features
Low voltage power supply
Fully synchronous; a ll signals registered on positive
edge of system clock
Internal pipelined operation; column address can
be changed e very cloc k cycle
Internal banks for hiding row access/precharge
Programmable burst lengths: 1, 2, 4, 8, or full page
Auto Precharge, includes C ON CURRENT AUTO
PRECHARGE, a nd Auto Refresh Modes
Self Refresh Mode
64ms, 8,192-cycle refresh
LVTTL-compatible inputs and outputs
Deep Power Down
Par tial Array Self Refresh power-saving mode
Temperature Compensated Self Refresh (TCSR)
Part Number Example:
MT48LC32M16S2FG-8
NOTE: The # symbol indicates signal is active LOW.
*CL= CAS (READ) latency
Options Marking
•V
DD\VDDQ
3.3V\3.3V LC
2.5V\2.5V or 1.8V V
1.8V\1.8V H1
NOTE:
1. Contact Micron for availability.
Configurations
16 Meg x 16 (4 Meg x 16 x 4 banks) 16M16
32Meg x 16 (8 Meg x 16 x 4 banks) 32M16
•Die Options
Both Die F u nc ti ona l S2
Top Die Only Functional T2
Bottom Die On l y Fu ncti onal B2
•Plastic Package - OCPL
1
54-ball FBGA (8mm x 14mm) FG
Timin g (Cycle Time)
10ns @ CL = 2 (100 MHz) -8
•Operating Temperature
Commercial (0oC to +70oC) None
Each Die 32 Meg x 16 16 Meg x 16
Con f iguration 8 Meg x 16 x 4 banks 4 Meg x 16 x 4 banks
Refres h Co un t 8K 8K
Row Addressing 8K (A0-A12) 8K (A0-A12)
Bank Addressing 4 (BA0, BA1) 4 (BA0, BA1)
Column Addressing 512 (A0-A8) 512 (A0-A8)
Table 1: Key Timing Parameters
SPEED
GRADE CLOCK
FREQUENCY
ACCESS TIME SETUP
TIME HOLD
TIME
CL=2*
-8 100 MHz 8.0ns 2.5ns 1.0ns
Figure 1: Ball Assignment (Top View)
54-Ball FBGA
A
B
C
D
E
F
G
H
J
1 2 3 4 5 6 7 8
V
SS
DQ14
DQ12
DQ10
DQ8
UDQM
A12
A8
V
SS
DQ15
DQ13
DQ11
DQ9
CS#(1)
CLK
A11
A7
A5
V
SS
Q
V
DD
Q
V
SS
Q
V
DD
Q
V
SS
CKE
A9
A6
A4
V
DD
Q
V
SS
Q
V
DD
Q
V
SS
Q
V
DD
CAS#
BA0
A0
A3
DQ0
DQ2
DQ4
DQ6
LDQM
RAS#
BA1
A1
A2
V
DD
DQ1
DQ3
DQ5
DQ7
WE#
CS#(0)
A10
V
DD
9
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_1.fm - Rev. C 10/03 EN 2©2003 Micron Technolog y, Inc. All rights reserv ed.
General D e scrip tion
The Micron® TwinDie™ 512Mb SDRAM is a high-
speed CMOS, dynamic random-access memory con-
taining 536,870,912 bits. It is internally configured by
stacking two 256Mb, 16Megx16 devices. Each of these
256Mb devices is configured as a quad bank DRAM
with a sy nchron ous inter fac e. They are org anized wi th
16 DQs with 4 banks of 67,108,864 bits, comprising of
8,192 rows by 512 columns by 16 bits wide.
Read and write accesses to the SDRAM are burst ori-
ented; accesses start at a selected location and con-
tinue for a programmed number of locations in a
programmed sequ ence. Accesses begin wit h the regis-
tration of an ACTIVE command, which is then fol-
lowed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the bank and row to be accessed
(BA0, BA1 select the bank; A0-A12 select the row). The
address bits registered coincident with the READ or
WRITE command are used to select the starting col-
umn lo cation fo r the burst access.
The SDRAM provides for programmable READ or
WRITE burst lengths of 1, 2, 4, or 8 locations, or the full
page, with a bu rs t termi na te option. An a ut o prechar g e
function may be enabled to provide a self-timed row
precharge that is initiated at the end of the burst
sequence.
The 512Mb SDRAM uses an internal pipelined
architecture to achieve high-speed operation. This
architecture is c ompatible with the 2n rule of prefetch
architectures, but it also allows the column address to
be changed on every clock cycle to achieve a high-
speed, fully random access. Precharging one bank
while accessing one of the other three banks will hide
the precharge cycles and provide seamless, high-
speed, ran dom-access operation.
The 512Mb SDRAM is design ed to ope r at e i n 3.3V or
2.5V memory systems. An auto refresh mode is pro-
vided, along with a power-saving, power-down mode.
All inpu ts and outputs are LVTTL-compat ible.
SDRAMs offer substantial advances in DRAM oper-
ating performance, including the ability to synchro-
nously burst data at a high data rate with automatic
column-address generation, the ability to interleave
betwe en i n terna l ban ks to hide precharge t i me an d th e
capability to randomly change column addresses on
each cloc k cycle during a burst access.
NOTE: 1. Throughout the data sheet, the various fig-
ures and text ma y refer to CS0# and CS1# as
CS#.” The CS# term is to be interpreted for
single die operation, unless specifically
stated otherwise.
2. Complete functionality is described
throug ho ut the doc ument and any one page
or diagram may have been simplified to
convey a topic and may not be inclusive of
all requirements.
Any specific requirement takes precedence over a
general statement.
Table 2: 512Mb TwinDie SDRAM Part Numbers
PART NUMBER VDD VDDQ CONFIGURATION FUNCTIONAL DIE
MT48LC32M16S2 3.3V 3.3V 8 Meg x 16 x 4 banks BOTH
MT48LC16M16T2 3.3V 3.3V 4 Meg x 16 x 4 banks TOP
MT48LC16M16B2 3.3V 3.3V 4 Meg x 16 x 4 banks BOTTOM
MT48V32M16S2 2.5V 2.5V or 1.8V 8 Meg x 16 x 4 banks BOTH
MT48V16M16T2 2.5V 2.5V or 1.8V 4 Meg x 16 x 4 banks TOP
MT48V16M16B2 2.5V 2.5V or 1.8V 4 Meg x 16 x 4 banks BOTTOM
MT48H32M16S2 1.8V 1.8V
8 Meg x 16 x 4 banks BOTH
MT48H16M16T2 1.8V 1.8V
4 Meg x 16 x 4 banks TOP
MT48H16M16B2 1.8V 1.8V
4 Meg x 16 x 4 banks BOTTOM
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindieTOC.fm - Rev. C 10/03 EN 3©2003 Micron Technolog y, Inc. All rights reserv ed.
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Functionality (Per Die). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
CAS Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Write Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Extended Mode Reg ister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Temperature Compensated Self Refresh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Partial Array Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Deep power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Driver Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Commands Per Die. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
COMMAND INHIBIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
NO OPERATION (NOP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
LOAD MODE REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
AUTO PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
BURST TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
AUTO REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Bank/Row Activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
READs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
WRITEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
POWER-DOWN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
DEEP POWER DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
CLOCK SUSPEND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
BURST READ/SINGLE WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Concurrent AUTO PRECHARGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
TwinDie Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
INITIALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
MODE REGISTE R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Commands (TwinDie) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
NO OPERATION (NOP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
LOAD MODE REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
AUTO PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindieTOC.fm - Rev. C 10/03 EN 4©2003 Micron Technolog y, Inc. All rights reserv ed.
BURST TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
AUTO REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Absolute Maxi mum Rati ngs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Notes (Single Die) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Rev C, 10/27/2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Rev B, 02/27/03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Rev A, 11/25/02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindieLOF.fm - Rev. C 10/03 EN 5©2003 Micron Technolog y, Inc. All rights reserv ed.
List of Figures
Figure 1: Ball Assignment (T op View) 54-Ball FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Figure 2: Functiona l Block Diagr am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Figure 3: Functional Block Diagram 16 M eg x 16 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Figure 4: Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Figure 5: CAS Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 6: Extended Mode R egist er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 7: Activat ing a Specific Row In a Specif ic B ank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 8: Example: Meeting RCD (MIN) When 2 < RCD (MIN)/ CK 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 9: Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 10: CAS Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 11: Consecutive READ Bursts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 12: Ran dom READ Access es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 13: READ to WRIT E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 14: READ to WRIT E wit h Ex t ra Clo ck Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 15: Terminating a READ Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 16: WRITE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 17: WRITE Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 18: WRITE to WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 19: Ran dom WRITE Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 20: WRITE To READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 21: WRITE To PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Figure 22: Terminating a WRITE Burs t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Figure 23: PRECHARGE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 24: Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 25: Deep Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 26: Clock Suspend During WRITE Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 27: Clock Suspend During READ Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 28: READ With Auto Precharge Interrup ted by a READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 29: READ With Auto Precharge Interrupted by a WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 30: WRITE With Auto Precharge Interrup ted by a READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Figure 31: WRITE With Auto Precharge Interrupted by a WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Figure 32: Initialize And Load Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Figure 33: Power-down Mode1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Figure 34: Clock Suspend Mode1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Figure 35: Auto Refresh Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Figure 36: Self Refr es h Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Figure 37: READ – Without Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 38: READ – With Auto Precharge 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 39: Single READ – Without Auto Precharge 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Figure 40: Single READ – With Auto Precharge1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Figure 41: Alternating Bank Read Accesses1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Figure 42: Read – Fu ll-page B urst 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Figure 43: Read DQM Operation1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Figure 44: Write – Wi thout Auto P recharge1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 4
Figure 45: Write – With Auto Precharge1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Figure 4 6 : Single W rite – W ithout Auto Prechar g e1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Figure 47: Single Write with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 48: Alternating Bank Write Accesses1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Figure 49: Write – Full-page Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Figure 50: Write – DQM Operation1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Figure 51: FGBA “FG” Package 54-pin, 8mm x 14mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM _twindieLOT. fm - Rev. C 10/03 EN 6©2003 Micron Technology, Inc. All rights reserved.
List of Tables
Table 1: Key Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 2: 512Mb TwinDie SDRAM Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Table 3: 54-Ball FBGA Ball Descri ption s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4: Burst Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Table 5: CAS Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Table 6: Truth Table – Commands And DQM Operat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 7: Truth Table – CKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 8: Truth Table – Current State Bank n - Command To Bank n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 9: Truth Table Current State Bank n Command To Bank m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 10: DC Electrical Characteristics And Operating Conditions - “LC” Version. . . . . . . . . . . . . . . . . . . . . . . .36
Table 11: DC Electrical Characteristics And Operating Conditions - “V” Version . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 12: DC Electrical Characteristics And Operating Conditions - “H” Version. . . . . . . . . . . . . . . . . . . . . . . . .37
Table 13: IDD Specifications And Condition s (Both Die – S2 Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 14: IDD7 - Self Refresh Curren t Options– S2 Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 15: Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 16: Electrical Charact e ristics And Recommended AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . .39
Table 17: AC Functional Char act eristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 7©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 2: Functional Block Diagram
CS#1
Command
DQ0-15,
DQM
CS#0
CLK
CKE#
Addresses
TOP
DIE BOTTOM
DIE
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 8©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 3: Functi onal Block Diagram 16 Meg x 16 SDRAM
NOTE:
This device is a 512Mb SDRAM part made up of two stacked 256Mb SDRAM components. The above drawing illus-
trates one of the 256Mb SDRAM components.
13
RAS#
CAS#
ROW-
ADDRESS
MUX
CLK
CS# 1
WE#
CKE
CONTROL
LOGIC
COLUMN-
ADDRESS
COUNTER/
LATCH
MODE REGISTER
9
COMMAND
DECODE
A0-A12,
BA0, BA1
DQML,
DQMH
13
ADDRESS
REGISTER
15
512
(x16)
8192
I/O GATING
DQM MASK LOGIC
READ DATA LATCH
WRITE DRIVERS
COLUMN
DECODER
BANK0
MEMORY
ARRAY
(8,192 x 512 x 16)
BANK0
ROW-
ADDRESS
LATCH
&
DECODER
8192
SENSE AMPLIFIERS
BANK
CONTROL
LOGIC
DQ0-
DQ15
16
16 DATA
INPUT
REGISTER
DATA
OUTPUT
REGISTER
16
12
BANK1BANK2 BANK3
13
9
2
2 2
2
REFRESH
COUNTER
CS# 0
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 9©2003 Micron Technolog y, Inc. All rights reserv ed.
Table 3: 54-Ball FBGA Ball Descriptions
BALL NUMBERS SYMBOL TYPE DESCRIPTION
F2 CLK Input Clock: CLK is driven by the system clock. All SDRAM input signals are sampled
on the positive edge of CLK. CLK also increments the internal burst counter
and controls the output registers.
F3 CKE Input Clock Enable: CKE activates (HIGH) and deactactivates (LOW) the CLK signal.
Deactivatin g the CLK provides POWER- DOWN and SELFREFRESH ope ration (all
banks idle), ACTIVE POWER-DOWN (row active in any bank) or CLOCK
SUSPEND operatio n (burst/access in progress). C KE is synchronou s except after
the device enters power-down and self refresh modes, where CKE becomes
asynchronous until after exiting the same mode. The input buffers, including
CLK, are disabled during power-down and self refresh modes, providing low
standby power. CKE may be tied HIGH.
G9, E2 CS#(0)
CS#(1) Input Chip Select: CS# enables (registered LOW) and disables (registered HIGH) the
command decoder. All commands are masked when CS# is registered HIGH.
CS# provides for external bank selection on systems with multiple banks. CS#
is considered part of the command code. CS#(0) (BOTTOM DIE) is used to
select the 256Mb chip, CS#(1) (TOP DIE) is used to select the 256Mb chip.
F7, F8, F9 CAS#,
RAS#,
WE#
Input Command Inputs: CAS#, RAS#, and WE# (along with CS#) define the
command being entered.
E8, F1 LDQM,
UDQM Input Input/Output Mask: DQM is sampled HIGH and is an input mask signal for
write accesses and an output enable signal for read accesses. Input data is
masked during a WRIT E cy cle. The output buf f ers are plac ed in a High-Z s tat e
(two-clock latency) when during a READ cycle. LDQM corresponds to DQ0-
DQ7, UDQM corresponds to DQ8-DQ15. LDQM and UDQM are considered
same state when referenced as DQM.
G7, G8 BA0, BA1 Input Bank Address Input(s): BA0 and BA1 define to which bank the ACTIVE, READ,
WRITE or PRECHARGE command is being applied. These pins also prov ide the
op- code during a LOAD MODE REGISTER command
H7, H8, J8, J7, J3,
J2, H3, H2, H1, G3,
H9, G2, G1
A0-A12 Input Address Inputs: A0-A12 are sampled during the ACTIVE command (row-
address A0-A11) and READ/WRITE command (column-address A0-A8; with
A10 defining auto precharge) to select one location out of the memory array
in the respective bank. A10 is sampled during a PRECHARGE command to
determine if all banks are to be precharged (A10 HIGH) or bank selected by
BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD
MODE REGISTER command.
A8, B9, B8, C9, C8,
D9, D8, E9, E1, D2,
D1, C2, C1, B2, B1,
A2
DQ0-
DQ15 I/O Data Input/Output: Data bus
A7, B3, C7, D3 VDDQSupply DQ Power: Provide isolated power to DQs for improved noise immunity.
A3, B7, C3, D7, VSSQSupply DQ Ground: Provide isolated ground to DQs for improved noise immunity.
A9, E7, J9 VDD Supply Power Supply: Voltage dependant on option.
A1, E3, J1 VSS Supply Ground
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 10 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Functio n a l D e scrip tion
The 512Mb SDRAM is a high-speed CMOS, dynamic
random-access memory containing 536,870,912 bits. It
is internally configured by stacking two 256Mb,
16M egx16 devices. Each of these 256Mb devices is con-
figured as a quad bank DRAM with a synchronous
interface. They ar e organized with 16 DQs with 4 banks
of 67,108,864 bits, comprisin g of 8,192 rows by 512 col-
umns by 16 bits wide.
Read and write accesses to the SDRAM are burst ori-
ented; accesses start at a selected location and con-
tinue for a programmed number of locations in a
programmed sequ ence. Accesses begin wit h the regis-
tration of an ACTIVE command, which is then fol-
lowed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the bank and row to be accessed
(BA0, BA1 select the bank; A0-A12 select the row). The
address bits registered coincident with the READ or
WRITE command are used to select the starting col-
umn lo cation fo r the burst access.
The SDRAM provides for programmable READ or
WRITE burst lengths of 1, 2, 4, or 8 locations, or the full
page, with a bu rs t termi na te option. An a ut o prechar g e
function may be enabled to provide a self-timed row
precharge that is initiated at the end of the burst
sequence.
The 512Mb SDRAM uses an internal pipelined
architecture to achieve high-speed operation. This
architecture is c ompatible with the 2n rule of prefetch
architectures, but it also allows the column address to
be changed on every clock cycle to achieve a high-
speed, fully random access. Precharging one bank
while accessing one of the other three banks will hide
the precharge cycles and provide seamless, high-
speed, random-access operation.
The 512Mb SDRAM is designed to operate in 3.3V or
2.5V memory systems. An auto refresh mode is pro-
vided, along with a power-saving, power-down mode.
All inpu ts and outputs are LV TTL-compat ible.
SDRAMs offer substantial advances in DRAM oper-
ating performance, including the ability to synchro-
nously burst data at a high data rate with automatic
column-address generation, the ability to interleave
betwe en i n tern al ban ks to hide pr ec harge time an d t he
capability to randomly change column addresses on
each cloc k cycle during a burst access.
Prior to no rmal operation , the SDRAM must be ini-
tialized. The following sections provide detailed infor-
mation covering die intitialization, register definition,
command descriptions, and device operation on a per
die basis unle ss otherwise noted.
Function a lity (Per Die)
Initialization
SDRAMs must be powered up and initialized in a
predefined manner. Operational procedures other
than those specified may result in undefined opera-
tion. Onc e power is appl ie d to VDD an d VDD Q (si mul-
taneously) and the clock is stable (stable clock is
defined as a signal cycling within timing constraints
specified for the clock pin), the SDRAM requires a
100µs delay prior to issuing any command other than a
COMMAND INHIBIT or NOP. Starting at some point
during this 100µs period and continuing at least
through the end of this period, COMMAND INHIBIT
or NOP commands should be applied.
Once th e 1 0 0µs de l ay has been satisfi e d wi th a t least
one COMMAND INHIBIT or NOP command having
been applied, a PRECHARGE command should be
applied. All banks must then be precharged, thereby
plac ing the device in the all ban ks idle state.
Once in the idle state, two AUTO REFRESH cycles
must be performed. After the AUTO REFRESH cycles
are complete, the SDRAM is ready for Mode Register
programming. Because the Mode Register will power
up in an unknown state, it should be loaded prior to
applying any operationa l command.
Register Definition
Mode Register
The Mode Register is used to define the specific
mode of operation of the SDRAM. This definition
include s the se lection of a burs t length , a burst type, a
CAS latency, an operating mode and a write burst
mode, as shown in Figure4. The Mode Register is pro-
grammed via the LOAD MODE REGISTER command
and will retain the stored information until it is pro-
gra mmed ag ai n o r the devi c e loses power.
Mode Register bits M0-M2 specify the burst length,
M3 specifies the type of burst (sequential or inter-
leaved), M4-M6 specify the CAS latency, M7 and M8
specify the operating mode, M9 specifies the write
burst mode, and M10 and M11 are reserved for future
use. Address A12 (M12) is undefined but should be
driven LOW during loading of the Mode Register.
The Mode Register must be loaded when all banks
are idle, and the controller must wait the specified
time before initiating the subsequent operation. Vio-
lating either of these requirements will result in
unspecified operation.
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 11 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Bur s t Le ng th
Read and write accesses to the SDRAM are burst ori-
ented, with the burst length being programmable, as
shown in Figure4. The burst length determines the
maximum number of column locations that can be
accessed for a given RE AD or WRITE command . Burst
lengths of 1, 2, 4 or 8 locations are available for both
the sequential and the interleaved burst types, and a
full-page burst is available for the sequential type. The
full-p age b urst is used in conj unction with th e BURST
TERMINATE command to generate arbitrary burst
lengths.
Reserved states should not be used, as unknown
operation or incompatibility with future versions may
result.
When a READ or WRITE command is issued, a block
of columns equal to the burst length is effectively
selected. All accesses for that burst take place within
this block, meaning that the burst will wrap within the
block if a boundary is reached. The block is uniquely
selected by A1-A9 (x16) when the burst length is set to
two; b y A2-A 9 (x 16) when th e burs t leng th is set to four;
and by A3-A9 (x16) when the burst length is set to
eight. The remaining (least significant) address bit(s) is
(are) used to select the starting location within the
block. Full-page bursts wrap within the page if the
boundary is reached.
Burst Type
Accesses within a given burst may be programmed
to be either sequent ia l or inter l eav ed; this is refer red to
as the burst type and is selected via bit M3.
The ordering of accesses within a burst is deter-
mined by the bu r st length, the bur s t ty p e and the start-
ing column address, as shown in Table 4.
Figure 4: Mode Register Defini t ion
14 10
M3 = 0
1
2
4
8
Reserved
Reserved
Reserved
Full Page
M3 = 1
1
2
4
8
Reserved
Reserved
Reserved
Reserved
Operating Mode
Standard Operation
All other states reserved
0
-
0
-
Defined
-
0
1
Burst Type
Sequential
Interleaved
CAS Latency
Reserved
1
2
3
Reserved
Reserved
Reserved
Reserved
Burst Length
M0
0
1
0
1
0
1
0
1
Burst LengthCAS Latency BT
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Mode Register (Mx)
Address Bus
976543
8210
M1
0
0
1
1
0
0
1
1
M2
0
0
0
0
1
1
1
1
M3
M4
0
1
0
1
0
1
0
1
M5
0
0
1
1
0
0
1
1
M6
0
0
0
0
1
1
1
1
M6-M0
M8 M7
Op Mode
A10
A11
11
Reserved* WB
0
1
Write Burst Mode
Programmed Burst Length
Single Location Access
M9
*Should program
M12, M11, M10 = “0, 0, 0”
to ensure compatibility
with future devices.
A12
BA0
13 12
BA1
0 0
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 12 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE: 1. For full-page acc e sses: y = 1,024 (x16).
2. For a burst length of two, A1-A9 (x16) select
the block-of-two burst; A0 selects the start-
ing colum n wit hin the block.
3. For a burst length of four, A2-A9 (x16) select
the block-of-four burst; A0-A1 select the
starting column within the block.
4. For a burst length of eight, A3-A9 (x16)
select the block-of-eight burst; A0-A2 select
the starting column within the block.
5. For a full-page burst, the full row is selected
and A0-A9 (x16) select the start ing column.
6. Whenever a boundary of the block is
reached within a giv en sequence above, the
following access wr ap s w ithin the bl o ck.
7. For a burst length of one, A0-A9 (x16) select
the unique column to be accessed, and
Mod e Register bit M3 is ignored.
CAS Latency
The CAS latency is the delay, in clock cycles,
between the registration of a READ command and the
availa bili ty of the f irst pi ece of outp ut data . The la tency
can be set to two or three clocks.
If a READ command is registered at clock edge n,
and the latency is m clocks, the data will be available
by clock edge n + m. The DQs will start driving as a
result of the clock edge one cycle earlier (n + m - 1),
and provided that the relevant access times are met,
the data will be valid by clock edge n + m. For example,
assumi ng that the cl ock cycle tim e is s uch tha t all rele-
vant ac cess times are met, if a READ command i s re gis -
tered at T0 and the latency is programmed to two
clocks, the DQs will start driving after T1 and the data
will be valid by T2, as shown in Figure 5. Table 5 below
indicates the operating frequencies at which each CAS
laten cy setting can be used.
Reserved states should not be used as unknown
operation or incompatibility with future versions may
result. Figure 5: CAS Latency
Operati ng Mo de
The normal operating mode is selected by setting
M7 and M8 to zero; the other combinations of values
for M7 and M8 are reserved for future use and/or test
modes. The programmed burst length applies to both
READ and W RITE bursts.
Test modes and reserved states should not be used
because unknown operation or incompatibility with
future versions may result.
Table 4: Burst Definition
BURST
LENGTH
STARTING
COLUMN
ADDRESS
ORDER OF ACCESSES WITHIN A BURST
TYPE =
SEQUENTIAL TYPE = INTERLEAVE D
2A0
00-1 0-1
11-0 1-0
4A1A0
0 0 0-1-2-3 0-1-2-3
0 1 1-2-3-0 1-0-3-2
1 0 2-3-0-1 2-3-0-1
1 1 3-0-1-2 3-2-1-0
8 A2A1A0
0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7
0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6
0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5
0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4
1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3
1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2
1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1
1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0
Full
Page
(y)
n = A0-
A12/11/9
(location
0-y)
Cn, Cn + 1, Cn
+ 2
Cn + 3, Cn +
4…
…Cn - 1,
Cn…
Not Supported
CLK
DQ
T2T1 T3T0
CAS Latency = 3
LZ
D
OUT
tOH
t
COMMAND NOPREAD
tAC
NOP
T4
NOP
DON’T CARE
UNDEFINED
CLK
DQ
T2T1 T3T0
CAS Latency = 2
LZ
D
OUT
tOH
t
COMMAND NOPREAD
tAC
NOP
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 13 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Write Burst Mode
When M9 = 0, the burst length programmed via M0-
M2 applies to both READ and WRITE bursts; when M9
= 1, the programmed burst length applies to READ
bursts, but write accesses are single-location (non-
burst) accesses.
Figure 6: Extended Mode Register
NOTE: E14 and E13 (BA1 and BA0) must be “1, 0 ” to
select the Extended Mode Register (vs. the
base Mode Register).
Extended Mode Register
The Extended Mode Register controls the functions
beyond those controlled by the Mode Register. These
addit ional func tions are spe cial features o f the Mobile
Ram device. They include Temperature Compensated
Self Refresh (TCSR) control and Partial Array Self
Refresh (P ASR).
The Extended Mode Register is programmed via the
Mode register Set command (BA1=1, BA0=0) and
retains the stored information until it is programmed
agai n or the d evice loses power.
The Extended Mode Register must be programmed
with M6 through M12 set to “0”. The Extended Mode
Register must be loaded when all banks are idle and no
bursts are in progress, and the controller must wait the
specif ied tim e before i nitiati ng any subseq uent opera-
tion. Violating these requirements results in unspeci-
fied opera tion.
The Extended Mode Register must be programmed
in order to use this device properly.
Temperature Compensated Self Refresh
Temperature Compensated Self Refresh allows the
controller to program the Refresh interval during SELF
REFRESH mode, according to the case temperature of
the Mobile Ram device. This allows great power sav-
ings during SELF REFRESH during most operating
temperature ranges. Only during extreme tempera-
tures would the controller have to select a TCSR level
that will guarantee data during SELF REFRESH.
Every cell in the DRAM requires refreshing due to
the capacitor losing its charge over time. The refresh
rate is dependent on temperature. At higher tempera-
tures a capacitor loses charge more quickly than at
lower t emperatures, requirin g the cells t o be refreshed
more often. Historically, during Self Refresh, the
refresh rate has been set to accommodate the worst
case, or highest temperature range expected.
Thus, during ambient temperatures, the power con-
sumed during refresh was unnecessarily high, because
the refresh rate was set to accommodate the higher
temperatures. Setting M4 and M3, allow the DRAM to
accommodate more specific temperature regions dur-
ing SELF REFRESH. There are four temperature set-
tings, which will vary the SELF REFRESH current
according to the selected temperature. This selectable
refresh rate will save power when the DRAM is operat-
ing at normal temperatures.
Partial Array Self Refresh
For further power savings during SELF REFRESH,
the PASR feature allows the controller to select the
amount of memory that will be refreshed during SELF
REFRESH. The refresh options are Four Bank; all four
banks, Two Bank; banks 0 and 1, One Bank; bank 0,
Half Bank; bank 0 with row address MSB 0; Quarter
Bank; bank 0 with row address 2 MSBs 0. WRITE and
READ commands can still occur during standard oper-
Table 5: CAS Latency
SPEED
ALLOWABLE OPERATING
FREQUENCY (MHZ)
CAS
LATENCY = 2
-8 £ 100
Maximum Case TempA4 A3
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
9765438210
A10A11BA0
1011121314
A12
PASRTCSR1
0All have to be set to "0"
BA1
RFU
1 1
70˚C
0 0
45˚C
RFU
0
1
1 0
Self Refresh Coverage
Four Banks
Two Banks (BA1=0)
One Bank (BA1=BA0=0)
RFU
RFU
Half Bank (BA1=BA0=0)
A2 A1 A0
000
00
00
0
001
1
1
11
1
11
0
0
111
1
Quarter Bank (BA1=BA0=0)
RFU
DS
Driver StrengthA5
0
1
Half Strength
Full Strength
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 14 ©2003 Micron Technolog y, Inc. All rights reserv ed.
ation, but only the selected banks will be refreshed
during SELF REFRESH. Data in banks that are disabled
will be lost.
Deep power Down
Deep Power Down is an operating mode to achieve
maximum power reduction by eliminating the power
of the whole memor y array of the device. Data will not
be retained once the device enters Deep Power Down
Mode.
This mode is entered by having all banks idle then
/CS and /WE held low with /RAS and /CAS held high at
the rising edge of the clock, while CKE is low. This
mode is exited by asserting CKE high.
Driver Strength
Extended mode register bit A5 must be used to set
the DQ output drive strength. Full drive strength is
suitable for systems in which the SDRAM component
is placed on a module. Half drive strength is recom-
mended for point-to-point or other applications with
reduced output loading .
The half-strength can be used for point-to-point
applicat ion s. Point-to- point systems are usually light ly
loaded with a memory controller accessing one to
eight SDRAM components on the memory bus with
module stubs between these devices. Driver strength
chosen should be load dependent. The lighter the
load, the less driver strength that is needed for the out-
puts.
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 15 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Commands Per Die
Tab le 6 provides a quic k reference of ava ilable com-
mands. This is followed by a written description of
each command. Three additional Truth Tables appear
following the Operation section; these tables provide
current state/next state information.
NOTE:
1. CKE is HIGH for all commands shown except SELF REFRESH.
2. A0-A11 define the op-code written to the Mode Register, and A12 should be driven LOW.
3. A0-A12 provide row address, and BA0, BA1 determine which bank is made active.
4. A0-A9 (x16) provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), while A10 LOW dis-
ables the auto precharge feature; BA0, BA1 determine which bank is being read from or written to.
5. A10 LOW: BA0, BA1 determine the bank being precharged. A10 HIGH: All banks precharged and BA0, BA1 are “Don’t
Care.”
6. This command is AUTO REFRESH if CKE is HIGH; SELF REFRESH if CKE is LOW.
7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.
8. Activates or deactivates the DQs during WRITEs (zero-c lock dela y) and READs (two-cloc k delay).
9. Standard SDRAM parts assign this command sequence as Burst Terminate. For Mobile Ram devices, the Burst Terminate
command is assigned to the Deep Power Down function.
Table 6: Truth Table – Commands And DQM Operation
NAME (FUNCTION) CS# RAS# CAS# WE# DQM ADDR DQS NOTES
COMMAND INHIBIT (NOP) HXXXX X X
NO OPERATION (NOP) LHHHX X X
ACTIVE (Select bank and activate row) L L H H X Bank/Row X 3
READ (Select bank and column, and start READ burst) LHLH
L/H8Bank/Col X 4
WRITE (Select bank and column, and start WRITE
burst) LHLL
L/H8Bank/Col Valid 4
DEEP POWER DOWN LHHLX X X 9
PRECHARGE (Deactivate row in bank or banks) L L H L X Code X 5
AUTO REFRESH or SE LF REFRESH LLLHX X X 6, 7
(Enter self refresh mode)
LOAD MODE REGISTER L L L L X Op-Code X 2
Write Enable/Output Enable ----L - Active8
Write Inhibit/Output High-Z ----H -High-Z8
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 16 ©2003 Micron Technolog y, Inc. All rights reserv ed.
COMMAND INHIBIT
The COMMAND INHIBIT function prevents new
commands from being executed by the SDRAM,
regardless of whether the CLK signal is enabled. The
SDRAM is effectively deselected. Operations already in
progress are not aff ec ted.
NO OPERATION (NOP)
The NO OPERATION (NOP) command is used to
perform a NOP to an SDRAM which is selected (CS# is
LOW). This prevents unwanted commands from being
registered during idle or wait states. Operations
already in progress are not affected.
LOAD MODE REGISTER
The Mode Register is loaded via inputs A0-A11 (A12
should be driven LOW.) See Mode Register heading in
the Register Definition section. The LOAD MODE
REGISTER command can only be issued when all
banks a re idle, and a subsequent executable c omma nd
cannot b e issued until tMRD is met.
ACTIVE
The ACTIVE command is used to open (or activate)
a row in a part icular b ank for a sub sequent acce ss. The
value on the BA0, BA1 inputs selects the bank , and the
address provided on inputs A0-A12 selects the row.
This row remains active (or open) for accesses until a
PRECHARGE command is issued to that bank. A PRE-
CHARGE command must be issued before opening a
different row in the same bank.
READ
The R EAD com mand is used t o initiate a burs t read
access to an active row. The value on the BA0, BA1
inputs selects the bank, and the address provided on
inputs A0-A9 (x16) selects the starting column loca-
tion. The value on input A10 determines whether or
not auto precharge is used. If auto precharge is
selected, the row being accessed will be precharged at
the end of the READ burst; if auto precharge is not
selected, the row will remain open for subsequent
accesse s. Read data appe ars on the DQs subje ct to th e
logic level on the DQM inputs two clocks earlier. If a
given DQM signal was registered HIGH, the corre-
sponding DQs will be High-Z two clocks later; if the
DQM signal was registered LOW, the DQs will provide
valid data.
WRITE
The WRITE command is used to initiate a burst
write access to an active row. The value on the BA0,
BA1 inputs selects the bank, and the address provided
on inputs A0-A9 (x16) selects the starting column loca-
tion. The value on input A10 determines whether or
not auto precharge is used. If auto precharge is
selected, the row being acce ssed will be precharged at
the end of the WRITE burst; if auto precharge is not
selected, the row will remain open for subsequent
acces ses . I n put dat a appea ring on the D Qs is wri tten to
the memory array subject to the DQM input logic level
appearing coincident with the data. If a given DQM
signal is registered LOW, the corresponding data will
be written to memory; if the DQM signal is registered
HIGH, the corresponding data inputs will be ignored,
and a W RIT E w ill n ot be ex ecu t ed to t ha t byte/c o lu mn
location.
PRECHARGE
The PRECHARGE command is used to deactivate
the open r ow in a partic ular bank or the op en ro w in a ll
banks. The bank(s) will be available for a subsequent
row access a speci fied ti me (tRP ) afte r the PRE CHARGE
command is issued. Input A10 determines whether
one or all banks are to be precharged, and in the case
where only one bank is to be precharged, inputs BA0,
BA1 select the ban k. Otherwise BA0, BA1 are treated as
“Dont Care.” Once a bank ha s be en precharged , it is in
the idle state and m ust be ac tivate d pri or to an y READ
or WRITE commands b e ing issued to that bank.
AUTO PRECHARGE
Auto precharge is a feature which performs the
same individual-bank PRECHARGE function
described above, without requiring an explicit com-
mand. This is accomplished by using A10 to enable
auto precharge in conjunc tion with a spe cific REA D or
WRITE command. A PRECHARGE of the bank/row
that i s addr e ssed with the READ or WRITE command is
automatically performed upon completion of the
READ or WRITE burst, except in the full-page burst
mode, where auto precharge does not apply. Auto pre-
charge is nonpersistent in that it is either enabled or
disabled for each individual READ or WRITE com-
mand.
Auto precharge ensures that the precharge is initi-
ated at the earliest valid stage within a burst. The user
must not issue another command to the same bank
until the precharge time (tRP) is completed. This is
determined as if an explicit PRECHARGE command
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 17 ©2003 Micron Technolog y, Inc. All rights reserv ed.
was issued at the earliest possible time, as described
for each burst type in the Operation section of this
data sheet.
BURST TERMINATE
The BURST TERMINATE command is used to trun-
cate either fixed-length or full-page bursts. The most
rec ent ly reg is tere d RE A D or WR IT E c omm a nd p ri or to
the BURST TERMINATE command will be truncated,
as shown in the Operation section of this data sheet.
AUTO REFRESH
AUTO REFRESH is used during normal operation of
the SDRAM and is analogous to CAS#-BEFORE-RAS#
(CBR) REFRESH in conventional DRAMs. This com-
mand is nonpersistent, so it must be issued each time
a refresh is required. All active banks must be PRE-
CHARGED prior to issuing a AUTO REFRESH com-
mand. The AUTO REFRESH command should not be
issued until the minimum tRP has been met after the
PRECHARGE command as shown in the operations
section.
The addressing is generated by the internal refresh
controller. This makes the address bits “Dont Care
during an AUTO REFRESH command. The 512Mb
SDRAM requires 8,192 AUTO REFRESH cycles every
64ms (tREF), regardless of width option. Providing a
distributed AUTO REFRESH command every 7.81µs
will meet th e refresh requirement and ensure tha t e ac h
row is refreshed. Alternatively, 8,192 AUTO REFRESH
commands can be issued in a burst at the minimum
cycle rate (tRC), once every 64ms.
SELF REFRESH
The SELF REFRESH command can be used to reta in
data in the SDRAM, even if the rest of the system is
powered down. When in the self refresh mode, the
SDRAM retains data without external clocking. The
SELF REFRESH command is initiated like an AUTO
REFRESH command except CKE is disabled (LOW).
Once the SELF REFRESH command is registered, all
the inputs to th e SDRAM become Dont Care” with t he
exception of CKE, which must remain LOW.
Once self refresh mode is e ngaged, th e SDRAM pro-
vides its own internal clocking, causing it to perform
its own AUTO REFRESH cycles. The SDRAM must
remain in self refresh mode for a minimum period
equal to tRAS and may remain in self refresh mode for
an indefinite perio d beyond that.
The procedure for exiting self refresh requires a
sequence of commands. First, CLK must be stable (sta-
ble clock is defined as a signal cycling within timing
constraints specified for the clock pin) prior to CKE
going back HIGH. Once CKE is HIGH, the SDRAM
must have NOP commands issued (a minimum of two
clocks) for tXSR because time is required for the com-
pletion of any internal refresh in progress.
Upon exiting the self refresh mode, AUTO REFRESH
commands must be issu ed every 7 .81µs or less a s both
SELF REFRESH and AUTO REFRESH utilize the row
refresh c ounter.
Operation
Bank/Row Activation
Before any READ or WRITE commands can be
issued to a bank within the SDRAM, a row in that bank
must beopened. This is accomplished via the
ACTIVE command, which selects both the bank and
the row to be activated (see Figure 7).
After ope ning a row (issuin g an ACTIVE comm and),
a READ or WRITE command may be issued to that row,
subject to the tRCD specification. tRCD (MIN) should
be divided by the clock period and rounded up to the
next whole number to determine the earliest clock
edge after the ACTIVE command on which a READ or
WRITE command ca n be entered. For example, a tRCD
specification of 20ns with a 125 MHz clock (8ns
period) results in 2.5 clocks, rounded to 3. This is
reflected in Figure 8, which covers any case where 2 <
tRCD (MIN)/tCK - 3. (The same procedure is used to
convert other specification limits from time units to
clock cycles.) A subsequent ACTIVE command to a dif-
ferent row in the same bank can only be issued after
the previous active row has been “closed” (pre-
charge d) . T he mi ni mu m t im e i n terval between succes -
sive ACTIVE commands t o the same bank is defined by
tRC.
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 18 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 7: Activating a Specific Row In a
Specific Bank
A subsequent ACTIVE command to another bank
can be issued while the first bank is being accessed,
which results in a reduction of total row-access over-
head. The minimum time inter val between successive
ACTIVE commands to different banks is defined by
tRRD.
Figur e 8: Example: Meeting RCD (MIN)
When 2 < RCD (MIN)/ CK 3
READs
READ bursts are initiated with a READ command, as
shown in Figure9.
The starting column and bank addresses are pro-
vided with the READ command, and auto precharge is
either enabled or disabled for that burst access. If auto
precharge is enabled, the row being accessed is pre-
charged at the completion of the burst. For the generic
READ commands used in the following illustrations,
auto precharge is disabled.
During READ bursts, the valid data-out element
from the star ting column address will be available fol-
lowing the CAS latency after the READ command.
Each subsequent data-out element will be valid by the
next positive clock edge. Figure 10 shows general tim-
ing for eac h pos sib l e CAS la ten c y se tti ng .
Figure 9: Read Command
CS#
WE#
CAS#
RAS#
CKE
CLK
A0-A12 ROW
ADDRESS
DON’T CARE
HIGH
BA0, BA1 BANK
ADDRESS
CLK
T2T1 T3T0
t
COMMAND NOPACTIVE READ or
WRITE
T4
NOP
RCD
DON’T CARE
CS#
WE#
CAS#
RAS#
CKE
CLK
COLUMN
ADDRESS
A0-A9: x16
A10
BA0,1
DON’T CARE
HIGH
ENABLE AUTO PRECHARGE
DISABLE AUTO PRECHARGE
BANK
ADDRESS
A9, A11, A12: x16
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 19 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 10: CAS Latency Upon completion of a burst, assuming no other
commands have been initiated, the DQs will go High-
Z. A full-page bu rst will continu e until ter minated. (At
the end of th e page , it wi ll wra p to the start addr ess and
continue.) Data from any READ burst may be trun-
cated with a subsequent READ command, and data
from a fixed-length READ burst may be immediately
followed by data from a READ command. In either
case, a continuous flow of data can be maintained. The
first dat a elemen t from the new bu rst f ollo ws eith er the
last element of a completed burst or the last desired
data element of a longer burst that is being truncated.
The new READ command should be issued x cycles
befor e the c lock edge at which th e last desi r ed data ele-
ment is valid, where x equals the CAS latency minus
one. This is sho wn in Figure 11 for CAS latencies of two
and three; data element n + 3 is either the last of a
burst of four or the last desired of a longer burst. The
512Mb SDRAM uses a pipelined architecture and
ther efor e does not re quir e the 2n rule as sociat ed with a
prefetch architecture. A READ command can be initi-
ated on any clock cycle following a previous READ
command. Full-speed random read accesses can be
performed to t he sa me bank, a s sh own in Figure 12, or
each subsequent READ may be performed to a differ-
ent bank.
Figure 11: Consecutive READ Bursts
CLK
DQ
T2T1 T3T0
CAS Latency = 3
LZ
DOUT
tOH
t
COMMAND NOPREAD
tAC
NOP
T4
NOP
DON’T CARE
UNDEFINED
CLK
DQ
T2T1 T3T0
CAS Latency = 2
LZ
DOUT
tOH
t
COMMAND NOPREAD
tAC
NOP
DON’T CARE
NOTE: Each READ command may be to any bank. DQM is LOW.
CLK
DQ DOUT
n
T2T1 T4T3 T6T5T0
COMMAND
ADDRESS
READ NOP NOP NOP NOP
BANK,
COL n
NOP
BANK,
COL b
DOUT
n + 1 D
OUT
n + 2 D
OUT
n + 3 D
OUT
b
READ
X = 1 cycle
CAS Latency = 2
CLK
DQ DOUT
n
T2T1 T4T3 T6T5T0
COMMAND
ADDRESS
READ NOP NOP NOP NOP
BANK,
COL n
NOP
BANK,
COL b
DOUT
n + 1 D
OUT
n + 2 D
OUT
n + 3 D
OUT
b
READ NOP
T7
X = 2 cycles
CAS Latency = 3
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 20 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 12: Random READ Accesses
Data from any REA D bu rst may be tr uncate d w ith a
subsequent WRITE command, and data from a fixed-
length READ burst may be immediately followed by
data from a WRITE command (subject to bus turn-
around limitations). The WRITE burst may be initiated
on the clock edge immediately following the last (or
last desired) data element from the READ burst, pro-
vided that I/ O contention can be avoided. In a given
system design, there may be a possibility that the
device driving the input data will go Low-Z before the
SDRAM DQs go High-Z. In this case, at least a single-
cycle delay should occur between the last read data
and the WRITE command.
The DQM input is used to avoid I/O contention, as
shown in Figure 13 and Figure 14 on page 21. The
DQM signal must be asserted (HIGH) at least two
clocks prior to the WRITE command (DQM latency is
two clocks for output buffers) to suppress data-out
from the READ. Once the WRITE command is regis-
tered, the DQs will go High-Z (or remain High-Z),
regardless of the state of the DQM signal; provided the
DQM was active on the clock just prior to the WRITE
command that truncated the READ command. If not,
the second WRITE will be an invalid WRITE. For exam-
ple, if DQM was LOW during T4 in Figure 14 on
page 21, then the WRITEs at T5 and T7 would be valid,
while the WRITE at T6 would be invalid.
The DQM signal must be de-asserted prior to the
WRITE command (DQM latency is zero clocks for
input buffers) to ensure that the written data is not
masked. Figure13 shows the case where the clock fre-
quency allows for bus contention to be avoided with-
out adding a NOP cycle, and Figure 14 shows the case
where the additional NOP is needed.
CLK
DQ
T2T1 T4T3 T6T5T0
COMMAND
ADDRESS
READ NOP NOP
BANK,
COL n
DON’T CARE
D
OUT
nD
OUT
aD
OUT
xD
OUT
m
READ
NOTE: Each READ command may be to any bank. DQM is LOW.
READ READ NOP
BANK,
COL aBANK,
COL xBANK,
COL m
CLK
DQ
D
OUT
n
T2T1 T4T3 T5T0
COMMAND
ADDRESS
READ NOP
BANK,
COL n
D
OUT
aD
OUT
xD
OUT
m
READ READ READ NOP
BANK,
COL aBANK,
COL xBANK,
COL m
CAS Latency = 2
CAS Latency = 3
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 21 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 13: READ to WRITE
Figure 14: READ to WRITE with Extra
Clock Cycle
A fixed-length READ burst may be followed by, or
truncated with, a PRECHARGE command to the same
bank (pr ovided that aut o precharge wa s not acti va ted),
and a full-page burst may be truncated with a PRE-
CHARGE command to the same bank. The PRE-
CHARGE command should be issued x cycles before
the clock edge at which the last desired data elemen t is
valid, where x equals the CAS latency minus one. This
is shown in Figure 11 for each possible CAS latency;
data element n + 3 is either the last of a burst of four or
the last desired of a longer burst. Following the PRE-
CHARGE command, a subsequent command to the
same b an k cannot be issued unt il tRP is met. Note that
part of the row precharge time is hidden during the
access of the last data element(s).
In the case of a fixed-length burst being executed to
completion, a PRECHARGE command issued at the
optimum time (as described above) provides the same
operation that would result fr om the same fixed-length
burst with auto precharge. The disadvantage of the
PRECHARGE command is that it requires that the
command and address buses be available at the
approp riate t ime to iss ue the comman d; the advant age
of the PRECHARGE command is that it can be used to
truncate fixed-length or full-page bursts.
Full-page READ bursts can be truncated with the
BURST TERMINATE command, and fixed-length
READ bursts may be truncated with a BURST TERMI-
NATE command, provided that auto precharge was
not activated. The BURST TERMINATE command
should be issued x cycles before the clock edge at
which the last desired data element is valid, where x
equals the CAS latency minus one. This is shown in
Figure 15 for each possible CAS latency; data element
n + 3 is the last desired data element of a longer burst.
DON’T CARE
READ NOP NOP WRITE
NOP
CLK
T2T1 T4T3T0
DQM
DQ DOUT n
COMMAND
DIN b
ADDRESS BANK,
COL nBANK,
COL b
DS
t
HZ
t
t
CK
NOTE: A CAS latency of three is used for illustration. The
READ
command may be to any bank, and the WRITE command
may be to any bank. If a burst of one is used, then DQM is
not required.
TRANSITIONING DATA
DON’T CARE
READ NOP NOPNOP NOP
DQM
CLK
DQ DOUT n
T2T1 T4T3T0
COMMAND
ADDRESS BANK,
COL n
WRITE
DIN b
BANK,
COL b
T5
DS
t
HZ
t
NOTE: A CAS latency of three is used for illustration. The
READ command
may be to any bank, and the WRITE command may be to any bank.
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 22 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 15: Terminating a READ Burst
CLK
DQ DOUT
n
T2T1 T4T3 T6T5T0
COMMAND
ADDRESS
READ NOP NOP NOP NOP
BANK,
COL n
NOP
DOUT
n + 1 DOUT
n + 2 DOUT
n + 3
BURST
TERMINATE NOP
T7
DON’T CARE
NOTE: DQM is LOW.
CLK
DQ DOUT
n
T2T1 T4T3 T6T5T0
COMMAND
ADDRESS
READ NOP NOP NOP
BANK,
COL n
NOP
DOUT
n + 1 DOUT
n + 2 DOUT
n + 3
BURST
TERMINATE NOP
X = 1 cycle
CAS Latency = 2
CAS Latency = 3
X = 2 cycles
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 23 ©2003 Micron Technolog y, Inc. All rights reserv ed.
WRITEs
WRITE b ursts are initiated with a WRITE com mand,
as shown in Figure 16 Write command.
The starting column and bank addresses are pro-
vided with the WRITE command, and auto precharge
is either enabled or disabled for that access. If auto
precharge is enabled, the row being accessed is pre-
charged at the completion of the burst. For the generic
WRITE commands used in the following illustrations,
auto precharge is disabled.
During WRITE bursts, the first valid data-in element
will be registered coincident with the WRITE com-
mand. Subsequent data elements will be registered on
each success ive positive clock edge. Upon completion
of a fixed-length burst, assuming no other commands
have been initiated, the DQs will remain High-Z and
any additional input data will be ignored (see
Figure 17) Write Burst. A full-page burst will continue
until termi n ated. (At the end of the page, it will wr a p to
the start address and continue.) Data for any WRITE
burst may be truncated with a subsequent WRITE
command, and data for a fixed-length WRITE burst
may be immediately followed by data for a WRITE
command. The new WRITE command can be issued
on any clock following the previous WRITE command,
and the data provided coincident with the new com-
mand applies to the new command. An example is
shown in Figure 18 (Write to Write). Data n + 1 is either
the last of a burst of two or the last desired of a longer
burst. The 512Mb SDRAM uses a pipelined architec-
ture and therefore does not require the 2n rule associ-
ated with a prefetch architecture. A WRITE command
can be initiated on any clock cycle follow ing a previous
WRITE command. Full-speed random write accesses
within a page can be performed to the same bank, as
sho wn in Figure19, or each subsequent WRITE may be
performed to a different bank.
Figure 16: WRITE Command Figure 17: WRITE Burst
Figure 18: WRITE to WRITE
CS#
WE#
CAS#
RAS#
CKE
CLK
COLUMN
ADDRESS
A10
DON’T CARE
HIGH
ENABLE AUTO PRECHARGE
DISABLE AUTO PRECHARGE
A0-A9: x16
A9, A11, A12: x16
BA0, BA, 1 BANK
ADDRESS
CLK
DQ DIN
n
T2T1 T3T0
COMMAND
ADDRESS
NOP NOP
DON’T CARE
WRITE
DIN
n + 1
NOP
BANK,
COL n
NOTE: Burst length = 2. DQM is LOW.
TRANSITIONING DATA
CLK
DQ
T2T1T0
COMMAND
ADDRESS
NOPWRITE WRITE
BANK,
COL nBANK,
COL b
D
IN
nD
IN
n + 1 D
IN
b
NOTE: DQM is LOW. Each WRITE command may
be to any bank.
DON’T CARE
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 24 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Data for any WRITE burst may be truncated with a
subsequent READ command, and data for a fixed-
length WRITE burst may be immediately followed by a
READ command. Once the READ command is regis-
tered, the data inputs will be ignored, and WRITEs will
not be executed. An example is shown in Figure 20.
Data n + 1 is either the last of a burst of two or the last
desired of a longer burst.
Data for a fixed-length WRITE burst may be fol-
lowed by, or truncated with, a PRECHARGE command
to the same bank (provided that auto precharge was
not activated), and a full-page WRITE burst may be
truncated with a PRECHARGE command to the same
bank. The PRECHARGE command should be issued
tWR after the cl ock edge at which the last des ired input
data element is registered. The auto precharge mode
requires a tWR of at least one clock plus time, regard-
less of frequency. In addition, when truncating a
WRITE burst, the DQM signal must be used to mask
input data for the clock edge prior to, and the clock
edge coincident with, the PRECHARGE command. An
example is shown in Figure21. Dat a n + 1 is either the
last of a burst of two or the last desired of a longer
burst. Following the PRECHARGE command, a subse-
quent command to the same bank cannot be issued
until tRP is met. The precharge can be issued coinci-
dent with the first coincident clock edge (T2 in
Figure21) on an A1 Version and with the second clock
on an A2 Version (Figure 21.) In the case of a fixed-
length burst being executed to completion, a PRE-
CHARGE command issued at the optimum time (as
described above) provides the same operation that
would result from the same fixed-length burst with
auto precharge. The disadvantage of the PRECHARGE
command is that it requires that the command and
address buses be available at the appropriate time to
issue th e comm and ; the a dva nt ag e of th e PRECHARG E
command is that it can be used to truncate fixed-
length or full-page bursts.
Fixed-length or full-page WRITE bursts can be trun-
cated with the BURST TERMINATE command. When
truncating a WRITE burst, the input data applied coin-
cident with the BURST TERMINATE command will be
ignored. The last data written (provided that DQM is
LOW at that time) will be the input data applied one
clock previous to the BURST TERMINATE command.
This is shown in Figure 22, where data n is the last
desired data element of a longer burst.
Figure 19: Random WRITE Cycles
Figure 20: WRITE To READ
DON’T CARE
CLK
DQ DIN
n
T2T1 T3T0
COMMAND
ADDRESS
WRITE
BANK,
COL n
DIN
aDIN
xDIN
m
WRITE WRITE WRITE
BANK,
COL aBANK,
COL xBANK,
COL m
NOTE: Each WRITE command may be to any bank. DQM is LOW.
TRANSITIONING DATA
DON’T CARE
CLK
DQ
T2T1 T3T0
COMMAND
ADDRESS
NOPWRITE
BANK,
COL n
DIN
nDIN
n + 1 DOUT
b
READ NOP NOP
BANK,
COL b
NOP
DOUT
b + 1
T4 T5
NOTE: The WRITE command may be to any bank, and the READ command
may be to any bank. DQM is LOW. CAS latency = 2 for illustration.
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 25 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 21: WRITE To PRECHAR GE
Figure 22: Terminating a WRITE Burst
PRECHARGE
The PRECHARGE command (see Figure23) is used
to deactivate the open row in a particular bank or the
open row in all banks. The bank(s) will be available for
a subsequent row access some specified time (tRP)
after the precharge command is issued. Input A10
determines whether one or all banks are to be pre-
charged, and in the case where only one bank is to be
precharged, inputs BA0, BA1 select the bank. When al l
banks are to be precharged, inputs BA0, BA1 are
treated as “Dont Care.” Once a bank has been pre-
charged, it is in the idle state and must be activated
prior to any READ or WRITE commands being issued
to that bank.
POWER-DOWN
Power-down occurs if CKE is registered low coinci-
dent with a NOP or COMMAND INHIBIT when no
accesses are in progress. If power-down occurs when
all bank s are idle, this mode is referred to as precharge
power-down; if power-down occurs when there is a
row active in any bank, this mode is referred to as
active power-down. Entering power-down deactivates
the input and output buffers, excluding CKE, for maxi-
mum power savings while in standby. The device may
DON’T CARE
DQM
CLK
DQ
T2T1 T4T3T0
COMMAND
ADDRESS
BANK a,
COL n
T5
NOPWRITE
PRECHARGE
NOPNOP
DIN
nDIN
n + 1
ACTIVE
tRP
BANK
(a or all)
t
WR
BANK a,
ROW
DQM
DQ
COMMAND
ADDRESS
BANK a,
COL n
NOPWRITE
PRECHARGE
NOPNOP
DIN
nDIN
n + 1
ACTIVE
tRP
BANK
(a or all)
t
WR
NOTE: DQM could remain LOW in this example if the WRITE burst is a fixed length of two.
BANK a,
ROW
T6
NOP
NOP
tWR @ tCLK 15ns
tWR = tCLK < 15ns
TRANSITIONING DATA
DON’T CARE
CLK
DQ
T2T1T0
COMMAND
ADDRESS BANK,
COL n
WRITE BURST
TERMINATE NEXT
COMMAND
DIN
n
(ADDRESS)
(DATA)
NOTE: DQMs are LOW.
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 26 ©2003 Micron Technolog y, Inc. All rights reserv ed.
not remain in the power-down state longer than the
refresh period (64ms) since no refresh operations are
perf ormed in this mode.
The power-down state is exit ed by r eg i st ering a NOP
or COMMAND INHIBIT and CKE HIGH at the desired
clock edge (meeting tCKS). (See Figure24.)
Figure 23: PRECHARGE Command
Figure 24: Power-Down
DEEP POWER DOWN
Deep Power Down mode is a maximum power sav-
ings feature achieved by shutting off the power to the
entire memory array of the device. Data will not be
retained once Deep Power Down mode is executed.
Deep Power Down mode is entered by having all banks
idle then /CS and /WE held low with /RAS and /CAS
high at the rising edge of the clock, while CKE is low.
CKE must be held low during Deep Power Down.
In order to exit Deep Power Down mode, CKE must
be asserted high. After exiting, the following sequence
is needed in order to enter a new command . Maintain
NOP input conditions for a minimum of 200us. Issue
PRECHARGE commands for all banks. Issue eight or
more AUTO RE FRESH comm ands . I ss ue a MODE REG-
ISTE R, s et co mmand to in itializ e mo de regi s te r. Issu e a
EXTENDED MODE REGISTER set command to initial-
ize the extended mode register. (See figure 26)
Figure 25: Deep Power Down
CLOCK SUSPEND
The clock suspend mode occurs when a column
access/ burst is i n progress and CKE is registered LOW.
I n the clock sus pend mode , t he internal cl ock is deac ti-
vated, “freezing” the synchronous logic.
For each positive clock edge on which CKE is sam-
pled LOW, the next internal positive clock edge is sus-
pended. Any command or data present on the input
pins at the time of a suspended internal clock edge is
ignored; any data present on the DQ pins remains
driven; and burst counters are not incremented, as
long as the clock is suspended. (See examples in
Figure 26 and Figure 27.)
Clock suspend mode is exited by registering CKE
HIGH; the internal clock and related operation will
resume on the subs eq uent positive cl ock edge.
BURST READ/SINGLE WRITE
The burst read/single write mode is entered by pro-
gramming the write burst mode bit (M9) in the Mode
Register to a logic 1. In this mode, all WRITE com-
mands result in the a ccess of a single colu mn location
(burst of one), regardless of the programmed burst
length . REA D c omm and s acce ss col umns a ccording to
the programmed burst length and sequence, just as in
the normal mode of operation (M9 = 0).
DON’T CARE
CS#
WE#
CAS#
RAS#
CKE
CLK
A10
HIGH
All Banks
Bank Selected
A0-A9, A11, A12
BA0, BA1 BANK
ADDRESS
DON’T CARE
tRAS
tRCD
tRC
All banks idle Input buffers gated off
Exit power-down mode.
()()
()()
()()
tCKS > tCKS
COMMAND
NOP ACTIVE
Enter power-down mode.
NOP
CLK
CKE
()()
()()
DON’T CARE
Exit deep power-down mode.
()()
()()
Enter deep power-down mode.
CLK
CKE
CS#
WE#
CAS#
RAS#
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 27 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 26: Clock Suspend During WRITE
Burst
Figure 27: Clock Suspend During READ
Burst
Concurrent AUTO PRECHA RGE
An access command to (READ or WRITE) another
bank while an access command with auto precharge
enabled is executing is not allowed by SDRAMs, unless
theSDRAMsupportsCONCURRENTAUTOPRE-
CHARGE. Micron SDRAMs support CONCURRENT
AUTO PRECHARGE. Four cases where CONCURR ENT
AUTO PRECHARGE occurs are defined below.
READ with auto precharge
1. Interrupted by a READ (with or without auto pre-
charge): A READ to bank m will interrupt a READ
on bank n, CAS latency lat er. The PRE CHARGE to
bank n will begin when the READ to bank m is
registered (Figure 28).
2. Interrupted by a WRITE (with or without auto pre-
charge): A WRITE to bank m will interrupt a READ
on bank n when registered. DQM should be used
two clocks prior to the WRITE command to pre-
vent bus contention. The PRECHARGE to bank n
will begi n wh en the WRITE to b ank m is r egistered
(Figure 29).
WRITE with auto precharge
3. Interrupted by a READ (with or without AUTO
PRECHARGE): A READ to bank m will interrupt a
WRITE on bank n when registered, with the data-
out app eari ng CAS latenc y l ater. The PRECHARGE
to bank n will begin after tWR is met, where tWR
begins when the READ to bank m is registered.
The last valid WRITE to bank n will be data-in reg-
istered one clock prior to the READ to bank m
(Figure 30).
4. Interrupted by a WRITE (with or without auto pre-
charge): A WRITE to bank m will interrupt a
WRITE on bank n when registered. The PRE-
CHARGE to bank n will begin after tWR is met,
where tWR begins when the WRITE to bank m is
registered. The last valid data WRITE to bank n
will be data registered one clock prior to a WRITE
to bank m (Figure 31).
DON’T CARE
D
IN
COMMAND
ADDRESS
WRITE
BANK,
COL n
D
IN
n
NOPNOP
CLK
T2T1 T4T3 T5T0
CKE
INTERNAL
CLOCK
NOP
D
IN
n + 1 D
IN
n + 2
NOTE: For this example, burst length = 4 or greater, and DM
is LOW.
DON’T CARE
CLK
DQ
D
OUT
n
T2T1 T4T3 T6T5T0
COMMAND
ADDRESS
READ NOP NOP NOP
BANK,
COL n
NOP
D
OUT
n + 1 D
OUT
n + 2 D
OUT
n + 3
NOTE: For this example, CAS latency = 2, burst length = 4 or greater, and
DQM is LOW.
CKE
INTERNAL
CLOCK
NOP
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 28 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 28: READ With Auto Pre cha r g e Interrupt ed by a REA D
Figure 29: READ With Auto Precharge Interrupted by a WRITE
DON’T CARE
CLK
DQ
DOUT
a
T2T1 T4T3 T6T5T0
COMMAND
READ - AP
BANK nNOP NOPNOPNOP
DOUT
a + 1 DOUT
dDOUT
d + 1
NOP
T7
BANK n
CAS Latency = 3 (BANK m)
BANK m
ADDRESS
Idle
NOP
NOTE: DQM is LOW.
BANK n,
COL aBANK m,
COL d
READ - AP
BANK m
Internal
States t
Page Active READ with Burst of 4 Interrupt Burst, Precharge
Page Active READ with Burst of 4 Precharge
RP - BANK ntRP - BANK m
CAS Latency = 3 (BANK n)
TRANSITIONING DATA
CLK
DQ
DOUT
a
T2T1 T4T3 T6T5T0
COMMAND
NOPNOPNOPNOP
DIN
d + 1
DIN
dDIN
d + 2 DIN
d + 3
NOP
T7
BANK n
BANK m
ADDRESS
Idle
NOP
DQM
NOTE: 1. DQM is HIGH at T2 to prevent D
OUT
-a+1 from contending with D
IN
-d at T4.
BANK n,
COL aBANK m,
COL d
WRITE - AP
BANK m
Internal
States t
Page
Active READ with Burst of 4 Interrupt Burst, Precharge
Page Active WRITE with Burst of 4 Write-Back
RP -
BANK
ntWR -
BANK
m
CAS Latency = 3 (BANK n)
READ - AP
BANK n
1
DON’T CARE
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 29 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 30: WRITE With Auto Precharge Interrupted by a READ
Figure 31: WRITE With Auto Precharge Interrupted by a WRITE
DON’T CARE
CLK
DQ
T2T1 T4T3 T6T5T0
COMMAND WRITE - AP
BANK nNOPNOPNOPNOP
DIN
a + 1
DIN
a
NOP NOP
T7
BANK n
BANK m
ADDRESS
NOTE: 1. DQM is LOW.
BANK n,
COL aBANK m,
COL d
READ - AP
BANK m
Internal
States
t
Page Active WRITE with Burst of 4 Interrupt Burst, Write-Back Precharge
Page Active READ with Burst of 4
ttRP - BANK m
DOUT
dDOUT
d + 1
CAS Latency = 3 (BANK m)
RP - BANK n
WR - BANK n
TRANSITIONING DATA
DON’T CARE
CLK
DQ
T2T1 T4T3 T6T5T0
COMMAND WRITE - AP
BANK nNOPNOPNOPNOP
DIN
d + 1
DIN
d
DIN
a + 1 DIN
a + 2
DIN
aDIN
d + 2 DIN
d + 3
NOP
T7
BANK n
BANK m
ADDRESS
NOP
NOTE: 1. DQM is LOW.
BANK n,
COL aBANK m,
COL d
WRITE - AP
BANK m
Internal
States
t
Page Active WRITE with Burst of 4 Interrupt Burst, Write-Back Precharge
Page Active WRITE with Burst of 4 Write-Back
WR - BANK ntRP - BANK ntWR - BANK m
TRANSITIONING DATA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 30 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous clock edge.
2. Current state is the state of the SDRAM immediately prior to clock edge n.
3. COMMANDnis the command registered at clock edge n, and ACTIONn is a result of COMMANDn.
4. All states and sequences not shown are illegal or reserved.
5. Exiting power-down at clock edge n will put the device in the all banks idle state in time for clock edge n + 1 (provided
that tCKS is met).
6. Exiting self refresh at cloc k edge n w ill put the dev ice in the a ll ba nks id le state once tXSR is m et. C OMMAND INHIBIT or
NOP commands should be issued on any clock edges occurring during the tXSR period. A minimum of two NOP com-
mands must be provided during tXSR period.
7. After exiting clock suspend at clock edg e n, the dev ice will resume ope ration an d reco gnize the nex t com man d at clock
edge n + 1.
8. Deep Power-Down is a power savings feature of this Mobile SDRAM device. This command is Burst Terminate on tradi-
tional SDRAM components. For Mobile Ram devices, this command sequence is assigned to Deep Power Down.
Table 7: Truth Table – CKE
CKEN-1 CKENCURRENT STATE COMMANDNACTIONNNOTES
L L Power-Down X Maintain Power-Down
Self Refresh X Maintain Self Refresh
Clock Suspend X Maintain Clock Suspend
L H Powe r-Down COMMAND INHIBIT or NOP Exit Power-Down 5
Deep Power-Down X Exit Deep Power-Down 8
Self Refresh COMMAND INHIBIT or NOP Exit Self Refresh 6
Clock Suspend X Exit Clock Suspend 7
H L All Banks Idle COMMAND INHIBIT or NOP Power-Down Entry
All Banks Idle DEEP POWER DOWN Deep Power-Down Entry 8
All Banks Idle AUTO REFRESH Self Refresh Entry
Reading or Writing VALID Clock Suspend Entry
H H See Truth Table 3 (page 28)
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 31 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. This table applies when CKE n-1 was HIGH and CKEn is HIGH (see Table 7 on page 30) and after tXSR has been met (if the
previous state was self refresh).
2. This table is bank-specific, except where noted , i.e., the curr ent state i s fo r a specific bank and the co mmand s shown are
those allowed to be issued to that bank when in t hat state . Exceptions are covered in the notes below.
3. Current state definitions:
Idle: The bank has been precharged, and tRP has been met.
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no
register accesses are in progress.
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or
been termina ted.
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated or
been termina ted.
4. The following states must not be interrupted by a command issued to the same bank. COMMAND INHIBIT or NOP com-
mands, or allowable commands to the other bank should be issued on any clock edge occurring during these states.
Allowable commands to the other bank are determined by its current state and Truth Table 3, and according to Table 9
on page 33.
Precharging: Starts with registration of a PRECHARGE command and ends when tRP is met. Once tRP is met,
the bank will be in the idle state.
Row Activating: Starts with registration of an ACTIVE command and ends when tRCD is met. Once tRCD is met,
the bank will be in the row active state.
Read w/Auto
Precharge Enabled: Starts with registration of a READ command with auto precharge enabled and ends when tRP
has been met. Once tRP is met, the bank will be in the idle state.
Write w /Auto
Precharge Enabled: Starts with registration of a WRITE command with auto precharge enabled and ends when tRP
has been met. Once tRP is met, the bank will be in the idle state.
5. The following states must not be interrupted b y any executable command; COMMAND INHIBIT or NOP commands m ust
be applied on each positive clock edge during these states.
Refreshing: Starts with registration of an AUTO REFRESH command and ends when tRC is met. Once tRC is
met, the SDRAM will be in the all banks idle state.
Table 8: Truth Table – Current State Bank n - Command To Bank n
(Notes: 1-6; notes appear below and on next page)
CURRENT
STATE CS# RAS# CAS# WE# COMMAND (ACTION) NOTES
Any H X X X COMMAND INHIBIT (NOP/Continue previous operation)
LHHH
NO OPERATION (NOP/Continue previous operatio n)
Idle L L H H ACTIVE (Select and activate row)
LLLH
AUTO REFRESH 7
LLL L
LOAD MODE REGISTER 7
LLHL
PRECHARGE 11
Row Active L H L H READ (Select column and start READ burst) 10
LHL L
WRITE (Select column and start WRITE burst) 10
LLHL
PRECHARGE (Deactivate row in bank or banks) 8
Read
(Auto
Precharge
Disabled)
LHL H
READ (Select column and start new READ burst) 10
LHL L
WRITE (Select column and start WRITE burst) 10
LLHL
PRECHARGE (Truncate READ burst, start PRECHARGE) 8
LHH L
DEEP POWER DOWN 9
Write
(Auto
Precharge
Disabled)
LHL H
READ (Select column and start READ burst) 10
LHL L
WRITE (Select column and start new WRITE burst) 10
LLHL
PRECHARGE (Truncate WRITE burst, start PRECHARGE) 8
LHH L
DEEP POWER DOWN 9
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 32 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Accessing Mode
Register: Starts with registration of a LOAD MODE REGISTER command and ends when tMRD has been
met. On ce tMRD is met, the SDRAM will be in the all banks idle state.
Precharging All: Starts with registration of a PRECHARGE ALL command and ends when tRP is met. Once tRP is
met, all banks will be in the idle state.
6. All states and sequences not shown are illegal or reserved.
7. Not bank-specific; requires that all banks are idle.
8. May or may not be bank-specific; if all banks are to be precharged, all must be in a valid state for precharging.
9. Deep Power-Down is a power savings feature of this Mobile SDRAM device. This command is Burst Terminate on tradi-
tional SDRAM components. For Mobile Ram devices, this command sequence is assigned to Deep Power Down.
10.READs or WRITEs listed in the Command (Action) column include READs or WRITEs with auto precharge enabled and
READs or WRITEs with auto precharge disabled.
11.Does not affect the state of the bank and acts as a NOP to that bank.
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 33 ©2003 Micron Technolog y, Inc. All rights reserv ed.
NOTE:
1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Truth Table 2) and after tXSR has been met (if the pre-
vious state was self refresh).
2. This table describes alternate bank operation, except where noted; i.e., the current state is for bank n and the com-
mands shown are thos e allowed to be issued to bank m (assuming that bank m is in such a state that the given command
is allowable). Exceptions are covered in the notes below.
3. Current state definitions:
Idle: The bank has been precharged, and tRP has been met.
Row Active: A row in the bank has been activated, and tRCD has been met. No data burs ts/acces ses and no
register accesses are in progress.
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated or
been termina ted.
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated or
been termina ted.
Read w/Auto
Precharge Enabled: Starts with registration of a READ command with auto precharge enabled, and ends when tRP
has been met. Once tRP is met, the bank will be in the idle state.
Write w /Auto
Precharge Enabled: Starts with registration of a WRITE command with auto precharge enabled, and ends when tRP
has been met. Once tRP is met, the bank will be in the idle state.
4. AUTO REFRESH, SELF REFRESH and LOAD MODE REGISTER commands may only be issued when all banks are idle.
5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current
state only.
Table 9: Truth Table Current State Bank n Command To Bank m
(Notes: 1-6; notes appear below and on next page)
CURRENT
STATE CS# RAS# CAS# WE# COMMAND (ACTION) NOTES
Any H X X X COMMAND INHIBIT (NOP/Continue previous operation)
LHHH
NO OPERATION (NOP/Continue previous operation)
Idle X X X X Any Command O therwise A llowed to Ba nk m
Row
Activating,
Active, or
Precharging
LLHH
ACTIVE (Select and activate row)
LHL H
READ (Select column and start READ burst) 7
LHL L
WRITE (Select column and start WRITE burst) 7
LLHL
PRECHARGE
Read
(Auto
Precharge
Disabled)
LLHH
ACTIVE (Select and activate row)
LHL H
READ (Select column and start new READ burst) 7, 10
LHL L
WRITE (Select column and start WRITE burst) 7, 11
LLHL
PRECHARGE 9
Write
(Auto
Precharge
Disabled)
LLHH
ACTIVE (Select and activate row)
LHL H
READ (Select column and start READ burst) 7, 12
LHL L
WRITE (Select column and start new WRITE burst) 7, 13
LLHL
PRECHARGE 9
Read
(With Auto
Precharge)
LLHH
ACTIVE (Select and activate row)
LHL H
READ (Select column and start new READ burst) 7, 8, 14
LHL L
WRITE (Select column and start WRITE burst) 7, 8, 15
LLHL
PRECHARGE 9
Write
(With Auto
Precharge)
LLHH
ACTIVE (Select and activate row)
LHL H
READ (Select column and start READ burst) 7, 8, 16
LHL L
WRITE (Select column and start new WRITE burst) 7, 8, 17
LLHL
PRECHARGE 9
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 34 ©2003 Micron Technolog y, Inc. All rights reserv ed.
6. All states and sequences not shown are illegal or reserved.
7. READs or WRITEs to bank m listed in the Command (Action) column include READs or WRITEs with auto precharge
enabled and READs or WRITEs with auto precharge disabled.
8. CONCURRENT AUTO PRECHARGE: Bank n will initiate the auto precharge command when its burst has been in terrupted
by bank m’s burst.
9. Burst in bank n continues as initiated.
10.For a READ without auto precharg e interrupted by a READ (with or without auto precha rge), the READ to bank m will
interrupt the READ on bank n, CAS latency later (Figure 11).
11.For a READ without auto pre charge interrupte d by a WRITE (with or without auto pre charge), the WR ITE to ba nk m wi ll
interrupt the READ on bank n when registered (Figure 13 and Figure 14 on page 21). DQM should be used one clock
prior to the WRITE command to prevent bus contention.
12.For a WRITE without auto precha rge inte rrupted by a READ (wi t h or without auto prec ha rge), the RE AD to bank m will
interrupt the WRITE on bank n when registered (Figure 20 on page 24), with the data-out appearing CAS latency later.
The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m.
13.For a WRITE without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m
will interrupt the WRITE on bank n when registered (Figure 18 on page 23). The last valid WRITE to bank n will be data-
in registered one clock prior to the READ to bank m.
14.For a READ with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will
interrupt the READ on ba nk n, CAS la tenc y l ater. The PRECHARGE to b ank n will begin when the READ to ba nk m is reg-
istered (Figure 28 on page 28).
15.For a READ with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will
interrupt the READ on ba nk n when registered. DQM should be used two cloc ks prior to the WRI TE command to prevent
bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered (Figure 29 on page 28).
16.For a WRITE with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will
interrupt the WRITE on bank n when registered, with the data-out appearing CAS latency later. The PRECHARGE to
bank n will begin after tWR is met, where tWR begins when the READ to bank m is registered. The last valid WRITE to
bank n will be data-in registered one clock prior to the READ to bank m (Figure 30 on page 29).
17.For a WRITE with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will
interrupt the WRITE on bank n when registered. The PRECHARGE to bank n will begin after tWR is met, where t WR
begins whe n the WRITE to bank m is registe red. The la st valid WRI TE to bank n will b e data regi stered on e clock p rior to
the WRITE to bank m (Figure 31 on page 29).
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 35 ©2003 Micron Technolog y, Inc. All rights reserv ed.
TwinDie Operation
The 512Mb SDRAM is a high-speed CMOS, dynamic
random-access memory containing 536,870,912 bits. It
is internally configured by stacking two 256Mb,
16M egx16 devices. Each of these 256Mb devices is con-
figured as a quad bank DRAM with a synchronous
interface. They ar e organized with 16 DQs with 4 banks
of 67,108,864 bits, comprisin g of 8,192 rows by 512 col-
umns by 16 bits wide.
Each die operates independently of the other. They
share supply, command, CKE, address and data pins,
but each have unique chip select pins.
INITIALIZATION
By synchronizing both of the chip select pins (CS0#,
CS1#), it is possible to initialize both die simulta-
neously, and is the recommended procedure.
Register Definition
MODE REGISTER
If both die are to be configured identically, it is OK to
access both mode registers simultaneously, otherwise
sequential operation betw een the die is permitted.
Commands (TwinDie)
NO OPERATION (NOP)
The NO OPERATION (NOP) command is used to
instruct the selected SDRAM die to perform NOP
(CS0# LOW with RAS#, CAS#, and WE# HIGH and / or
CS#1 LO W with RAS#, CAS#, and WE# HIGH). This pre-
vent s u nwan ted commands fro m bei n g regis tered dur-
ing idle or wait states. Operations already in progress
are not affected. It is allowed to perform a NOP com-
mand to both die simultaneously.
LOAD MODE REGISTER
The LMR command may be issued independently
or simult aneous ly to the die.
ACTIVE
It is not allowed to perform an ACTIVE command to
both die simultaneously, except during the initializa-
tion sequence.
READ
Only one SDRAM die may be driving the DQ lines at
a time. It is required for a unique chip select (CS0# or
CS1#) to be asserted for each READ command.
WRITE
It is recommended to only WRITE to one die at a
time as both die share the same data and data mask
signals.
PRECHARGE
It is allowed to perform a PRECHARGE command to
both die simultaneously, but it is suggested that the
PRECHARGE comma nds be stag g ered to provide a dis-
tributed current flow.
AUTO PRECHARGE
An AUTO PRECHARGE com mand can on ly oc cur a s
part of a READ or WRITE command. It is possible to
initiate an AUTO PRECHARGE to both die simulta-
neously.
BURST TERMINATE
It is allowed to perform a BURST TERMINATE com-
mand to both die simultaneously, but not expected as
only one die may be READ from at a time.
AUTO REFRESH
All banks within a die must be idle before an AUTO
REFRESH command is iss ued. It is recomme nded that
AUTO REFRESH commands are staggered to provide a
distributed curr ent flow.
SELF REFRESH
The SELF REFRESH command may be issued to
both die simultaneously.
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 36 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Absolute Maximum Ratings
Voltage on VDD/VDDQ Supply
Relative to Vss(3.3V) . . . . . . . . . . . . . . . . -1V to +4.6V
Relative to Vss(2.5V) . . . . . . . . . . . . . . . -0.5V to +3.6V
Relative to Vss(1.8V) . . . . . . . . . . . . . . -0.35V to +2.8V
Voltage on Inputs, NC or I/O Pin s
Relative to Vss(3.3V . . . . . . . . . . . . . . . . . .-1V to +4.6V
Relative to Vss(2.5V) . . . . . . . . . . . . . . . -0.5V to +3.6V
Relative to Vss(1.8V) . . . . . . . . . . . . . . -0.35V to +2.8V
Operating Tem peratu re
TA (Commercial). . . . . . . . . . . . . . . . . . . . 0°C to +70°C
Sto rage Temperature (plastic) . . . . . -55°C to +150°C
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2W
Stresses greater than those listed under “Absolute
Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only, and functional
operation of the device at these or any other condi-
tions above those indicated in the operational sections
of this specification is not implied. Exposure to abso-
lute maximum rating conditions for extended periods
may affect reliability.
Table 10: DC Electrical Characteristics And Operating Conditions - “LC” Version
Notes: 1, 5, 6; notes appear on page 41
PARAMETER/CONDITION SYMBOL MIN MAX UNITS NOTES
Supply Voltage VDD, VDDQ3 3.6 V
Input High Voltage: Logic 1; All inputs VIH 2VDDQ + 0.3 V22
Input Low Voltage: Logic 0; All inputs VIL -0.3 0.8 V 22
Data Output High Voltage: Logic 1; All inputs VOH 2.4 - V
Data Output Low Voltage: Logic 0; All inputs VOL -0.4V
Input Leakage Current:
Any input 0V £ VIN £ VDD (All other pins not under test = 0V) II-5 5 µA
Output Leakage Current: DQs are disabled; 0V £ VOUT £ VDDQIOZ -5 5 µA
Table 11: DC Electrical Characteristics And Operating Conditions - “V” Version
Notes: 1, 5, 6; notes appear on page 41
PARAMETER/CONDITION SYMBOL MIN MAX UNITS NOTES
Supply Voltage VDD 2.3 2.7 V
VDDQ 1.65 2.7 V
Input High Voltage: Logic 1; All inputs VIH 0.8 * VDDQVDDQ + 0.3 V 22
Input Low Voltage: Logic 0; All inputs VIL -0.3 0.3 V 22
Data Output High Voltage: Logic 1; All inputs VOH VDDQ - 0.2 - V
Data Output Low Voltage: Logic 0; All inputs VOL -0.2V
Input Leakage Current:
Any input 0V £ VIN £ VDD (All other pins not under test = 0V) II-5 5 µA
Output Leakage Current: DQs are disabled; 0V £ VOUT £ VDDQIOZ -5 5 µA
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 37 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Table 12: DC Electrical Characteristics And Operating Conditions - “H” Version
Notes: 1, 5, 6; notes appear on page 41
PARAMETER/CONDITION SYMBOL MIN MAX UNITS NOTES
Supply Voltage VDD 1.7 1.9 V
VDDQ1.7 1.9V
Input High Voltage: Logic 1; All inputs VIH 0.8 * VDDQVDDQ + 0.3 V 22
Input Low Voltage: Logic 0; All inputs VIL -0.3 0.3 V 22
Data Output High Voltage: Logic 1; All inputs VOH VDDQ - 0.2 - V
Data Output Low Voltage: Logic 0; All inputs VOL -0.2V
Input Leakage Current:
Any input 0V £ VIN £ VDD (All other pins not under test = 0V) II-1.0 1.0 µA
Output Leakage Current: DQs are disabled; 0V £ VOUT £ VDDQIOZ -1.5 1.55 µA
Table 13: IDD Specifications And Conditi o ns (Both Die – S2 Version )
Notes: 1, 5, 6, 11, 13; notes appear on page 41; VDD = +3.3V ±0.3V or +2.5V±0.2V1
MAX
PARAMETER/CONDITION SYMBOL -8 UNITS NOTES
Operating Current: Active Mode;
Burst = 2; READ or WRITE; tRC = tRC (MIN) IDD1150 mA 3, 18,
19, 32
Standby Current: Power-Down Mode;
CKE = LOW; All banks idle IDD21mA 32
Standby Current: Active Mode; CS# = HIGH;
CKE = HIGH; All banks active after tRCD met; No
accesses in progress
IDD350 mA 3, 12,
19, 32
Operating Current: Burst Mode; Page burst;
READ or WRITE; All banks active IDD4210 mA 3, 18,
19, 32
Auto Refresh Current:
CS# = HIGH; CKE = HIGH tRFC = tRFC
(MIN) IDD5330 mA 3, 12,
18, 19,
32, 33
tRFC = 7.81µs IDD65mA
Deep Power Down ID820 uA 34
NOTE:
1. IDD values for VDD = VDDQ = 1.8V TBD
Table 14: IDD7 - Self Refresh Current Options– S2 Version
Temperature Compensated Self Refresh, Both Die – S2 Version
Notes: 1, 5, 6, 11, 13; notes appear on page 41; VDD = +3.3V ±0.3V or +2.5V±0.2V1
TEMPERATURE COMPENSATED SELF REFRESH
PARAMETER/CONDITION MAX
TEMPERATURE -8 / -10 UNITS NOTES
Self Refresh Current: CKE £ 0.2V 70°C 1.3 mA 4
45°C 1.0 mA 4
NOTE:
1. IDD values for VDD = VDDQ = 1.8V TBD
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 38 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Table 15: Capacitance
Note: 2; notes appear on page 41
PARAMETER SYMBOL MIN MAX UNITS
Input Capacitance: CLK CI1TBD TBD pF
Input Capacitance: All other input-only pins CI2TBD TBD pF
Input/Output Capacitance: DQs CIO TBD TBD pF
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 39 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Table 16: Electrical Characteristics And Recommended AC Operating Conditions
Notes: 5, 6, 8, 9, 11; notes appear on page 41
AC CHARACTERISTICS -8
PARAMETER SYMBOL MIN MAX UNITS NOTES
Access time from CLK (pos. edge) CL = 3 tAC(3) 7ns27
CL = 2 tAC(2) 8ns
Address hold time tAH 1ns
Address setup time tAS 2.5 ns
CLK high-level width tCH 3ns
CLK low-level width tCL 3ns
Clock cycle time CL = 3 tCK(3) 8ns23
CL = 2 tCK(2) 10 ns 23
CKE hold time tCKH 1ns
CKE setup time tCKS 2.5 ns
CS#, RAS#, CAS#, WE#, DQM hold time tCMH 1ns
CS#, RAS#, CAS#, WE#, DQM setup time tCMS 2.5 ns
Data-in hold time tDH 1ns
Data-in setup time tDS 2.5 ns
Data-out high-impe dan ce time CL = 3 tHZ(3) 7ns10
CL = 2 tHZ(2) 8ns10
Data-out low-imp edance time tLZ 1ns
Data-out hold time (load) tOH 2.5 ns
Data-out hold time (noload) tOHN1.8 ns 28
ACTIVE to PRECHARGE command tRAS 48 120,000 ns
ACTIVE to ACTIVE command period tRC 80 ns 28E
ACTIVE to READ or WRITE delay tRCD 20 ns
Refreshperiod(8,192rows) tREF 64 ms
AUTO REFRESH period tRFC 80 ns 28E
PRECHARGE command period tRP 20 ns
ACTIVE bank a to bank b command tRRD 20 ns
Transition time tT0.5 1.2 ns 7
WRITE recovery time tWR 1CLK+ 7ns ns 24, 28E
15 25
Exit SELF REFRESH to ACTIVE command tXSR 80 ns 28E
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 40 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Table 17: AC Functional Characteristics
Notes: 5, 6, 8, 9, 11; notes appear on page 41
PARAMETER SYMBOL -8 UNITS NOTES
READ/WRITE command to READ/WRITE
command tCCD 1tCK 17
CKE to clock disable or power-down entry
mode tCKED 1tCK 14
CKE to clock enable or power-down exit
setup mode tPED 1tCK 14
DQM to input data delay tDQD 0tCK 17
DQM to data mask during WRITEs tDQM 0tCK 17
DQM to data high-impedance during READs tDQZ 2tCK 17
WRITE command to input data delay tDWD 0tCK 17
Data-into ACTIVE command tDAL 5tCK 15, 21
Data-into PRECHARGE command tDPL 2tCK 16, 21
Last data-in to burst STOP command tBDL 1tCK 17
Last data-in to new READ/WRITE command tCDL 1tCK 17
Last data-in to PRECHARGE command tRDL 2tCK 16, 21
LOADMODE REGISTER command to ACTIVE
or REFRESH command tMRD 2tCK 26
Data-out to high-impedance from
PRECHARGE command CL=3 tROH(3) 3tCK 17
CL = 2 tROH(2) 2tCK 17
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 41 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Notes (Singl e Die)
1. All voltages referenced to VSS.
2. This parameter is sampled. VDD, VDDQ = +3.3V; Tj
= 25°C; pin under test biased at 1.4V, f = 1 MHz.
3. IDD is dependent on output loading and cycle
rates.Specified values are obtained with mini-
mum cycle time and the outputs open.
4. Enables on-chip refresh and address counters.
5. The minimum specifications are used only to
indicate cycle time at which proper operation
over the ful l temperature rang e (0°C £ TA £ 70°C) is
ensured.
6. An initial pause of 100µs is required after power-
up, followed by two AUTO REFRESH commands,
before proper device operation is ensured. (VDD
and VDDQ must be powered up simultaneously.
VSS and V SSQ must be at same potential.) The two
AUTO REFRESH command wake-ups should be
repeated any time the tREF ref res h req u ire m en t is
exceeded.
7. AC charac teri s ti cs as sume tT = 1ns.
8. In addition to meeting the transition rate specifi-
cation, the clock and CKE must transit between
VIH and VIL (or between VIL and VIH) in a mono-
tonic manner.
9. Outputs measured at 1.5V with equivalent load:
10. tHZ defines the time at which the output achieves
the open circuit condition; it is not a reference to
VOH or VOL. The last valid data element will meet
tOH before going High-Z.
11. AC timing and IDD tests have VIL = 0V and VIH =
3V, with timing referenced to VIH/2 crossover
point. If the input transition time is longer than 1
ns, the n the tim ing is referenced a t VIL (MAX) and
VIH (MIN) and no longer at the VIH/2 crossover
point.
12. Other input signals are allowed to transition no
more than once every two clocks and are other-
wise at valid VIH or VIL levels.
13. IDD specifications are tested after the device is
pro p erly ini ti a l i z e d.
14. Timing actually specified by tCKS; clock(s) speci-
fied a s a re ference o nly at mi nimum cycle rate.
15. Timing actually specified by tWR plus tRP; clock ( s)
specified as a reference only at minimum cycle
rate.
16. Timing actually spec ified by tWR.
17. Required clocks are specified by JEDEC function-
alit y an d are not de pende nt on a ny timi ng param-
eter.
18. The IDD curr ent will i ncr ease or d ecr eas e in a p ro-
por tional am ount by the am ount t he frequency i s
altered for the test conditio n.
19. Address transitions average one transition every
two clocks.
20. CLK must be toggled a minimum of two times
during this period.
21. Based on tCK = 8ns for -8.
22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse
width £ 3ns, and the pulse width cannot be
greater than one third of the cycle rate. VIL under-
shoot: VIL (MIN) = -2V for a pulse width £ 3ns.
23. The clock fr equen cy mu st remain constant (sta bl e
clock is defined as a signal cycling within timing
constraints specified for the clock pin) during
access or precharge states (READ, WRITE, includ-
ing tWR, and PRECHARGE commands). CKE may
be used to reduce the data rate.
24. Auto precharge mode only. The precharge timing
budget (tRP) begins 7ns after the first clock delay,
after the last WRITE is executed.
25. Precharge mode only.
26. JEDEC and PC100, PC133 specify three clocks.
27. tAC for -8 at CL = 3 with no load is 4.6ns and is
guaranteed by design.
28. For -8, CL = 3, tCK = 10ns; For -8, CL = 2, tCK = 8ns.
Q30pF
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 42 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 32: Initiali ze And Load Mode Regi ster
NOTE:
1. The two AUTO RE FRESH c ommand s at T9 and T19 may be applied be fore eit her LOA D MODE REG ISTER (LMR) comman d.
2. PRE = PRECHARGE command, LMR = LOAD MODE REGISTER command, AR = AUTO REFRESH command, ACT = ACTIVE
command, RA = Row Address, BA = Bank Address
3. Optional refresh command.
4. The Load Mode Register for both MR/EMR and 2 Auto Refresh commands can be in any order. However, all must occur
prior to an Active command.
5. Device timing is -8 with 100MHz clock.
CKE
BA0, BA1
Load Extended
Mode Register Load Mode
Register
tCKS
Power-up:
VDD and
CLK stable
T = 100µs
tCKH
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
DQM/DQML,
DQMH
()()
()()
()()
()()
DQ High-Z
A0-A9, A11, A12
RA
A10
RA
ALL BANKS
CLK
tCK
COMMAND LMR
4
NOP PRE
3
LMR
4
AR
4
AR
4
ACT
4
tCMH tCMS
BA0 = L,
BA1 = H
tAS tAH tAS tAH
BA0 = L,
BA1 = L
()()
()()
CODE CODE
tAS tAH
CODE CODE
()()
()()
PRE
ALL BANKS
t
AS
tAH
()()
()()
T0 T1 T3 T5 T7 T9 T19 T29
DON’T CARE
BA
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()()()()()()()()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
tRP tMRD tMRD tRP tRFC tRFC
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
-8
SYMBOL MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (CL=3) 8ns
tCK (CL=2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tMRD32tCK
tRFC 80 ns
tRP 20 ns
-8
SYMBOL MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 43 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 33: Power-down Mode1
NOTE:
1. Violating refresh requirements during power-down may result in a loss of data.
2. CAS latency indicated in parentheses.
tCH
tCL
tCK
CKE
CLK
COMMAND
DQ
BA0, BA1 BANK
tRFC tMRD
tRFC
AUTO REFRESH AUTO REFRESH Program Mode Register 1, 3, 4
tCMH
tCMS
Precharge
all banks
()()
()()
()()
()()
tRP
()()
()()
tCKS
Power-up:
VDD and
CLK stable
T = 100µs
MIN
PRECHARGE NOP AUTO
REFRESH NOP
LOAD MODE
REGISTER ACTIVENOP NOPNOP
()()
()()
()()
()()
()()
()()
AUTO
REFRESH
ALL
BANKS
()()
()()
()()
()()
()()
()()
High-Z
tCKH
()()
()()
DQM/
DQML, DQMH
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()
()()()()
()()
()()
NOP
()()
()()
tCMH
tCMS tCMH
tCMS
A0-A9, A11, A12 ROW
tAH 5
tAS
CODE
()()
()()
()()
()()
()()
()()
()()
()()
A10 ROW
tAH
tAS
CODE
()()
()()
()()
()()
ALL BANKS
SINGLE BANK
()()
()()
()()
()()
DON’T CARE
UNDEFINED
T0 T1 Tn + 1 To + 1 Tp + 1 Tp + 2 Tp + 3
-8
SYMBOL MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
-8
SYMBOL MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 44 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 34: Clock Suspend Mode1
NOTE:
1. For this example, the burst length = 2, the CAS latency = 3, and AUTO PRECHARGE is disabled.
2. x16: A11 and A12 = “Don’t Care”
3. CAS latency indicated in parentheses
tCH
tCL
tCK
tAC
tLZ
DQM/
DQML, DQMU
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tOH
DOUT
m
tAH
tAS
tAH
tAS
tAH
tAS
BANK
tDH
Din
e
tAC tHZ
D
OUT
m + 1
COMMAND
tCMH
tCMS
NOPNOP NOP NOPNOPREAD WRITE
DON T CARE
UNDEFINED
CKE
tCKS tCKH
BANK
COLUMN m
tDS
Din
+ 1
NOP
tCKH
tCKS
tCMH
tCMS
2
COLUMN e
2
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
-8
SYMBOL3MIN MAX UNITS
tAC (3) 7ns
tAC (2) 8ns
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tDH 1ns
tDS 2.5 ns
tHZ (3) 7ns
tHZ (2) 8ns
tLZ 1ns
tOH 2.5 ns
-8
SYMBOL3MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 45 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 35: Au to Refresh Mode
NOTE:
1. CAS latency indicated in parentheses.
tCH
tCL
tCK
CKE
CLK
DQ
tRFC RFC
()()
()()
()()
tRP
()()
()()
()()
()()
COMMAND
tCMH
tCMS
NOPNOP
()()
()()
BANK
ACTIVE
AUTO
REFRESH
()()
()()
NOPNOPPRECHARGE
Precharge all
active banks
AUTO
REFRESH
t
High-Z
BA0, BA1
BANK(S)
()()
()()
()()
()()
tAH
tAS
tCKH
tCKS
()()
NOP
()()
()()
()()
()()
DQM /
DQML, DQMH
A0-A9, A11, A12 ROW
()()
()()
ALL BANKS
SINGLE BANK
A10 ROW
()()
()()
()()
()()
()()
()()
()()
()()
DON’T CARE
T0 T1 T2 Tn + 1 To + 1
-8
SYMBOL1MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tRFC 80 ns
tRP 20 ns
-8
SYMBOL1MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 46 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figur e 36: Self Refresh Mode
NOTE:
1. No maximum time limit for Self Refresh. tRAS(MIN) applies to non-Self Refresh mode.
2. tXSR requires minimum of two clocks regardless of frequency or timing.
3. CAS latency indicated in parentheses
4. As a general rule, any time Self Refresh is exited, the DRAM may not re-enter the Self Refresh Mode until all rows have
been refreshed via the Auto Refresh command at the distributed refresh rate, tREF, or faster. However, the following
exception is allowed. Self Refresh mode may be re-entered any time after exiting, provided all of the following condi-
tions are met:
a. The DRAM had been in the Self Refresh Mode for a minimum of 64ms prior to exiting.
b. tXSR is not violated.
c. At least two Auto Refresh commands are performed during each 7.81µs interval while the DRAM remains out of Self
Refresh mode.
tCH
tCL
tCK
tRP
CKE
CLK
DQ
Enter self refresh mode
Precharge all
active banks
tXSR
CLK stable prior to exiting
self refresh mode
Exit self refresh mode
(Restart refresh time base)
()()()()
()()
()()
()()
DON’T CARE
COMMAND
tCMH
tCMS
AUTO
REFRESH
PRECHARGE NOP NOP or COMMAND
INHIBIT
()()
()()
()()
()()
BA0, BA1 BANK(S)
()()
()()
High-Z
tCKS
AH
AS
AUTO
REFRESH
tRAS(MIN)
1
()()
()()
()()
()()
tCKH
tCKS
DQM/
DQML, DQMU
()()
()()
()()
()()
tt
A0-A9, A11,A12
()()
()()
()()
()()
ALL BANKS
SINGLE BANK
A10
()()
()()
()()
()()
()()
()()
T0 T1 T2 Tn + 1 To + 1 To + 2
()()
()()
-8
SYMBOL MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tRAS 48 120,000 ns
tRP 20 ns
tXSR 80 ns
-8
SYMBOL MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 47 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 37: READ – Without Auto Precharge
NOTE:
1. For this example, the burst length = 4, the CAS latency = 2, and the READ burst is followed by a “manual” PRECHARGE.
2. x16: A11 and A12 = “Don’t Care”
3. CAS latency indicated in parentheses.
ALL BANKS
tCH
tCL
tCK
tAC
tLZ
tRP
tRAS
tRCD CAS Latency
tRC
DQM/
DQML, DQMU
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tOH
DOUT m
tCMH
tCMS
tAH
tAS
tAH
tAS
tAH
tAS
ROW
ROW
BANK BANK BANK
ROW
ROW
BANK
tHZ
tOH
DOUT m + 3
tAC tOH
tAC tOH
tAC
DOUT m + 2DOUT m + 1
COMMAND
tCMH
tCMS
PRECHARGENOPNOP NOPACTIVE NOP READ NOP ACTIVE
DISABLE AUTO PRECHARGE SINGLE BANK
DON’T CARE
UNDEFINED
tCKH
tCKS
COLUMN m
2
T0 T1 T2 T4T3 T5 T6 T7 T8
-8
SYMBOL3MIN MAX UNITS
tAC (3) 7ns
tAC (2) 8ns
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tHZ (3) 7ns
tHZ (2) 8ns
tLZ 1ns
tOH 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
-8
SYMBOL3MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 48 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 38: REA D – With Auto Precharge 1
NOTE:
1. For this example, the burst length = 4, and the CAS latency = 2.
2. x16: A11 and A12 = “Don’t Care”
3. CAS latency indicated in parentheses1
ENABLE AUTO PRECHARGE
tCH
tCL
tCK
tAC
tLZ
tRP
tRAS
tRCD CAS Latency
tRC
DQM/
DQML, DQMU
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tOH
DOUT m
tCMH
tCMS
tAH
tAS
tAH
tAS
tAH
tAS
ROW
ROW
BANK BANK
ROW
ROW
BANK
DON’T CARE
UNDEFINED
tHZ
tOH
D
OUT
m + 3
tAC tOH
tAC tOH
tAC
D
OUT
m + 2D
OUT
m + 1
COMMAND
tCMH
tCMS
NOPNOP NOPACTIVE NOP READ NOP ACTIVENOP
tCKH
tCKS
COLUMN m
2
T0 T1 T2 T4T3 T5 T6 T7 T8
-8
SYMBOL3MIN MAX UNITS
tAC (3) 7ns
tAC (2) 8ns
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tHZ (3) 7ns
tHZ (2) 8ns
tLZ 1ns
tOH 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
-8
SYMBOL3MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 49 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 39: Single R EAD – Without Auto Precharge 1
NOTE:
1. For this example, the burst length = 1, the CAS latency = 2, and the READ burst is followed by a “manual” PRECHARGE.
2. x16: A11 and A12 = “Don’t Care”
3. CAS latency indicated in parentheses.
ALL BANKS
tCH
tCL
tCK
tAC
tLZ
tRP
tRAS
tRCD CAS Latency
tRC
tOH
D
OUT
m
tCMH
tCMS
tAH
tAS
tAH
tAS
tAH
tAS
ROW
ROW
BANK BANK(S) BANK
ROW
ROW
BANK
tHZ
tCMH
tCMS
NOPNOPNOP PRECHARGE
ACTIVE NOP READ ACTIVE NOP
DISABLE AUTO PRECHARGE SINGLE BANKS
DON’T CARE
UNDEFINED
COLUMN m
2
tCKH
tCKS
T0 T1 T2 T3 T4 T5 T6 T7 T8
DQM/
DQML, DQMH
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
COMMAND
-8
SYMBOL3MIN MAX UNITS
tAC (3) 7ns
tAC (2) 8ns
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tHZ (3) 7ns
tHZ (2) 8ns
tLZ 1ns
tOH 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
-8
SYMBOL3MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 50 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 40: Single READ – With Auto Precharge1
NOTE:
1. For this example, the burst length = 1, and the CAS latency = 2.
2. x16: A11 and A12 = “Don’t Care”
3. READ command not allowed else tRAS would be violated
4. CAS latency indicated in parentheses.
ENABLE AUTO PRECHARGE
tCH
tCL
tCK
tRP
tRAS
tRCD CAS Latency
tRC
DQM/
DQML, DQMH
CKE
CLK
A0-A9, A11
DQ
BA0, BA1
A10
tCMH
tCMS
tAH
tAS
tAH
tAS
tAH
tAS
ROW
ROW
BANK BANK
ROW
ROW
BANK
DON’T CARE
UNDEFINED
tHZ
tOH
D
OUT
m
tAC
COMMAND
tCMH
tCMS
NOP3READACTIVE NOP NOP3ACTIVENOP
tCKH
tCKS
COLUMN m
2
T0 T1 T2 T4T3 T5 T6 T7 T8
NOP NOP
-8
SYMBOL4MIN MAX UNITS
tAC (3) 7ns
tAC (2) 8ns
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tHZ (3) 7ns
tHZ (2) 8ns
tLZ 1ns
tOH 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
-8
SYMBOL4MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 51 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 41: Altern ati n g Bank Read Accesses1
NOTE:
1. For this example, the burst length = 4, and the CAS latency = 2.
2. x16: A11 and A12 = “Don’t Care”
3. CAS latency indicated in parentheses.
ENABLE AUTO PRECHARGE
tCH
tCL
tCK
tAC
tLZ
DQM/
DQML, DQMU
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tOH
D
OUT
m
tCMH
tCMS
tAH
tAS
tAH
tAS
tAH
tAS
ROW
ROW
ROW
ROW
DON’T CARE
UNDEFINED
tOH
D
OUT
m + 3
tAC tOH
tAC tOH
tAC
D
OUT
m + 2D
OUT
m + 1
COMMAND
tCMH
tCMS
NOP NOPACTIVE NOP READ NOP ACTIVE
tOH
D
OUT
b
tAC tAC
READ
ENABLE AUTO PRECHARGE
ROW
ACTIVE
ROW
BANK 0 BANK 0 BANK 3 BANK 3 BANK 0
CKE
tCKH
tCKS
COLUMN m
2
COLUMN b
2
T0 T1 T2 T4T3 T5 T6 T7 T8
tRP - BANK 0
tRAS - BANK 0
tRCD - BANK 0 tRCD - BANK 0
CAS Latency - BANK 0
tRCD - BANK 1 CAS Latency - BANK 1
t
tRC - BANK 0
RRD
-8
SYMBOL3MIN MAX UNITS
tAC (3) 7ns
tAC (2) 8ns
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tLZ 1ns
tOH 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
tRRD 20 ns
-8
SYMBOL3MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 52 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 42: Read – Full-page Burst 1
NOTE:
1. For this example, t he CAS latency = 2.
2. x16: A11 and A12 = “Don’t Care”
3. Page left open; no tRP.
4. CAS latency indicated in parentheses.
tCH
tCL tCK
tAC
tLZ
tRCD CAS Latency
DQM/
DQML, DQMH
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tOH
D
OUT
m
tCMH
tCMS
tAH
tAS
tAH
tAS
tAC tOH
D
OUT
m+1
ROW
ROW
tHZ
tAC tOH
D
OUT
m
+1
tAC tOH
D
OUT
m+2
tAC tOH
D
OUT
m-1
tAC tOH
Dout m
Full-page burst does not self-terminate.
Can use BURST TERMINATE command.
()()
()()
()()
()()
()()
()()
()()
Full page completed
1,024 (x16) locations within same row
2,048 (x8) locations within same row
4,096 (x4) locations within same row
DON’T CARE
UNDEFINED
COMMAND
tCMH
tCMS
NOPNOP NOPACTIVE NOP READ NOP BURST TERMNOP NOP
()()
()()
NOP
()()
()()
tAH
tAS
BANK
()()
()()
BANK
tCKH
tCKS
()()
()()
()()
()()
COLUMN m
2
3
T0 T1 T2 T4T3 T5 T6 Tn + 1 Tn + 2 Tn + 3 Tn + 4
-8
SYMBOL4MIN MAX UNITS
tAC (3) 7ns
tAC (2) 8ns
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tHZ (3) 7ns
tHZ (2) 8ns
tLZ 1ns
tOH 2.5 ns
tRCD 20 ns
-8
SYMBOL4MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 53 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 43: Read DQM Operation1
NOTE:
1. For this example, the burst length = 4, and the CAS latency = 2.
2. x16: A11 and A12 = “Don’t Care”
3. CAS latency indicated in parentheses.
tCH
tCL
tCK
tRCD CAS Latency
DQM/
DQML, DQMU
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tCMS
ROW
BANK
ROW
BANK
DON’T CARE
UNDEFINED
tAC
LZ
DOUT m
tOH
DOUT m + 3DOUT m + 2
ttHZ LZ
t
tCMH
COMMAND
NOPNOP NOPACTIVE NOP READ NOPNOP NOP
tHZ
tAC tOH
tAC tOH
tAH
tAS
tCMS tCMH
tAH
tAS
tAH
tAS
tCKH
tCKS
ENABLE AUTO PRECHARGE
DISABLE AUTO PRECHARGE
COLUMN m
2
T0 T1 T2 T4T3 T5 T6 T7 T8
-8
SYMBOL3MIN MAX UNITS
tAC (3) 7ns
tAC (2) 8ns
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tHZ (3) 7ns
tHZ (2) 8ns
tLZ 1ns
tOH 2.5 ns
tRCD 20 ns
-8
SYMBOL3MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 54 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 44: Write – Without Auto Precharge1
NOTE:
1. For this example, the burst length = 4, and the WRITE burst is followed by a “manual” PRECHARGE.
2. 14ns to 15ns is required between <DIN m> and the PRECHARGE command, regardless of frequency.
3. x16: A11 and A12 = “Don’t Care”
4. CAS latency indicated in parentheses.
DISABLE AUTO PRECHARGE
tCH
tCL
tCK
tRP
tRAS
tRCD
tRC
DQM/
DQML, DQMU
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tCMH
tCMS
tAH
tAS
ROW
BANK BANK
ROW
BANK
t
DON’T CARE
D
IN
m
tDH
tDS
D
IN
m + 1 D
IN
m + 2 D
IN
m + 3
COMMAND
tCMH
tCMS
NOPNOP NOPACTIVE NOP WRITE PRECHARGE
tAH
tAS
tAH
tAS
tDH
tDS tDH
tDS tDH
tDS
SINGLE BANK
tCKH
tCKS
COLUMN m
2
3
T0 T1 T2 T4T3 T5 T6 T7 T8 T9
ROW
BANK
ROW
ACTIVE
NOP
WR
NOP
ALL BANKs
-8
SYMBOL4MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tDH 1ns
tDS 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
tWR 15 ns
-8
SYMBOL4MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 55 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 45: Write – With Auto Precharge1
NOTE:
1. For this example, the burst length = 4.
2. x16: A11 and A12 = “Don’t Care”
3. CAS latency indicated in parentheses.
ENABLE AUTO PRECHARGE
tCH
tCL
tCK
tRP
tRAS
tRCD
tRC
DQM/
DQML, DQMH
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tCMH
tCMS
tAH
tAS
ROW
ROW
BANK BANK
ROW
ROW
BANK
tWR
DON’T CARE
D
IN
m
tDH
tDS
D
IN
m + 1 D
IN
m + 2 D
IN
m + 3
COMMAND
tCMH
tCMS
NOPNOP NOPACTIVE NOP WRITE NOP ACTIVE
tAH
tAS
tAH
tAS
tDH
tDS tDH
tDS tDH
tDS
tCKH
tCKS
NOP NOP
COLUMN
m
2
T0 T1 T2 T4T3 T5 T6 T7 T8 T9
-8
SYMBOL3MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tDH 1ns
tDS 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
tWR 1 CLK
+7ns -
-8
SYMBOL3MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 56 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 46: Single Write – Without Auto Precharge1
NOTE:
1. For this example, the burst length = 1, and the WRITE burst is followed by a “manual” PRECHARGE.
2. 14ns to 15ns is required between <DIN m> and the PRECHARGE command, regardless of frequency.
3. x16: A11 and A12 = “Don’t Care”
4. PRECHARGE command not allowed else tRAS would be vi olated
5. CAS latency indicated in parentheses.
DISABLE AUTO PRECHARGE
ALL BANKS
tCH
tCL
tCK
tRP
tRAS
tRCD
tRC
DQM/
DQML, DQMH
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tCMH
tCMS
tAH
tAS
ROW
BANK BANK BANK
ROW
ROW
BANK
tWR
D
IN
m
tDH
tDS
COMMAND
tCMH
tCMS
NOP4
NOP4PRECHARGEACTIVE NOP WRITE ACTIVENOP NOP
tAH
tAS
tAH
tAS
SINGLE BANK
tCKH
tCKS
COLUMN m
3
2
T0 T1 T2 T4T3 T5 T6 T7 T8
DON’T CARE
UNDEFINED
-8
SYMBOL5MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tDH 1ns
tDS 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
tWR 15 ns
-8
SYMBOL5MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 57 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 47: Single Write with Auto Precharge
NOTE:
1. For this example, the burst length = 1, and the WRITE burst is followed by a “manual” PRECHARGE.
2. 14ns to 15ns is required between <DIN m> and the PRECHARGE command, regardless of frequency.
3. x16: A11 and A12 = “Don’t Care”
4. WRITE command not allowed else tRAS would be violated.
5. CAS latency indicated in parentheses.
ENABLE AUTO PRECHARGE
tCH
tCL
tCK
tRP
tRAS
tRCD3
tRC
DQM/
DQML, DQMH
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tCMH
tCMS
tAH
tAS
ROW
ROW
BANK BANK
ROW
ROW
BANK
tWR2
D
IN
m
COMMAND
tCMH
tCMS
NOP4NOP4NOPACTIVE NOP4WRITE NOP
ACTIVE
tAH
tAS
tAH
tAS
tDH
tDS
tCKH
tCKS
NOP NOP
COLUMN m
3
T0 T1 T2 T4T3 T5 T6 T7 T8 T9
DON’T CARE
UNDEFINED
-8
SYMBOL5MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tDH 1ns
tDS 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
tWR 1 CLK +
7ns ns
-8
SYMBOL5MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 58 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 48: Alter nating B a nk Write Accesses1
NOTE:
1. For this example, the burst length = 4.
2. Requires one clock plus time (7ns to 7.5ns) with auto precharge or 14ns to 15ns with PRECHARGE.
3. x16: A11 and A12 = “Don’t Care”
4. CAS latency indicated in parentheses.
tCH
tCL
tCK
CLK
DQ
DON’T CARE
D
IN
m
tDH
tDS
D
IN
m + 1 D
IN
m + 2 D
IN
m + 3
COMMAND
tCMH
tCMS
NOP NOPACTIVE NOP WRITE NOP NOP ACTIVE
tDH
tDS tDH
tDS tDH
tDS
ACTIVE WRITE
D
IN
b
tDH
tDS
D
IN
b + 1 D
IN
b + 3
tDH
tDS tDH
tDS
ENABLE AUTO PRECHARGE
DQM/
DQML, DQMU
A0-A9, A11, A12
BA0, BA1
A10
tCMH
tCMS
tAH
tAS
tAH
tAS
tAH
tAS
ROW
ROW
ROW
ROW
ENABLE AUTO PRECHARGE
ROW
ROW
BANK 0 BANK 0 BANK 1 BANK 0
BANK 1
CKE
tCKH
tCKS
D
IN
b + 2
tDH
tDS
COLUMN b
3
COLUMN m
3
tRP - BANK 0
tRAS - BANK 0
tRCD - BANK 0 t
t
RCD - BANK 0
tWR - BANK 0
WR - BANK 1
tRCD - BANK 1
t
tRC - BANK 0
RRD
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
-8
SYMBOL4MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tDH 1ns
tDS 2.5 ns
tRAS 48 120,000 ns
tRC 80 ns
tRCD 20 ns
tRP 20 ns
tRRD 20 ns
tWR Note 2 ns
-8
SYMBOL4MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 59 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 49: Write – Full-page Burst
NOTE:
1. x16: A11 and A12 = “Don’t Care.”
2. tWR must be satisfied prior to PRECHARGE command.
3. Page left open; no tRP.
4. CAS latency indicated in parentheses.
tCH
tCL tCK
tRCD
DQM/
DQML, DQMH
CKE
CLK
A0-A9, A11, A12
BA0, BA1
A10
tCMS
tAH
tAS
tAH
tAS
ROW
ROW
Full-page burst does
not self-terminate.
Can use BURST TERMINATE
command to stop.2, 3
()()
()()
()()
()()
Full page completed DON’T CARE
COMMAND
tCMH
tCMS
NOPNOP NOPACTIVE NOP WRITE BURST TERMNOP NOP
()()
()()
()()
()()
DQ
D
IN
m
tDH
tDS
D
IN
m + 1 D
IN
m + 2 D
IN
m + 3
tDH
tDS tDH
tDS tDH
tDS
D
IN
m - 1
tDH
tDS
tAH
tAS
BANK
()()
()()
BANK
tCMH
tCKH
tCKS
()()
()()
()()
()()
()()
()()
1,024 (x16) locations within same row
2,048 (x8) locations within same row
4,096 (x4) locations within same row
COLUMN
m
1
T0 T1 T2 T3 T4 T5 Tn + 1 Tn + 2 Tn + 3
-8
SYMBOL4MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tDH 1ns
tDS 2.5 ns
tRCD 20 ns
-8
SYMBOL4MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 60 ©2003 Micron Technolog y, Inc. All rights reserv ed.
Figure 50: Write – DQM Operation1
NOTE:
1. For this example, the burst length = 4.
2. x16: A11 and A12 = “Don’t Care”
3. CAS latency indicated in parentheses.
tCH
tCL
tCK
tRCD CAS Latency
DQM/
DQML, DQMU
CKE
CLK
A0-A9, A11, A12
DQ
BA0, BA1
A10
tCMS
ROW
BANK
ROW
BANK
DON’T CARE
UNDEFINED
tAC
LZ
D
OUT
m
tOH
D
OUT
m + 3D
OUT
m + 2
ttHZ LZ
t
tCMH
COMMAND NOPNOP NOPACTIVE NOP READ NOPNOP NOP
tHZ
tAC tOH
tAC tOH
tAH
tAS
tCMS tCMH
tAH
tAS
tAH
tAS
tCKH
tCKS
ENABLE AUTO PRECHARGE
DISABLE AUTO PRECHARGE
COLUMN m
2
T0 T1 T2 T4T3 T5 T6 T7 T8
-8
SYMBOL3MIN MAX UNITS
tAH 1ns
tAS 2.5 ns
tCH 3ns
tCL 3ns
tCK (3) 8ns
tCK (2) 10 ns
tCKH 1ns
tCKS 2.5 ns
tCMH 1ns
tCMS 2.5 ns
tDH 1ns
tDS 2.5 ns
tRCD 20 ns
-8
SYMBOL3MIN MAX UNITS
256Mb and 512Mb: x16
TwinDie MOBILE SDRAM
PRELIMINARY
09005aef80906b6e Mic ron Technol ogy, Inc., rese rve s the right to ch ange produc ts or spe c ifi ca tio ns without noti ce.
256mb_512mbSDRAM_twindie_2.fm - Rev. C 10/03 EN 61 ©2003 Micron Technolog y, Inc. All rights reserv ed.
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Inter ne t: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron , t he M logo, the Micron logo, and TwinDie are trademarks and/or service mark s of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
Figure 51: FGBA “FG” Package 54-pin, 8mm x 14mm
NOTE:
1. All dimensions in millimeters max/min or typical where noted.
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.
Data Sheet Designation
Prel iminar y : This data she et cont ains initial c harac-
terization limits that are subject to change upon full
characterization of production devices.
BALL A1 ID
1.6 0 MAX
MOLD COMPOUND: EPOXY NOVOLAC
SUBSTRATE: PLASTIC LAMINATE
SOLDER BALL MATERIAL: EUTECTIC 63% Sn, 37% Pb or
62% Sn, 36% Pb, 2%Ag
SOLDER BALL PAD: Ø .27mm
14.00 ±0.10
BALL A1
BALL A9
BALL A1 ID
0.80 TYP
0.80 TYP
1.80 ±0.05
CTR
7.00 ±0.05
8.00 ±0.10
4.00 ±0.053.20 ±0.05
3.20 ±0.05
1.250 ±0.075
0.100 ±0.013
SEATING PLANE
C
6.40
6.40
0.10 C
54X 0.35
SOLDER BALL DIAMETER
REFERS TO POST REFLOW
CONDITION. THE PRE-
REFLOW DIAMETER IS Ø 0.33
C
L
C
L