Manual Order No.:6DD1903-0DB0
Edition 10.00
SIEMENS
SIEMENSSIEMENS
SIEMENS
Standard Software Package
Sheet-Cutter / Cut to Length
for
T400 Technology Module
Software Version 1.02
T400
CBP
Contents
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 1
6DD1903-0DB0 Edition 10.00
Contents
0 Warning information.............................................................................................................3
1 Overview................................................................................................................................5
1.1 Validity and how the software is supplied ........................................................................5
1.2 Order numbers................................................................................................................5
1.3 Adapting the standard software package.........................................................................6
1.3.1 Parameters...........................................................................................................7
1.3.2 BICO parameters..................................................................................................8
1.3.3 Resources which are used to adapt the software and for start-up...........................9
2 Introduction.........................................................................................................................10
2.1 Hardware configuration.................................................................................................10
2.2 System features (overview)...........................................................................................11
2.3 Operating modes ..........................................................................................................13
2.3.1 Referencing
.........................................................................................................14
2.3.2 Continuous cutting
...............................................................................................14
2.3.3 Test cut
...............................................................................................................15
2.3.4 Single cut
............................................................................................................15
2.3.5 End cut
................................................................................................................16
2.3.6 Cut program
........................................................................................................16
2.3.7 Jogging 1/2
.........................................................................................................17
2.3.8 Approaching the knife change position
.................................................................17
3 Hardware components and interfaces...............................................................................18
3.1 Technology module T400..............................................................................................18
3.1.1 Digital inputs and outputs....................................................................................20
3.1.2 Analog inputs and outputs...................................................................................21
3.1.3 Pulse encoders....................................................................................................23
3.1.4 Communication interfaces...................................................................................27
3.1.4.1 Peer-to-peer interface...........................................................................27
3.1.4.2 USS slave interface..............................................................................27
3.1.4.3 Diagnostics interface............................................................................28
3.1.5 Cycle times (tasks)..............................................................................................28
3.2 Communications module...............................................................................................29
3.3 Interface to the basic drive (CU)....................................................................................32
3.3.1 Faults and alarms................................................................................................35
4 Function description ..........................................................................................................36
4.1 Normalization operations...............................................................................................36
4.2 Setpoints and actual values ..........................................................................................36
4.2.1 Control words......................................................................................................37
4.2.2 Status words .......................................................................................................39
4.3 Mode of operation.........................................................................................................40
4.4 Plant geometry and motion sequences..........................................................................40
4.4.1 Systems with rotary axis......................................................................................40
4.4.2 Systems with linear knife motion.........................................................................43
4.4.3 Absolute knife position........................................................................................44
4.4.4 Typical system configurations .............................................................................45
4.5 Closed-loop control structure.........................................................................................46
4.5.1 Types of characteristics.......................................................................................47
4.6 Systems with rotary axis................................................................................................48
Contents
2Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4.6.1 Drum-type shears (basic settings) .......................................................................48
4.6.1.1 Pass mark synchronization...................................................................49
4.6.1.2 Suppressing pass marks.......................................................................51
4.6.1.3 Offset correction...................................................................................52
4.6.1.4 Offset synchronization of the knife position...........................................53
4.6.2 Double saw.........................................................................................................54
4.7 Linear systems..............................................................................................................56
4.7.1 Flying knife .........................................................................................................56
4.7.1.1 Sequence control .................................................................................58
4.7.1.2 Lowering and raising the knife..............................................................58
4.7.1.3 Parameterizable STATE logic ..............................................................59
4.7.1.4 Changeover between format operation and positioning.........................61
4.7.1.5 Positioning setpoint generator PosRG ..................................................62
4.7.1.6 Clamping the knife to the material........................................................63
4.7.1.7 Referencing to a linear axis..................................................................63
4.7.2 Flying saw...........................................................................................................64
5 Appendix.............................................................................................................................69
5.1 Abbreviations................................................................................................................69
5.2 Terminology..................................................................................................................69
5.3 Literature ......................................................................................................................70
5.4 Changes .......................................................................................................................70
6 Parameters and Connectors...............................................................................................71
6.1 Important information....................................................................................................71
6.2 Parameters...................................................................................................................72
6.3 Connectors .................................................................................................................127
7 Typical commissioning....................................................................................................144
7.1 General procedure......................................................................................................144
7.2 Parameterizing the basic drive....................................................................................156
7.3 Troubleshooting..........................................................................................................157
7.4 Example of cut to length”...........................................................................................158
7.4.1 System specifications........................................................................................159
7.4.2 Format setpoint.................................................................................................160
7.4.3 Incremental encoders........................................................................................160
7.4.4 Jogging and referencing....................................................................................160
7.4.5 Controlling the cut sequence.............................................................................161
7.4.6 Return positioning.............................................................................................162
7.4.7 T400 operation without external automation system...........................................163
7.4.8 Diagnostics .......................................................................................................163
7.5 Function flow PLC (principle)......................................................................................164
Function charts
Warning information
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 3
6DD1903-0DB0 Edition 10.00
0 Warning information
Electrical equipment has components which are at dangerous voltage levels.
If these instructions are not strictly adhered to, this can result in severe bodily
injury and material damage.
Only appropriately qualified personnel may work on/commission this
equipment.
This personnel must be completely knowledgable about all the warnings and
service measures according to this User Manual.
It is especially important that the warning information in the relevant
Operating Instructions (MASTERDRIVES or DC MASTER) is strictly
observed.
WARNING
D
Qualified personnel for the purpose of this Manual and product
labels
are personnel who are familiar with the installation, mounting, start-up
and operation of the equipment and the hazards involved. He or she
must have the following qualifications:
1. Trained and authorized to energize, de-energize, clear, ground and
tag circuits and equipment in accordance with established safety
procedures.
2. Trained in the proper care and use of protective equipment in
accordance with established safety procedures.
3. Trained in rendering first aid.
!DANGER For the purpose of this Manual and product labels, „Danger indicates
death, severe personal injury and/or substantial property damage will
result if proper precautions are not taken.
!WARNING For the purpose of this Manual and product labels, Warning“ indicates
death, severe personal injury or property damage can result if proper
precautions are not taken
!CAUTION For the purpose of this Manual and product labels, „Caution“ indicates
that minor personal injury or material damage can result if proper
precautions are not taken.
Definitions
Warning information
4Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
NOTE For the purpose of this Manual, „Note“ indicates information about the
product or the respective part of the Manual which is essential to
highlight.
CAUTION
This board contains components which can be destroyed by electrostatic
discharge. Prior to touching any electronics board, your body must be
electrically discharged. This can be simply done by touching a conductive,
grounded object immediately beforehand (e.g. bare metal cabinet
components, socket protective conductor contact).
Overview
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 5
6DD1903-0DB0 Edition 10.00
1Overview
1.1 Validity and how the software is supplied
This Manual is valid for Version 1.0 of the standard Sheet-Cutter/Shears
Control software package.
NOTE This documentation refers to software, generated using the graphic
CFC configuring tool, for 32-bit SIMADYN D processor modules.
The standard software package can be purchased as a T400 technology
board with software, which is ready to run. The documentation is for this
particular application. Using parameters, the software can be adapted to
the special task. Thus, it is possible to change fixed values and
connections within the configured software.
NOTE The control core (all of the functions with the exception of
inputs/outputs) is also available for other configurations, for example,
the PM4 - PM6 CPU modules with expansion module IT41 or the T400
in the SRT400 subrack. In this case, the software package is adapted
to the particular application using the graphic CFC configuring tool.
1.2 Order numbers
The standard Sheet-Cutter/Cut to Length software package is available,
ready-to-run as T400, or as source code on floppy disk. For the source
code, it involves a SIMADYN D software package. All customer-specific
adaptation work can be executed and documented using the graphic
CFC configuring interface.
The software is protected using a hardlock PAL, which can be inserted
on all SIMADYN D processor modules. This PAL is required when
operating the closed-loop control.
Table 1-1 Components to adapt the configured software using CFC
Designation Explanation Order number
T400 with sheet-
cutter / cut to
length
High performance closed-loop sheet-cutter control, loaded on
T400; with hardlock PAL; ready to run 6DD1842-0AC0
D7-ES SIMADYN D configuring software D7-ES. This package comprises
STEP7, CFC and D7-SYS on CD-ROM 6DD1801-4DA2
Hardware
configuration
Overview
6Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
1.3 Adapting the standard software package
The purpose of offering a standard software package is to provide a pre-
configured control-related solution for a specific application, where it is
only necessary to make a few application-specific adaptations. Further, a
high degree of flexibility is demanded, in order to be able to cover as
many customer requirements as possible.
The procedure for adapting the software for this particular case will now
be explained using the rough structure as shown in Fig. 1-1.
CU
(drive converter)
CB
(communications)
Digital and analog
inputs
Position- and speed
sensing
Closed-loop shears
control
Auxiliary application-
specific control functions
CU
(drive converter)
CB
(communications)
Digital and analog
outputs
Knife position
transmitter
Material position
transmitter
Fig. 1-1 Rough structure of the standard software package
The following have to be adapted:
Defining the sources for the control signals (from CB or local input or
from the basic drive (SIMOLINK) )
Defining the setpoint channels (format entries, setpoints for the drive
converter)
Normalization of setpoints and actual values
Specifying the plant/system geometry
Specifying the position transmitters
This adaptation essentially involves the interfaces to the actual closed-
loop control core. In the closed-loop core itself, only a few adaptations
have to be made. Here the motion sequences for the different versions
of the cutting device are defined. The procedure is explained using
examples in the Appendix of this documentation.
Overview
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 7
6DD1903-0DB0 Edition 10.00
1.3.1 Parameters
Parameters are used
to visualize internal quantities (monitoring)
to change fixed values
to change inter-connections (BICO parameters)
All of the parameters, which refer to the functions and settings of the
technology module, are called
technology parameters.
The technology
parameters for the closed-loop cut to length are described in Section 6,
and appear in the function charts in the form of the following symbols:
Rated speed
(1500 RPM)
H123 Knife position
d097
Parameters which can be changed Monitoring parameters
Display text
Pre-setting
Parameter number
Fig. 1-2 How parameters are shown in the function charts
When changing parameters, it should be taken into account, that there
are initialization parameters, which only become effective after the T400
has re-started.
In addition to the technology parameters, there are so-called basic drive
parameters for the drive converters used. These should be taken,
together with the associated charts, from the documentation of the drive
converter which is used.
It should be observed that the parameters are selected by entering the
number (e.g. at the operator control panel of the drive converter).
However, for the display, the most significant digit is replaced by a letter,
which is intended to symbolize as to whether it involves a quantity which
can be changed or not changed.
"1956" is entered in order to select technology parameter "H956".
Table 1-2 Parameter number specification
Value Significance Parameter display (example)
range can be changed cannot be changed
0 ... 999 Lower parameter range of the drive
converter P123 r123
1000 ... 1999 Lower parameter range of the T400 H123 d123
2000 ... 2999 Upper parameter range of the drive
converter U123 n123
3000 ... 3999 Upper parameter range of the T400 L123 c123
Example
Overview
8Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
1.3.2 BICO parameters
Contrary to (value) parameters, the BICO parameters define the
interconnections. This means, parameters specify a fixed value at an
input, whereby BICO parameters select the signal source, which is
connected using the input. This signal source must be defined in the
form of a connector. The BICO parameter appears as parameter in the
symbol of a BICO input (Fig. 1-3).
The source and destination of a BICO interconnection must have the
same data type. Thus, digital quantities (BOOL) can, for example, not be
connected with floating-point inputs. Thus, for each data type used,
different symbols for connectors and BICO inputs are used in the
function charts.
Fig. 1-3 Symbols for connectors and BICO inputs
L430 (2541)
K (200,8)
S. control word
H681 (0123)
B (120,3)
S.enable
L321 (3155)
KR (330,1)
S. speed actual value
B0123 Status bit_XY
PZD_123
K2541
KK5021 CU_doubleXY P501 (5021)
KK (60,2)
S. double word
Connecting
BOOLean values
16-bit values
32-bit values
Floating point values
Connector
name
Connector number Name of the BICO
input
Number of the
connected connector
(factory setting)
BICO parameter
BICO inputs
Connectors
Chart, sector of source
for the factory setting
Data type symbol
KR3155 Speed
Overview
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 9
6DD1903-0DB0 Edition 10.00
1.3.3 Resources which are used to adapt the software and for start-up
Various resources are available which can be used to adapt the standard
software package to the particular application.
Table 1-3 Adaptation- and start-up tools
Name Explanation
PMU Input field for all MASTERDRIVES- and DC Master units (with 4-digit display)
OP1S Operator control device with numerical keypad and 4-line text display; this can be directly
connected at the PMU.
SIMOVIS Start-up- and parameterizing software for PC (Windows). This also provides an
oscilloscope function for MASTERDRIVES MC.
CFC Graphic configuring tool, which is used to generate the standard software package. This is
connected to the service interface of the T400.
Prerequisite: STEP 7; D7-SYS
Service-IBS
(start-up) Simple start-up- and diagnostics tool for PPC (DOS, Windows). This is also available as
Telemaster for remote diagnostics. .
The resources differ essentially by the intervention possibilities, which is
shown in the following table.
Table 1-4 Adaptation- and start-up tools
Intervention CFC PMU OP1S SIMOVIS Service-
start-up
View value any parameter parameter parameter any
Change value any parameter parameter parameter any
Change interconnection any BICO BICO BICO any
Insert block yes no no no no
Delete block yes no no no no
Change execution
sequence (run sequence) yes no no no no
Change the cycle time for
processing yes no no no no
Duplicate software yes no no no no
Duplicate parameter sets no no no yes (macro)
Documentation charts no no parameter
lists no
Introduction
10 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
2 Introduction
2.1 Hardware configuration
The drive unit comprises a SIMOVERT MASTERDRIVES drive
converter with integrated T400 technology module, a communications
board for connection to the automation system (e.g. CBP) and a three-
phase motor (synchronous or induction).
CU
Basic drive
(MasterDrives/DC Master)
Electronics box of the drive
converter
CB
Communications
module
(CB1, CBP, ...)
T400
Technology module
Encoder emulation
Process data and parameters
Position sensing,
knife Position sensin
g
,
material
Position sensing,
knife drive
Fig. 2-1: Typical hardware arrangement in the electronics box of a drive converter
The cutting devices can either be shears, saw, knife, sheet-cutter or
comparable elements. For reasons of simplicity, in the following text,
independent of the actual version, either "knife" or "shears" are used.
The technology control is realized on the T400. The position of the
material to be cut and the knife are required. Thus, the position
transmitter signals of the measuring roll (material feed) and the knife
must be connected to the T400. For gearless applications, the T400
receives the position tracks of the knife from the pulse encoder
emulation of the MASTERDRIVES drive converter via the common
backplane bus.
Data transfer between T400 and the basic drive is also realized via dual
port RAM and the common backplane bus. This combination represents
an optimum system integration, as the setpoints can be transmitted
extremely quickly and in synchronism with the processing cycles.
Introduction
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 11
6DD1903-0DB0 Edition 10.00
2.2 System features (overview)
A wide variety of different systems can be implemented using the
closed-loop Cut to length. Systems with rotary axis (e.g. drum-type
shears) as well as linear-positioning systems, such as "flying knife" can
be implemented. Only a few parameters have to be changed to adapt
the software to the particular system (examples, refer to Section Fehler!
Verweisquelle konnte nicht gefunden werden.).
The closed-loop cut to length is generally controlled from a higher-level
supervisory automation system. This system can control the closed-loop
cut to length using a few transparent system quantities, such as format
length, number of cuts or operating mode. All of the values obtained,
velocity profiles or statuses are internally generated, and normally do not
have to be adapted.
For the automation system, there are five cutting operating modes:
continuous cutting
cutting program (a defined number of cuts can be made)
single cut
test cut (cut a sheet, i.e. make 2 cuts)
final cut (cut the end of the material)
The knife motion is calculated online from actual data entries and
measured values. Thus, setpoints can be changed, when required, from
cut to cut. This means, for example, that the cut length can be changed
in operation without having to shutdown the system or generate waste.
The cutting speed is limited by the drive technology used (especially the
moment of inertias). The closed-loop cut to length operates from plant
standstill up to the maximum speed. If speeds are changed when cutting,
these are automatically taken into account.
When required, when cutting the knife can be moved faster than the
material. The forces which occur, influence the appearance of the cutting
edges and move the cut sheet away from the material. The only data
which has to be input is the percentage that the knife speed has to be
higher than the material speed.
The knife speed with respect to time is decisive for the cutting accuracy
and for the power- and torque requirements of the drive. Various speed
profiles can be selected to specify the optimum knife speed for the
particular application (e.g. metal- or paper shears).
An additional cutting torque can be entered to compensate the cutting
forces within a selectable angular range.
When cutting, the knife enters the material. For certain drum-type
shears, the knife geometry means that the knife speed has to be
changed during cutting. This correction function is specified using a
characteristic (cutting characteristic: Velocity change as a function of the
knife position).
In addition to the cutting characteristic, three additional characteristics
are available. They are provided so that the following functions can be
implemented, dependent on the position- or velocity:
System versions
Automation
Operating modes
Cut lengths
Cutting speed
Overspeed
Speed profile
Cutting torque
Cutting
characteristic
Characteristic
Introduction
12 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
KP adaptation: Speed controller gain in the drive converter as a function
of the torque demand.
Friction characteristic: Generates a frictional torque component as a
function of the material velocity
Moment of inertia characteristic: Generates a moment of inertia
characteristic, dependent on the knife position. In this
case, position-dependent changes of the knife geometry
can be taken into account. These characteristics can also
be used for other application-specific characteristics.
For shears with rotary axis, the material feed is measured between two
cuts. The closed-loop format controller can compensate deviations from
the reference (setpoint) format.
When required, the closed-loop synchronous control can synchronize to
pass marks, which are located on the material. The cut is then made at a
defined distance from the pass mark.
The standard software package has numerous free functions, which can
be used to realize application-specific open-loop control tasks. Especially
for shears with linear axis, secondary, associated processes must be
controlled (open-loop) (e.g. such as raising and lowering the knife,
positioning, clamping the material (nip position), etc.).
The closed-loop cut to length includes numerous monitoring- and
plausibility functions. In some instances, they are permanently defined
(e.g. "knife block protection", "plausibility of the knife speed"); in some
instances, they can be used application-specific. Each error/fault
condition can initiate an alarm or a fault to the drive converter. Faults
and alarms can be signaled to the automation system.
All of the most important quantities/parameters of the closed-loop control
are available as monitoring parameters and can be displayed at
parameterizing devices (e.g. OP1S). Quantities/parameters which
change quickly, can be connected to analog outputs, where they can
then be tracked using an oscilloscope.
Format controller
Pass marks
Optional functions
Diagnostics
Introduction
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 13
6DD1903-0DB0 Edition 10.00
2.3 Operating modes
Generally, the sheet-cutter is controlled (open-loop) from a higher-level,
supervisory automation system. This has the advantage, that many
settings and inputs can be changed during operation. This also means
that the required closed-loop control mode can also be defined. The
available operating modes are listed in the following table. For all
operating modes, it is assumed that the drive converter is operationally
ready.
If several operating modes are simultaneously selected, the operating
mode with the highest priority is set. Thus, a cutting operating mode can
be interrupted by approaching the starting position.
A differentiation is made between "steady-state" and "latching" functions.
Steady-state functions are only executed as demanded by the
automation system. For latching functions, a request pulse is sufficient
which then triggers all of the additional sequences.
Table 2-1 Available operating modes (sorted according to priority; highest priority at the top)
Operating mode Purpose Prerequisites Comments
Local operating modes:
Referencing
(highest priority) The knife is moved with a constant velocity. If the
reference position is passed, the "knife calibrated"
status is set.
None Steady-state function
Jogging 1 The knife is moved forwards (slowly). For example,
a coarse reference position can be approached. None Steady-state function
The "knife calibrated"
status is changed
Jogging 2 The knife is moved backwards (slowly). For
example, a fine reference position can be
approached.
None Steady-state function
The "knife calibrated"
status is changed
Approach knife change
position The knife is moved to the knife change position Calibrated Steady-state function
Approach starting point The knife is moved to the quiescent position Calibrated Steady-state function
Cutting operating modes:
Continuous cutting Continuous cutting of sheets Calibrated
starting position Steady-state function
Cut program To cut a specific number of sheets. When required,
when completed, a test sheet with a specific length
can be automatically cut.
Calibrated
in starting
position
Steady-state function
Test cut Cutting an individual sheet Calibrated
in starting
position
Latching function
Single cut A cut is made at any position along the material Calibrated
in starting
position
Latching function
End cut A cut is made at the end of the material web
(smooth cutting edge at the end of the material) Calibrated
in starting
position
Latching function
Introduction
14 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
2.3.1
Referencing
For all cutting modes, it is assumed that the absolute knife position is
known. In this case, the knife position must be calibrated (referencing).
The sequences and the effect of the prioritization are shown in the
following diagram. A reference approach travel is not required when an
absolute value encoder is used (refer to Section 4.4.3).
Referencing
Jogging 1
Zero pulse
Coarse reference
Knife calibrated
Knife speed
Any Active operating mode (priority) t
Fig. 2-2 Sequence when referencing and jogging 1
2.3.2
Continuous cutting
The
continuous cutting
operating mode is used to cut any number of
material sheets. When the operating mode is selected, cutting starts as
soon as the material enters the cutting range.
Operating mode
continuous cutting
Material
identification
in the cutting range
at the start position
Knife speed
active mode
Request
continuous cutting
t
Fig. 2-3 Timing in the "continuous cutting"operating mode
The operating mode is terminated after the request is withdrawn, as soon
as the knife is at the start position. During the last cut, a fictitious format
is entered for the following sheet, which is large enough, so that the knife
must wait in the quiescent position (start position) for the start of the cut.
The
continuous cutting
mode is completed in this status (without this
fictitious cut actually being made).
Steady-state
operating mode
Introduction
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 15
6DD1903-0DB0 Edition 10.00
2.3.3
Test cut
For a
test cut,
only one sheet is cut. The knife drive is then stopped
again. The test cut operating mode is a "latching" operating mode, i.e.
the request can be withdrawn again immediately after it has been set.
Operating mode
test cut
Material
identification
in the cutting range
at the start position
Knife speed
active operating mode
Request
test cut
t
Fig. 2-4 Timing in the "test cut“ operating mode
2.3.4
Single cut
In the single cut operating mode, a single cut is made. If material is
already located in the cutting range, the cut is made immediately after
the request. It is not necessary to specify a sheet length.
If the
single cut
request is set, before the start of the material web was
identified, the cut position can be defined. The knife stays in the wait
position until the material has approached the cutting range,
corresponding to the cutting data. Thus, for example, a precise cutting
edge can be established at the start of the material web.
Operating mode
single cut
Material identifcation
in the cutting range
at the start position
Knife speed
active operating mode
Request
single cut
t
Fig. 2-5 Timing in the "single cut" operating mode
Introduction
16 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
2.3.5 End cut
The
end cut
operating mode is used to make a cut at the end of the
material web. This allows a selectable sheet length (format) to be cut
from the end of the material. The setpoint for this sheet length is
transferred when the operating mode is activated, which means that it
must already be available. The format must be subatantial shorter than
the clearance between light barrier and knife. Ther must be enough time
for accelerating the knife when the web end passes the light barrier.
This function is latching, and is started with the rising edge of the
request, if the end of material web identification still detects the material
web at this particular instant. The cut is made with the active operating
mode after the end of the material web is identified.
Operating mode
end cut
Material web
identification
in the cutting range
at the start position
Knife speed
Active operating mode
Request
end cut
t
Fig. 2-6 Timing in the "end cut“ operating mode
2.3.6
Cut program
The cut program automatically manages a larger number of cuts. The
length and number of cuts is specified by the automation system. The
number of sheets to be cut is transferred with the control bit
enable cut
program
(refer to shear control words) and the cutting operation is
started.
The timing corresponds to that shown in Fig. 2-3, only that for the cut
program, the cut request is withdrawn by the internal control, and not by
the automation.
Light barrier
End of web
Possible format
Invalid format
Web speed
Web speed
Format
Knife
Clearance li
g
ht
barrier - knife
Format
Introduction
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 17
6DD1903-0DB0 Edition 10.00
Optionally, directly after a cut program, a sheet with a special length can
be cut. The source for the format length of the
special test
is defined
using H626 (chart 190).
2.3.7
Jogging 1/2
If
jogging 1
is activated, the knife normally moves forwards with a
selectable velocity (L523). When the reference position is passed, the
knife position and the
knife calibrated status
are set.
If, when referencing, material is still in the traversing range of the knife,
then it is not possible to pass through the reference position. In this case,
a coarse reference switch can be evaluated, which can be located close
to the knife wait position. However, the coarse reference pulse is not as
precise as a zero pulse and therefore results in a lower cutting accuracy
at the first cut
For operation with
jogging 2,
the same statements are valid as for
jogging 1
. However,
jogging 2
is normally processed with a negative
direction of rotation
Table 2-2 Parameters for jogging 1 and jogging 2
Parameter Chart Significance
H523 280 Source for jogging 1 in the shears control word
H524 280 Source for jogging 2 in the shears control word
L306 170 Source of the coarse pulse for the coarse referencing function
L308 170 Source for the coarse reference - setting value for
jogging 1
L311 170 Coarse reference setting value
jogging 2
and a negative direction of rotation
L312 170 Coarse reference setting value
jogging 2
and a positive direction of rotation
L520 - L523 260 Sources to enable jogging, positive direction of rotation
L524 - L526 260 Sources to enable jogging, negative direction of rotation
L523 260 Speed for jogging, positive direction of rotation
L527 260 Speed for jogging, negative direction of rotation
L528 260 Source to select the direction of rotation when jogging
2.3.8
Approaching the knife change position
This function is used to bring the knife to a specific mechanical position.
The knife is moved to this position through the shortest possible path,
whereby generally the cutting range does not have to be passed through.
Cutting cannot be started from the knife change position!
Option special test
Jogging 1
Coarse reference
Jogging 2
Hardware components and interfaces
18 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
3 Hardware components and interfaces
3.1 Technology module T400
Feature Data and explanations
Processor 32bit / 32 MHz RISC processor with floating-point arithmetic operation
Cache 4 Kbyte program, 4 Kbyte data
RAM 4 Mbyte DRAM
Program memory 2 Mbyte
Programming Download via serial interface
NOVRAM Data save function for up to 30 configurable values at power-down
Change memory 32 Kbyte; to permanently save online changes (e.g. value connection changes)
Subrack Operation in the electronic boxes of the SIMOVERT MASTERDRIVES drive
converters (with the exception of the Compact Plus type of construction) and
SIMOREG DC Master
SRT400 subrack
Operation without fan up to an ambient temperature of 55°C
Software protection Application-specific hardlock PALs available (this is required when using the
standard software package)
Analog outputs No. : 2
Range: ±10 V (12-bit resolution)
Analog inputs No.: 5 (2 differential inputs; 3 non-floating inputs)
Range: ±10 V (12-bit resolution)
Digital inputs No.: 8
Interrupt-capable: 4
Voltage: 24 V DC rated voltage
Digital outputs No.:2
Voltage:24VDCrated voltage
Current: max. 50 mA
Bi-directional inputs/
outputs (digital) No.:4
Current / voltage: refer to digital inputs/outputs
Pulse encoder 1 HTL; Zero pulse and coarse pulse input;
alternative to the terminals, tracks A , B and zero pulse can be taken from the
backplane bus of the basic drive converter (encoder emulation)
Pulse encoder 2 RS422; HTL bipolar; HTL unipolar; TTL
Absolute value
encoder 2 synchronous-serial encoders can be connected; protocol: SSI or EnDat
2nd encoder uses the same terminals as the communications interface 2; this
means that only one of the alternatives can be used
Serial interface 1 Service functions:
Alternatively:
Download
Online operation in the CFC test mode, basic start-up
USS (OP1S)
Serial interface 2 Alternatives: USS
Peer-to-peer
Diagnostic LEDs Red Internal T400 monitoring
Green Data transfer to the communications module
Yellow Data transfer to the basic drive
Hardware components and interfaces
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 19
6DD1903-0DB0 Edition 10.00
24V
53
54
55
24V
4 digital outputs
bidirectional
24 V DC
(8 mA input current)
X5.
50
94
5 analog inputs
2 differential inputs
11 bits + sign
±10V/10k
91
93
92
±10V
95
X9.
90
4 digital inputs
24 V DC
98
2 analog outputs
±10V/10mA
11 bits + sign
X9.97
11 bits + sign
Absolute value
encoder 2
or
serial interface 2
peer-to-peer or
USS
X7
.72
73
74
75
45 P24
external
61
58
X5.
45
2 digital outputs
24 V DC / 100 mA
40 mA base load
for external P24-
supply, which can
also come from the
basic drive
51
52
+24V
P24
external 50
99
4 digital inputs
interrupt-capable
24 V DC
(8 mA input current)
X8.
80
Zero pulse.
Pulse encoder
+15V / 100mA
TrackA
Track B
TrackA +
Track B +
81
82
83
X6
.62
63
64
Coarse
pulse
66
65
84
Track A-
TrackB -
X8
.86
87
88
Absolute value
encoder 1
85 M
X7.
76
77
78
79
68
Serial interface 1
Program download
CFC online
USS / SIMOVIS
RS485, 2 wire
X7
.70
71
69
Tx/Rx+
Tx/Rx-
RxD
TxD
67
Symbolic
hardware
addresses of
the basis
software
package
Ana_In_1
Ana_In_2
Ana_In_3
Ana_In_4
Ana_In_5
Ana_Out_1
Ana_Out_2
BinInput
SSI_1
SSI_2
X02
X01
M
Increm_1
Increm_2
Commun-
ications
module
e.g.: CB1
M
T400
Pulse
encoder
1
Pulse
encoder
2
Zero pulse+
Coarse
pulse+
Zero
pulse-
+
-AD
±10V +
-AD
±10V +
-AD
96
±10V +
-AD
99
±10V +
-AD
46
47
48
49
57
56
59
60
Dual
port-
RAM
Dual
port-
RAM
TTL
RS232
DA
DA
HTL
TTL
RS422
Select with
switch S2
HTL
M
X6
M
BinInOut
Zero pulse from CU
TracksAandBfromCU
MASTERDRIVES
basic drive
CUx
MASTERDRIVES
basic drive
CUx
Fig. 3-1 Layout of the terminals on the T400 technology module
Hardware components and interfaces
20 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
3.1.1 Digital inputs and outputs
The digital inputs and outputs of the T400 technology module use 24V
signal levels. The 24 V - power supply voltage (P24) for the digital
outputs must be externally connected.
A maximum of 14 digital inputs are available for open-loop control
functions (4 of which are bi-directional, i.e. can either be used as input or
as output). All of the inputs are also available inverted. The associated
parameters and connectors are obtained from function charts 100 and
110.
10k
P24
ϑ
T400
terminal
Digital inputs
Coarse pulse inputs Digital outputs
22k
6k8
68nF
T400
terminal
Fig. 3-2 Circuit of the digital inputs and outputs (P24: External 24 V power supply at terminal
45)
22k
6k8
68nF
10k
P24
ϑ
T400
terminal
Bi-directional inputs Bi-directional outputs
Drive enable
Fig. 3-3 Circuit of bi-directional digital inputs/outputs (P24: external 24 V power supply at
terminal 45)
The inputs can be used for any open-loop control tasks. The configured
pre-assignment can be taken from Table 3-2. It should be observed that
the inputs are up-dated in different sampling times!
Table 3-1 Pre-assignment of the digital outputs
Terminal Sampling Chart Application
46 T1 100 Fault (bi-directional terminal; driver activated with H265 = ‘1’ )
47 T1 100 Open brake (bi-dir. term.; driver activated with H266 = ‘1’ )
48 T1 100 Motor fan on (bi-dir. term.; driver activated with H267 = ‘1’ )
51 T1 100 Raise knife / shears
52 T1 100 Lower knife / shears
Power supply
voltage
Hardware components and interfaces
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 21
6DD1903-0DB0 Edition 10.00
Table 3-2 Pre-assignment of the digital inputs
Terminal Sampling
time Chart Application
53 T3 280 External fault / alarm 1 in the shears control word 2
54 T3 280 Jogging 1 in the shears control word 2
55 T3 280 Jogging 2 in the shears control word 2
56 inverse T3 280 External fault / alarm 2 in the shears control word 2
58 T3 280 Coarse reference in the shears control word 2
64 (Hardware) 530 Pass mark detecting respectively zero pulse shear drive (rotary axis)
65 T1 180
240 Light barrier signal to set the reference position
Light barrier signal to input the cutting torque
3.1.2 Analog inputs and outputs
The analog inputs are scaled in the factory setting, so that a terminal
voltage of 5Vis emulated internally as 1.0. This pre-setting is changed
using scaling factors and offsets. The following is valid for analog inputs:
Analog value = terminal voltage scaling factor / 5 V - offset
The integration of analog inputs into the standard software package and
the associated parameters and connectors is shown in function chart 90.
Generally, a smoothing element is connected after the analog inputs in
the software. This smoothing function can be de-activated by setting the
filter time constant to 0 ms. The control can set the output signal to zero
(inhibit).
T400
terminals
Analog inputs AE1, AE2
+
-
10nF
10nF
20k
20k
20k
20k T400
terminal
Analog inputs AE3, AE4, AE5
+
-
10nF
20k
20k
Fig. 3-4 Analog input circuit
The T400 has two analog outputs, which are processed in the fastest
sampling time (T1). The output quantity is selected per parameter. The
outputs have a filter which can be parameterized and which the control
can set to 0 in operation (inhibit). The associated function chart is
number 95.
Inputs
Scaling
Outputs
Hardware components and interfaces
22 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
T400
terminal
+
-
10nF
56
A
D
Fig. 3-5 Circuit of the analog output
The outputs can be scaled. For the factory setting, for 1.0, 5 V is output.
The output voltage U is obtained as follows:
U = ( value + offset ) scaling factor 5V
Table 3-3 Terminal assignment, analog input, T400 module
Terminals Sampling
time Scaling Offset Filter time
constant Source
inhibit Connector Value,
smooth
90 / 91 T3 H210 H211 H212 H213 3214 d214
92 / 93 T3 H215 H216 H217 H218 3219 d219
94 / 99 T4 H275 H276 H277 H278 3279 d279
95 / 99 T4 H280 H281 H282 H283 3284 d284
96 / 99 T4 H285 H286 H287 H288 3289 d289
Table 3-4 Terminal assignment analog inputs, T400 module
Terminal Select source Output value Source for
inhibit Scaling
factor Offset Filter time
constant
97 / 99 H220 d223 H221 H161 H160 H222
98 / 99 H226 d229 H227 H163 H162 H228
Hardware components and interfaces
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 23
6DD1903-0DB0 Edition 10.00
3.1.3 Pulse encoders
Pulse encoders with two tracks, offset by 90° with zero pulse are
required. If the pulse encoder for the knife position is connected to the
basic drive (CU) then its track signals are transferred from the CU to the
T400 via the common backplane bus (Fig. 2-1). In this particular case,
other encoder types can also be used - e.g. high-resolution encoders. It
is important that the encoder module of the CU has an incremental
encoder emulation function, so that the encoder, from the perspective of
the T400 acts like an incremental encoder.
The selection and encoder mounting are decisive for the cutting
accuracy of the system! Thus, the following points must be taken into
account:
The position encoder for the knife should be mounted directly at the knife
and not at the drive motor. A gearbox located between the motor and
knife results in inaccuracy as a result of the gearbox play. The zero pulse
must always be output at precisely the same knife position.
The material web position is sensed using a wheel with incremental
encoder, which is driven by the material which is to be cut. As a result of
slip between the feed drive and material, significant measuring
inaccuracy can result when sensing the position using the angle of the
feed drive.
The resolution of the material position sensing must be 10 x higher than
the required cutting accuracy. This means, that if a cutting accuracy of 1
mm is to be achieved, then the encoder must provide at least 10 position
encoder increments for a 1 mm material feed. For the position sensing,
each edge of the position tracks is evaluated, whereby the position
resolution is quadrupled. (A 1024 pulse encoder generates 4096 edges
per revolution).
Thus, a position encoder increment is the same as the 1/(4 pulse
number)th part of a revolution.
Required cutting accuracy: 0.5 mm
Wheel diameter: 200 mm
Wheel circumference: 628 mm
Edges per revolution: 10 628 / 0.5 = 12566
Min. pulse number of the encoder: 12566 / 4 = 3142
Selected encoder pulse number: 4096 pulses/revolution
A 15 V (max. 100 mA) is available as encoder power supply from the
T400 module.
The pulse encoder cable and the cables for the synchronizing pulses
must be screened. The cable screen must be connected with ground at
both ends, possibly using clamps and through a low-impedance
connection. This is especially important, if these signals are received
from proximity- or switching contacts.
The electrical input circuit of the encoder is shown in Fig. 3-6. If an HTL
encoder is connected at encoder 2, the inverting inputs are switched to
ground.
Material web
position
Knife position
Measured value
resolution
Example
Encoder power
supply
Screening
Hardware components and interfaces
24 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
The speed sensing is adapted at the encoder using the parameters listed
in the following tables.
150
5k6
1nF
T400
terminal
Pulse encoder 1
tracks A, B, zero
150
22k
1nF
T400
terminal
Pulse encoder 2
tracks A, B, zero
+
-
T400
terminal
470pF
470pF 22k 10k
33k
S2.x
Treshold and
hysteresis can be
set (S2)
15 V
Fig. 3-6 Incremental encoder connection circuit
Table 3-5 Incremental encoder inputs of the T400: Terminal assignment and switch settings for various encoder
types
Encoder 1 Encoder 2
HTL RS422 HTL TTL HTL ±3V
TrackA+ortrackA 81 62626262
Track A- - 86 - - -
TrackB+ortrackB 82 63636363
Track B- - 87 - - -
Synchronizing pulse N+ 83 64 64 64 64
Synchronizing pulse N -66 88 - - -
P15 - output to the encoder power supply 15 V 80 80 80 80 80
Ground 85 66 66 66 66
Switch S2.1 ON OFF ON OFF
Switch S2.2 ON OFF ON OFF
Switch S2.3 ON OFF OFF ON
Switch S2.4 ON OFF ON OFF
Switch S2.5 ON OFF OFF ON
Hardware components and interfaces
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 25
6DD1903-0DB0 Edition 10.00
Table 3-6 Parameters to set the incremental encoder
Param. Chart Significance Details
H400 120 Encoder pulses/revolution for the knife
position (encoder 1)
H407 120 Mode, encoder 1
(refer to Table 3-7) Source of the encoder tracks
Encoder type
Filtering the track signals
Defining the standstill limit
Behavior when setting the position
H408 120 Synchronization settings for encoder 1 Position correction for a zero pulse
Coarse pulse evaluation
H409 120 Max. pulses, encoder 1; if this value is not
equal to 0, then the position is reset after
H409 position pulses.
H420 130 Encoder pulses/revolution for the knife
position (encoder 2)
H429 130 Mode, encoder 2
(refer to Table 3-7)
Encoder type
Filtering the track signals
Defining the standstill limit
Behavior when setting the position
H428 130 Synchronization settings, encoder 2 Position correction for a zero pulse
Coarse pulse evaluation
H430 130 Maximum pulses, encoder 2; if this value is
not equal to zero, the position is reset after
H430 position pulses.
Table 3-7 Incremental encoder sensing modes (factory setting, highlighted)
Bit(s) Designation Values Significance
0 Encoder type 0
1Type 1: Two encoder tracks, shifted through
90°
Type 2: One track for each direction of
rotation (do not use!)
3 ... 1 Filter for encoder tracks
(for encoder type 1) 000
001
010
011
100
otherwise
No filter
500 ns
s
s
16 µs
no permissible
4 Behavior when setting the position 0
1Position = Setting value
Position = Position - setting value
5 Behavior when setting the position
difference 0
1Pos. diff. = position difference setting value
Pos. diff. = pos. diff. - pos. diff. setting value
6 Source of the encoder tracks (this
can only be selected for encoder 1) 0
1from terminals 81, 82 of the T400
from the basic drive (backplane bus)
7 Source of the zero pulse track for
encoder 1 0
1from terminals 83 of the T400
from the basic drive converter (backplane
bus)
15 ... 8 Measuring interval for standstill
identification in cycles: After 4 +
selected value without position
encoder change, the speed goes to
0
0x01
0x7F (4 + 1) cycles without position change
(4 + 127) cycles without position change
Hardware components and interfaces
26 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Table 3-8 Synchronizing modes of the incremental encoder sensing (factory setting highlighted)
Bit(s) Designation Values Significance
0 Synchronization 0
1Viazeropulse
Via trigger signal (not for T400 !)
1 Behavior for a zero pulse 0
1Position = setting value
Position = position - setting value
3 ... 2 Not assigned
6 ... 4 Coarse pulse evaluation
(Modes, refer to Fig. 3-7 ) 000
001
010
011
100
101
No coarse pulse evaluation
Mode 1 (no coarse pulse evaluation)
Mode 2
Mode 3
Mode 4
Mode 5
15 ... 7 Not assigned
Coarse pulses are used to suppress undesirable synchronizing signals.
For example, faults/disturbances can be suppressed or only certain
synchronizing pulses evaluated by combining coarse- and fine pulses. 5
different cases are taken into account. In the default setting, the
synchronizing pulses are used independently of the associated coarse
pulses (mode 1).
Coarse pulse
Fine pulses
Evaluation signal
Mode 1
Coarse pulse ignored
XG
XF
Y
Coarse pulse
Fine pulses
Evaluation signal
Mode 2
Y = XG AND XF
only 1st pulse
Coarse pulse
Fine pulses
Evaluation signal
Mode 3
Y=XG AND XF
Coarse pulse
Fine pulses
Evaluation signal
Mode 4
Y = XG AND XF
only 1st pulse
Coarse pulse
Fine pulses
Evaluation signal
Mode 5
Y=XG AND XF
Fig. 3-7 Operating modes for the coarse pulse evaluation (fine pulses are the zero pulses)
Coarse pulse
evaluation
Hardware components and interfaces
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 27
6DD1903-0DB0 Edition 10.00
3.1.4 Communication interfaces
3.1.4.1 Peer-to-peer interface
The standard software package includes a peer-to-peer interface, which
is used for fast data transfer with other modules, e.g. an additional T400.
This interface has the following pre-setting:
Table 3-9 Data to the peer-to-peer interface
Characteristic Param. Value
Enable communications L066 0
Baud rate L060 19200 baud
Monitoring time limit in operation L067 100 ms
Monitoring time limit after power-up L077 20 s
Number of process data, receive and send constant each 5 PZD
The other parameters and connectors are described in function chart
780.
In order to eliminate data transfer faults, the terminating resistors of the
interface used, must be switched-in (switch S1/3 to S1/6; refer to [4]).
3.1.4.2 USS slave interface
Serial interface 1 (RS232 / RS485) can be used as an alternative for
parameterization or as diagnostics interface. The parameterization is
provided for the special case that the T400 is operated in the SRT400.
When used in the basic drive, parameterization is realized via the basic
drive. The following settings are required for USS slave operation (refer
to function chart 770):
Table 3-10 Settings for USS slave operation (factory = factory setting)
Involves Value Factory
setting Significance
L920 1 0 Enable the USS slave
L921 9600 Baud rate (OP1S : 9600 or 19200)
L922 0 Slave address on the USS bus
H923 0 0: RS485 (OP1S)
1: RS232 (SIMOVIS)
S1/8 on
T400 ON OFF Changeover from online operation (CFC, basic commissioning)
to USS.
This only becomes effective after power-down/reset of the T400
It is not possible to simultaneously use USS and online operation. USS
operation is not possible if parameterization was incorrect. This means
that the error can only be reversed if online operation is selected and,
e.g. the fault is reversed using the basic commissioning function.
Operation with OP1S is only possible from the OP1S version V2.2.
Caution
Caution:
Hardware components and interfaces
28 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
3.1.4.3 Diagnostics interface
A PC can be connected to the serial interface 1 (RS232). The interface
can be used with the service commissioning/ TELEMASTER of the CFC
in the test mode. This allows values and interconnections to be changed.
The baud rate is 19200 baud.
Table 3-11 Terminals of interface X01 on the T400 (RS232)
T400 PC
Terminal Function 9 pin 25 pin
67 RxD 3 3
68 TxD 2 2
69 Ground 5 7
3.1.5 Cycle times (tasks)
The sheet-cutter software is cyclically processed. 5 different cycle times
are available, in each one of which a processing sequence occurs (task).
The individual functions, are, depending on the priority from a control
perspective, embedded in faster or slower tasks.
In the following text, no timing data is specified, but instead a reference
is only made to the processing task.
Table 3-12 Software cycle times
Task Sheet-cutter /
cut to length Tasks which have been executed (examples)
T1 1.6 ms Closed-loop position control
Setpoint input for the CU
Cam group
Pass mark detecting
T2 6.4 ms Presently not used
T3 12.8 ms Open-loop control
Communications with automation
Free function blocks (exceptions see charts 425ff)
T4 51.2 ms Slow control tasks and monitoring functions
T5 204.8 ms Parameter handling
Hardware components and interfaces
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 29
6DD1903-0DB0 Edition 10.00
3.2 Communications module
The communications module forms the interface to the higher-level
automation of the closed-loop sheet-cutter control. Generally, a
PROFIBUS module CBP is inserted at slot G in the electronics box of
the drive converter (lower center slot). Other communication modules
are possible, as long as they behave like a CBP with respect to the T400
(e.g. CB1). All of the CBP settings (e.g. bus address) are realized via the
parameters of the CU.
The automation can read and change the process data (PZD) and
parameters (PKW) on the T400 via the communications network.
The telegram from the automation system comprises 4 words for
parameterization and up to 10 PZD. The pre-assignment is specified in
the following tables.
Regular reception at the communications interface is monitored (chart
660). If a fault/error develops, alarms or faults can be output.
At the latest after 20 s (H929) after power-up, the first valid telegram
must be received. In operation, a new telegram must be received every
100 ms (H926).
Table 3-13 Telegram from the automation system to the T400 (* optional; not required for operation respectively
fixed value used as setpoint)
Word Name Significance/assignment Chart
1 PKE Parameter ID
2 IND Index
3 PWE (H) Parameter value (high word)
4 PWE (L) Parameter value (low word)
5 PZD1 from CB Control word 1 for CU (CB_CTW1; Table 3-16) 670, 680
6 PZD2 from CB * Master velocity, material web 670
7 PZD3 from CB * Factor, overspeed 670, 265
8 PZD4 from CB * Control word 2 670
9 PZD5 from CB * Acceleration 670
10 PZD6 from CB * Sheet length (format setpoint) 670, 190
11 PZD7 from CB * Cutting force 670, 240
12 PZD8 from CB * Removal up to the cut 670
13 PZD9 from CB * Number of cuts 670, 300
14 PZD10 from
CB Shear control word (SCTW; Table 3-15 ) 670, 270
Monitoring:
Pre-setting:
Hardware components and interfaces
30 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Table 3-14 Telegram from the T400 to the automation system
Word Name Significance/assignment Chart
1 PKE Parameter ID
2 IND Index
3 PWE (H) Parameter value (high word)
4 PWE (L) Parameter value (low word)
5 PZD1 CB out Status word 1 (Table 3-17) 700, 690
6 PZD2 CB out Material velocity (actual value) 700
7 PZD3 CB out Speed actual value, knife 700, 120
8 PZD4 CB out Status word 2 (Table 3-18) 700, 690
9 PZD5 CB out Current actual value 700, 610
10 PZD6 CB out Torque actual value 700, 610
11 PZD7 CB out Format length, actual sheet (actual format value) 700, 130
12 PZD8 CB out No pre-assignment (default) 700
13 PZD9 CB out No pre-assignment (default) 700
14 PZD10 CB out Shear status word 700, 520
Table 3-15 CB shear control word (chart 680)
Bit Name Control bit Significance for ‘1’
0 CB SCTW1.0 Not defined
1 CB SCTW1.1 Continuous cut Continuous cutting requested
2 CB SCTW1.2 Test cut Test cut requested
3 CB SCTW1.3 Single cut Single cut requested
4 CB SCTW1.4 Length setpoint valid Requested length setpoint is valid
5 CB SCTW1.5 Light barrier, start of web Material web detected by the optical barrier
6 CB SCTW1.6 Referencing Request, calibrate knife
7 CB SCTW1.7 Enable storing Store value to non-volatile memory
8 CB SCTW1.8 Approach starting position Request, approach starting position
9 CB SCTW1.9 Store actual value Storing enabled
10 CB SCTW1.10 Enable cutting program Cutting program is enabled;
the length setpoint is transferred with a
‘0’
Þ
1’ edge
11 CB SCTW1.11 Crop cut enable For the start of the material web, the 1st cut
is made with the crop length (special format,
refer to Chart 60)
12 CB SCTW1.12 End cut Request, end cut
13 CB SCTW1.13 Not defined
14 CB SCTW1.14 Approach knife change position Request to move the knife into the change
position
15 CB SCTW1.15 Option, special test After the cut program has been completed,
a sheet is cut with a special length
Hardware components and interfaces
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 31
6DD1903-0DB0 Edition 10.00
Table 3-16 CB control word 1 (inputs for CU; refer to Chart 680)
Bit Name ‘0’ ‘1’
0 CB Control W1.0 Stop No stop
1 CB Control W1.1 Electrical OFF No electrical OFF
2 CB Control W1.2 Fast stop No fast stop
3 CB Control W1.3 No inverter enable Inverter enable
4 CB Control W1.4 Set ramp-function generator to 0 Enable ramp-function generator
5 CB Control W1.5 Hold ramp-function generator Start ramp-function generator
6 CB Control W1.6 Inhibit setpoint Enable setpoint
7 CB Control W1.7 Acknowledge fault
8 CB Control W1.8 No jogging 1 Jogging 1
9 CB Control W1.9 No jogging 2 Jogging 2
10 CB Control W1.10 Not permissible !! Control from the automation
11 CB Control W1.11 Positive direction of rotation inhibited Positive direction of rotation enabled
12 CB Control W1.12 Negative direction of rotation inhibited Negative direction of rotation enabled
13 CB Control W1.13 Motorized potentiometer, not raised Motorized potentiometer, raised
14 CB Control W1.14 Motorized potentiometer, not lowered Motorized potentiometer, lowered
15 CB Control W1.15 External fault NO external fault
Table 3-17 Status word 1 (status for CB; refer to Chart 690)
Bit Assignment for ‘1’
0 Ready to power up from the CU
1 Ready from the CU
2 Inverter enabled from the CU
3 Fault from CU effective
4 Electrical OFF from CU
5 NofaststopfromCU
6 Power-on inhibit from CU
7 Alarm from CU effective
8 Setpoint-actual value deviation identified by CU
9‘1
10 Knife in motion
11 ... 15 ‘0’
Table 3-18 Status word 2 (status for CB; refer to chart 690)
Bit Assignment for ‘1’
0 ... 5 0’
6 Torque limit reached (reference torque > maximum torque )
7 ...15 Inverter enabled from the CU
Hardware components and interfaces
32 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
3.3 Interface to the basic drive (CU)
The T400 and the CU communicate via a dual port RAM (DPRAM).
Parameters and PZD are transferred. In this particular application, the
T400 receives 16 PZD and sends 8 PZD (Table 3-20 and Table 3-19).
The CU and T400 monitor communications. If data transfer
(communications) is interrupted for longer than 200 ms, the CU signals
fault F082. The yellow LED is bright on the T400 if communications
between the T400 and CU are OK. Communications is monitored by the
standard software package (Chart 600).
!WARNING After T400 has been reset in operation (e.g. via CFC online), the T400
re-establishes communications to the CU and controls the yellow LED.
For the CUs presently being used, the channel to the T400 remains
inhibited, also after fault F082 has been acknowledged. This means
that data is not transferred from the CU to the T400.
Remedy: Restart the CU (shutdown the voltage)
Control word 2 Status word 2
4
Speed
2
Torque setpoint
5
Minimum
torque
7
Closed-loop
current control
Speed
Limiting Ramp-function
generator
DPRAM
CU
T400
4
Speed controller
Speed setpoint
2
Control word 1
1
Status word 1
1
KP adaption
6
Maximum
torque
8
Torque actual
value
5
Current actual
value
7
Fig. 3-8 Process data transfer between the T400 and CU via DPRAM
Table 3-19 Process data from the T400 to the basic drive
Word Name Significance / assignment Chart
1 PZD1 CU Control word 1 (refer to Chart 630; Table 3-16) 640, 630
2 PZD2 CU Speed setpoint (referred to the rated speed) 640, 260
3 PZD3 CU Not assigned 640
4 PZD4 CU Control word 2 (refer to Chart 630; ) 640, 630
5 PZD5 CU Torque setpoint 640, 240
6 PZD6 CU KP adaptation 640, 450
7 PZD7 CU Reserved for the minimum torque 640
8 PZD8 CU Reserved for the maximum torque 640
Hardware components and interfaces
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 33
6DD1903-0DB0 Edition 10.00
Table 3-20 Communications from the basic drive to the T400
Word Name Significance / assignment Chart
1 PZD1 from CU Status word 1 CU (Table 3-21) 610, 620
2 PZD2 from CU Speed actual value (refer to the reference speed) 610, 500
3 PZD3 from CU Not assigned 610
4PZD4fromCU
Status word 2 CU ( Table 3-22)610, 620
5 PZD5 from CU Torque actual value (referred to the reference torque) 610, 700, 490
6 PZD6 from CU Not assigned 610
7 PZD7 from CU Current actual value (referred to the reference current; for
optional usage) 610, 700
8 PZD8 from CU Not assigned 610
9 PZD9 from CU Not assigned 610
10 PZD10 from CU Not assigned 610
11 PZD11 from CU Not assigned 610
12 PZD12 from CU Not assigned 610
13 PZD13 from CU Not assigned 610
14 PZD14 from CU Not assigned 610
15 PZD15 from CU Not assigned 610
16 PZD16 from CU Not assigned 610
Table 3-21 Status word 1 from the basic drive (chart 620)
Bit Name ‘0’ 1’
0 CU status 1.0 Not ready to power-up Ready to power-up
1 CU status 1.1 Not ready Ready
2 CU status 1.2 Pulses inhibited Operation
3 CU status 1.3 No fault Fault (pulse inhibit)
4 CU status 1.4 OFF2 effective No OFF2 present
5 CU status 1.5 Fast stop effective (OFF3) No fast stop
6 CU status 1.6 Power-up possible Power-up inhibit
7 CU status 1.7 No alarm present Alarm present
8 CU status 1.8 Setpoint-actual value deviation No setpoint-actual value deviation
9 CU status 1.9
Þ
May not exist !! PZD control
10 CU status 1.10 Comparison value reached Comparison value not reached
11 CU status 1.11 No undervoltage Fault, undervoltage condition
12 CU status 1.12 Request, main contactor not
energized Request, energize main contactor
13 CU status 1.13 Ramp-function generator not active Ramp-function generator active
14 CU status 1.14 Negative speed setpoint Positive speed setpoint
15 CU status 1.15 (Reserve) (Reserve)
Hardware components and interfaces
34 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Table 3-22 Status word 2 from the basic drive (chart 620)
Bit Name ‘0’ 1’
0 CU status 2.0 Restart-on-the-fly not active or
energization ended Restart-on-the-fly or energization
active
1 CU status 2.1 (Reserve) (Reserve)
2 CU status 2.2 No overspeed Overspeed
3 CU status 2.3 No external fault 1 present External fault 1
4 CU status 2.4 No external fault 2 present External fault 2
5 CU status 2.5 No external alarm present External alarm
6 CU status 2.6 No overload alarm Alarm, drive converter overload
7 CU status 2.7 No fault, drive converter
overtemperature Fault, drive converter
overtemperature
8 CU status 2.8 No alarm, drive converter
overtemperature Alarm, drive converter
overtemperature
9 CU status 2.9 No fault, motor overtemperature Fault, motor overtemperature
10 CU status 2.10 No alarm, motor overtemperature Alarm, motor overtemperature
11 CU status 2.11 (Reserved) (Reserved)
12 CU status 2.12 No fault, motor stalled Fault, motor stalled
13 CU status 2.13 Bypass contactor not energized Bypass contactor energized
14 CU status 2.14 (Reserved) (Reserved)
15 CU status 2.15 Pre-charging not active Pre-charging active
Table 3-23 Control word 2 for the basic drive (chart 630)
Bit Significance Assignment
0 Select function data set, bit 0 ‘0’
1 Select function data set, bit 1 ‘0’
2 Reserve ‘0
3 Reserve ‘0
4 Select fixed setpoint, bit 0 ‘0’
5 Select fixed setpoint, bit 1 ‘0’
6 Reserve ‘0
7 Enable restart-on-the-fly ‘1’
8 Enable speed controller droop 1’
9 Enable CU speed controller Controller enable
10 External fault 2 ‘0’
11 No master drive ‘1’
12 No external alarm 1 ‘0’
13 No external alarm 2 ‘1’
14 Select BICO data set 2 ‘1’
15 Checkback signal, main contactor ‘0’
Hardware components and interfaces
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 35
6DD1903-0DB0 Edition 10.00
3.3.1 Faults and alarms
A number of monitoring- and diagnostic functions are implemented in the
standard software package, and the monitoring result is connected to a
fault word (d968). Using masks, it is defined whether a fault bit is
signaled to the CU as alarm (H967), fault (H966) or not at all (chart 530).
The alarms or fault, signalled to the CU are displayed (PMU), e.g.:
„A099“ or „F120“. Further, the drive converter shuts down when a fault is
present.
Table 3-24 Bits of the fault word and associated faults and alarms (chart 530)
Bit Alarm Fault Fault source Possible causes
0 A097 F116 Communications CB No/defective communications module
Incorrect bus address (CU P918)
Incorrect module type configured for the bus
master
1 A098 F117 Communications to CU Old CU type (e.g.: CU2) ?
Þ
log-on T400
2 A099 F118 Not assigned
3 A100 F119 User fault 1 Assign application-specific user fault
4 A101 F120 User fault 2 ‘’ ‘’
5 A102 F121 Knife position < minimum
value Knife pulse encoder or reference incorrectly
set
Setting function, knife position sets negative
position values
Limit value not adapted to the application
6 A103 F122 Overspeed positive (knife) Check limit value L101, L102
Check speed normalization on T400 / CU
7 A104 F123 Overspeed negative (knife) Check limit value L101, L102
Check speed normalization on T400 / CU
8 A105 F124 Knife drive blocked in spite of
setpoint speed and torque
present
9 A106 F125 Pulse encoder fault (speed
measured values from T400
and CU different)
Incorrect speed normalization ; check the
plant/system geometry, pulse number, encoder
for T400 and CU correct?
10 A107 F126 External fault 1 Assigned application-specific
11 A108 F127 External fault 2 Assigned application-specific
12 A109 F128 Knife position > max. value Check limit value! For linear axis, high limit
values possible
13 A110 F129 Material position < min. value Long format (H111) selected too small
Check functions for setting position values
Correct position several times per sheet
14 A111 F130 Fault, TR encoder Encoder 1 from type TR absolute value encoder?
15 A112 F131 Not used
Function description
36 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4 Function description
4.1 Normalization operations
Process data are generally transferred as 16-bit fixed-point values.
If the resolution is not sufficient in certain cases, a 32-bit fixed point
value can be used. When converting from the PZD into floating-point
values, the normalization factor 1.0 is used in the factory setting. When
PZD is output, the inverse conversion is made from floating point to a
fixed-point value. The normalization operations can be individually
changed using parameters. Generally, control- and standard word are
available as 16 bit values.
The closed-loop control related core of the closed-loop cut to length
operate with per unit quantities.
Table 4-1 Normalization of the process data
Type Resolution Range Conversion into floating point values
N2 16 bit -32768 ... 32767 factorionNormalizat
bitPZD
16384 )16(
N4 32 bit -2147483648 ...
2147483647 factorionNormalizat
bitPZD
1073741824
)32(
Table 4-2 Normalization for internal closed-loop control quantities
Quantity Reference quantity Parameter
Material velocity
V_reference
H104
Knife velocity
V_reference
/cos(ε)
Velocity, knife drive
Reference speed 1
= Speed at material velocity
V_reference
d119
Knife position
Fsymech
H105
Reference position
(material)
Xref_normalization
d114
4.2 Setpoints and actual values
Table 4-3 Setpoints for the standard software package (from the automation)
Setpoint Significance Units Permissible
range
Cutting length
Format to be cut 1 mm 0 ... 32767 mm
Overspeed factor
Percentage velocity increase when cutting;
Practical range: 0 ... 100
Þ
0 .. 10% 0.1 % 0 ... 10.0 %
Distance to the cut
Supplementary value for the distance between the
light barrier signal and the center axis of the knife,
if the cut doesn't directly coincide with the optical
barrier mark
Sum of the
distance light barrier - knife
+
distance
1 mm 0 ... 32767 mm
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 37
6DD1903-0DB0 Edition 10.00
Setpoint Significance Units Permissible
range
to the cut
, which is effective
Number. of cuts
Number of cuts for the cut program 1 2 .. 16384
Cutting force
The cutting force is switched-in in a defined
angular range during the cut 1 N 16384 N
Master velocity
Material velocity for operating situations where
there is no material at the measuring wheel 1mm/s32.767 m/s
= 1966.02 m/min
Acceleration
0.1 mm/
Control word 1
Control word 1 for the drive converter, refer to
Table 3-16
Control word 2
Control word 2 for the drive converter, refer to
Table 3-23
Shears control
words
Inputs for the open-loop control of the closed-loop
cut to length, refer to Table 3-15 and Table 3-16
Table 4-4 Actual values of the standard software package (for the automation)
Setpoint Significance Units Range
Material velocity
Measured value for the material velocity 1 mm/s... 32,767 m/s
= 1966,02 m/min
Knife speed
Knife speed referred to the reference speed Reference speed
16384 -32768 ..32767
Current actual
value
Current actual value referred to the reference
current Reference current
16384 -32768 ..32767
Torque actual
value
Speed controller output in the drive converter Reference torque
16384 -32768 ..32767
Status word 1
refer to Table 3-17
Status word 2
refer to Table 3-18
Shears status
refer to Table 4-8
4.2.1 Control words
The standard software package uses 4 control words:
Control word 1
and
control word 2
for the CU (refer to Table 3-16,
Table 3-23). The structure of
control word 1
is identical with the first
PZD, which is received from CB. However, this control word is not
completely transferred from the CB to the CU. The enable signals
(setpoint, ramp-function generator, …) are generated from the closed-
loop cut to length.
2 shears control words (data inputs for the closed-loop cut to lengths)
Function description
38 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Table 4-5 Shears control word 1 (chart 270)
Bit Name Control bit Function for ‘1’
0 SCTW1.0 Not defined
1 SCTW1.1 Continuous cut Continuous cut requested
2 SCTW1.2 Test cut Test cut requested
3 SCTW1.3 Single cut Single cut requested
4 SCTW1.4 Length setpoint valid Requested length setpoint is valid
5 SCTW1.5 Light barrier, start of the
material web Light barrier identifies the material
6 SCTW1.6 Referencing Request knife calibration
7 SCTW1.7 Not defined
8 SCTW1.8 Approach start position Request, approach start position
9SCTW1.9
10 SCTW1.10 Enable cut program Cut program is enabled;
the length setpoint is transferred with the ‘0’
Þ
1’ edge
11 SCTW1.11 Crop cut enable At the start of the material web, the first cut is with
the crop length
Special format, (refer to Chart 60)
12 SCTW1.12 End cut Request end cut
13 SCTW1.13 Not defined
14 SCTW1.14 Approach knife change
position Request that the knife moves into the knife change
position
15 SCTW1.15 Option, special test After the cut program has been completed, a sheet is
cut with a special length
Table 4-6 Shears control word 2 (Chart 280)
Bit Name Control bit Function for ‘1’
0 SCTW2.0 Not defined
1 SCTW2.1 External fault / alarm 1 Error/alarm 1 active
2 SCTW2.2 External fault / alarm 2 Error/alarm 2 active
3 SCTW2.3 Jogging 1 Request jogging 1
4 SCTW2.4 Jogging 2 Request jogging 2
5 SCTW2.5 Not defined
6 SCTW2.6 Not defined
7 SCTW2.7 Fast stop Request no fast stop
8 SCTW2.8 Not defined
9 SCTW2.9 Coarse reference Knife at the coarse reference mark
10 SCTW2.10 Not defined
11 SCTW2.11 Not defined
12 SCTW2.12 Enable cutting operation Prerequisite for all cutting operating modes
13 SCTW2.13 Not defined
14 SCTW2.14 Not defined
15 SCTW2.15 Acknowledge fault Acknowledge faults
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 39
6DD1903-0DB0 Edition 10.00
4.2.2 Status words
Table 4-7 Open-loop control status (Chart 510)
Bit Assignment Function for 1’
0 Load TR encoder The absolute position is requested from the TR encoder (see 4.4.3)
1‘0
2 Position controller enable Position controller is enabled
3 At the start position Knife is located at the start position
4 Fast stop from the CU The basic drive does not signal a fast stop
5 Knife stationary Knife drive stationary
6 Drive converter ready All of the prerequisites have been fulfilled for drive converter
readiness (Chart 360)
7 TR start fault The load output of the TR encoder does not respond to the load
request
8 TR no load frequency No position track pulses during the load operation for TR encoder
9 TR load time Maximum load time of the TR encoder exceeded
10 Setpoint enable Open-loop cut to length enables the setpoints for the drive converter
11 Knife calibrated Knife position is calibrated
12 Fault Fault effective
13 Open brake The open-loop brake control releases the brake
14 n_knife > 0 Knife standstill identification signals "knife is not stationary“
15 Inverter enabled Power-off delayed drive converter operating signal to control a
motor fan (also refer to H998)
Table 4-8 Status of the shears (Chart 520)
Bit Source Assignment
0 Perm. assigned Knife is calibrated
1 Perm. assigned Knife in the cutting range (the knife is in synchronism with the material)
2 Perm. assigned Knife in the format range (knife is outside the cutting range)
3 Perm. assigned Knife at the start position
4 Perm. assigned Knife at the change position
5 Perm. assigned Cut program completed
6 Perm. assigned Zero pulse, knife (extended to 100 ms)
7 H547 Mode positioning
8 H548 Raise knife
9 H549 Lower knife
10 H550 Knife at the top position
11 H551 Knife at the bottom position
12 H552 Synchronization pulse reference (even if synchronizing disabled)
13 H553 Light barrier
14 H554 ‘0’
15 H555 ‘0’
Function description
40 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4.3 Mode of operation
All of the applications considered, involve synchronizing the motion of a
cutting device to a moving material web, whereby the cut must be made
at a precisely defined position on this material web. The cutting operation
lasts as long as the material and knife are in contact with one another
During this time, the cutting device must generally move in precise
synchronism with the material web. There are also applications, where
the knife moves faster than the material by a specific factor (overspeed
factor), which then pushes the cut sheet forwards. It may also be
necessary, due to the knife geometry, to adapt the velocity to a position-
dependent characteristic during the cut, in order to keep the knife parts
precisely at the material velocity.
After the cutting operation, the knife is brought back into the initial
position.
There are significant differences between the motion of rotating and
linear knife systems. Thus, these systems will be separately handled.
4.4 Plant geometry and motion sequences
The machine geometry is defined using parameters. Their significance
differs as to whether it involves a rotating- or a linear system.
4.4.1 Systems with rotary axis
Systems which use rotary axes, are characterized by the fact that the
drive for the knife position always rotates in one direction of rotation. The
knife position actual value is reset to 0 at the center of the cutting range.
For rotating systems, angular constants can be specified in degrees
(normalization H100 = 360.0; exception, refer to the "double saw"
example. The mark αRlies at the center of the cutting range. When αR
is exceeded, the knife position is set to 0 using the zero pulse of the
knife encoder. Thus, contrary to linear systems, there is an angular
overflow (refer to Fig. Fig. 4-3 ).
For AX, the knife is no longer in contact with the material; at AY it again
comes into contact with the material. Refer to Fig. 4-1 and Table 4-9 for
additional definitions.
Plant geometry
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 41
6DD1903-0DB0 Edition 10.00
α
α
R
AX
AY
α
F
format area
α
M1
α
M2
α
S
r
Fig. 4-1 Angular definition for rotating cutting devices (drum-type shears)
Table 4-9 Angular definitions for rotating shears
Qty. Parameter Significance
AX H101 Angle: End of the cutting range; the knife is no longer in contact with the material
AY H102 Angle: The knife enters the cutting range
AZ H103 Percentage position of the transition point in the motion sequence (this is not an
angle!)
αFFormat range (the knife velocity is not the same as the material velocity)
αSSynchronous range or cutting range (knife velocity = material velocity)
αM1 Start of the cutting torque input
αM2 End of the cutting torque input
αRReference point position
r Radius through which the knife moves
If the knife rotates with a constant speed, whereby the circumferential
velocity of the knife (ω⋅r) is the same as the material velocity, then
sheets are cut with length 2πr. This size (quantity) is known as the
Fsymech
mechanical synchronous format in the following text. The
associated speed is the
synchronous speed
.
If shorter material formats are to be cut, the knife must be accelerated as
soon as it has exited the cutting range. This means, that the knife can re-
enter the cutting range faster than at the synchronous speed. The
following diagram is obtained when showing the knife speed as a
function of time with respect to the material position.
Significance of the
mechanical
synchronous format
Fsymech
Function description
42 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
AX
V
V
material
V
knife
AY
Cutting range
Format range
AXAY
AZ
t
AZ=0 AZ=1.0
Fig. 4-2 Circumferential velocity of the knife for the format < Fsymech (principle)
At a constant material velocity, time and material position are
proportional to one another. Then the "period" of the knife velocity
corresponds to the cut sheet length. Further, the integral over the knife
velocity must correspond, during one period, to precisely 360°, as the
knife rotates through precisely one revolution during this time.
If sheet formats are to be cut, which are longer than
Fsymech
, then the
knife must be braked when it exits the cutting range. From a specific
format length onwards, the knife even brakes down to standstill. This
format is called the
limiting format
. For all format lengths which exceed
the
limiting format
, the knife remains in a wait position, until the material
has been transported forwards by an adequate length.
Fig. 4-3 Circumferential velocity and knife position for format >> Fsymech (principle)
Knife speed
Wait
position
Knife position
AX
V
Material
V
knife
AY AXAY
t
AY
AX
α
R
t
Material position
Format
t
cutting range
Zero pulse
shear encoder
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 43
6DD1903-0DB0 Edition 10.00
The symmetry of the characteristics is specified by the quantity AZ (refer
to Fig. 4-2). For AZ = 0.5 the transition point lies between AX and AY. In
this particular case, the velocity characteristic is symmetrical to AZ. As
AZ decreases, the transition point shifts increasingly towards the AX
direction. At AZ=0, the transition point coincides with AX. Theoretically,
the knife velocity must make a step function.
Thus, the torque stressing of the drive motor can be influenced using AZ.
Symmetrical characteristics result in lower torque stressing; non-
symmetrical characteristics can be used for lower torques when entering
the cutting range, which allows the cutting accuracy to be influenced.
4.4.2 Systems with linear knife motion
The motion sequence for linear knife systems is sub-divided into the
following sections:
1. Synchronization
2. Synchronous range (with cut)
3. Braking
4. Return to the initial position (start position) by reversing the drive
direction of rotation for the knife position
From starting from the quiescent position up to the end of the
synchronous range, the characteristics of the linear and rotating systems
coincide. Thus, both system versions can be realized using the same
software.
Knife velocity
V
material
V
knife
AY
t
AY
Wait
position t
Knife position
Synchronous
range
Synchronizing
Return
positioning
Braking
Fig. 4-4 Knife speed and position in the linear system
The following definition is obtained from the analogy to the rotating
system:
Fsymech = maximum acceleration travel in [mm]
Significance of
Fsymech
Function description
44 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Fsymech is also used to normalize the system for the knife coordinates
(H100). This allows knife coordinates (e.g. and AX and AY) to be entered
in [mm], displayed and evaluated (e.g. for knife-position dependent
functions).
The velocity diagram in Fig. 4-3 must be parameterized as follows by
defining the angular constants:
AX = 0
AZ = 0 (shifting the wait position to 0)
AY = 0 ... Fsymech (defines the accelerating range)
4.4.3 Absolute knife position
In order to be able to sense the absolute encoder position, an encoder
must be used with a reference point on the gearbox output side. For
practical reasons, the encoder zero pulse is used. The reference point
position must be able to be freely selected so that it can be located in the
cutting range of the knife.
Optionally, an additional proximity switch (BERO) can be mounted. It
must be adjusted so that this course reference is active in the quiescent
setting range of the knife, i.e. when the knife is fully opened. In this case,
the system can be referenced using jogging 1, without having to pass-
through the cutting range.
For linear systems, the reference position is located in the quiescent
setting of the knife, i.e. outside the cutting range and close to the limit
switch. The zero mark is defined using a proximity switch or by
combining a proximity switch (coarse pulse) with the zero pulse of the
knife feed.
Three types of absolute value encoders are used to sense the knife
position:
TR encoder (pulse encoder, which sense the absolute position, and
output, when requested, this as pulse sequence at the incremental
tracks).
Absolute value encoder at the T400 terminals (SSI- or EnDat
encoder)
Absolute value encoder connected to an encoder sensing module of
the basic drive (CU), whereby the absolute position must be
transferred as process data from the CU to the T400.
When using an absolute value encoder, the incremental position sensing
is initialized with the absolute knife position.
Applications with
rotary axes
Applications with
linear axes
Applications with
absolute value
encoders
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 45
6DD1903-0DB0 Edition 10.00
4.4.4 Typical system configurations
The following overview shows the essential system configuration
parameters using typical systems.
Both for systems with rotary- as well as linear axis, there are applications
where the knife- and material movement directions deviate from one
another. In these cases, the speed- and position components are
required in the material flow direction, which can be calculated using the
Epsilon
parameter(H108).
Table 4-10 System overview
Schematic Description Fsymech Feed/revolution.
Drum-type shears
1 knife at the circumference of
the shears-type drum
Rotary axis with normalization in
angular degrees (H100 = 360)
Radius of action of the
knife Fsymech
Drum-type shears with2knifes
along the circumference
Rotary axis with normalization in
angular degrees (H100 = 360)
Half the radius of action Radius action =
2Fsymech
Double saw
Rotary axis with normalization
mm (H100 = Fsymech).
Reference position at the cut
center
Half the length of the
transport belt Circumference of the
drive wheel of the
transport belt
Flying saw
Linear axis. Knife position in mm
with respect to the wait position
Acceleration range:
Distance between the
wait position and the start
cut
Knife travel for 1
revolution of the knife
feed drive
Motor
Flying knife
Linear axis. Knife position in mm
with respect to the wait position
Acceleration range:
Distance between the
wait position and the start
cut
Spindle feed per
revolution
Function description
46 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4.5 Closed-loop control structure
The closed-loop control essentially comprises the following components
Setpoint generator for synchronization operation (
format generator
)
Setpoint generator for return positioning (
PosRG
; this is not required
for rotating shears)
Closed-loop control section
M
3~
Setpoint
generator
Control section
Speed actual
value, knife
Position actual
value, knife
Cut length
Angular ranges
Overspeed factor
Position
ref. value Speed setpoint Torque setpoint
M
v
s
Position controller Speed controller
Speed actual
value
reference
(material)
#
α
α
Torque controller Drive converter
Position actual
value
reference
(material)
#
CUT400
Fig. 4-5 Closed-loop control structure
The setpoint generator calculates the setpoints for the knife position, -
speed and the required torque from the cutting data (refer to Fig. 4-5).
The position controller is computed on the T400; the speed- and torque
controllers in the drive converter.
The setpoint generator requires the following input quantities:
Plant/system geometry (AX, AY)
Required speed characteristic (select the characteristic type)
Cut format
Reference velocity (material)
Reference position
Overvelocity factor
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 47
6DD1903-0DB0 Edition 10.00
4.5.1 Types of characteristics
The characteristic of the knife speed is defined by selecting the type of
the characteristic (parameter H154) and the position of the transition
point AZ (refer to Fig. 4-2). The types of characteristics which are
available are shown in the following table.
Type of
characteristic
H154
Characteristics
0
Sinusoidal arc
AX
V
V
material
V
knife
AY
Format < Fsymech
AX
AY
t
Format > Fsymech
1
Linear ramps
AX
V
V
material
V
knife
AY
Format < Fsymech
AX
AY
t
Format > Fsymech
2
Linear ramps
with rounding-
off
(start and end,
each with 10%
of the V
amplitude)
AX
V
V
material
V
knife
AY
Format < Fsymech
AX
AY
t
Format > Fsymech
Fig. 4-6 Types of characteristics for the format generator
The type of characteristic is selected depending on the particular
application. The smoother the transition of the velocity from acceleration
into the cutting range, then the more precise is the cut. On the other
hand, linear ramps (type 1) allow the best possible utilization of the
motor torque.
Function description
48 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4.6 Systems with rotary axis
The sub-functions of the closed-loop cut to length will be described using
examples of plants and systems. These will explain the basic settings of
the closed-loop control. Detailed functions will then be described using
case studies. The solutions of detailed functions (e.g. pass mark
synchronization) are principally valid for other system types as well (also
using linear axes).
4.6.1 Drum-type shears (basic settings)
Fig. 4-7 Drum-type shears (typical system)
Table 4-11 System-specific data
Param Value Quantity Significance
H100 360
X_Shear Norm
Normalization value for knife coordinates (AX, AY are
specified in degrees)
H101 20
AX
Exit angle
H102 340
AY
Entry angle (refer to Fig. 4-1)
H104 200 m/min
Reference Speed Reference Speed
is the maximum material velocity
H105 753.98 mm
Fsymech
Circumference of the circle of knife blade movement
H108 0.0°
Epsilon
Knife and material have the same direction of motion
H115 628.319 mm
SizeMeas.Wheel
Measuring wheel circumference
H117 753.98 mm
Feed/Revolution
Knife travel for 1 revolution of the knife axis
H120 0
Mode linear axis
Rotary axis (knife position is reset for cut at 0)
H122 700 mm
Distance_material
Distance between the light barrier for start of web detection
and center of the knife
Driving
roll
900 mm
Material
Measuring wheel with
incremental encoder:
2048 pulses/revolution
700 mm
200mm
240 mm
Distance material Panel length (FORMAT)
Knife shaft with
inkremental encoder:
4096 pulses/revolution
20° 20°
vmax = 200 m
min
v
Light barrier
Startofweb
detection
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 49
6DD1903-0DB0 Edition 10.00
The drive motor for the knife is directly mounted on the knife without a
gearbox. The knife and motor can therefore use the same incremental
encoder. This is electrically connected to the CU. The position tracks and
the zero pulse are transferred from the encoder emulation (pulse
encoder module of the CU) to the T400 via the backplane bus.
The knife position when cutting is a function of the reference position.
Thus, all of the errors when sensing the reference position flow directly
into the cutting accuracy. Although the precise reference position is
forced by the cut, and is therefore known, this operation is used to set
the reference position.
The zero pulse from the knife encoder is simultaneously used as zero
pulse for encoder 2. When cutting, the knife position and the reference
position are set to zero (refer to Fig. 4-1) and therefore all of the
reference position sensing errors which have occurred, are deleted.
Table 4-12 Hardware connections (terminals, refer to Fig.
Fig. 3-1
)
Signal Module Source
Encoder connections of the CU CU Incremental encoder at the knife
Tracks A, B, encoder 1 T400 Via the backplane bus from CU
Zero track, encoder 1 T400 Via the backplane bus from CU
Tracks A, B, encoder 2 T400 Incremental encoder, measuring wheel
Zero pulse, encoder 2 T400 Zero pulse, encoder emulation of the CU (encoder 1 and
encoder 2 using the same zero pulse)
Terminal 65 T400 Light barrier signal to identify the start of the material web
Table 4-13 Incremental encoder settings
Param Value Quantity Significance
H400 4096 Pulses Encoder 1 Pulses/revolution of the incremental encoder at the knife
H420 2048 Pulses Encoder 2 Pulses/revolution of the incremental encoder of the measuring
wheel
4.6.1.1 Pass mark synchronization
To synchronize to a mark on the material requires a light barrier to sense
it (H106). When the mark is passed, the reference position must
precisely have the following value
X
SET
= reference position(pass mark) = sheet length - distance(cut - pass mark)
This guarantees that the cut is precisely made at the pass mark (the cuts
can be made at a defined distance from the pass mark using H107
distance to the cut
).
This distance between the cut (knife center position) and the next pass
mark is also dependent on the actual sheet length, as shown in the
following table and Fig. 4-8.
Error correction,
reference position
Function description
50 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Table 4-14 Setting value for the reference position (material position) for the pass mark synchronization (refer to Fig. 4-8 )
Operating case Identification Distance, pass mark
to the cut XPM
Setting value
XSET
Light barrier senses the next cut position. FORMAT >= XLG XLG FORMAT - XLG
Several pass marks are located between
the light barriers and knife (also applies
for the operating case above)
FORMAT < XLG XLG modulo FORMAT FORMAT - XPM
Light barrier placed behind th cut region FORMAT > XLG XLG XLG
X
LG
= 700 mm
Distance, light barrier - knife
2nd panel
X
PM
1st panel
Material
Light barrier Knife center
X
SET
Pass marks
Distance cut
=-15mm
Fig. 4-8 Defining the reference position setting value XSET
The reference position is set to the setting value XSET when the pass
mark is passed. Thus, the "set position" function is no longer available
when cutting. Instead of this, the reference position is corrected by the
sheet length when cutting:
Reference position(cut) = reference position - sheet length
Table 4-15 Parameters for pass mark synchronization and values for the example above
Param Chart Value Quantity Significance
H095 60 3106
S.Dist.LightGate
Source for the distance from the light barrier to the knife
center axis
Þ
fixed value
H096 60 3107
S.Dist. Cut
Source for the distance between the pass mark and cut
Þ
fixed value
H106 60 700 mm
Dist. Light Gate
Distance from the light barrier to the knife center axis.
H107 60 -15.0 mm
Dist. Cut
Fixed value
distance to the cut.
The cut is made 15 mm
in front of the pass mark (example)
H424 130 0413
S.Pos_2 correct
Source for the pulse, generated per software to correct
the reference position when cutting. The reference
position is reduced by the current format length.
Possible sources: ‘0413’ or ‘0417’
H427 130 3630
S.Pos.corr.Val2
Correction value of the reference position when cutting.
This corresponds to the currently effective format
length.
L202 180 3094
S.SV_Setvalue
Source for the setting value of the reference position
accordingtoX
SET (refer to Fig. above)
Cutting instant
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 51
6DD1903-0DB0 Edition 10.00
4.6.1.2 Suppressing pass marks
For the case where there are several pass marks within a sheet, from
which only one is relevant for the particular cut, there are two selection
techniques. One involves counting the marks and enabling
synchronization from a counter status which can be specified (refer to
Chart 135).
The other technique is to issue a position-dependent enable signal using
free blocks. As a result of the dimension data, specified in Fig. 4-8, the
material position is uniquely defined, when the pass mark passes the
light barrier (setting value, pass mark; KR3094 in Chart 180, 7). If the
material is located within a tolerance window around the position value,
then synchronization can be enabled via the pass mark. Synchronizing is
inhibited in the remaining sheet range.
Fig. 4-9 Enabling the pass mark synchronization as a function of the materialposition (example for using free blocks; in this
case, for a linear system)
Y
X
X<Y
X>Y
X=Y
L595 (3437)
KR
Q.Compare4
Compare4 Hyst
(0.1)
L751
B1595 Compare4 X>Y
B1596 Compare4 X=Y
B1597 Compare4 X<Y
Window to enable synchronization dependent on the
material position (calculated in T1)
L596 (3204)
KR
Q. Compare4 Mid
L597 (3366)
KR
Q.Compare4 Range
&
1
L700 (0749)
B
Q.AND1_I1
L701 (0735)
B
Q.AND1_I2
L702 (0001)
B (70,2)
Q.AND1_I3
B0700
AND1_Q
H363 (0449)
B
Q.EnableMark_1
H364 (0000)
B (70,2)
Q.EnableMark_2
B1363
Mark within windo
w
R
S
Q
Q
L735 (1347)
B
Q.R RS-FlipFlop2
L734 (0434)
B
Q.S RS-FlipFlop2
B0734 RSFF2_Q
B0735 RSFF2_QN
H448 (0434)
B (130,6)
Q.SetFirstMark
H449 (0577)
B (320,5)
Q.ResetFirstMark
R
S
Q
Q
B0448 Mark set
B0449 Mark not set
Range
Material position
Ref. position
of the mark
Differentiation between 1st cut and
continous operation
Logic whether one mark is
identified per panel
Synchr Puls
Manual operation
Sync Puls
Re-positioning
Enable the mark synchronization
Error: "No mark in the tolerance window"
Function description
52 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4.6.1.3 Offset correction
When setting the reference position, the closed-loop control mustn't be
influenced by step functions. The value for the closed-loop control (Y in
Fig. 4-10) must be adapted, in small steps (H444 correction increment)
to the corrected measured value YP when setting. The
offset correction
function is used to realize this (Chart 135).
The offset correction can also be effective for extremely large offset
values (e.g. for the first offset correction) over several cutting operations.
A new correction operation is not started until a correction operation has
been completed.
While the knife moves in the cutting range, the offset correction can be
held. Thus, the time derivatives of the reference position P and the
corrected position Y are identical, i.e. the knife and material are moving
at the same velocity. This avoids the knife being subject to various
forces.
YP
t
Synchronization
Position
setting value
Reference
position
t
Offset
correction
Position offset
(software)
Y
YP
Y
Y Corrected reference position
YP Meas. value, ref. position
Gradient, proportional to
the correction increment
Fig. 4-10 Examples for offset corrections
Table 4-16 Parameters for offset correction
Para. Chart Value Quantity Significance
H431 135 3094
S.Ref_Mark_Pos
Source for the reference position when the pass mark is
reached (the same setting as for L202 S
.SV_setting
value
)
H432 135 0453
S.FreezeCorrect.
Source to hold (interrupt) the offset correction. Combined
with the
shears in the cutting range
signal. The correction
is continued outside the cutting range.
H444 135 0.1 %
Correct. increm.
For each operation, the offset correction is reduced by the
correction increment
(with the exception when correction
is held). In the example: an offset of
Fsymech
is
corrected in 1000 T1.
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 53
6DD1903-0DB0 Edition 10.00
4.6.1.4 Offset synchronization of the knife position
The position encoder for the knife position should be adjusted so that a
synchronizing pulse is generated, if the knife is in the setting αR(Fig.
4-1). The position sensing (Chart 120) then generates a cutting pulse.
For situations, where this adjustment is not possible, a cutting pulse can
be simulated. The cutting pulse is available at connector B0417:
The position setting value for synchronization is set to the
synchronizing pulse angle. This is only effective once for the position
actual value (when referencing).
A maximum encoder pulse number is specified (H409). A position
maximum (H400) is calculated from the encoder pulse number
( H409 / (4 H400) ).
As soon as the position maximum has been exceeded, the position is
reduced by the position maximum, and a
position maximum exceeded
pulse generated. This pulse is used as cutting.
Table 4-17 Parameters to simulate the cutting pulse; new connection to the new cutting pulse source (example)
Para. Chart Quantity Value Significance in this application
H173 200 S.FormatChanged1 0417 New connection: Enable condition for the format controller to
position maximum exceeded
H188 265 S.Cutc_Int=0 0417 New connection: Control signal for the cutting characteristic
processing
H400 120 Pulses Encoder1 1024 Pulses/revolution of the knife position sensing
H409 120 Max.PulsesEnc_1 4096 Defining the position maximum and activating the automation
position correction when the maximum is exceeded to one
revolution ( 4096/ (41024) = 1.0 )
Þ
The knife position is reduced by 1.0 when the position
actual value 1.0 is exceeded.
H414 120 S.Pos.SyncPuls 0417 New connection: Synchronizing pulse extension
L312 170 CoarseRef pos. 0.5 Position setting value for the knife position = position of the
synchronizing pulse (normalization is not in degrees!). In the
example: offset by 180° (0.5 360°)
Function description
54 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4.6.2 Double saw
The arrangement in Fig. 4-11 is an example for a system with rotary
axis, where the knife coordinates are specified in [mm] instead of angles
to make is clearer.
This system has 2 saws. While the first cuts through the material, the
second is brought into the wait position. The knife position is the position
of the transport chain. For each cut, the knife position therefore changes
by half of the chain length.
Fig. 4-11 "Double saw“ system schematic
The system is in the synchronous mode, if the transport chain runs with a
constant velocity. In this case, the following is valid:
Material velocity = knife velocity cos(ε)
A gearbox with a ratio of 10:1 is located between the motor and chain
wheel. The knife position is sensed using the motor encoder. The
position is synchronized using a proximity switch, and more precisely,
each time that a saw reaches the center of the cutting range. This setting
is also decisive for the distance between the saw blade and a light barrier
is used to sense the material web.
Distance Material
1500 mm
300 mm
1st saw in the wait
position
250 mm 250 mm500 mm 500 mm
Cut center
Knife position = 0
(synchronizing pulse)
2nd saw in the
wait position
Transport chain
Motor
Saw in the
center of the
cu
1000mm
A
B
Transport chain
Cut A-B
Material
V_material
V_knife
ε
=
= 70°
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 55
6DD1903-0DB0 Edition 10.00
Table 4-18 Plant-specific data for the double-saw arrangement
Param Value Quantity Significance
H100 1971.239 mm
X_Shear Norm
Normalization value for the knife coordinates
corresponds to Fsymech (AX, AY are specified in
mm)
H101 500 mm + Rsaw
AX
Exit position: The saw blade exits the cutting range,
after 500 mm + radius of the saw blade (Rsaw)
H102 1971.239 mm - AX
AY
Entry position in the cutting range, taking into
account the saw blade diameter
H104 20 m/min
Reference Speed
Maximum material velocity
H105 1971.239 mm
Fsymech
Knife travel per cut
H108 70.0°
Epsilon
Angle between the knife- and the material
movement direction
H117 942.478 mm
Feed/Revolution
Knife travel for one revolution of the toothed wheel
H120 0
Mode LinearAxis
Rotary axis (knife position is reset to 0 when
cutting)
Function description
56 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4.7 Linear systems
For linear systems, the cutting device is synchronized to the material
velocity, cuts, and then returns to the initial position. Thus, there is no
position overflow. The parameterization of the knife-specific coordination
is realized in mm. In this case, H100 is set to Fsymech (
X_Shear Norm
).
4.7.1 Flying knife
Fig. 4-12 System principle for the flying knife
Table 4-19 System-specific data, "flying knife“
Param Value Quantity Significance
H100 30.0 mm
X_Shear Norm
Maximum knife acceleration travel. This allows AX, AY to be
specifiedinmm(refertoChart60).
H101 0.0 mm
AX
The start position is defined as 0 using H101 and H103.
H102 30.0 mm
AY
Position, from which the knife must move in synchronism with
the material. In this particular example, the complete
acceleration travel is used.
H103 0.0
AZ
The start position is defined as 0 using H101 and H103.
H104 20 m/min
Reference Speed
Maximum material velocity
H105 30.0 mm
Fsymech
Components of
X_Shear Norm
in the material flow direction (in
this case, both values are identical
H107 0.0°
Epsilon
Knife movement and material flow direction are identical
H115
SizeMeas.Wheel
Measuring wheel circumference
H117 10 mm
Feed/Revolution
Spindle pitch. This is used to normalize the knife position and
velocity (refer to Chart 80).
H120 1
Mode LinearAxis
Linear axis (The knife position is not reset to 0 when cutting)
H122
Distance material
Distance between the light barrier and the end of the
accelerating range (from here onwards, the knife is located
above the cutting position.
H197
L201 3441
3168
S.SV_Startlength
S.RefPos Limit
Shifting the web coordinate system. Thus the distance to light
barrier is related to the start position of the knife.
Light barrier
Measuring
wheel
Knife
FORMAT
Material motion
Spindle
Pitch: 10 mm/revolution
Limit switch,
end
Operating range 1200 mm
Acceleration range
30 mm
Limit switch, start
Proximityswitch
Start position
Possible synchronous range
Braking range
25 mm
Disatnce Material
Motor
Start position
(quiescent position)
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 57
6DD1903-0DB0 Edition 10.00
The knife (or the saw) waits in the starting position until the material has
reached the starting length. After this, the knife accelerates. From the
end of the acceleration onwards, it moves in synchronism with the
material. The knife is now lowered and cuts-through the material. After
this, the knife is lifted, and, as soon as it is located above the material, is
returned to its starting position. When starting the positioning operation,
the actual sheet length is subtracted from the material position (position
correction function of the material position; H424, H427).
The time to lower and raise the knife determines, for a specific material
velocity, the distance where the material and knife must run in
synchronism. The following information is required (digital inputs) for the
sequence control:
knife position at the start of the range (front limit switch)
knife position at the end of the range (rear limit switch)
knife position at the start position (knife position = 0)
knife is at the top
knife is at the bottom
Fig. 4-13 "Flying knife" timing
Mode of operation
Knife in the
cutting range
Knife at the
bottom
Knife at the
top
Lower knife
Raise knife
Positioning
Start length FORMAT
End of range
Start position
Position
knife
Speed,
knife drive
Material
position
Function description
58 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4.7.1.1 Sequence control
The sequence control for the "flying knife" includes 3 functions:
1. Raising the knife
2. Lowering the knife
3. Changeover between format and positioning operation
Table 4-20 Logical equations for the open-loop control functions "flying knife“ (
= AND;
’=OR)
Function / Status No. Logical equations (example)
Start to raise knife <1>
<2>
<3>
( no_cutting operation manual operation_UP )
(cutting operation knife_bottom )
(cutting operation knife_outside_the_ lowering range)
Stop, raise knife
(dominant) <4>
<5> Knife_top no_enable
v (no_cutting operation no_manual operation_UP)
Start, lower knife <6>
<7>
(cutting operation knife_in the_lowering range format operation
Material_still_not_cut )
v ( no_cutting operation manual operation_DOWN no_manual
operation_UP )
Stop, lower knife
(dominant) <8>
<9>
<10>
v (no_cutting operation no_manual operation_DOWN)
v (knife_not_in the_lowering range cutting operation )
v no_enable knife_bottom
Start positioning = Stop
format operation <11> Material_cut knife_top_pulse cutting operation mode_linear axis
Start, format operation
(dominant) <12>
<13> No_enable shears_in the_start position
( positioning_not_active positioning operation )
Material_cut - the status is set after cutting has been completed
- status is reset, if the knife is in the accelerating range
4.7.1.2 Lowering and raising the knife
In this case, the range must be defined, within which the knife should be
or may be raised and lowered. The limiting position XSmax,fromwhich
position, the knife must be started to be raised, is obtained from the time
taken to raise the knife at the maximum material velocity in order to
come to a standstill before the end of the operating range.
Top
Bottom
Vertical
knife
position
Starting position Operating range
Acceleration Braking
Horizontal
knife
position
Raising time × V_ratedLowering range
X
Smax
Fig. 4-14 Ranges to raise and lower the knife
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 59
6DD1903-0DB0 Edition 10.00
To monitor the lowering range, the range monitoring in Chart 350 (range
3) is used. This provides the option to shift the limits, as a function of the
velocity, whereby this is not used in the particular example.
Table 4-21 Defining the range, in which the knife may be lowered
Param Value Quantity Significance (using the example)
L224 675
Range3_max
Upper limit value, where the knife may be in the lower position.
Example: max. time to raise the knife = 1.5 s
V_reference = 20 m/min
Þ
when raising the knife, distance moved = 500 mm
Range3_max = 1200 mm - 500 mm - 25 mm = 675 mm
In this particular example, the material is considered to have been cut
when the knife has been lowered (operation completed). It would be
more correct, so set the "material cut" status, when the knife actually
reaches the lower dead point. However, there is the danger that this
status would never be reached if, for a high material velocity and
mechanical delays, knife lowering would be interrupted before the lower
deadpoint is reached.
The conditions for the three control functions can be defined using this
range definition:
4.7.1.3 Parameterizable STATE logic
The logic functions in the table above should be considered as an
application example. For each actual plant or system, changes can be
expected to take into account plant or system secondary conditions. In
order to be able to create as many different versions as possible, logic
functions are not implemented in the form of individual gates, but as
parameterizable logic (refer to Chart 400).
A parameterizable
STATE
logic block has 8 BOOLean inputs (I1 ... I8),
which can be freely-connected to BOOLean connectors (e.g. to a digital
input which signals "knife at the top"). The type of logical combination is
defined using mask entries. Each mask selects which inputs or inverted
inputs are to be AND'ed.
15 14 13 12 11 10 9876543210
I8I8 I7 I6 I5 I4 I3 I2 I1 I7 I6 I5 I4 I2I3 I1
Mask bit
Associated
input
Example
MR1 = 16#8106 = 1000 0001 0000 0110b =I8·I1·II2
Fig. 4-15 Assigning the selection mask bits to the inputs
4 set masks (MS1 ... MS4) and 3 reset masks (MR1 ... MR3) are
available. In addition, using the MR mask, the inputs can be selected
which cause the internal flipflops to be reset.
Comment
Function description
60 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Table 4-22 Input assignment for the "raise knife“ function (Chart 415)
Input Function Param Value The following is used:
I1 No enable L243 0665 No setpoint enable (Chart 360)
I2 Cutting operation L244 0576
Cutting operation active
(Chart 320)
I3 Knife at the top L245 0244 Digital input 4 used
I4 Knife at the bottom L246 0245 Digital input 5 used
I5 Knife not in the lowering range L247 0234 Output of the range monitoring (Chart 350)
I7 Manual operation, UP L249 0000 Deactivated in the factory setting
I8 Manual operation, DOWN L250 0000 Deactivated in the factory setting
The following selection masks are obtained with the input assignment above:
Table 4-23 Selection masks for the "raise knife" function (refer to Table 4-20)
No. Logical equation Mask values Param Value
<2> I2 I4 MS1 = 0000 0000 0000 1010b = 16#000A L251 16#000A
<3> I2 I5 MS2 = 0000 0000 0001 0010b = 16#0012 L252 16#0012
<1> /I2 I7 MS3 = 0000 0010 0100 0000b = 16#0240 L253 16#0240
<5> /I2 /I7 MR1 = 0100 0010 0000 0000b = 16#4200 L255 16#4200
<4> I3 I1 MR = 0000 0000 0000 0101b = 16#0005 L258 16#0005
Unused masks: MS4 = MR2 = MR3 = 0
Table 4-24 Input assignment for the "lower knife" function
Input Function Param Value The following is used:
I1 No enable L263 0665 No setpoint enable (Chart 360)
I2 Cutting operation L264 0576
Cutting operation active
(Chart 320)
I3 Synchronous operation L265 1346 Mode_synchronous operation (toggling
between positioning and format operation;
Chart 410)
I4 Knife at the bottom L266 0245 Digital input 5 used
I5 Knife not in the lowering range L267 0234 Range monitoring output (Chart 350)
I6 Material still not cut L268 0237
RSFF1_QN
(Chart430)
I7 Manual operation, UP L269 0000 Deactivated in the factory setting
I8 Manual operation, DOWN L270 0000 Deactivated in the factory setting
The following selection masks are obtained with the input assignment above:
Table 4-25 Selection masks for the "lower knife" function (refer to Table 4-20)
No. Logical equation Mask values Param Value
<6> I2 /I5 I3 I6 MS1 = 0001 0000 0010 0110b = 16#1026 L271 16#1026
<7> /I2 I8 /I7 MS2 = 0100 0010 1000 0000b = 16#4280 L272 16#4280
<8> /I2 /I8 MR1 = 1000 0010 0000 0000b = 16#8200 L275 16#8200
<9> I2 I5 MR2 = 0000 0000 0001 0010b = 16#0012 L276 16#0012
<10> I1 I4 MR = 0000 0000 0000 1001b = 16#0009 L278 16#0009
Unused masks: MS2 = MS3 = MS4 = MR1 = MR2 = MR3 = 0
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 61
6DD1903-0DB0 Edition 10.00
4.7.1.4 Changeover between format operation and positioning
Synchronizing and synchronous operation of knife and material are
associated with format operation. The material position defines the knife
velocity and position. (This is why the material position is known as the
reference position).
Positioning operation is used to position the knife back to the starting
position. The dynamic performance of this operation must be defined
independent of the material motion. This operation must have been
complete before the material passes-over the starting position.
The logical conditions for toggling between the two operating modes are
shown in Table 4-20. The implementation is shown in the following two
tables.
Table 4-26 Input assignment for toggling between format- and positioning operation (Chart 410)
Input Function Param Value The following is used:
I1 no_enable L331 0665
Setpoint not enabled
(Chart 360)
I2 Shears_in_the_starting_position L332 0644
In the starting position;
(Chart 340)
I3 Cutting operation L333 0576
Cutting operation active
(Chart 320)
I4 Knife_raise_final pulse L334 1257
Logic1_QEN
(Chart 415); pulse when
terminating the raise operation
I5 Mode_linear axis L335 0120
ModeLinear
(Chart 80)
I6 Positioning_active L336 0499
PosRG active
(Chart 230)
I7 Positioning L337 1347
Mode_Positioning
(Chart 410)
I8 Material cut L338 0236
RSFF1_QN
(Chart430)
Table 4-27 Selection mask to changeover between format/positioning operation (refer to Table 4-20)
No. Logical equation Mask value Param Value
<11> I4 I3 I5 I8 MS1 = 0000 0000 1001 1100b = 16#009C L339 16#009C
<9> /I6 I7 MR1 = 0010 0000 0100 0000b = 16#2040 L343 16#2040
<12> I1 I2 MR = 0000 0000 0000 0011b = 16#0003 L346 16#0003
Maskswhicharenotused: MS2=MS3=MS4=MR2=MR3= 0
The closed-loop control structure is changed when toggling between the
two operating modes. In the format mode, the format generator supplies
the setpoints for the closed-loop position control, and in the positioning
mode, the positioning ramp-function generator (PosRG). The position
controller which is disabled is de-activated, which means that when
changing over, the integral components do not cause setpoint steps
(jumps).
In the format mode, the positioning ramp-function generator receives the
actual speed- and position values as actual values. This means that
changeover to the positioning mode can be realized jerk-free (there are
no steps in the speed- and torque setpoint). A prerequisite is that the
positioning ramp generator is operated with the same position- and
speed normalization as the knife position sensing (H482, H483).
Terminology
Function description
62 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Format
generator
Position
controller
Position setpoint
generator
Position
controller Torque and
velocity
Set
Enable
Enable
Format mode (synchr. oper.)
Setpoints for
the drive
converter
Positioning
Format mode /
positioning
Q
QN
QE
QEN
Chart 200 Chart 210 Chart 240 .. 265
Chart 230
Chart 410
1
0
Fig. 4-16 Changing-over the closed-loop control structure
4.7.1.5 Positioning setpoint generator PosRG
The positioning setpoint generator (Chart 230) supplies normalized
setpoints for the position, speed and the torque, taking into account the
maximum speed (H480)
maximum acceleration (H481)
rounding-off (H478)
final rounding-off (H479)
initial values for speed (H485) and acceleration
The speed setpoint is used to pre-control the position controller. The
setpoint characteristics to approach a new position from standstill are
shown in the following diagram. In this particular example, the limit
values for speed and acceleration are reached, which is often not the
case for short positioning operations.
t
Reference
position X*
Reference speed v*
DA1
DA1
DA1
DA2
Reference
acceleration a*
Amax
Vmax
DA1: Rounding-off (H478)
DA2: Final rounding-off (H479)
Fig. 4-17 Setpoint characteristics for a positioning operation from standstill
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 63
6DD1903-0DB0 Edition 10.00
4.7.1.6 Clamping the knife to the material
The material can also be clamped to the material when running in
synchronism using a clamping device. In order to avoid high cantilever
forces acting on the knife, the drive torque can be limited during this
particular phase.
The clamping device is always controlled when the knife is in the cutting
mode, but not in the upper quiescent state. A free AND block is used,
and its output is connected to a digital output of the T400.
Clamping function = Knife_not_at the top
Cutting operation
Table 4-28 Parameter for the "clamp knife function“
Function Param Value The following is used:
Knife at the top L700 0254 Digital input 4 is inversely used (Chart 110)
Cutting operation L701 0576
Cutting operation active
(Chart 320)
"Clamp knife" output at
terminal 49 H274 0700 Output of the free AND output (Chart 100, 425)
Enable terminal 49 H268 1 Fixed value: ‘1’ = Output
Reduce torque L584 0700 Output of the free AND output (Chart 425, 240)
Value for the reduced torque L587 0.1 Fixed value 10% of the reference torque
4.7.1.7 Referencing to a linear axis
When using an incremental encoder for the knife position, after the
system has been powered-up, initially the absolute knife position is not
known. Thus, a reference approach (at a low velocity) is required, or
absolute value encoders must be used for position sensing.
For rotary axes, the direction of movement when referencing is
irrelevant. However, for linear systems, the knife may only move within
the range between the two limit switches. For this reason, the closed-
loop cut to lengths includes an automatic reversing function when the
limit switch is reached in the referencing mode (Chart 260).
In this case, the limit switches must be connected with the reversing logic
with L530 and L531. The referencing velocity and direction are set using
L542.
Terminal function:
Function description
64 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
4.7.2 Flying saw
For the "flying saw" using the knife feed, the knife is synchronized to the
material velocity and the material cut. (as a comparison: For "flying
knife", the knife is moved up/down using, for example, an independent
hydraulic system).
Fig. 4-18 Principle of a "flying saw“ system
In the diagram above, it can be clearly seen that the material and the
saw slides move in different directions. For the internal normalization
operations, the cosine of the angle is required. In this case, the position-
and velocity components of the knife motion are calculated in the
material flow direction. The knife coordinates count in the movement
direction of the knife. The knife position = 0 in the waiting position
(starting position) of the knife.
This example assumes that the knife is braked after cutting, raised
above the material and moved back to the starting position. There, it is
lowered and waits for the next cut. This starts when the material exceeds
a certain position (start length; this is internally calculated).
810mm
130
Knifeposition
90
Saw blade at the start of
the cutting range
Motor
Distance material
Acceleration range =
Fsymech
Cutting range
Braking range
Saw blade in the wait
setting
Xref_normalization
V_material
Saw blade at the end
of the cutting range
V_knife
ε
=
= 70°
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 65
6DD1903-0DB0 Edition 10.00
Table 4-29 Specialsystem-specific parameters for the "flying saw" example
Param Value Quantity Significance
H100 130.0 mm
X_Shear Norm
Maximum knife acceleration.
H101 0.0 mm
AX
The starting position is defined as 0 using H101 and H103.
H102 110.0 mm
AY
The knife should run in synchronism with the material 20 mm
before the end of the acceleration travel (example).
H104 10 m/min
Reference Speed
Maximum material velocity
H105 130.0 mm
Fsymech
Identical,
XShear Norm
H108 70.0°
Epsilon
Angle εin Fig. 4-18
H117
Feed/Revolution
Knife feed for one revolution of the motor for saw slides. (refer to
Chart 80).
H120 1
Mode LinearAxis
Linear axis
H122
Distance material
Distance between the light barrier and the end of the accelerating
range (from here onwards, the knife is located above the cutting
position.
H197
L201 3441
3168
S.SV_Startlength
S.RefPos Limit
Shifting the web coordinate system. Thus the distance to light
barrier is related to the start position of the knife.
The coordination of the motion sequences is comparable with the "flying
knife" example. The decisive difference is that the saw is raised and
lowered outside the cutting range.This means that immediately after
cutting the material, it is not possible to start re-positioning the knife. In
this example, positioning is sub-divided into two phases:
1. Approach a wait position after the cutting range as long as the saw
has not been raised.
2. As soon as the saw is in the up position, position to the starting
position.
Table 4-30 Logical equations for the "flying saw" example (
= AND;
’=OR)
Function/status No. Logical equations
Start, raise saw <14>
<15> ( no cutting operation Manual operation_UP )
( Saw_after_the_cutting range cutting operation )
Stop, raise saw
(dominant) <16>
<17> no_enable saw_top
v ( no_cutting operation no_manual operation_UP )
Start, lower saw <14>
<15> (cutting operation saw_in the_accelerating range )
v (no_cutting operation manual operation_DOWN no_manual
operation_UP )
Stop, lower saw
(dominant) <16>
<17> ( no_cutting operation no_manual operation_DOWN )
v no_enable saw_bottom
Start positioning = stop
formatting <18> Saw_after_cutting range cutting operation mode_linear axis
Start formatting
(dominant) <19>
<20> No_enable shears_in the_start position
(positioning_not_active positioning )
Target position: after the
cutting range Saws_after_cutting range saws_not_on top
Target position: Starting
position Otherwise
Function description
66 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Fig. 4-19 Timing for the "flying saw" example
The control functions for raising and lowering the saws are implemented
as well as the changeover between format- and positioning operation
with the parameterizable STATE logic (Chart 415). The logic to
changeover the target coordinates when positioning is a free AND logic
gate (Chart 425).
The required parameters and connection changes are summarized in the
following table.
In thecutting range
Saw in the lower
position
Saw in the upper
position
Raise saw
Lower saw
Positioning
Start length Format
Material position
Speed,
knife drive
End of
traversing
Starting position
Knife position
Start of cut
End of cut
t
t
Function description
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 67
6DD1903-0DB0 Edition 10.00
Table 4-31 Input assignment for the "raise saw" function (first STATE block in Chart 415)
Input Function Param Value The following is used:
I1 No enable L243 0665
No setpoint enable
(Chart 360)
I2 Cutting operation L244 0576
Cutting operation
(Chart 320)
I3 Saw in the upper position L245 0244 Digital input 4 is used
I5 Saw, rear cutting range L247 0218
Range1_overflow
(Chart 350)
Upper limit to fixed value 1: L215 = 3650
I7 Manual operation_UP L249 0000 Not assigned in the factory setting
Table 4-32 Selection masks for the "raise saw" function (refer to Table 4-30)
No. Logical equation Mask value Param Value
<14> /I2 I7 MS1 = 0000 0010 0100 0000b = 16#0240 L251 16#0240
<15> I2 I3 MS2 = 0000 0000 0000 0110b = 16#0006 L252 16#0006
<17> /I2 /7 MR1 = 0100 0010 0000 0000b = 16#4200 L255 16#4200
<16> I1 I3 MR = 0000 0000 0000 0101b = 16#0005 L258 16#0005
Masks which are not
used: MS3 = MS4 = MR2 = MR3 = 0
Table 4-33 Input assignment for the "lower saw" function: 2nd STATE block in Chart 415)
Input Function Param Value The following is used:
I1 No enable L263 0665
Setpoint is not enabled
(Chart 360)
I2 Cutting operation L264 0576
Cutting operation
(Chart 320)
I3 Saw in the lower position L265 0245 Digital input 5 is used
I4 Saw, rear cutting range L266 0218
Range1_overflow
(Chart 350)
Upper limit to fixed value1: L215 = 3650
I5 Saw in the accelerating
range L267 0454
In the format range
(Chart 330)
I7 Manual operation_UP L269 0000 Not assigned in the factory setting
I8 Manual operation_AB L270 0000 Not assigned in the factory setting
Table 4-34 Selection masks for the "lower saw“ function (refer to Table 4-30)
No. Logical equation Mask value Param Value
<18> I2 I5 MS1 = 0000 0000 0001 0010b = 16#0012 L271 16#0012
<19> /I2 I8 /I7 MS2 = 0100 0010 1000 0000b = 16#4280 L272 16#4280
<20> /I2 /I8 MR1 = 1000 0010 0000 0000b = 16#8200 L275 16#8200
<21> I1 I3 MR = 0000 0000 0000 0101b = 16#0005 L278 16#0005
Masks which are not
used: MS2 = MS3 = MS4 = MR1 = MR2 = MR3 = 0
Function description
68 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Table 4-35 Parameters to changeover the target position when positioning
Param Value Significance
H476 3651 Source of the target position after the cutting range = fixed value 2
H477 0700 Source to change over the target position = output of the free AND logic gate AND1
L215 3652 Connect upper limit value of the range indicator to fixed value 1
L700 0218 Connect 1st input from AND1 with
range1_overflow
Þ
saw is in the rear cutting
range
L701 0254 Connect 2nd input from AND1 with
digital input 4 inverse
Þ
saw is not in the upper
position
L720 940.0 Fixed value1 = 130 mm + 810 mm = 940 mm; end of the cutting range (Fig. 4-18)
L721 960.0 Fixed value2 = wait position, until the saw was raised
Appendix
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 69
6DD1903-0DB0 Edition 10.00
5 Appendix
5.1 Abbreviations
AA Analog output
AE Analog input
AENC Absolute value encoder processing
AX Angle where the knife looses contact to the web
AY Angle where the knife get in contact with the web
AZ Symmetry of speed transitions between two cuts
Calib Calibrating the knife position (define the absolute position)
CB Communications module
CTW Control word
CU Processor module of the basic drive
DW Double word (32bit-word)
EPC Enable position controller
FC Format controller
FGEN Format generator (setpoint generator for motion sequences)
KP Proportional gain
M_max Maximum torque
M_soll Reference torque
N2 16-bit fixed-point format (0x4000 corresponds to 100%)
N4 32-bit fixed-point format (0x40000000 corresponds to 100%)
PC Position controller
PosRG Positioning setpoint generator
PZD Process data
Q. Source for a signal
SCTW Shears control word (also shear SCTW)
T Smoothing time constant
TD Differentiation time constant
TR Manufacture for incremental encoders with combined absolute position
V_Ref Referencing velocity (material velocity)
V_soll Velocity setpoint
Word 16-bit data word
Doubleword 32-bit data word
5.2 Terminology
Automatic mode Continous cutting operation. Contrary to manually caused operations like
jogging or manual single cut.
Format operation Operation with the format generator as setpoint generator for position- and
speed setpoints
Format range Knife position range, in which the knife moves asynchronously with the material
(rotary axis: acceleration or braking; linear axis, acceleration)
Positioning Operation with the positioning ramp generator as setpoint generator for
position- and speed setpoints
Reference ... Values concirning the web (material); e.g.: reference position = web position
Start length If the web position passes this particular value the shear starts accelerating.
(Only valid for a operation where the shear stands still between wo cuts).
Starting position When the material passes the starting position, the knife starts to synchronize
with the material. Before this, the knife is in the quiescent position.
Synchronous
range The range of the shear positions where the shears runs synchronous with th
web.
Appendix
70 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
5.3 Literature
1. Instruction Manual for SIMOVERT Master Drives -- Vector Control
(VC), Sizes A to D, Order No.: 6SE7080-0Ad20, 1995.
2. Instruction Manual for SIMOVERT Master Drives -- Communications
modules CB1, Order No: 6SE7087-6CX84-0AK0, 1994.
3. Communications configuring D7-SYS- SIMADYN D - Manual, Order
No. 6DD1987-1AA1, Oct. 1997.
4. Hardware - SIMADYN D - Manual, Order No. 6DD1987-1BA1, 1997.
5. SIMADYN D, Function Block Library, Reference Manual, Order No.
6DD1987-1CA1, October 97.
5.4 Changes
First Edition
Edition 06/99
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 71
6DD1903-0DB0 Edition 10.00
6 Parameters and Connectors
6.1 Important information
The parameter name displayed at the OP1S is a maximum of 16
characters long. You can toggle between
German
and
English
using the
initialization parameter H000 (reset is required after a change has been
made).
For several parameter types, rounding-off errors can be expected due
to the limited resolution at data input or as a result of conversion
operations. Further, in some instances, more decimal points are offered
than can actually be set.
All of the parameters, used for the closed-loop cut to length are listed on
the following pages. The listing is realized in the following form:
Table 6-36 Listing type for input- or display parameters
Parameter Description Data
Hxyz (Lxyz)
Parameter
designation
Initialization
parameter
Parameter description for a selectable technology parameter
Parameters with the
initialization parameter
supplement, mean that when
this parameter is changed it only becomes effective after the power supply
voltage has been powered-up again.
Value, factory setting type
Min lower limit
Max upper limit
Unit Units
Chart Number, Sector
dxxx (cxyz)
Parameter
designation
Parameter description for a visualization parameter (this cannot be set).
The "d“ or "c“ symbolize the offset values
1000 („d“) or 3000 („c“) . This must be taken into account when selecting
the parameters with OP1(S).
Type
Unit Units
Chart Number, Sector
Table 6-37 Data types and range when parameterizing using the OP1S
Type
abbrev. Type Significance Example
display at OP1S Value range
OP1S
BO BOOL Logical quantity 0 0, 1
I INT Integer number; signed -12345 -32768 ...32767
W WORD Integer number; unsigned; hexadecimal and digital,
displayed at OP1(S); hexadecimal representation in
the documentation start with „16#“.
2F03Hex
0010111100000011
16#0000 ... 16#FFFF
(0 ... 65535)
DI DINT Double integer number (32 bit); signed 123456789 ±2147483647
R REAL Floating-point number. The entry made with OP1(S)
is limited to 6 positions before and after, whereby the
range is limited 199999.999.
123456.789 ±2147483.647
SD SDTIME Time in [ms] or [s] 200.000 ms 0 ... 2147483.647 ms
Parameters and Connectors
72 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
6.2 Parameters
Parameter Description Data
H000
Language select.
Initialization param.
0=German
1 = English Value 0
Type I
Chart 50,1
d001
Software-Id Software ID for the standard software package
450 = Cross-cutters
455 = Closed-loop shears control
Type I
Chart 50,3
d002
Software version Software version number of the standard software package Type I
Chart 50,3
d003
Serial number Plant/system identification
can be changed using H923 Type DI
Chart 50,3
d004
Hardware-Id Module identification
T400: 144 Type I
Chart 50,3
d005
Status BinInput Status of the digital inputs, terminal 53 (bit 0) to terminal 60 (bit 8). The least-
significant 8 bits are the actual input level, the upper 8 bits, the inverse signal level. Type W
Chart 110,8
d010
System status Error status of the SIMADYN D system software. ‘1’ means “Error“.
Bit 3 Error, task administration
Bit 5 Hardware fault
Bit 6 Communications error
Bit 10 User error
Type W
Chart 510,2
d012
Control Word1 CU Control word1 for the basic drive
Bit 0 On (main contactor) 1=ON
Bit 1 /OFF2 (voltage-free) 0=OFF
Bit2 /OFF3(faststop) 0=OFF
Bit 3 Pulse enable
Bit 4 Ramp-function generator enable
Bit 5 Start, ramp-function generator
Bit 6 Setpoint enable 1=Enable
Bit 7 Acknowledge fault 1=Acknowledge
Bit 8 Jogging 1
Bit 9 Jogging 2
Bit 10 Control requested this must be a 1’ !
Bit 11 Enable, positive direction of rotation
Bit 12 Enable, negative direction of rotation
Bit 13 Motorized potentiometer, raise
Bit 14 Motorized potentiometer, lower
Bit15 Fault,external1
Type W
Chart 630,4
d013
Control Word2 CU Control word2 for the basic drive Type W
Chart 630,8
d014
Actual Faults The
error word
comprises the
error bits
which resulted in a fault trip. It is generated
by masking the
fault message enable
(H966) with the
error bits
(d968). The
assignment of the
error bits
is defined using parameters H950 ... H965. Error
sources in the factory setting:
Bit 0 Communications via CB
Bit 1 Communications to the basic drive
Bit2 Notassigned
Bit 3 User error 1
Bit 4 User error 2
Bit 5 Knife position is lower than the lower limit value
Bit 6 Overspeed, knife (positive)
Bit 7 Overspeed, knife (negative)
Bit 8 Knife drive blocked
Bit 9 Pulse encoder error (speed actual value not plausible)
Bit 10 External fault 1
Bit 11 External fault 2
Bit 12 Knife position greater than the upper limit value
Bit 13 Material position less than the lower limit value
Bit 14 Fault, absolute value encoder (TR encoder)
Bit 15 Not assigned
Type W
Chart 530,7
d015
Actual Alarm The
alarm word
comprises the
error bits
whichresultedinanalarmbeingdisplayed.
It is generated bymasking the
alarm enable
(H967) with the
error bits
(d968).
Assignment, refer to d014.
Type W
Chart 530,7
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 73
6DD1903-0DB0 Edition 09.00
Parameter Description Data
d016
Status Cntrl Logic Status word of the control. Assignment:
Bit 0 Position input of the TR encoder
Bit1 Notassigned
Bit 2 Position controller enable
Bit3 Knifeatthestartposition
Bit 4 Fast stop from CU (basic drive, status word1.5)
Bit 5 Knife stationary
Bit 6 Drive converter ready
Bit 7 Fault, TR encoder (at start, read the absolute position)
Bit 8 Fault, TR encoder (no position pulses)
Bit 9 Fault, TR encoder (timeout)
Bit 10 Setpoint enable
Bit 11 Knife is calibrated
Bit 12 Fault
Bit 13 Brake open
Bit 14 Knife moving
Bit 15 Inverter enabled
Type W
Chart 510,7
d017
Status Shear Status word of the shears. Assignment:
Bit 0 Knife is calibrated
Bit 1 Knife in the synchronous range
Bit 2 Knife in the format range
Bit3 Knifeatthestartposition
Bit 4 Knife at the change position
Bit 5 Cutting program completed
Bit 6 Synchronizing pulse of the knife transmitter (extended to 100 ms)
Bit 7 ...
Bit 15 Freely assignable; source selected using H547 ... H555
Type W
Chart 520,4
d020
Factor Overspeed The knife velocity when in synchronism is obtained from the material speed multiplied
by the o
verspeed factor
Type R
Chart 265,4
d021
SpeedSetp_Cut Setpoint of the knife speed for cutting. Normalized quantity (1.0 corresponds to the
reference speed) Type R
Chart 250,6
d022
Sheet Counter Number of cut sheets since the power-supply was powered-up or the counter status
was reset. Type I
Chart 520,8
d023
Speed setp Setpoint of the knife speed (in cutting- or local operation). Normalized quantity (1.0
corresponds to the reference speed) Type R
Chart 260,8
d024
d_Absolut Pos. Position value from the absolute value encoder in the user normalization. Type R
Chart 150,8
d025
Torque Setp Setpoint torque for format operation. Normalized to the reference torque. Type R
Chart 240,7
d026
TorqAcceleration Torque as a result of the acceleration for format operation. Normalized to the
reference torque. Type R
Chart 240,3
d027
Oscill. Torque Oscillating torque in the format mode. Normalized to the reference torque. Type R
Chart 240,3
d028
Cutting Torque Cutting torque in the format mode. Normalized to the reference torque. Type R
Chart 240,4
d029
Friction Friction torque in the format mode. Normalized to the reference torque. Type R
Chart 460,8
d040 .. d047
Display R1 ...
Display R8
Monitoring parameters, R type (floating point).
Par. Source selection Factory setting assignment
d040 L940 3401 Reference speed of the shears
d041 L941 3050 Revolutions/Fsymech
d042 L942 3421 Reference speed 2
d043 L943 3440 Position for synchronizing 2
d044 L944 3498 Mset when positioning
d045 L945 3192 Suppl. angle from the cutting curve
d046 L946 3099 Light barriers + clearance cut
d047 L947 3094 3099 Modulo Fsymech
Type R
Chart 540,5
d048 .. d051
Display W1 ...
Display W4
Monitoring parameters, word type (16-bit, unsigned).
Par. Source selection Factory setting assignment
d048 L948 2776 Test value 1
d049 L949 2785 Simulation-shears control word
d050 L950 2671 Fixed value I1
d051 L951 2672 Fixed value I2
Type W
Chart 540,5
Parameters and Connectors
74 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
d056 .. d059
Display I1 ...
Display I4
Monitoring parameters, integer type (16-bit, signed).
Par. Source selection Factory setting assignment
d056 L956 2302 PZD2 from CU (speed actual value)
d057 L957 2809 PZD9 from CB
d058 L958 2802 PZD2 from CB
d059 L959 2806 PZD6 from CB
Type W
Chart 540,7
d064 .. d067
Display B1 ...
Display B4
Monitoring parameter, BOOL type.
Par. Source selection Factory setting assignment
d064 L964 0317 Enable synchronization
d065 L965 0172 Enable format controller
d066 L966 0567 Continuous sheet length
d067 L967 0412 Knife speed, negative
Type W
Chart 540,7
d068 .. d071
Display DI1 ...
Display DI4
Monitoring parameter, double integer type (32-bit, signed).
Par. Source selection Factory setting assignment
d068 L968 5402 Reference pulses 1
d069 L969 5422 Reference pulses 2
d070 L970 5061 Peer DW1
d071 L971 5063 Peer DW2
Type DI
Chart 540,7
H091
S.AX Source for the angle at which the knife no longer is in contact with the material. Value 3101
Type I
Chart 60,3
H092
S.AY Source for the angle at which the knife comes in contact with the material. Value 3102
Type I
Chart 60,3
H095
S.DistLight Gate Source for the clearance (in [mm]) between the light barrier and knife Value 3106
Type I
Chart 60,3
H096
S.Dist. cut Source for the distance (in [mm]) between the light barrier and cut Value 3107
Type I
Chart 60,3
H097
S.TopCut size Source for the
crop length
(in [mm]). If a crop cut is enabled, a sheet is cut, with the
crop length
at the start of the material web. Value 3110
Type I
Chart 60,3
H098
S.Long format Source for the
Long Format
(in[mm]).TheLongFormatisacutlength,whichislong
enough that the knife must wait in the quiescent position between two cuts (also at
the reference speed of the material web).
Value 3111
Type I
Chart 60,3
H100
X_Shear Norm Normalization factor to enter and display knife coordinates. For application with rotary
axis, use 360.0 (angular degrees), for systems with linear axis, enter
Fsymech
(H105).
Value 360.0
Type R
Chart 60,3
H101
AX Angle Rotary axis: Angle at which the knife no longer is in contact with the material.
Linear axis: 0.0 Value 20.0
Type R
Chart 60,3
H102
AY Angle Rotary axis: Angle at which the knife comes into contact with the material.
Linear axis: Distance from the starting position, where the knife must run in
synchronism. This value must be Fsymech!
Value 340.0
Type R
Chart 60,3
H103
Edge point AZ Sub-division of the format range (velocity profile of the knife motion) into an
accelerating- and braking range. The ratio of the ranges is defined using H103.
Example: For H103 = 0.6, 60% of the format range is available for acceleration and
40% for braking.
Value 0.5
Type R
Chart 60,6
H104
Reference Speed Maximum material web speed in [m/min]. Value 100 m/min
Type R
Chart 80,4
H105
Fsymech Mechanical synchronous format.
Rotary axis: Knife travel between 2 cuts
Linear axis: Maximum acceleration travel
Value 1000 mm
Type R
Chart 60,6
H106
Dist. Light Gate Fixed value for the distance between the light barriers and the knife in the 1.0 position
(the normalized knife position; corresponds to Fsymech for non-normalized position) Value 1500 mm
Type R
Chart 60,3
H107
Dist. Cut Fixed value for the distance (in [mm]) between the light barrier and cut Value 0.0 mm
Type R
Chart 60,5
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 75
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H108
Epsilon Angle between the velocity vectors of the knife and material web Value 0.
Type R
Chart 60,6
H109
Knife Change Pos Knife position, to which the knife is positioned in the local mode “Approach knife
change position” Value 180.0
Type R
Chart 60,5
H110
TopCut size Fixed value for the
crop length
(in [mm]). If a crop cut is enabled, a sheet with the
crop length
iscutatthestartofthematerialweb. Value 200.0 mm
Type R
Chart 60,3
H111
Long format Fixed value for the
Long Format
(in[mm]).TheLongFormatisacutlength,whichis
large enough that the knife must remain in the quiescent position between two cuts
(also for the reference speed of the material web).
Value 100.0 m
Type R
Chart 60,3
H112
Angle_CUT_ON Starting position for the cut torque input Value 315.0
Type R
Chart 60,6
H113
Angle_CUT_OFF End position for the cut torque input Value 345.0
Type R
Chart 60,6
d114
Xref_Norm Normalization factor for the material position. Corresponds to Fsymech for all
applications, where the knife and the material have the same direction of movement. Type R
Chart 60,7
H115
SizeMeas. Wheel Circumference of the measuring wheel to sense the material position Value 500 mm
Type R
Chart 80,1
H116
i_Meas. Wheel Gearbox ratio for the material position sensing. This is required if the feed drive
encoder is used for position sensing.
Definition: speed_encoder = i_measuring wheel speed_measuring wheel
Value 1.0
Type R
Chart 80,1
H117
Feed/Revolution Knife movement for one revolution of the knife feed drive. (Refer to the application
example) Value 1000 mm
Type R
Chart 80,1
H118
i_Encoder1 Gearbox ratio of the knife encoder.
Definition:speed_knife encoder = i_encoder1 speed_knife
Value 1.0
Type R
Chart 80,4
d119
n_Ref. Shear Calculated reference speed of the shear drive. Type R
Chart 80,6
H120
Mode Linear Axis Enables positioning functions for applications with linear axis. Value 0
Type BO
Chart 410,1
H121
S.Slip Factor Source for a factor to correct the gearbox ratio and the measuring wheel
circumference. Factors greater than 1.0 simulate a slower material movement as
displayed from the encoder.
Value 3001
Type BO
Chart 80,1
H122
Distance Material Clearance between the light barrier for material detection and the knife. Value 1500 mm
Type R
Chart 60,6
H123
S.Meas.WheelCorr Source for correction value to adapt the circumference of the measuring wheel. Value 3000
Type I
Chart 80,1
H124
S. SetPosition 1 Source for the main position reference value of the angular controller for cutting mode
types. This is the position reference value of the format generator as standard. Value 3157
Type I
Chart 210,1
H125
S. SetPosition 2 Source for the auxiliary position reference value of the angular controller for cutting
mode types. This is the supplementary setpoint from the cutting curve as standard. Value 3192
Type I
Chart 210,1
H126
S. SetPosition 3 Source for a supplementary position reference value. Value 3000
Type I
Chart 210,1
H127
S. SetPosition 4 Source for the position reference value of the angular encoder in the “Approach start
position“ operating mode. Value 3161
Type I
Chart 210,1
H128
S. SetPosition 5 Source for the position reference value of the angular controller in the “Approach
knife change position“ operating mode. Value 3129
Type I
Chart 210,1
Parameters and Connectors
76 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H129
S. GotoKnifeChPos Source for changing-over to the position reference value “Reference position 4”. As
standard, this is connected to the control signal Approach knife change position“. Value 0596
Type I
Chart 210,1
H130
S. GotoStartPos Source to changeover from the position reference value Reference position 3. This
is connected as standard to the control signal “Approach start position“. Value 0595
Type I
Chart 210,1
H131
S. ActValuePosPC Source of the position actual value for the position controller. This is connected, as
standard with Knife position“. Value 3414
Type I
Chart 210,4
d132
Deviation PC System deviation of the position controller. Type R
Chart 210,5
H133
PosReg_Max_cut Positive position controller limit value for cutting operation Value 1.0
Type R
Chart 210,2
H134
PosReg_Max_loc Positive position controller limit value for local operation Value 0.1
Type R
Chart 210,2
H135
PosReg_Min_cut Negative position controller limit value for cutting operation Value -1.0
Type R
Chart 210,2
H136
PosReg_Min_loc Negative position controller limit value for local operation Value -0.1
Type R
Chart 210,2
H137
S. Max. Setp. Pos Source of the upper limit of the knife position for the setpoint of the position controller.
Used to stop the knife in linear applications. Value 3707
Type
Chart 210,4
H138
S. Min. Setp. Pos Source of the lower limit of the knife position for the setpoint of the position controller.
Used to stop the knife in linear applications. Value 3705
Type
Chart 210,4
H139
S. PC Enable Source for the position controller enable. Value 0671
Type I
Chart 210,4
H140
PC Test Setp Test setpoint to enter a setpoint (reference value) step into the position controller. Value 0.0
Type R
Chart 210,4
H141
S. PC_set YI=0 Source for the control signal to delete the integral component of the position
controller.
Connected to ‘1’ as standard; i. e. the integral component is de-activated.
Value 0001
Type I
Chart 210,4
H142, H143
dMeas.Wheel_max,
dMeas.Wheel_min
Maximu and minimum value for the adaption of the measuring wheel circumference. Value ±20 mm
Type R
Chart 80,1
d144
Output PC filt Position controller output, smoothed. Type R
Chart 210,8
d145
IntegratorVal PC Integral component of the position controller. Type R
Chart 210,6
H146
KP Pos. Ctrl Proportional Gain of the position controller. Value 2.5
Type
Chart 210,5
H147
TN Pos.Ctrl Integral action time TN of the position controller Value 6 ms
Type SD
Chart 210,5
H148
Tfilt PC Smoothing time constant of the position controller output Value 4.8 ms
Type SD
Chart 210,7
H150
S. FGEN Format Source for the (normalized) cutting format for the format generator.
This is connected to the format controller output as standard. Value 3184
Type I
Chart 200,3
H151
S. FGEN V_Ref Source for the (normalized) material web speed for the format generator.
This is connected to the smoothed material web speed as standard. Value 3435
Type I
Chart 200,3
Parameters and Connectors
Sheet-Cutter/CuttoLength-SIMADYND-Manual77
6DD1903-0DB0Edition09.00
ParameterDescriptionData
H152
S.FGENRefPosSourceforthe(normalized)materialpositionfortheformatgenerator.
Thisisconnectedtothematerialposition,weightedwiththeoverspeedfactoras
standard.
Value3197
TypeI
Chart200,3
H153
S.Speedfactor Sourcefortheoverspeedfactor.Foroverspeedfactorvaluesgreaterthan1.0,the
knifemovesfasterthanthematerialwebwhencutting.Value3020
TypeI
Chart200,3
H154
FGENCurveTypSelectsthevelocityprofilefortheknifemovement:
0:Sinusoidalsections
1:Linearramps
2:Linearrampswithrounding-off
Value0
TypeI
Chart200,3
d155
FGENerrorcodeErrorcodeformatgenerator
Bit0:FMT<0Bit5:MODnotvalid
Bit1:AXnotvalidBit6:OVSnotvalid
Bit2:AYnotvalidBit7:Hardlockmissing
Bit3:AZnotvalidBit8:notenoughmemory
TypeI
Chart200,7
d157
FGEN_Xsetp Formgenerator,outputknifereferenceposition(normalized)TypeR
Chart200,6
d158
FGEN_Vsetp Formgenerator,outputknifesetpointspeed(normalized)TypeR
Chart200,7
d159
FGEN_sin*sin Formatgenerator,outputsin²(knifeposition)TypeR
Chart200,7
d160
ElectricFormat Cuttingformatreferredtotheformatgeneratoroutput,multipliedbytheoverspeed
factorTypeR
Chart200,6
d161
StartPosition Formatgenerator,outputstartingposition(quiescentposition)oftheknife
(normalized)TypeR
Chart200,7
d162
StartlengthFormatgenerator,outputstartinglength(normalized).Ifthepositionofthematerial
webexceedthestartinglength,theknifestartsitssynchronizingoperation. TypeR
Chart200,7
d163
AREFforAZ Formatgenerator,outputmaterialposition(normalized),wheretheknifereachesthe
transitionpointinthevelocityprofile(theknifecomestoastandstillforlargerformat
lengths).
TypeR
Chart200,6
d164
AccPhase1Formatgenerator,outputmaximumknifeaccelerationbeforetransitionpointAZis
reached. TypeR
Chart200,7
d165
AccPhase2Formatgenerator,outputmaximumknifeaccelerationbetweenthetransitionpointAZ
andthestartofthecut. TypeR
Chart200,7
d166
FGENDiagnostic1Formatgenerator,1st diagnosticsoutputTypeR
Chart200,6
d167
FGENDiagnostic2Formatgenerator,2nd diagnosticsoutputTypeR
Chart200,7
d168
FGinCutRegFormatgeneratoroutput,shearsinthecuttingrange.
Caution:Thisoutputisonlyvalidforcuttingoperation! TypeBO
Chart200,6
d169
FGinFormatRegFormatgeneratoroutput,shearsintheformatrange.
Caution:Thisoutputisonlyvalidforcuttingoperation! TypeBO
Chart200,7
d170
HardlockmissingFormatgeneratoroutput,hardlockblocknotavailable.Theclosed-loopshearscontrol
cannotbeoperatedwithoutthisoperatinglicense!TypeBO
Chart200,6
d171
FGENErrorFormatgenerator,grouperror:Internalerrororillegalcharacteristictypewas
selected.TypeBO
Chart200,7
H172
S.FormatChange_3 3rd sourcetoenabletheformatcontroller.RefertoH173.
Default:notusedValue0000
TypeI
Chart200,2
H173
S.FormatChanged1 1st sourcetoenabletheformatcontroller.Theformatcontrollerissimultaneously
signaledaboutachangeintheformatconstants(AX,AY,AZ,formatlength).The
connectedsignalmustbeashortdurationpulse.
Default:Synchronizingpulse,knifeencoder
Value0413
TypeI
Chart200,2
H174
S.FormatChanged2 2nd sourcetoenabletheformatcontroller.RefertoH173.
Default:Pulseatthestartofpositioning(linearaxis)Value1345
TypeI
Chart200,2
H175
S.FC_FormatSetp11st sourcefortheformatsetpointoftheformatcontroller.
Default:
Format setpoint
of the format request (normalized) Value3629
TypeI
Chart220,2
Parameters and Connectors
78 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H176
S. FC_FormatSetp2 2nd source for the format setpoint of the format controller.
Default:
Long Format
(normalized) Value 3098
Type I
Chart 220,2
H177
S. FC FormatSel Source to changeover the format setpoint for the format controller.
Default:
Special length selected
signal Value 0575
Type I
Chart 220,2
H178
S. FC actFormat Source for the format actual value of the format controller.
Default:
SynchrPosition
material position when synchronizing the knife position
encoder
Value 3436
Type I
Chart 220,2
H179
Integral Time FC Integrating time of the format controller (I controller) Value 20 ms
Type SD
Chart 220,4
H180
FC_max Positive limit value of the format controller.
Default: Format controller not active. Value 0.0
Type R
Chart 220,5
H181
FC_min Negative limit value of the format controller.
Default: Format controller not active. Value 0.0
Type R
Chart 220,5
H182
S. freeze_FC Source for the signal to stop the format controller.
Default:
No cutting operation
signal Value 0577
Type I
Chart 220,3
d183
Output FC-Int Output of the format current controller Type R
Chart 220,6
d184
Output FC Format controller output. This signal represents a corrected format setpoint to be
entered at the format generator. The correction is used to compensate cutting errors. Type R
Chart 220,7
H185
S. FC FormatSetp Source for the format controller format setpoint.
Default:
Actual setpoint format
Value 3414
Type I
Chart 220,2
H186
S. FC FormatNorm Source for the normalization factor to calculate the cut error.
Default:
Xref normalization
Value 3114
Type I
Chart 220,2
H187
S.V Cut curve Source for the cutting velocity when processing the cutting curve. The cutting velocity
is the deviation from the synchronous velocity while the knife is in the cutting range.
The integral of this represents the angular error, which is obtained as a result of the
cutting velocity.
Default: Output of the cutting curve.
Value 3577
Type I
Chart 265,1
H188
S. Cutc_Int=0 Source for the control signal to delete the integral over the cutting velocity. Value 0413
Type I
Chart 265,1
H189
Cut Curve_max Upper limit of the integral over the cutting velocity.
Default: Cutting curve not active. Value 0.0
Type R
Chart 265,3
H190
Cut Curve_min Lower limit of the integral over the cutting velocity.
Default: Cutting curve not active. Value 0.0
Type R
Chart 265,3
H191
S. Sample Cut Source for the signal to save the cutting angular error (refer to H187).
Default: The value when exiting the cutting range is saved. Value 0169
Type I
Chart 265,4
H192
S. FC FormatSetp2 Source for a correction value to calculate the cutting error. Value 3000
Type I
Chart 220,2
H193
T Int Cut Curve Integrating time for the integration over the cutting curve. The integrating time is the
cutting time at the reference velocity and synchronous length
H193 = Xref_norm / V_ref = H105 H108 / H104; (observe the units!)
Value 600 ms
Type SD
Chart 265,2
H194
S. Phi_cut_reduce Source for the function which should weigh the angular error, determined from the
cutting curve, as supplementary angle.
Default: Weighting with a knife angle-dependent function
Value 3159
Type I
Chart 265,5
H195
S. FC actFormat_l2 Source for a correction value to calculate the cutting error. Value 3000
Type I
Chart 220,2
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 79
6DD1903-0DB0 Edition 09.00
Parameter Description Data
d196
Cutting Error Cutting error in [mm]. This value is valid only, if the knife position and the reference
position are known exactly for the cutting instant. Faults of the reference position
sensing can not be corrected (e.g. slip of the measuring wheel)
Type R
Chart 220,3
H197
S. RefPos Limit Source for the position actual value for the format generator, if this value is to be
limited (e.g. negative values are not permitted) Value 3438
Chart 200,1
H198
RefPos max Upper limit value to limit the reference position (refer to H197). Value 100000.0
Chart 200,2
H199
RefPos min Lower limit value to limit the reference position (refer to H197). Value 0.0
Chart 200,2
H200
S. EnFormatCtrl Source for the signal to calculate the format controller. The format controller is
processed once at a positive edge of the connected signal. Value 0172
Type I
Chart 220,2
H201
S. AX_Formatgen Source for the angular constant AX for the format generator. Value 3118
Type I
Chart 200,3
H202
S. AY_Formatgen Source for the angular constant AY for the format generator. Value 3119
Type I
Chart 200,3
H203
S. AZ_Formatgen Source for the angular constant AZ (position of the transition point) for the format
generator. Value 3103
Type I
Chart 200,3
H210
AI1 Scale Factor Scaling factor for analog input 1 (setting, refer to d214). Value 1.0
Type: R
Chart 90,4
H211
AI1 Offset Offset value for analog input 1 (setting, refer to d214). Value 0.0
Type R
Chart 90,4
H212
AI1 Time Constant Smoothing time constant for analog input 1. Value 25 ms
Type SD
Chart 90,5
H213
S. Disable AI1 Source for the control signal to set the analog input 1 to 0.0.
Default: The measured value is not set to 0.0 Value 0
Type I
Chart 90,6
d214
AI1 smoothed Filtered measured value at analog input 1 (AI1). This analog input is sensed in time
sector T3. The measured value is obtained as
d214 = Terminal voltage * scaling factor / 5 V + offset
d214 = Terminal voltage * H210 / 5 V + H211
Type R
Chart 90,7
H215
AI2 Scale Factor Scaling factor for analog input 2 (setting, refer to d219). Value 1.0
Type R
Chart 90,3
H216
AI2 Offset Offset value for analog input 2 (setting, refer to d219). Value 0.0
Type R
Chart 90,4
H217
AI2 Time Constant Smoothing time constant for analog input 2. Value 25 ms
Type SD
Chart 90,5
H218
S. Disable AI2 Source for the control signal to set the analog input 2 to 0.0.
Default: The measured value is not set to 0.0 Value 0
Type I
Chart 90,6
d219
AI2 smoothed Filtered measured value at analog input 2 (AI2). This analog input is sensed in time
sector T3. The measured value is obtained as
d219 = Terminal voltage * scaling factor / 5 V + offset
d215 = Terminal voltage * H215 / 5 V + H216
Type R
Chart 90,7
H220
S. Analog Output 1 Source for quantity X, which is output at analog output 1. The voltage at terminal 97
is obtained as
V_terminal97 = 5 V (X + H224) / H225
Value 3412
Type I
Chart 95,1
H221
S. Disable AO1 Source for the control signal to set the analog output 1 to 0.0.
Default: The output is not set to 0.0 Value 0
Type I
Chart 95,1
Parameters and Connectors
80 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H222
AO1 Time Constant Smoothing time constant for analog output 1. Value 0 ms
Type SD
Chart 95,2
d223
Analog Output 1 Displays the output quantity for analog output 1. The output is realized in the fastest
time sector (T1). Type R
Chart 95,4
H224
AO1 Offset Offset value of analog output 1 Value 0.0
Type R
Chart 95,4
H225
AO1 Scale Factor Scaling for analog output 1 Value 1.0
Type R
Chart 95,5
H226
S. Analog Output 2 Source for quantity X, which is output at analog output 1. The voltage at terminal 98
is obtained as
V_terminal98 = 5 V (X + H230) / H231
Value 3414
Type I
Chart 95,1
H227
S. Disable AO2 Source for the control signal to set the analog output 2 to 0.0.
Default: The output is not set to 0.0 Value 0
Type I
Chart 95,1
H228
AO2 Time Constant Smoothing time constant for analog output 2. Value 0 ms
Type SD
Chart 95,2
d229
Analog Output 2 Displays the output quantity for analog output 2. The output is realized in the fastest
time sector (T1). Value R
Chart 95,4
H230
AO2 Offset Offset value of analog output 2 Value 0.0
Type R
Chart 95,4
H231
AO2 Scale Factor Scaling for analog output 2 Value 1.0
Type R
Chart 95,5
H232
S.Norm. Fixed Pos. Source for the normalization factor for 4 position fixed values. Value 3100
Type
Chart 70,7
H233 ... H236
Fixed pos. 1 ...
Fiexd pos. 4
4 fixed values interpreted as a position. These values are available as original and as
normalized positions (nomalization factor see H233). Value 0 mm
Type
Chart 70,6
d241 ... d248
KL53 BinInput1 ...
KL60 BinInput8
Actual signal level of digital inputs 1 to 8. (terminals 53 .. 60) Type BO
Chart 110,3
d249
KL84 Coarse Pulse 1 Logic signal level at terminal 84. This input can be used as coarse pulse input for
encoder1 (knife). Type BO
Chart 110,7
d250
KL65 Coarse Pulse 2 Logic signal level at terminal 65. This input can be used as coarse pulse input for
encoder2 (material). Type BO
Chart 110,7
d261
KL46 Input Logic signal level at terminal 46 (bi-directional). If the associated output driver is
activated (H265 = 1), the inverse signal level is read. Type BO
Chart 100,3
d262
KL47 Input Logic signal level at terminal 47 (bi-directional). If the associated output driver is
activated (H266 = 1), the inverse signal level is read. Type BO
Chart 100,3
d263
KL48 Input Logic signal level at terminal 48 (bi-directional). If the associated output driver is
activated (H267 = 1), the inverse signal level is read. Type BO
Chart 100,7
d264
KL49 Input Logic signal level at terminal 49 (bi-directional). If the associated output driver is
activated (H268 = 1), the inverse signal level is read. Type BO
Chart 100,7
H265
Enable BiDir1
Initialization par.
Defines the driver direction for the bi-directional digital terminal 46.
0: Input
1: Output
Value 1
Type BO
Chart 100,2
H266
Enable BiDir2
Initialization par.
Defines the driver direction for the bi-directional digital terminal 47.
0: Input
1: Output
Value 1
Type BO
Chart 100,2
H267
Enable BiDir3
Initialization par.
Defines the driver direction for the bi-directional digital terminal 48.
0: Input
1: Output
Value 1
Type BO
Chart 100,6
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 81
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H268
Enable BiDir4
Initialization par.
Defines the driver direction for the bi-directional digital terminal 49.
0: Input
1: Output
Value 0
Type BO
Chart 100,6
H269
S. Bin. Output 1 Source of the digital signal for output at terminal 51.
Default:
Raise knife/saw
.Value 1259
Type I
Chart 100,1
H270
S. Bin. Output 2 Source of the digital signal for output at terminal 52.
Default:
Lower knife/saw
.Value 1279
Type I
Chart 100,1
H271
S. BiDir Out 1 Source of the digital signal for output at terminal 46.
Default:
Fault
.Value 0014
Type I
Chart 100,1
H272
S. BiDir Out 2 Source of the digital signal for output at terminal 47.
Default:
Open brake
.Value 0676
Type I
Chart 100,1
H273
S. BiDir Out 3 Source of the digital signal for output at terminal 48.
Default:
Fan control
.Value 0978
Type I
Chart 100,5
H274
S. BiDir Out 4 Source of the digital signal for output at terminal 49. Value 0
Type I
Chart 100,5
H276
AI3 Scale Factor Scaling factor SF for analog input 3 (setting, refer to d279). Value 1.0
Type: R
Chart 90,3
H277
AI3 Offset Offset value for analog input 3 (setting, refer to d279). Value 0.0
Type R
Chart 90,4
H278
AI3 Time Constant Smoothing time constant for analog input 3. Value 100 ms
Type SD
Chart 90,5
d279
AI3 smoothed Actual measured value at analog input 3 (AI3). This analog input is sensed in time
sector T4. The measured value is obtained as
d279 = Terminal voltage * scaling factor / 5 V + offset
d279 = Terminal voltage * H275 / 5 V + H276
Type R
Chart 90,5
H280
AI4 Scale Factor Scaling factor SF for analog input 4 (setting, refer to d283). Value 1.0
Type: R
Chart 90,3
H281
AI4 Offset Offset value for analog input 4 (setting, refer to d283). Value 0.0
Type R
Chart 90,4
H282
AI4 Time Constant Smoothing time constant for analog input 4. Value 100 ms
Type SD
Chart 90,5
d283
AI4 smoothed Actual measured value at analog input 4 (AI4). This analog input is sensed in time
sector T4. The measured value is obtained as
d283 = Terminal voltage * scaling factor / 5 V + offset
d283 = Terminal voltage * H280 / 5 V + H281
Type R
Chart 90,5
H284
AI5 Scale Factor Scaling factor SF for analog input 5 (setting, refer to d287). Value 1.0
Type: R
Chart 90,3
H285
AI5 Offset Offset value for analog input 5 (setting, refer to d287). Value 0.0
Type R
Chart 90,4
H286
AI5 Time Constant Smoothing time constant for analog input 5. Value 100 ms
Type SD
Chart 90,5
d287
AI5 smoothed Actual measured value at analog input 5 (AI5). This analog input is sensed in time
sector T4. The measured value is obtained as
d287 = Terminal voltage scalingfactor/5V +offset
d287 = Terminal voltage H284 / 5 V + H285
Type R
Chart 90,5
Parameters and Connectors
82 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
d301 ... d316
PZD1 from CU ...
PZD16 from CU
Process data received from the basic drive. The following are default values:
d301 PZD1 Status word 1
d302 PZD2 Speed actual value
d304 PZD4 Status word 2
d305 PZD5 Torque actual value
d307 PZD7 Current actual value
Type W
Chart 610,2
H317
S. ActValue1 CU 1st source to re-normalize a 16-bit process data in REAL (floating point). Default:
PZD2 from CU
Value 2302
Type I
Chart 610,4
H318
CU ActValue1 Norm Normalization factor for the 1st actual value from the basic drive.
Calculation rule:
CU actual value1 = H318 process data(16 bit) / 16768
Value 1.0
Type R
Chart 610,6
d319
CU Act Value 1 1st actual value from the basic drive converter as floating-point quantity Type R
Chart 610,7
H320
S. ActValue2 CU 2nd source to re-normalize a 16-bit process data in REAL (floating point). Default:
PZD3 from CU
Value 2303
Type I
Chart 610,4
H321
CU ActValue2 Norm Normalization factor for the 2nd actual value from the basic drive.
Calculation rule:
CU actual value2 = H321 process data(16 bit) / 16768
Value 1.0
Type R
Chart 610,6
d322
CU ActValue2 2nd actual value from the basic drive as floating-point quantity Type R
Chart 610,7
H323
S. ActValue3 CU 3rd source to re-normalize a 16-bit process data in REAL (floating point). Default:
PZD5 from CU
Value 2305
Type I
Chart 610,4
H324
CU ActValue3 Norm Normalization factor for the 3rd actual value from the basic drive.
Calculation rule:
CU actual value1 = H324 process data(16 bit) / 16768
Value 1.0
Type R
Chart 610,6
d325
CU AvtValue3 3rd actual value from the basic drive as floating-point quantity Type R
Chart 610,7
H326
S. ActValue4 CU 4th source to re-normalize a 16-bit process data in REAL (floating point). Default:
PZD6 from CU
Value 2306
Type I
Chart 610,4
H327
CU ActValue4 Norm Normalization factor for the 4th actual value from the basic drive.
Calculation rule:
CU actual value1 = H327 process data(16 bit) / 16768
Value 1.0
Type R
Chart 610,6
d328
CU ActValue4 4th actual value from the basic drive converter as floating-point quantity Type R
Chart 610,7
H329
S. DW1 low CU Source to re-normalize the low word of a 32-bit process data in REAL (floating point).
Default:
PZD15 from CU
Value 2315
Type I
Chart 610,4
H330
S.DW1highCU Source to re-normalize the high word of a 32-bit process data REAL (floating point).
Default:
PZD16 from CU
Value 2316
Type I
Chart 610,4
H333
CU DW1 Norm Normalization factor for the 32-bit word from the basic drive.
Calculation rule:
CU actual value DW1 = H333 process data(32 bit) / 1073741824
Value 1.0
Type R
Chart 610,6
d334
CU ActValue DW1 1st double word from the basic drive as floating-point quantity Type R
Chart 610,7
H335
S.Store Value 1 Source for the first value which should be store in the permanent memory of the
T400. (Factory setting: position of the rising edge of the coarse pulse) Value 3414
Type I
Chart 170,6
H336, H337
S.EnStoreVal_1A,
S.EnStoreVal_1B
Source for 2 conditions for the storing of H335 (AND gate). Type I
Chart 170,6
H338
S.Store Value 2 Source for the first value which should be store in the permanent memory of the
T400. (Factory setting: position of the rising edge of the coarse pulse) Value 3414
Type I
Chart 170,6
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 83
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H339, H340
S.EnStoreVal_2A,
S.EnStoreVal_2B
Source for 2 conditions for the storing of H338 (AND gate). Type I
Chart 170,6
H356
S. Status word 1 CU Source for status word 1 from the basic drive. This connection should remain
connected to the first process data, which is received from the basic drive. Value 2301
Type I
Chart 620,1
d357
Statusword1CU Status word 1 from the basic drive. Type W
Chart 620,1
H358
S. Status word 2 CU Source for status word 2 from the basic drive. This connection is connected, as
standard, to the 4th process data, which is received from the basic drive. Value 2304
Type I
Chart 620,5
d359
Statusword2CU Status word 2 from the basic drive. Type W
Chart 620,5
H360 ... H362
S. En Synchr Ref1 ...
S. En Synchr Ref3
3 sources of the AND logic gate to enable the position-dependent pass mark
synchronization. Type I
Chart 140,7
H363, H364
S. Enable Mark_1 ...
S. Enable Mark_2
2 sources of the OR logic gate to enable the position-dependent pass mark
synchronization outside the enable window (e.g.: to recognize the first mark). Type I
Chart 140,5
H366
Window Passmark Possible deviation of the pass mark position from the reference position
(information/data referred to Fsymech) to define a synchronizing window. Value 0.05
Type R
Chart 140,1
H367, H368
S. RefPos modulo
S. Format modulo
Two sources for a modulo division. The result may be used to display the reference
position within format length. Type I
Chart 135,6
H369
S. XrefCorrection Source for an optional signal to trigger the correction function for the reference
position. Value 0000
Type I
Chart 130,1
H370
S. ReqManualCut Source for the binary manual cutting request. Value 0000
Type I
Chart 145,2
H371
S.EnablManualCut Source for the binary enable for manual cutting. Recommendation: Set to 666 if the
shear may perform a manual cut while the web is standing still. Value 0000
Type I
Chart 145,2
H372
S.start of cut Source for a binary value which signals the start of the cutting procedure. After the
start of cut is detected the manual cut pulse is reset. Value 0000
Type I
Chart 145,2
H373
S.end of cut Source for a binary value which signals the end of the cutting procedure. After the
end of cut is detected the next manual cut may be initiated Value 0000
Type I
Chart 145,2
H374
S. RefCorrPulse Source for a binary value which signals the correction of the reference position after
cutting. This information is required to calculate the correction value for the reference
position. Set to 413 if the reference position is reseted by the zero pulse of the shear.
Value 0424
Type I
Chart 145,2
H375
Tmax manual cut Time limitation for the manual cutting operation. The manual cutting is aborted if
there was no end of cut detected within the time interval specified by H375. Value 5000 ms
Type SD
Chart 145,4
H400
Pulse Encoder 1
Initialization par.
Number of pulses per revolution of the incremental encoder for the knife position
sensing Value 1024
Type I
Chart 120,3
H401
S. Refer. Speed_1 Source for the knife reference speed. As standard, the reference speed is
automatically calculated from the system parameters (refer to Chart 80). The
reference speed is the speed at which the material runs with the reference velocity
and the synchronous format length is cut.
Value 3401
Type I
Chart 120,4
H402
S. Ref. Pulses_1 Source for the reference pulse number of the knife. This is the number of edge
changes (quadrupled pulses) of the incremental tracks, when the knife is moved
through Fsymech. The reference pulse number is automatically, calculated as
standard from the plant/system parameters (refer to Chart 80).
Value 5402
Type I
Chart 120,3
H403
S. Reset Pos_1 Source for the signal to reset the knife position. Value 1311
Type I
Chart 120,3
Parameters and Connectors
84 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H404
S. Set Pos_1 Source for the signal to set the knife position. Value 1306
Type I
Chart 120,3
H405
S. Sync1 Enable Source for the signal to enable the knife position synchronization Value 0317
Type I
Chart 120,3
H406
S. Pos. Set Value_1 Source for the position setting value of the knife position. Value 3313
Type I
Chart 120,3
H407
Mode Encoder 1
Initialization par.
Operating mode of the knife speed sensing
The operating mode of the speed sensing block for the knife drive is set using this
parameter; this especially involves the digital filter, the encoder type, the coarse
signal type selection and the source of the encoder pulses.
The selected operating mode is highlighted (bold). For additional information, refer to
the SIMADYN D Reference Manual, function block library, function block NAVS,
connection MOD.
---X: Lasthexadecimallocation=2means:
Bit 0
0 Encoder 1: Two pulse tracks, offset through 90°
1 Encoder 2: A dedicated track for each direction of rotation
Bit 3..1 Digital filter with time constant /limiting frequency 500 ns / 2 MHz
000x No filter
001x 500 ns (encoder 1) 125 ns (encoder 2)
010x 2 µs (encoder 1) illegal (encoder 2)
011x 8 µs (encoder 1) illegal (encoder 2)
100x 16 µs (encoder 1) illegal (encoder 2)
Rest illegal
- - X - Last but one location = E means:
Bit 4 Setting mode for input S
0SetYPtoSV
1 Subtract SV from YP
Bit 5 Setting mode for input SP
0 Set YDP to SVD
1 Subtract SVD from YDP
Bit 6 Source of the encoder tracks (can only be selected for terminal XE1)
0 From terminal XE1 of the T400
1 From the BASEBOARD
Bit 7 Source of the zero pulse (can only be selected for terminal XE1)
0 From terminal XE1 of T400
1 From the BASEBOARD
XX - -: The two most significant locations = 7F means:
The standstill limit is corrected for 127 sampling cycles
Value 16#7FC2
Type: W
Chart 120,3
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 85
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H408
SyncMode Encod_1
Initialization par.
Setting the synchronization type of the knife speed sensing. The value has several
functions. The values in bold represent the factory setting.
Bit(s) Value Significance
00 Synchronizing via the zero pulse
1 Synchronizing via the trigger input (not for T400)
10 When synchronizing, the pos. is set to the setting value
1 When synchronizing, the setting value is subtracted from
the position
2 0 Direction of rotation-dependent evaluation of the
synchronizing signal
1 Synchronizing with the leading edge of the synchronous
pulse (H428 bit 2 and H408 bit2 must be identical)
3 Not assigned
6...4 XYZ Number of the coarse pulse version (refer to Fig. 3-7)
011 e. g.: No. 3 (mode 3; zero pulse is always available if
the coarse- and fine pulse have a high signal level)
15...7 Not evaluated
Value 0
Type W
Chart 120,3
H409
Max. Pulse Enc_1 Automatic position overflow generation. For more than H409 pulse edges (4x pulses)
in one direction of rotation, the knife position is reduced by the value H409 / reference
pulses and the
Maximum position exceeded
output is set to ‘1’ for a processing
cycle.
The function is enabled for H409 > 0.
Value 0
Type DI
Chart 120,4
d410
Error Encoder 1 Group error message of the knife speed sensing. When a fault develops (d410 = ‘1’)
evaluate d410. Type BO
Chart 120,6
d411
Speed Shear Normalized and smoothed (H417) knife speed. The speed value 1.0 is obtained if the
material web is running with the reference speed and a synchronous format length is
cut.
Type R
Chart 120,7
d412
Error code Enc 1 Error code of the knife drive speed sensing. In operation, the value must be 0. If it is
not equal to 0, there is an error in the parameterization of the speed sensing.
The cases identified by *) can only occur after user-specific changes in the
configured software.
Significance of the error bits:
0 Parameters may not be 0: H400, H104, H105, H108, H118
1 Sampling time > 20 ms *)
2 H407, illegal filter parameterization
3 Slave without master *)
4 Master and slave in various sampling times *)
5 Several masters use the same encoder *)
6 Master and slave use the same encoder *)
7 Pulse counter overflow
Type W
Chart 120,6
d413
Pos. Shear Knife position normalized as defined in H100 (e. g. in angular degrees or [mm]. The
value is displayed without name, as the names cannot be changed by the user. Type R
Chart 120,7
H414
S. Pos. SyncPulse Source for the synchronizing pulses of the knife position generated per software. It
can involve the following:
Synchronized position
or
Maximum position exceeded
.Value 0413
Type I
Chart 120,6
H415
S. En Pos_2 Corr Source for the signal to enable the correction function for the reference position. Value 0576
Type I
Chart 130,1
H416
Pos SyncDelay Cutting pulse extension, which means that synchronizing pulses can be identified in
slower processing cycles. Value 100 ms
Type SD
Chart 120,7
H417
Tfilt n Shear Filter time constant to smooth the knife speed actual value. Value 20 ms
Type SD
Chart 120,6
H418
T_Long Pulse Duration of the extended pulse. Value 32 ms
Type SD
Chart 130,8
H419
S. Long Pulse Source for the extended pulse. This is used to transfer synchronizing pulses for
slower processing cycles. Value 0431
Type I
Chart 130,7
Parameters and Connectors
86 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H420
Pulse Encoder 2
Initialization par.
Number of pulses per revolution of the incremental encoder for material position
sensing. Value 1024
Type I
Chart 130,2
H421
S. Refer.Speed_ 2 Source for the material reference speed. The reference speed is automatically
calculated from the plant/system parameters as standard (refer to Chart 80). The
speed of the material sensing where the material is running with the reference speed
is the reference speed.
Value 3421
Type I
Chart 130,3
H422
S. Refer.pulses_ 2 Source for the reference pulse number of the material sensing. This is the number of
edge changes (quadrupled pulses) of the incremental tracks, if the material is moved
forwards by the synchronous format. The reference pulse number is automatically
calculated from the plant/system parameters as standard (refer to Chart 80).
Value 5422
Type I
Chart 130,3
H423
S. set Pos_2 Source for the signal to set the material position. Value 0208
Type I
Chart 130,3
H424
S. Pos_2 correct Source for the signal to correct the material position. For a positive edge at the
Correct signal
input, the
Position correction value
is subtracted from the actual
material position.
Value 1345
Type I
Chart 130,1
H425
S. Enable Synchr2 Source for the signal to enable material position synchronization. Value 0317
Type I
Chart 130,2
H426
S. Pos.Set Value2 Source for the position setting value of the material position. Value 3204
Type I
Chart 130,3
H427
S. Pos.corr.Val2 Source for the position correction value of the material position. For a positive edge at
the
Correct position
input, the position correction value is subtracted from the actual
position.
Value 3630
Type I
Chart 130,2
H428
SyncMode Encoder2
Initialization par.
Setting for the synchronization type of the material-speed sensing.
Settings, refer to H408. Value 0
Type W
Chart 130,3
H429
Mode Encoder2
Initialization par.
Setting of the material-speed sensing mode.
Settings, refer to H407. Value 16#7F02
Type W
Chart 130,2
H430
MaxPulseEnc_2 Automatic position overflow generation. For more than H430 pulse edges (4x pulses)
in one direction of rotation, the material position is reduced by the value H430 /
reference pulses, and the
Maximum position exceeded
output is set to ‘1’ for one
processing cycle.
The function is enabled by H430 > 0.
Value 0
Type DI
Chart 135,1
H431
S. Ref_Mark_Pos Source for the pass mark position. This position is used as setpoint for the offset
correction. Value 3094
Type I
Chart 135,1
H432
S. FreezeCorrect. Source to interrupt the offset correction. As long as the connected signal = ‘1’,
correction is stopped. If the signal goes to ‘0’, correction is continued until the
position and corrected position are identical.
Value 0453
Type I
Chart 135,1
d433
Error Encoder2 Group error message of the material-speed sensing. If a error develops (d433 = ‘1’),
evaluate d433. Type BO
Chart 130,5
d434
Error code Enc2 Error code of the speed sensing of the material feed. In operation, the value must be
0. If it is not equal to 0, then there is an error in the speed sensing parameterization.
Error bits, refer to d412.
Type W
Chart 130,5
d435
Speed 2 Material velocity, normalized and smoothed to V_reference (H436). Type R
Chart 130,6
H436
Tfilt Speed 2 Filter time constant to smooth the material velocity actual value. Value 4.8 ms
Type SD
Chart 130,5
d437
Position 2 Normalized material position after the offset correction. If a material position offset
has been identified, the material position is instantaneously set to the correct value.
The
Position2
value doesn’t immediately follow this step function, but approaches the
actual position value in smaller steps.
Type R
Chart 135,3
d438
Reference Pos The reference position is the normalized material position, which is used as reference
for the knife position closed-loop control. This involves the actual material position,
multiplied bythe overspeed factor.
Type R
Chart 135,4
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 87
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H439
S. Ref Pos Factor Source for the factor to calculate the reference position from the material position.
This is connected as standard with factor 1.0. Value 3001
Type I
Chart 135,3
H440
S. Ref. Pos. Offset Source of the offset value for shifting the coordinate origin of the reference position
(particularly for the format generator). Set to 3000 for systems with rotary axis. Value 3001
Type
Chart 135,3
H441
S. act Form_Norm Source for the required normalization of the measured actual format. Value 3114
Type I
Chart 130,5
d442
Reference Error Error message from the material position monitoring. An error occurs, if the material
position falls below the minimum value H443. Type BO
Chart 135,7
H443
Reference Min Lowest permissible material position in operation. When the limit value is fallen
below, d442 is set to ‘1’. Value -0.5
Type R
Chart 135,6
H444
Correct. Increm. If a material position offset has been identified, the offset error is corrected in small
steps. The actual material position deviates from the reference position relevant for
the control (d437) during this correction phase. However, this deviation is reduced by
the value of H444 at each processing until both of the values are identical.
Value 0.02 %
Type R
Chart 135,3
d445
Material Position Material position in [mm] Type R
Unit mm
Chart 135,5
H446
ResetDisplCorr. Inhibiting the offset correction. Value 1
Type BO
Chart 135,2
d447
Actual Format Measured cut length. This value is only valid when the material position is
synchronized with the zero pulse of the knife encoder. Type R
Chart 130,6
H448
S. Set First Mark Source to activate the status W
ait for first pass mark
. Value 0434
Type I
Chart 135,1
H449
S. Reset First Mark Source to de-active the status
Wait for first pass mark
. Value 0577
Type I
Chart 135, 1
H450
S. Range Test Source for the knife position actual value for the range monitoring of the knife
position. The purpose of this monitoring function is to check whether the knife is in
the cutting- or in the format range.
Value 3413
Type I
Chart 330,1
H451
S. Range Test Start Source for the start of the format range for the knife range monitoring. Value 3091
Type I
Chart 330,1
H452
S. Range Test End Source for the end of the format range for the knife range monitoring. Value 3092
Type I
Chart 330,1
d453
in SynchrRange Range of the actual knife position:
0: In the format range
1: In the synchronous range
Type BO
Chart 330,4
H454
S. EnableVrefSim. Source of the signal to enable simulation operation for the reference position sensing.
NOTE: Track A,B and zero pulse of the encoder input are ignored if simulation is
active!
Value 0
Type I
Chart 130,3
H455
S. vRef simul. Source for the simulated reference speed. Normalization: 1.0 = reference speed.
Factory setting: Connected to analog input 2 (AI2). Value 3219
Type I
Chart 130,2
H456
S. n Standstill Source for the speed signal for standstill identification Value 3411
Type I
Chart 330,1
H457
Limit n_zero Speed actual value below which knife standstill is signaled. Value 0.002
Type R
Chart 330,2
H458
Hyst n_zero Speed hysteresis to identify that the knife is at a standstill. Value 0.001
Type R
Chart 330,2
d459
n_shear > 0 Display: Shears are moving Type BO
Chart 330,3
Parameters and Connectors
88 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
d460
n_shear Zero Display: Shears are stationary Type BO
Chart 330,3
H461
S. ActPos_KCPos Source for the actual knife position to check whether the shears are at the knife
change position. Value 3413
Type I
Chart 330,5
H462
KCPos_Range Permissible deviation from the knife change position. Value 2.0
Type R
Chart 330,6
H463
KCPos_Hyst Hysteresis when checking whether the knife is at the knife change position. Value 1.0
Type R
Chart 330,7
d464
in Knife Change Pos Display: The knife is at the knife change position. Type BO
Chart 330,7
H465
S. Mark Puls Up Source for the counting pulse of the pass mark counter Value 0420
Type I
Chart 135,5
H466
S. Mark Puls Down Source for the down counting pulse of the pass mark counter Value 0000
Type I
Chart 135,5
H467
S. Mark Cnt Reset Source to delete the pass mark counter. Value 0434
Type I
Chart 135,5
H468
S. Mark Cnt Set Source to set the pass mark counter (setting value, refer to H469). Value 0000
Type I
Chart 135,5
H469
S. Mark Cnt SV Source for the setting value of the pass mark counter. Value 2000
Type I
Chart 135,5
H470
S. Mark Cnt LU Source for the upper limit of the pass mark counter. Value 2586
Type I
Chart 135,5
H471
S. Mark Cnt LL Source for the lower limit of the pass mark counter. Value 2000
Type I
Chart 135,5
H472
S. Setp_KCPos Source for the setpoint of the knife position to check whether the shears are in the
knife change position. Value 3109
Type I
Chart 330,5
H473
PosRG_Diag_Sel Activates a diagnostics function for the positioning block.
Only for internal use! Value 0
Type I
Chart 230,7
d474
Vsetp PosRG Output of the positioning unit: Reference (setpoint) speed for the knife (normalized) Type R
Chart 230,7
H475
S. PosRG Target1 Source for the 1st target position for positioning (this is connected to the start position
of the shears as standard) Value 3161
Type I
Chart 230,1
H476
S. PosRG Target2 Source for the 2nd target position for positioning (alternative goal) Value 3000
Type I
Chart 230,1
H477
S. PosRG TargetSel Source for the control signal to select between 1st and 2nd target position:
0: Target 1
1: Target 2
Value 0000
Type I
Chart 230,1
H478
Rounding-Off Rounding-off the speed for a positioning operation with the exception of the end
range (refer to DA1 in Fig.4-17). The value presents the acceleration change, and is
obtained as the 2nd derivative of the motor frequency.
Value 500.0
Type R
Chart 230,4
H479
Final Rounding Off Rounding-off the speed when positioning for the end range up to standstill (refer to
DA2 in Fig.4-17). The value represents the acceleration change, and is obtained as
the 2nd derivative of the motor frequency.
Value 100.0
Type R
Chart 230,4
H480
PosRG_Vmax Maximum mechanical motor frequency for positioning. If speed normalization is used
1.0, then the following must be valid:
PosRG_Vmax = max. motor frequency[Hz] / speed normalization
Value 1.0
Type R
Chart 230,7
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 89
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H481
PosRG_Amax Maximum mechanical motor acceleration in [1/s²] Value 150.0
Type R
Chart 230,3
H482
S. PosRG_Xnorm Source for the position normalization for the positioning block. The position
normalization is valid for the starting- and target position and for the calculated
reference position when positioning. Positioning requires the position in units
[revolutions]. Thus, the following is valid for the normalization:
Position normalization = position in [revolutions] / position(normalized)
Value 3050
Type I
Chart 230,1
H483
S. PosRG_Vnorm Source for the speed normalization for the positioning block. The speed normalization
is valid for the initial- and maximum speed and for the calculated reference speed
when positioning. Positioning requires the speed in units [revolutions/s]. Thus, the
following is valid for the normalization:
Speed normalization = speed in [revolutions/s] / speed (normalized)
Value 3400
Type I
Chart 230,1
H484
S. PosRG Startpos Source of the starting position for positioning (= actual knife position) in the
normalization selected with H482. Value 3414
Type I
Chart 230,1
H485
S. PosRG VStart Source of the initial speed (velocity) for positioning (= actual knife speed) in the
normalization selected with H483. Value 3412
Type I
Chart 230,1
H486
S. PosRG_set Source for the “Accept setting value when positioning“ function (this involves the
starting position, starting speed). As long as the start values are accepted, they are
passed on to the positioning which outputs them as reference values. If the setpoint
transfer takes several processing cycles, the acceleration is also determined from the
speed change. Positioning starts as soon as the setting function becomes inactive
(‘0’).
Value 1346
Type I
Chart 230,1
H487
KP PosRG Proportional gain for the position controller of the positioning function. Value 1.0
Type R
Chart 230,3
H488
Tn PosRG Integral action time for the position controller of the positioning function. Value 0.0 ms
Type SD
Unit ms
Chart 230,3
H489
S. PosRG_actPos Source for the actual position for the positioning function. Value 3414
Type I
Chart 230,1
H490
S. PosRG_PI enabl Source to enable the position controller when positioning. Value 1347
Type I
Chart 230,1
H491
S. PosRG_clear_I Source to delete the integral component of the position controller when positioning. Value 0
Type I
Chart 230,1
H492
S. PosRG_freeze_I Source to hold the integral component of the position controller when positioning. Value 0001
Type I
Chart 230,1
H493
Tfilt_X_PosRG Smoothing time constant for the knife drive speed setpoint. Value 4.8 ms
Type SD
Unit ms
Chart 230,5
H494
S. PosRG_PosSetp Source of the setpoint of the position controller for the positioning. Value 3486
Type BO
Chart 230,1
H495
S. PosRG_Vmax Source of the maximum speed for the positioning. Value 3480
Type
Chart 230,1
H496
PosRG_VLimit Limit value for the position controller output when positioning. (this corresponds to the
maximum, normalized knife speed). Value 1.2
Type R
Chart 230,6
H497
PosRG Acc_norm Normalization factor to convert the acceleration setpoint (in 1/s²) into the normalized
torque input for the drive converter (torque setpoint). The effective moment of inertia
Jtot and the reference torque Mref must be taken into account.
PosRG Acc_Norm = 1000 2π⋅Jtot /M
ref
Value 0.0
Type R
Chart 230,6
Parameters and Connectors
90 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H498
S. PosRG_VSetp Source for the precontrol of the position controller for positioning. In factory setting
connected to the speed setpoint output of the ramp generator. Value 3485
Type
Chart 230,4
d499
PosRG aktiv Status of the positioning setpoint generator:
0: Positioning inactive or completed
1: Positioning being processed
Type BO
Chart 230,5
H500 ... H515
S. ShearCTW1 Bit0 ...
S. ShearCTW1Bit15
Sources for the bits of theshears control word 1st assignment, refer to d536.
In the factory setting, all of the bits of the control word are connected with the 10th
process data from COMBOARD.
Value s. Chart
270
Type I
Chart 270,1
H516
Mask 1 LokMode Mask to select the bits of the shears control word 1, which the automation uses in the
Manual
mode (refer to H518). Value 16#FFFF
Type W
Chart 270,1
H517
Mask 1 AutoMode Mask to select the bits of the shears control word 1, which the automation uses in the
Automatic
mode (refer to H518). Value 16#FFFF
Type W
Chart 270,1
H518
Manual mode Toggles between
Automatic
and
Manual
. When changing-over to
Manual
, for special
activities, the functional scope may be restricted (e. g. for commissioning/start-up). Value 0
Type BO
Chart 270,2
H519
Simulation Changes-over to the simulation mode. For the simulation mode, another source is
selected for the shears control word 1 (e. g. fixed values). This means that, for
example, modes can be tested without the automation system.
Value 0
Type BO
Chart 270,5
H520 ... H535
S. ShearCTW2 Bit0 ...
S. ShearCTW2 Bit15
Sources for the bits of shears control word 2. Assignment, refer to d544. Value s. Chart
280
Type I
Chart 270,1
d536
Shear-CTW1 Shears control word 1 (essentially specifying the mode)
Bit0 Not used
Bit1 Continuous cut
Bit2 Sample cut
Bit3 Single cut
Bit4 Format setpoint valid
Bit5 Light barrier, start of the material web (for slow time sectors)
Bit6 Calibration mode
Bit7 Not used
Bit8 Approach the starting position
Bit9 Not used
Bit10 Enable cut program
Bit11 Crop cut
Bit12 End cut
Bit13 Not used
Bit14 Approach knife change position
Bit15 Option, special sample
Type W
Chart 270,5
H537
S. SCTW1_simul Source for the simulation value for shears control word 1. Value 2621
Type I
Chart 270,4
d539
SCTW1_PLC Shears control word 1 from the automation. Assignment, refer to d536. Type W
Chart 270,4
H540
Mask2 LocMode Mask to select the bits of control word 2, which the automation uses in the
Manual
mode (refer to H518). Value 16#FFFF
Type W
Chart 280,1
H541
Mask2 AutoMode Mask to select the bits of control word 2, which the automation uses in the
Automatic
mode (refer to H518). Value 16#FFFF
Type W
Chart 280,1
H542
S. SCTW2_simul Source for the simulation value for shears control word 2. Value 2623
Type I
Chart 280,4
d543
SCTW2_PLC Shears control word 2 from the automation. Assignment, refer to d544. Type W
Chart 280,4
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 91
6DD1903-0DB0 Edition 09.00
Parameter Description Data
d544
Shear-CTW2 Shears control word 2
Bit0 Not used
Bit1 External fault/alarm 1
Bit2 External fault/alarm 2
Bit3 Jogging 1
Bit4 Jogging 2
Bit5 Not used
Bit6 Not used
Bit7 No fast stop
Bit8 Not used
Bit9 Coarse reference
Bit10 Not used
Bit11 Not used
Bit12 Enable cutting operation
Bit13 Not used
Bit14 Not used
Bit15 Acknowledge fault
Type W
Chart 280,6
H547 ... H555
S. Shear Status B7 ...
S. Shear Status B 15
Sources for the freely-definable bits of the shears status word (refer to d017) Type I
Chart 520,1
H560
S. Number Of Sheets Source for the number of sheets to be cut for the cutting program (permissible range:
0 ... 32767). Value 2809
Type I
Chart 300,2
d561
Req. Cut Prog1 Status of the request for continuous cutting from the cutting program.
‘1’ request available. Type BO
Chart 300,4
d562
End Cut Prog1 Status, cutting program 1 completed.
‘1’ cutting program completed. Type BO
Chart 300,5
d563
Special sheet At the last cut of a cutting program, this is used to display as to whether it involves a
sheet with a different format. This control signal selects the format source for the
format reference (Chart 190, 3).
‘1 the last sheet is cut and a request for a special sample is
present.
Type BO
Chart 300,5
H564
S. Stop Cutting Source for an optional control signal to exit the continuous cutting mode. This mode
is self-latching, i. e., after the cut request has been withdrawn, a cut is still made.
This characteristic can bebypassed using the signal at H564.
Value 0560
Type I
Chart 300,3
d565
OM cont. Cut Status: Operating mode, continuous cut is active. Type BO
Chart 300,6
H566, H567
S. AND_CutStop_1
S. AND_CutStop_2
Sources of the AND logic gate to immediately stop continuous cutting. Type I
Chart 300,1
d568
OM Single Cut Status: Single cutting mode is active. Type BO
Chart 310,5
d570
OM Test Cut Status: Sample cut mode is active. Type BO
Chart 310,5
H572
S. Light OM EndCut Source of the signal which should be used as the material detection for the operation
mode “end cut”. Value 0555
Type I
Chart 260,3
d573
OM End Cut Status: End cut mode is active. Type BO
Chart 320,7
H574
S. Cut Pulse Delay Source of the signal which should be used as the cutting pulse for the cut counting
and cut fault error statistics. The pulse is extended to 32 ms, so that it can be used in
a slower sampling time.
Value 0168
Type I
Chart 520,2
d575
Special Sheet Size Status: Cutting with a special length. This control signal is used to select the format
source for the format controller. The first cut when cutting continuously is realized
with a special length, in order to synchronize the shears to the material, starting from
standstill.
Type BO
Chart 300,7
d576
Cutting active Status: One of the following modes is active:
Continuous cutting
,
single cut
,
sample
cut
or
end cut
.Type BO
Chart 320,4
H577
Counter Reset This is used to delete the cut counter status per parameter. Value 0
Type BO
Chart 520,7
Parameters and Connectors
92 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H578
S. Counter Set Source for the signal to delete the cut counter (set to 0). Value 0
Type I
Chart 520,5
H579
S. Cut Pulses Source for the pulses to increment the cut counter (cut pulses). Value 0554
Type I
Chart 520,5
H580
S. AcknEndofFault Source for the steady-state signal with the “Fault“ significance. The ‘1’
Þ
’0’ edge of
the signal generates a pulse (refer to H584 for the duration) to acknowledge the fault.
In the factory setting, it is connected to the “Fault bit“ of status word 1 of the basic
drive.
Value 0343
Type I
Chart 530,4
H581
S. Acknowledge_1 1st source for a pulse to acknowledge a fault. Value 0000
Type I
Chart 530,4
H582
S. Acknowledge_2 2nd source for a pulse to acknowledge a fault. In the factory setting, this is connected
to bit 7 of control word 1 of COMBOARD. Value 0847
Type I
Chart 530,4
H583
Delay End of Error Length of an automaticallygenerated acknowledgement pulse (refer to H580). Value 10 s
Type SD
Chart 530,5
d584
Acknowledge Status of the signal to acknowledge a fault message. Type BO
Chart 530,6
H585
S. Mark Quantity 1 Source for the number of pass marks before the first cut. Value 2001
Type I
Chart 135,1
H586
S. Mark Quantity 2 Source for the number of pass marks between two cuts. Value 2588
Type I
Chart 135,1
H587
S. Mark Select Source for the signal to select the pass mark number. Value 0448
Type I
Chart 135,1
H588
S. PM Format Source for the cut format to calculate the pass marks between two cuts. Value 3630
Type I
Chart 135,1
H589
S. PM_dX_Mark Source for the clearance of the pass marks (normalized). Value 3592
Type I
Chart 135,1
H590
S. Enable Prio1 Source of the signal to enable the operating modes. The signal enables the priority
logic for local- and cutting operating modes. Value 0666
Type I
Chart 290,1
d591
Request Local1 One of the following modes is requested:
Referencing
,
Jogging
or
Approach start
position
, from the automation. Type BO
Chart 290,6
H592
dX_Pass mark Distance between two pass marks. Value 1000 mm
Type R
Chart 60,6
H594
S. Hold OM local Source for the binary signal for delaying the local operating mode. Used to delay
jogging until the jogging speed ramp output is zero. Value 0537
Type B
Chart 290,3
d595
OM Start Pos. The
Approach start position
operating mode is active. Type BO
Chart 290,6
d596
OM KnifeChgPos The
Knife change position
operating mode is active. Type BO
Chart 290,6
H597
S. EnableJog Source of the signal for enabling jogging. In factory setting jogging is disabled while
any cutting mode is active. Value 0577
Type B
Chart 290,1
d598
OM local There is a request for a local operating mode. Type BO
Chart 290,7
d599
OM local2 One of the operating modes,
Referencing
or
Jogging
is active. Type BO
Chart 290,7
H600
S. Enable Prio2 Source of the signal to enable the cutting operating modes. The signal enables the
priority logic. Value 0001
Type I
Chart 290,1
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 93
6DD1903-0DB0 Edition 09.00
Parameter Description Data
d605
Enable Prio2 Enables the status of the priority logic for cutting operating modes. Type BO
Chart 290,4
H606
Saw Blade Width This value is added to the format setpoint in order to consider the width of the saw
blade. Value 0.0mm
Type R
Chart 190,1
H607
S.SawBladeWidth Source for an value which is added to the format setpoint (e.g. the saw blade width). Value 3606
Type I
Chart 190,2
H608
S. Limit Format Source for a boolean control bit to activate a dynamic format size limitation. If the
format is modified in automatic mode while the knife is in the starting position, this
limitation avoids abrupt changes of the position setpoint of the knife.
Value 0000
Type I
Chart 190,5
H610
S. Format DW high Source for the high word of a 32-bit format input. In the factory setting, this is
connected to PZD 7 from the basic drive. Value 2807
Type I
Chart 190,1
H611
S. Format DW low Source for the low word of a 32-bit format input. In the factory setting, this is
connected to PZD 6 from the basic drive. Value 2806
Type I
Chart 190,1
H612
Format DW Norm. Normalization for the 32-bit format input. It involves the resolution of the input value in
[mm]. Value 0.1 mm
Type R
Chart 190,3
d613
Format DW 32-bit format input after normalization. Example:
Input: 12345
Normalization: 0.1 mm
Þ
reference format: 1234.5 mm
Type R
Chart 190,3
H614
S. Format Word Source for the 16-bit format input. In the factory setting, this is connected to PZD 6
from the basic drive converter. Value 2806
Type I
Chart 190,1
H615
Format W Norm. Normalization for the 16-bit format input. It involves the resolution of the input in
[mm]. In the factory setting, 1 mm can specify formats up to 16383 mm. Value 1 mm
Type R
Chart 190,2
d616
Format Word 16-bit format input after normalization. Type R
Chart 190,3
H617
S. Format float Source for the format input as floating-point value. In the factory setting, this is
connected to a fixed value. Value 3664
Type I
Chart 190,4
d618
Format float Actual value of the floating-point format input. Type R
Chart 190,5
d619
S. Format Select Source of the control signal to select the format input source. If this signal is
connected to the automation, then it is possible to toggle between 5 fixed values in
operation.
Factory setting: Input via floating-point channel (H617).
Value 2001
Type I
Chart 190,6
d620
Format Request Actual format request in [mm] for continuous operation. Whether this format is
actuallycut, depends on the operating mode, the request of special formats (special
sample) and the limit H626, H627.
Type R
Unit mm
Chart 190,7
H621 ... H625
Fixformat 1 ....
Fixformat 5
Five fixed values for the format input, which can be used to select a multiplexer and
H619. Type R
Chart 190,4 - 6
H626
S. Special sheet Source for the special sample format. Value 3665
Chart 190,1
H627
Maximum Format Largest permissible cutting format. Value 100.0 m
Type R
Chart 190,3
H628
Minimum Format Smallest permissible cutting format. Value 0.6 m
Type R
Chart 190,3
d629
Format Setpoint Requested reference format after limiting and normalization (Xref_normalization) Type R
Chart 190,7
d630
Setpoint FC Reference format (normalized) for the format controller. In continuous operation
coincides with d629. Exception: 1st cut (changeover to the Long Format to
synchronize to the material web)
Type R
Chart 220,7
Parameters and Connectors
94 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H631, H632
S. AND3_1,
S. AND3_2
Two sources of the 3rd free AND logic gate. B0631 is the output. Type I
Chart 425,3
H633, H634
S. AND4_1,
S. AND4_2
Two sources of the 4th free AND logic gate. B0633 is the output. Type I
Chart 425,3
H640
S. Act. Pos. (Start) Source for the position actual value to check whether the knife is in the starting
position or is at a standstill there. Value 3414
Type I
Chart 340,2
H641
S. Start Position Source for the starting position. In the factory setting, this is connected to the starting
position of the format generator. This value is normalized, therefore H642, H643 and
the actual value must also be normalized quantities (source H640).
Value 3161
Type I
Chart 340,2
H642
Startpos Range Tolerance range for the starting position identification (normalized). Value 0.01
Type R
Chart 340,2
H643
Startpos_Hyst Hysteresis for the starting position identification (normalized). Value 0.003
Type R
Chart 340,3
d644
In Startposition Status: The knife is in the starting position. Type BO
Chart 340,4
H645
S. n_zero (Start) Source for the
Knife stationary
signal for the starting position evaluation. Value 0460
Type I
Chart 340,4
H646
DelayStartpos Minimum time that the knife must be in the starting position, before the
Knifeinthe
starting position
becomes
active
.Value 500 ms
Type SD
Chart 340,6
d647
Standing Startpos Status: Knife is stationary at the starting position, i. e. it stays there for a defined time
(H646). Type BO
Chart 340,7
H648
S. Pos. (CalcPos) Source for the position actual value, which should be evaluated to generate a
calculation pulse. Factory setting: Knife position. Value 3413
Type R
Chart 340,1
H649
Pos. CalcPuls Position value where a calculation pulse is generated. The calculation pulse must be
generated once per cut, and is used to progress the status for cutting operating
modes.
Value 0.75
Type R
Chart 340,1
H650
S. Enable Local Source of the inverter enable signals due to the request, local operating modes. Value 0591
Type I
Chart 360,1
H651
S. Enable_PLC Source of the inverter enable signal from the automation. Value 0843
Type I
Chart 360,1
H652
S. Enable Setp. Source of the setpoint enable. Value 0846
Type I
Chart 360,1
H653 ... H656
S. CU ready 1 ...
S. CU ready 4
4 sources to generate the
Inverter ready
signal. All of the 4 sources are ANDed. All
conditions which are not required, must be connected to a logical ‘1’ (source = 0001). Type I
Chart 360,1 - 3
H657
S. Enable Ramp Source for the control signal
Enable ramp-function generator
. Value 0844
Type I
Chart 360,1
H658
S. Start Ramp Source for the start signal
Start ramp-function generator
. Value 0845
Type I
Chart 360,1
H659
Enable DelayLoc Delay time, controller enable for local operation. This is used to maintain motor
magnetization when
Jogging
,
Referencing
or
Approach start position
.Value 10 s
Type SD
Chart 360,2
d660
Inverter ready Status of the drive converter readiness. Type BO
Chart 360,5
H661
S. optEnableCntrl Source for an optional controller enable. Using this signal, an additional condition can
be established to enable the control (closed-loop). Value 0001
Type I
Chart 360,5
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 95
6DD1903-0DB0 Edition 09.00
Parameter Description Data
d662
Enable Inverter Signal to enable the inverter. Type BO
Chart 360,5
d664
Enable Setpoint Signal to enable the setpoints for the inverter. Type BO
Chart 360,5
d666
Enable Controller Status of the general controller enable. Type BO
Chart 360,6
H667
S. EPC SetpEnable Source of the 1st condition to enable the position controller, assigned the general
controller enable. Value 0666
Type I
Chart 370,1
H668
S. EPC calibrated Source of the 2nd condition to enable the position controller, assigned the status
whether the shears are calibrated. Value 1310
Type I
Chart 370,1
H669
S. EPCOM BA_local Source of the 3rd condition to enable the position controller. This is assigned as
standard with the
No local mode
signal. Value 0600
Type I
Chart 370,1
H670
S. EPC option Source of the 4th condition to enable the position controller (optional). This is used for
linear systems to inhibit the position controller while positioning. Value 1346
Type I
Chart 370,1
d671
EnablePosControl Position controller enable status. Type BO
Chart 370,4
H672
S. Brake_CU_off Source of the 1st enable signal to control the motor brake. This is assigned status bit
OFF2 of the basic drive. Value 0344
Type I
Chart 370,1
H673
S. BrakeCUready Source of the 2nd enable signal to control the motor brake. This is assigned the signal
Converter ready
.Value 0660
Type I
Chart 370,1
H674
S. Quick stop Source of the 3rd enable signal to control the motor brake. This is assigned the signal
No fast stop
.Value 0345
Type I
Chart 370,1
H675
S. Brake_option Source of the optional 4th enable signal to control the motor brake. Value 0001
Type I
Chart 370,1
d676
Release Brake Status of the control signal to control the knife drive brake. Type BO
Chart 370,4
H678
T_Brake close Time until the brake has closed. The brake control maintains the setpoint enable for a
time, specified using H678, when withdrawing the CU operational readiness. Value 200 ms
Type SD
Chart 370,2
H679
T_Brake release Time until the brake has opened. The brake control delays the setpoint enable for a
time, specified using H679, after the CU operational readiness has been issued. Value 200 ms
Type SD
Chart 370,3
d680
Enable from Brake Setpoint enable from the brake control. This signal takes into account the times to
open and close the brake (H678, H679). Type BO
Chart 370,4
H690 ... H692
S. CB Fault 1 ...
S. CB Fault 3
Selects 3 fault/error sources to monitor the COMBOARD and the data transfer via
COMBOARD. Type I
Chart 470,1
H693
CB Fault Delay Delays a fault message from COMBOARD. Value 1000 ms
Chart 470,2
d694
CB Fault Fault status of the COMBOARD. Type BO
Chart 470,3
H695 ... H697
S. CU Fault 1 ...
S. CU Fault 3
Selects 3 fault/error sources to monitor the basic drive (CU) and data transfer from
CU. Type I
Chart 470,1
H698
CU Fault Delay Delays a fault message from the CU. Value 200 ms
Chart 470,2
d699
CU Fault Fault status of communications with the CU. Type BO
Chart 470,3
H700 ... H702
S. User Fault 1 ...
S. User Fault 3
Selects 3 fault/error sources to monitor operator control errors. The sources are
evaluated and signaled as user error 1. Type I
Chart 470,5
Parameters and Connectors
96 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H703
User Fault 1 Delay Delays an error message for user error 1. Value 1000 ms
Chart 470,7
d704
User Fault 1 Error status for user error 1. Type BO
Chart 470,7
d705
User Fault 2 Error status for user error 2. Type BO
Chart 470,7
H706
User Fault 2 Delay Delays an error message for user error 2. Value 1000 ms
Chart 470,7
H707 ... H709
S. User Fault 4 ...
S. User Fault 6
Selects 3 fault/error sources to monitor operator control errors. The sources are
evaluated and signaled as user error 2. Type I
Chart 470,5
H710
S. User Fault Enable Source for the signal to enable user error messages. Value 0342
Type I
Chart 470,5
H715
Shear Pos Min Smallest permissible knife position value. Value -20.0
Type R
Chart 480,1
H717
Shear Pos Max Largest permissible knife position value. Value 390.0
Type R
Chart 480,1
H718
Shear Pos Toler. Tolerance of the knife position before position errors can be generated. Value 10.0
Type
Chart 480,2
H719
S. EnShearPosErr Source of the signal for enabling the knife position errors and alarms. Value 0600
Type R
Chart 480,5
H721 ... H728
S. PZD1 CU ...
S. PZD8 CU
Sources for the 8 process data, which are sent to the basic drive. Type I
Chart 640,6
d731 ... d738
PZD1 to CU ...
PZD8 to CU
Actual process data to the basic drive. Type W
Chart 640,7
H740 ... H755
S. ControlW1 Bit0 ...
S. ControlW1 Bit15
Sources for the bits which are sent as control word 1 to the basic drive. Type I
Chart 630,1 - 2
H760 ... H775
S. ControlW2 Bit0 ...
S. ControlW2 Bit15
Sources for the bits which are sent as control word 2 to the basic drive. Type I
Chart 630,5 - 6
H776
S. Setpoint1A CU Source for the 1st setpoint for the CU (alternative A). The speed setpoint is entered in
the format mode here as standard. Value 3023
Type I
Chart 640,1
H777
S. Setpoint1B CU Source for the 1st setpoint for the CU (alternative B). The speed setpoint is entered in
the positioning mode here as standard. Value 3474
Type I
Chart 640,1
H778
S. Setp1_CU_sel Source for the signal to select setpoint1 at the CU (alternatives, refer to H776 and
H777). This means that the speed setpoint for format- and positioning mode is
changed-over as standard.
Value 1347
Type I
Chart 640,1
d779
Setpoint1 CU Actual setpoint 1 for the basic drive. Type R
Chart 640,3
H780
Setpoint1 CU Norm Normalization for setpoint1 at the CU. This is the floating-point value, which is sent
as 100% to the basic drive. Value 1.0
Type R
Chart 640,4
d781
Setpoint1 CU N2 Setpoint1 at the CU after normalization as N2 type (16384 = 100%). Type I
Chart 640,5
H782
S. Setpoint2A CU Source for the 2nd setpoint for the CU (alternative A). The torque setpoint is entered
in the format mode here as standard. Value 3025
Type I
Chart 640,1
H783
S.Setpoint2B CU Source for the 2nd setpoint for the CU (alternative B). The torque setpoint is entered
in the positioning mode here as standard. Value 3498
Type I
Chart 640,1
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 97
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H784
S. Setp2_CU_sel Source for the signal to select setpoint1 at the CU (alternatives, refer to H782 and
H783). This means that the torque setpoint for format- and positioning modes are
changed-over as standard.
Value 1347
Type I
Chart 640,1
d785
Setpoint2 CU Actual setpoint 2 for the basic drive. Type R
Chart 640,3
H786
Setpoint2 CU Norm Normalization for setpoint2 at the CU. This is the floating-point value, which is
transferred as 100% at the basic drive. Value 1.0
Type R
Chart 640,4
d787
Setpoint2 CU N2 Setpoint2 at the CU after normalization as N2 type (16384 = 100%). Type I
Chart 640,5
H788
S. Setpoint3 CU Source for the 3rd setpoint at the basic drive. Value 3490
Type I
Chart 640,1
d789
Setpoint3 CU Setpoint3 at the CU after normalization as N2 type (16384 = 100%). Type I
Chart 640,3
H790
Setpoint3 CU Norm Normalization for setpoint3 at the CU. This is the floating-point value, which is
transferred as 100% at the basic drive. Value 1.0
Type R
Chart 640,2
H791
S. Setpoint4 CU Source for the 4th setpoint at the basic drive. Value 3000
Type I
Chart 640,1
d792
Setpoint4 CU Setpoint4 at the CU after normalization as N2 type (16384 = 100%). Type I
Chart 640,3
H793
Setpoint4 CU Norm Normalization for setpoint4 at the CU. This is the floating-point value, which is
transferred as 100% at the basic drive. Value 1.0
Type R
Chart 640,2
H794
S. Setpoint5 CU Source for the 5th setpoint at the basic drive. This setpoint is transferred as 32-bit
value at the CU. Value 3000
Type I
Chart 640,1
d795
Setpoint5highCU High word of the 32-bit setpoint at the CU (after normalization). Type W
Chart 640,4
d796
Setpoint5 low CU Low word of the 32-bit setpoint at the CU (after normalization). Type W
Chart 640,4
H797
Setpoint5 CU Norm Normalization for the setpoint at the CU. This is the floating-point value, which is
transferred as 100% (32 bit) at the basic drive. Value 1.0
Type R
Chart 640,2
d801 ... d810
PZD1 CB inp ...
PZD10 CB inp
The 10 process data which are received via COMBOARD. Type W
Chart 670,2
H811
S. DW1 low CB Source for the low word of a 32-bit process data to convert to REAL (floating point).
Default:
PZD7 from CB
Value 2807
Type I
Chart 670,4
H812
S.DW1highCB Source for the high word of a 32-bit process data to convert to REAL (floating point).
Default:
PZD8 from CB
Value 2808
Type I
Chart 670,4
H813
CB DW1 Norm Normalization factor for the double word 1 (DW1) from COMBOARD. Calculation
rule:
CB setpoint DW1 = H813 process data(32 bit) / 16#40000000
Value 1.0
Type R
Chart 670,6
d814
CB Setpoint DW1 1st double word setpoint from COMBOARD as floating-point quantity. Type R
Chart 670,7
H816
S. Setpoint1 CB 1st source to convert a 16-bit process data to REAL (floating point). Default:
PZD2
from CB
Value 2802
Type I
Chart 670,5
H817
CB Setpoint1 Norm Normalization factor for the 1st setpoint from COMBOARD. Calculation rule:
CB setpoint1 = H817 process data(16 bit) / 16384
Value 1.0
Type R
Chart 610,6
d818
CB Setpoint1 1st setpoint from COMBOARD as floating-point quantity Type R
Chart 610,7
Parameters and Connectors
98 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H819
S. Setpoint2 CB 2nd source to convert a 16-bit process data to REAL (floating point). Default:
PZD3
from CB
Value 2803
Type I
Chart 670,5
H820
CB Setpoint2 Norm Normalization factor for the 2nd setpoint from COMBOARD. Calculation rule:
CB setpoint2 = H817 process data(16 bit) / 16384
Value 1.0
Type R
Chart 610,6
d821
CB Setpoint2 2nd setpoint from COMBOARD as floating-point quantity Type R
Chart 610,7
H822
S. Setpoint3 CB 3rd source to convert a 16-bit process data to REAL (floating point). Default:
PZD7
from CB
Value 2807
Type I
Chart 670,5
H823
CB Setpoint3 Norm Normalization factor for the 3rd setpoint from COMBOARD. Calculation rule:
CB setpoint3 = H817 process data(16 bit) / 16384
Value 1.0
Type R
Chart 610,6
d824
CB Setpoint3 3rd setpoint from COMBOARD as floating-point quantity Type R
Chart 610,7
H825
S. ActValue1 CB Source of the 1st actual value, which is sent via the COMBOARD. Factory setting:
Material velocity. Value 3435
Type I
Chart 700,1
d826
ActValue1 CB 1st actual value for the COMBOARD after normalization. Type I
Chart 700,3
H827
ActValue1 CB Norm Normalization for the 1st actual value at the COMBOARD. Conversion:
Actual value1 CB
= 16384 value_of the _source(H825) / H827
Value 1.0
Type R
Chart 700,2
H828
S. ActValue2 CB Source of the 2nd actual value, which is sent via the COMBOARD. Factory setting:
Knife speed. Value 3411
Type I
Chart 700,1
d829
ActValue2 CB 2nd actual value for the COMBOARD after normalization. Type I
Chart 700,3
H830
ActValue2 CB Norm Normalzation for the 2nd actual value at the COMBOARD. Conversion:
Actual value2 CB
= 16384 value_of the_source(H828) / H830
Value 1.0
Type R
Chart 700,2
H831
S. ActValue3 CB Source of the 3rd actual value, which is sent via the COMBOARD. Factory setting:
Material velocity. Value 3445
Type I
Chart 700,1
d832
ActValue3 CB 3rd actual value for the COMBOARD after normalization. Type I
Chart 700,3
H833
ActValue3 CB Norm Normalization for the 3rd actual value at the COMBOARD. Conversion:
Actual value3 CB
= 16384 value_of the_source(H831) / H833
Value 1.0
Type R
Chart 700,2
H834
S. ActValue4 CB Source of the 4th actual value, which is sent via the COMBOARD. Value 3000
Type I
Chart 700,1
d835
ActValue4 CB 4th actual value for the COMBOARD after normalization. Type I
Chart 700,3
H836
ActValue4 CB Norm Normalization for the 4th actual value at the COMBOARD. Conversion:
Actual valuet4 CB
= 16384 value_of the _source(H834) / H836
Value 1.0
Type R
Chart 700,2
H837
S. ActValue5 CB Source for the 5th actual value, which is sent via the COMBOARD. The value can
either be sent as 16-bit- or 32-bit process data. Value 3000
Type I
Chart 700,1
d838
ActValue5highCB High word of the 5th actual value for the COMBOARD after normalization. This value
should be transferred if only16-bit PZD are used. Type I
Chart 700,3
d839
ActValue5 low CB Low word of the 5th actual value for the COMBOARD after normalization. Type I
Chart 700,3
H840
ActValue5 CB Norm Normalization for the 5th actual value at the COMBOARD. Conversion:
Actual value5 CB
= 16#40000000 value_of the _source(H837) / H879
Value 1.0
Type R
Chart 700,2
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 99
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H841
S. CB_Control W1 Source for the CB control word 1. In the factory setting, this is connected to the 1st
PZD from COMBOARD. Value 2801
Type I
Chart 680,1
H842
S.CB CTW Simulation Source of the simulated control word1 from CB. Value 2621
Type I
Chart 680,1
d843
CB CTW1 CB control word1. Control word 1 at the basic drive is formed from this. Type W
Chart 680,2
H844
S. CB Shear CTW Source for the shears control word from COMBOARD. This is connected to the 10th
PZD from COMBOARD in the factory setting. Value 2810
Type I
Chart 680,5
d845
CB Shear CTW Shears control word from COMBOARD. This is used to form shears control words 1
and 2 (d539, d543). Type W
Chart 680,5
d846
StatusWord1CB Status word 1. Intended for transfer as 1st PZD from COMBOARD. Type W
Chart 690,4
d847
StatusWord2CB Status word 2. Intended for transfer as 4th PZD from COMBOARD. Type W
Chart 690,7
H901 ... H910
S. PZD1 CB ...
S. PZD10 CB
Sources for the 10 process data, which are output via COMBOARD. Type I
Chart 700,5
d911 ... d920
PZD1 CB out ...
PZD10 CB out
Actual values of the 10 process data output via COMBOARD. Type W
Chart 700,6
d921
CB Receive init Status of the initialization data receive from COMBOARD.
1: Receive software and hardware were able to be initialized. Type BO
Chart 660,3
d922
CB Transmit init Status of the initialization of data output via COMBOARD.
1: Output software and hardware were able to be initialized. Type BO
Chart 660,3
H923
Drive code Defines the plant/system ID (d003). Value 0
Type DI
Chart 50,2
d924
Timeout CB Status of the time monitoring from COMBOARD. The monitoring times can be
specified using H926 and H929.
1: Timeout
Type BO
Chart 660,6
H925
CB Enable Enables communications with COMBOARD. Value 1
Type BO
Chart 660,1
H926
CB tmax Run Time limiting for cyclic operation. If no valid messages are received within this time,
timeout is signaled. Value 100 ms
Type SD
Chart 660,1
d927
CB Receive Status Status of the receive unit of the COMBOARD. Numerical schematic, refer to Lit. /3/
and CFC Online Help.
Caution: The status word represents the coding of an operating status. It cannot be
interpreted bitwise. The value does not have to be a constant 0, even in regular
operation (e. g. 16#6003, if new data are not availableat each cycle).
Type W
Chart 660,3
H928
Mask CB Status Mask to suppress certain bits of the CB receive status word. Setting: Interrupt
communications (remove cable) and evaluate d927. Value 16#FFFF
Type W
Chart 660,4
H929
tmax CB PowerON If no data are received via COMBOARD within this time after the power supply has
been switched-in, timeout is signaled. Value 20 s
Type SD
Chart 660,5
H930
S. Setpoint4 CB 4th source to convert a 16-bit process data into REAL (floating point). Default:
PZD5
from CB
Value 2805
Type I
Chart 670,5
H931
CB Setpoint4 Norm Normalization factor for the 4th setpoint from COMBOARD. Calculation rule:
CB setpoint4 = H831 process data(16 bit) / 16384
Value 1.0
Type R
Chart 610,6
d932
CB Setpoint4 4th setpoint from COMBOARD as floating-point quantity Type R
Chart 610,7
Parameters and Connectors
100 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
H933 ...H936
S. Logic5_I1 ...
S. Logic5_I4
Sources for the digital input signals of the 5th parameterizable logic. Type
Chart 421,1
H937 ...H938
Logic5_MS1 ...
Logic5_MS2
Masks for 4 setting functions of the 5th parameterizable logic (refer to Chart 400). Type
Chart 421,2
H939
Logic_MR1 Mask for a reset function of the 5th parameterizable logic (evaluation, refer to Chart
400) Type
Chart 421,2
H940
Logic_MR Mask for a reset function of the 5th parameterizable logic (evaluation, refer to Chart
400) Type
Chart 421,2
H941 ...H944
S. Logic6_I1 ...
S. Logic6_I4
Sources for the digital input signals of the 6th parameterizable logic. Type
Chart 421,4
H945 ...H946
Logic_MS1 ...
Logic_MS2
Masks for 4 setting functions of the 6th parameterizable logic (refer to Chart 400). Type
Chart 421,5
H947
Logic6_MR1 Mask for a reset function of the 6th parameterizable logic (evaluation, refer to Chart
400) Type
Chart 421,5
H948
Logic6_MR Mask for a reset function of the 6th parameterizable logic (evaluation, refer to Chart
400) Type
Chart 421,5
H950 ... H965
S. Fault Bit 0 ...
S. Fault Bit 15
Source of the error bits to display faults and alarms.
Fault sources in the factory setting:
Bit 0 0694 Communications via CB
Bit 1 0699 Communications to the basic drive
Bit 2 0000 Not assigned
Bit 3 0704 User error 1
Bit 4 0705 User error 2
Bit 5 0682 Knife position lower than the lower limit value
Bit 6 0103 Overspeed, knife (positive)
Bit 7 0104 Overspeed, knife (negative)
Bit 8 0116 Knife drive blocked
Bit 9 0125 Pulse encoder error (speed actual value isn’t plausible)
Bit 10 0521 External fault 1
Bit 11 0522 External fault 2
Bit 12 0684 Knife position is greater than the upper limit value
Bit 13 0443 Material position is less than the lower limit value
Bit 14 0157 Error, absolute value encoder (TR encoder)
Bit 15 0000 Not assigned
Type I
Chart 530,1 - 2
H966
Fault Mask Mask to enable fault trips. The mask is ANDed with the fault bits (d968, H950ff). Value 16#33E2
Type W
Chart 530,4
H967
Alarm Mask Mask to enable alarm messages. The mask is ANDed with the fault bits (d968,
H950ff). Value 16#FFFF
Type W
Chart 530,4
d968
Fault Bit Status of the fault/error sources, selected using parameters H950 ... H965. Type W
Chart 530,4
H969
Fault Start Delay Delays when signaling faults and alarms after the module has been powered-up. The
fault bits are ignored during this time. Value 10 s
Type SD
Chart 530,4
H970
System Error Mask Mask to suppress system fault bits. Assignment bit0 .. bit15:
Bit 3 Task administration
Bit 5 Hardware fault
Bit 6 Communications error
Bit 10 User error
Value 16#FFFF
Type W
Chart 510,2
d971
CU Receive init Status of the receive channel from the basic drive
1: Receive channel was correctly initialized Type BO
Chart 600,4
d972
CU Transmit init Status of the send channel to the basic drive
1: Send channel was correctly initialized Type BO
Chart 600,4
d973
CU Timeout Status of the process data receive from the basic drive
1: No data were received for longer than 100 ms Type BO
Chart 600,4
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 101
6DD1903-0DB0 Edition 09.00
Parameter Description Data
d974
CU in Operation Status of the basic drive monitoring
1: Basic drive available and operational Type BO
Chart 600,4
H975
S. Disable Resynch Source of the signal to inhibit synchronization of the T400 from the basic drive. The
function is only effective for the cross-cutter version. Value 0666
Type I
Chart 600,2
H976
Resynchr Delay Delay with the synchronization of the T400 with the basic drive. This synchronization
is established H976 ms after the basic drive has been identified (only for cross-
cutters).
Value 1000 ms
Type SD
Chart 600,4
H977
T Resynchr T400 Period of the clock signal, which can be used to re-synchronize the T400 with the
basic drive. This function is optional, as a single synchronization after power-on for
the drive converters intended, is sufficient.
Value 10 s
Type SD
Chart 600,3
H978
Fan_off_Delay Delay to power-down the fan. Value 30 s
Type SD
Chart 510,4
H980
TechBoardParaType Defines the data transfer format for floating-point values to the technology boards.
0 As 32-bit integer (standard)
1 As floating-point value (reserved for special applications)
Value 0
Type BO
Chart 50,2
H981
COMBOARD
ParaType
Defines the data transfer format for floating-point values via the COMBOARD
channel.
0 As 32-bit integer (standard)
1 As floating-point value (reserved for special applications)
Value 0
Type BO
Chart 50,2
H982
T400 Baseboard This means that the T400 can be used for special applications as baseboard (if
required with another technology board). In this case, all of the parameter numbers
shift by 1000 downwards (P123 is obtained from H123 etc.).
Value 0
Type BO
Chart 50,2
H984
Key EEPROM Password to establish the factory settings. If this parameter is set to 165, then all of
the parameters are set to the status when the equipment was originally supplied.
CAUTION: This procedure cannot be undone.
Value 0
Type I
Chart 50,2
d985
Status EEPROM Change status of the standard configured software:
0 Parameters were changed
1 Factory settings
Type BO
Chart 50,4
d986 ... d990
CPU load T1 ...
CPU load T5
Computer utilization sorted according to time sectors. 1.0 means 100% utilization.
The utilization of fast time sectors is included in the utilization of slow time sectors. Type R
Chart 540,2
d998, d999
SIMADYN D
SIMOVIS SW ID
Reserved for automatic identification of a SIMADYN D module by SIMOVIS. Type I
Chart 50,4
L000 ... L015
S. Status1CB Bit0 ...
S. Status1CB B15
Sources for the 16 bits, which are transferred to the COMBOARD as status word1. Type I
Chart 690,1 - 2
L020 ... L035
S. Status2CB Bit0 ...
S. Status2CB B15
Sources for the 16 bits, which are transferred to the COMBOARD as status word2. Type I
Chart 690,4 - 5
L036
Cam Reset Mode L036 = 0: Cams may be shifted even passing position step (saw-toth function of the
position with rotary axis)
L036 = 1: Cams will be automatically reseted when the input position steps over the
end of the saw-tooth fucntion.
Value 0
Type BO
Chart 380,6
L037
Cam deltaPos. Max If the cam controller actual position value change is more than L037 and is contrary
to the actual sense of rotation, this is interpreted as position setting operation rather
than a reversal.
Value 100.0
Type R
Chart 380,7
L038, L039
S. Cam_X+
S. Cam_X-
Two sources for subtracting an offset value for the input position of the cam
controller. Type I
Chart 380,1
L040
S. ActpPos. Cam Source for the position actual value for the cam controller Value 3038
Type I
Chart 380,3
L041
S. Speed Cam Source for the speed/velocity actual value to the position actual value of the cam
controller. Value 3411
Type I
Chart 380,3
Parameters and Connectors
102 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L042
S. Speed Norm. Cam Source for the normalization of L041. The normalization is given by:
( change in the position L040 ) / ( time for the position change )
for a velocity 1.0 (at L041)
Value 3040
Type I
Chart 380,3
L043
S. Cam Enable pos. Enable the cams for position velocities. Value 0001
Type BO
Chart 380,5
L044
S. Cam enable neg. Enable the cams for negative velocities. Value 0
Type BO
Chart 380,5
L045
Cam Pos. Max Maximum position actual value of the cam controller (for drum-type shears, e.g.
360°). If the position overflow processing is required; e. g. if the cam is shifted with
respect to time, and therefore enters the range of the discontinuous position location.
Value 360.0
Type R
Chart 380,7
L046
Cam Pos. Min Minimum position actual value of the cam controller (for drum-type shears, e.g. 0°;
refer to L045). Value 0.0
Type R
Chart 380,8
L047 ... L049
Cam1_XA,
Cam1_XB,
Cam1_DT
Position and time offset of the 1st cam:
XA: Switch-on threshold (for a negative speed switch-off threshold)
XB: Shutdown threshold (for a negative speed switch-on threshold)
DT: Time offset in ms; positive values
è
premature switch-on
negative values
è
late switch-on
Type R
Chart 380,1 2
L050 ... L052
Cam2_XA,
Cam2_XB,
Cam2_DT
Position and time offset of the 2nd cam; refer to L047 Type R
Chart 380,3 4
L053... L055
Cam3_XA,
Cam3_XB,
Cam3_DT
Position and time offset of the 3rd cam; refer to L047 Type R
Chart 380,5 6
L056 ... L058
Cam4_XA,
Cam4_XB,
Cam4_DT
Position and time offset of the 4th cam; refer to L047 Type R
Chart 380,7 - 8
L060
Peer Baud Rate
Initialization par.
Baud rate of the peer-to-peer interface.
Permissible values: 9600, 19200, 38400, 93750, 187500 Value 19200
Type DI
Chart 780,1
c061 ... c065
PZD1 Peer ...
PZD5 Peer
5 process data from the peer-to-peer interface. Type W
Chart 790,2
L066
Peer Enable
Initialization par.
Enables the peer-to-peer interface. Enabling will initiate an error state and becomes
valid after the next power on.
Do not enable while cutting is active!
Value 0
Type BO
Chart 780,1
L067
tmax Peer Run Time limit to receive data via the peer-to-peer interface in cyclic operation. Valid data
must be received within this time. Value 100 ms
Type SD
Chart 780,1
C068
Peer Receive init Status: Data receive via peer-to-peer interface was able to be correctly initialized. Type BO
Chart 780,4
C069
Peer Receive Status Status of the receive condition of the peer-to-peer interface
(refer to the SIMADYN D communication error messages /3/ and CFC online help).
Caution: The status word is a coding of the operating status. It cannot be interpreted
bitwise. The value does not have to be constant 0 in regular operation (e. g. 16#6003
if new data are not available in each cycle).
Type W
Chart 780,4
C070
Peer Transmit init Status: Sending via the peer-to-peer interface was able to be correctly initialized. Type BO
Chart 780,4
L071 ... L075
S. Peer PZD1...
S. Peer PZD5
Source for 5 process data for output at the peer-to-peer interface. (Setting of L085,
observe L086!) Type I
Chart 790,5
L076
Mask Peer Status Mask to suppress specific bits of the peer receive status word. Setting: Interrupt
communications (withdraw the cable) and evaluate c894. Value 16#FFFF
Type W
Chart 780,4
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 103
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L077
tmax PeerPowerON A timeout is signaled if, after the power supply has been powered-up, no data are
received from the peer-to-peer interface. Value 20 s
Type SD
Chart 780,6
c078
Peer Timeout Status of the time monitoring of the peer-to-peer interface. The monitoring times can
be specified using L892 and L896.
1: Timeout
Type BO
Chart 780,7
L080
S. Peer DW1 Source for the double word, which should be output at the peer-to-peer interface as
PZD2 and PZD3. (Set L085 to 1!) Value 5000
Type I
Chart 790,5
L081
S. Peer DW2 Source for the double word, which should be output at the peer-to-peer interface as
PZD4 and PZD5. (Set L086 to 1!) Value 5000
Type BO
Chart 790,5
L083
S. Peer Float1 Source for the floating-point value, which should be output at the peer-to-peer
interface as PZD2 and PZD3. (Set L085 to 2!) Value 3000
Type BO
Chart 790,5
L084
S. Peer Float2 Source for the floating-point value, which should be output at the peer-to-peer
interface as PZD4 and PZD5. (Set L086 to 2!) Value 3000
Type BO
Chart 790,5
L085
Peer Sendtype1 Selects the data for output as PZD1 and PZD2 of the peer-to-peer interface:
0: Two 16-bit words according to L072 and L073
1: Double word according to L080
2: Floating-point value according to L083
Value 0
Type BO
Chart 790,6
L086
Peer Sendtype2 Selects the data for output as PZD3 and PZD4 of the peer-to-peer interface:
0: Two 16-bit words according to L074 and L075
1: Double word according to L081
2: Floating-point value according to L084
Value 0
Type BO
Chart 790,6
c090
Enable TR encoder Status of the enable for TR encoder processing. Type BO
Chart 50,6
c091
Enable T400 AbsEnc Status of the enable for the absolute value encoder evaluation on T400. Type BO
Chart 50,7
c092
En.CU AbsEnc Status of the enable for the absolute value encoder evaluation from the basic drive. Type BO
Chart 50,7
c093
Enable AbsEnc Status, absolute value encoder available. Type BO
Chart 50,6
L094
SynchronToleranc Maximum deviation between shear speed and material speed which is still regarded
as synchronous operation (relation to reference speed). Value 1 %
Type R
Chart 480,6
L100
S. Diagn_n_Shear Source for the speed signal, which is used for overspeed monitoring. Value 3411
Type I
Chart 480,1
L101
n_Shear Max Maximum permissible knife speed (normalized to the reference speed). Value 1.2
Type R
Chart 480,3
L102
n_Shear Hyst Hysteresis of the knife speed monitoring (normalized to the reference speed). Value 0.05
Type R
Chart 480,3
c103
Overspeed pos Status display: Overspeed positive, knife Type BO
Chart 480,4
c104
Overspeed neg Status display: Overspeed negative, knife Type BO
Chart 480,4
L105
S. Blocking speed Source for the speed signal, which is used as actual speed for the knife blockage
protection monitoring. Value 3411
Type I
Chart 490,1
L106
speed BlockLim As long as the knife speed is less than this value, the knife could be blocked. Value 0.005
Type R
Chart 490,2
L108
S. Blocking nsetp Source for the speed signal, which is to be used as reference speed for the knife
blockage protection monitoring. Value 3023
Type I
Chart 490,1
Parameters and Connectors
104 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L110
n_setp BlockLim Limit value of the reference speed, above which the blockage protection should be
activated. Value 0.01
Type R
Chart 490,4
L112
S. Blocking act Torque Source for the actual value of the torque for the knife blockage protection monitoring. Value 3325
Type I
Chart 490,1
L113
act Torque BlockLim Limit value of the torque actual value, above which the blockage protection should be
activated. Value 0.8
Type R
Chart 490,4
L115
Blocking Delay Delay time with which the Knife blocked“ signal should be transferred. Value 1000 ms
Type SD
Chart 490,6
c116
Shear Blocking Status of the blockage protection monitoring:
1: Knife is blocked Type BO
Chart 490,7
c117
Encoder Fault User This status signal indicates an error, pulse encoder configuring (refer to d412, d434). Type BO
Chart 500,4
L118
S. act Speed_CU Source for the actual value of the knife speed from the basic drive for checking the
plausibility of the pulse encoder parameterization. Value 3319
Type I
Chart 500,1
L119
S. act Speed_T400 Source for the actual value of the knife speed on the T400 for checking the
plausibility of the pulse encoder parameterization. Value 3411
Type I
Chart 500,1
c120
Speed Error Difference between the knife speed measured on the T400 and in the basic drive.
Thedifferencemustbe0 if the pulse encoder was correctly parameterized and
speed normalization.
Type R
Chart 500,3
L121
Limit Delta_n Maximum permissible speed deviation when checking the plausibility of the pulse
encoder parameterization. Value 0.1
Type R
Chart 500,3
c122
Delta_n > Limit Result of the comparison between the knife speed measured values on the T400 and
in the basic drive.
1: Measured values deviate out of range
Type BO
Chart 500,5
L123
S. Enable Delta_n Source for the enable, checking the plausibility of the knife speed.
Factory setting: The check is inhibited while the absolute position of a TR encoder is
read-in.
Value 0150
Type I
Chart 500,4
L124
Delta_n Delay Delay time with which an error, identified bythe knife speed plausibility check, is
transferred. Value 10 s
Type SD
Chart 500,6
c125
Delta_n Fault Error status of the knife speed plausibility check.
1: Error has been identified Type BO
Chart 500,7
L139
S. TR Acknowledge Source for the signal to acknowledge a TR encoder fault/error. Value 0584
Type I
Chart 165,4
L140
S.TR Load Output Source for the load output of the TR encoder. Using this signal, the encoder signals
that the absolute position is being transferred. Value 0000
Type I
Chart 165,1
L141
S. TR Start Load Source of the control signal which is used to start the load operation (reading-in the
absolute position) of a TR encoder. Value 0000
Type I
Chart 165,1
L142
S. TR CU disabled Source for the enable condition to read-in the absolute position of a TR encoder.
Factory setting: Data can only be read-in with the inverter inhibited. Value 0663
Type I
Chart 165,1
L143
S. TR n_zero Source of the knife standstill identification for the error evaluation of the TR encoder.
While the absolute position is being read-in, a speed which differs from zero must be
measured (TR encoders generate pulse trains on the incremental encoder tracks).
Value 0460
Type I
Chart 165,1
L144
S. TR Enable Source for the general enable of the TR encoder. Value 0090
Type I
Chart 165,3
c145
TR Load request Status of the request to transfer the absolute position of a TR encoder. The signal
remains at ‘1’ throughout the complete load operation. Type BO
Chart 165,5
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 105
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L146
TR End Delay After the TR encoder has signaled the start of the load operation, the load request is
withdrawn, delayed by L146 ms. Value 120 ms
Type SD
Chart 165,6
c147
TR complete The signal indicates whether the absolute position of a TR encoder was read-in.
1: Position was read-in. Type BO
Chart 165,2
c148
TR Load input Status of the request to transfer the absolute position of a TR encoder. The signal is
used to control the encoder. It is withdrawn, delayed after the load operation has
started (L146).
Type BO
Chart 165,7
c149
TR Loading active Displays an active load operation. Type BO
Chart 165,7
L150
TR StartErrDelay Timeout monitoring time for the start of the TR encoder load operation. The encoder
must start the load operation within this time. Value 1.0 s
Type SD
Chart 165,3
L151
TR Timeout Delay Timeout monitoring time for the duration of the TR encoder load operation. The load
operation must have been completed within this time. Value 20.0 s
Type SD
Chart 165,3
L152
TR n_Error Delay Time where a Frequency = 0 error must be available for a TR encoder load
operation, before the error is initiated. It is expected that a speed not equal to zero will
be obtained due to the load operation.
Value 1.0 s
Type SD
Chart 165,3
L153
TR Start Delay Delay time when automatically starting the load operation for TR encoders. Factory
setting: After the system is switched-in, the load operation is initiated with a L153 ms
delay.
Value 1000 ms
Type SD
Chart 165,4
c154
TR Start error Indicates that the TR encoder has not started the load operation within the requested
time (L150). Type BO
Chart 165,5
c155
TR Timeout Indicates that the load operation of the TR encoder takes longer than is permissible
(L151). Type BO
Chart 165,5
c156
TR Frequency Zero Indicates that during the load operation of the TR encoder, no pulses nor incremental
encoder tracks were identified. Type BO
Chart 165,5
c157
TR Error Group error message for the TR encoder Type BO
Chart 165,6
L158
AbsEncoder Type Selecting the absolute value encoder type:
0: No absolute value encoder used
1: TR encoder
2: SSI- or EnDat encoder connected to the T400 terminals
3: Absolute value encoder connected to the basic drive
Value 0
Chart 50,5
L160
AENC resolution Resolution of the absolute value encoder (steps per revolution)
(SSI, EnDat connected to T400) Value 8192
Type
Chart 150,2
L161
AENC Number Turns Number of revolutions of a multi-turn encoder (0 signifies single-turn encoder).
(SSI, EnDat connected to T400) Value 0
Type DI
Chart 150,20
L162
AENC Zero Bits Number of fill bits, which are transferred by an SSI protocol before the position value.
(SSI, EnDat connected to T400) Value 0
Type I
Chart 150,3
L163
AENC PosAlarmbit Position of the alarm bit in the SSI protocol (SSI connected to T400)
0: No alarm bit available Value 0
Type I
Chart 150,3
L164
AENC Frequency Selects the clock frequency (and period) of the transfer clock cycle for the absolute
value encoder (SSI, EnDat connected to T400).
0 100 kHz ( 10 µs)
1 500 kHz ( 2 µs)
21MHz (1µs)
32MHz (0.5µs)
Value 0
Type I
Chart 150,3
L165
AENC Encoder Type Selects the absolute value encoder type (SSI, EnDat connected to T400).
0 SSI rotary encoder
1 SSI length measuring system
2 EnDat rotary encoder
3 EnDat length measuring system
4 SSI length measuring system with range correction
5 EnDat length measuring system with range correction
Value 2
Type I
Chart 150,4
Parameters and Connectors
106 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L166
AENC Data Code Codes the measured value from absolute value encoders (SSI, EnDat connected to
T400).
0Binary
1Graycode
2 Gray excess code
Value 0
Type I
Chart 150,4
L167
AENC Parity Enables the parity monitoring in the SSI protocol of an absolute value encoder.
(for SSI, EnDat connected to T400). Value 0
Type BO
Chart 150,5
L168
AENC i_Gearbox Ratio of the gearbox between the absolute value encoder and knife. The value must
be 1.0 to clearly determine knife positions.
(for SSI, EnDat connected to T400).
Value 1.0
Type R
Chart 150,4
L169
AENC Pos. Norm Position normalization of the absolute value encoder. The position value is calculated
in [revolutions] and output, multiplied by L169.
(for SSI, EnDat connected to T400).
Value 1.0
Type R
Chart 150,2
L170
AENC n_Norm Speed normalization of the absolute value encoder. The value can be selected as
required, as the absolute value encoder speed cannot be used, as standard for other
functions.
(for SSI, EnDat connected to T400).
Value 1.0
Type R
Chart 150,3
L171
AENC n_max Maximum permissible speed value (normalization revolutions/minute). If the knife
speed exceeds this limit, bit1 of the error code (c177) is set.
(for SSI, EnDat connected to T400).
Value 6000 1/min
Type R
Chart 150,4
L172
S. AENC Reset Source of the signal to reset the absolute value generator sensing and to
acknowledge error messages from the absolute value encoder.
(for SSI, EnDat connected to T400).
Value 0000
Type I
Chart 150,1
L173
S. AENC Offset Source of the absolute value encoder offset. The offset can be used for zero point
correction. It is subtracted from the measured value.
(for SSI, EnDat connected to T400).
Value 3000
Type I
Chart 150,1
L174
AENC Mask YF Mask to select individual fault bits of the hardware fault identification (refer to c176).
(for EnDat connected to T400). Value 16#FFFF
Type W
Chart 150,5
L175
AENC Mask YFC Mask to select individual error bits of the software error indentation (refer to c177).
(for EnDat connected to T400). Value 16#FFFF
Type W
Chart 150,6
c176
AENC YF Error code for the hardware fault monitoring in the EnDat encoder. The significance
of the individual bits can be taken from the data sheets of the encoder.
(for EnDat connected to T400).
Type W
Chart 150,5
c177
AENC YFC Error code of the software error monitoring of the SSI- or EnDat encoder.
Bit 0 Permissible speed exceeded (configured sampling time too slow)
Bit 1 Speed limit exceeded (L171)
Bit 2 Time overflow (EnDat encoder does not respond)
Bit 3 Communications error (sporadic; poor contact?)
Bit 4 Communications error (too many errors; protocol, parity correctly selected?)
Bit 6 ... 11 Configuring error (illegal values for L160 ... L167)
(for SSI, EnDat connected to T400).
Type W
Chart 150,6
c178
AENC Error Group fault message of the absolute value encoder sensing on the T400. Type BO
Chart 150,7
c179
AENC Encoder Pos. Position value of the absolute value encoder on the T400 without normalization or
conditioning. For multi-turn encoders, the most significant bits represent the number
of revolutions.
Type R
Chart 150,5
c180
AENC Pos. Single Normalized position value of the absolute value encoder on the T400 without the
multi-turn positions. For L169 = 1.0, c180 lies in the range 0 c180 <1.0
revolutions. This value can be used to initialize the position of drum-type shears.
Type R
Chart 150,6
c181
AENC Pos. Multi Normalized position value of the absolute value encoder on the T400 including multi-
turn positions. For L169 = 1.0, the position is displayed in [revolutions]. This value
can be used to initialize linear positioned shears.
Type R
Chart 150,5
c182
AENC Speed Speed of the absolute value encoder on the T400 in revolutions/min L170. Type R
Chart 150,6
L183
S. Abs Position Source of the absolute position normalized in [revolutions] to normalize to the internal
knife position normalization. Value 3291
Type I
Chart 150,6
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 107
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L189, L190
S. V_Cut Polygon
S. NV_Cut Polygon
Two sources for multiplying the derivation of the the cutting curve. Type
Chart 450,5
L191, L192
S. V_Friction
S. NV_Friction
Two sources for multiplying the derivation of the the friction curve. Type
Chart 460,5
L193, L194
S. V_Inertia
S. NV_Inertia
Two sources for multiplying the dreivation of the the inertia curve. Type
Chart 460,5
L195, L196
S. SV set Ref_1
S. SV set Ref_2
Two sources for setting the reference position during the cutting operation. Type
Chart 180,1
L197
S. SV_Longformat Source of the Longfomat variable used to calculate the set value of the reference
position for the first sheet after starting the cutting operation. Value 3098
Type
Chart 180,3
L198
S. SV_StartSel Source of the signal for selecting the set value when starting the cutting having
material detected. Value 0000
Type
Chart 180,1
L199
S. SV_StartVal Source for an alternative starting length value for the setting value of the material
position. Value 3000
Type
Chart 180,1
L200
S. SV_Format Source for the cut format to calculate the setting value of the material position. Value 3629
Type I
Chart 180,1
L201
S. SV_Start Size Source for the starting length (refer to d162) to calculate the setting value of the
material position. Value 3162
Type I
Chart 180,1
L202
S. SV_Set Value Source for the setting value of the material position for continuous cutting operation.
The material position is set using the synchronizing pulse of the material position
sensing.
Value 3000
Type I
Chart 180,1
L203
S. Offset Set Value Source for the value, which is subtracted from the setting value of the reference
position (material position when passing the pass mark). The result of the subtraction
operation can be used to enable synchronization shortly before reaching the pass
mark.
Value 3006
Type I
Chart 180,6
c204
Set Value RefePos Actual setting value of the material position. The material position is set using the
synchronization pulse of the material position sensing or per software (c208). Type R
Chart 180,7
L205
S. SV Dist. Light Source for the distance between the light barrier and knife to calculate the material
position when passing the light barrier when activating cutting operation. Value 3123
Type I
Chart 180,1
c207
Waiting For Web End Indicates that the system is waiting for the end of the material web in the
End cut
operating mode. Type BO
Chart 180,4
c208
SetRef.Position Status of the control signal is to set the material position. Type BO
Chart 180,6
L209
S. Dist. PassMark Source for the distance between the pass marks sensed by the light barrier and the
knife. Value 3099
Type I
Chart 180,6
L210
S. SV_OM 1.Cut Source for the control signal “Operating mode for the 1st cut“. If this signal is ‘0’, then
a sheet is cut already at the 1st cut in accordance with the format specifications. Value 0000
Type I
Chart 180,1
L211
S. SV_enTopCut Source for the control signal to enable the crop cut. When the crop cut is enabled, at
the 1st cut a sheet with the crop length is cut. This allows a “clean“ cut edge at the
start of the material web.
Value 0511
Type I
Chart 180,2
L212
S. no Cut Mode Source for the control signal
No cutting operation
to generate a pulse to set the
material position. Value 0577
Type I
Chart 180,1
L213
S. SV Light Gate Source for the signal to identify the strip to set the material position.
Factory setting: Connected to terminal 65. Value 0250
Type I
Chart 180,1
L214
S. SV End Cut Source for the signal to enable the end cut operating mode to set the material
position. Value 0573
Type I
Chart 180,1
Parameters and Connectors
108 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L215
S. optRange1_max Source for the upper range limit of the 1st range monitoring of the knife position. Value 3001
Type I
Chart 350,1
L216
S. optRange1 Source for the knife position, 1st range monitoring of the knife position. Value 3413
Type I
Chart 350,1
L217
S. optRange1_min Source for the lower range limit of the 1st range monitoring (knife position). Value 3000
Type I
Chart 350,1
c218
range1_OVF Display, “Knife position has exceeded the upper range limit of the 1st range
monitoring “. Type BO
Chart 350,3
c219
Range1_UF Display, Knife position has fallen below the lower range limit of the 1st range
monitoring“. Type BO
Chart 350,3
L220
S. Range3ShiftMax Source for the offset quantity to offset the upper range limit of the 3rd range
monitoring. (Example: Offset quantity can be the material velocity. The upper range
limit is then offset dependent on the velocity.)
Value 3000
Type I
Chart 350,1
L221
S. optRange3 Source of the position actual value which is to be evaluated with the 3rd range
monitoring.
Factory setting: Monitoring the knife position for linear systems.
Value 3413
Type I
Chart 350,1
L222
S. Range3ShiftMin Source to offset the lower range limit of the 3rd range monitoring. Value 3000
Type I
Chart 350,1
L223
Rng3_Factor_Max Factor to evaluate the offset quantity L220. For positive values of L223, the upper
range limit is reduced with increasing offset size. Value 1.0
Type R
Chart 350,2
L224
Range3_max Upper range limit if the offset is not effective. Value 1000 mm
Type R
Chart 350,2
L225
Range3_Factor_Min Factor to evaluate the offset quantity L222. For positive values of L225, the lower
range limit is reduced with increasing offset quantity. Value 0.0
Type R
Chart 350,2
L226
Range3_min Lower range limit for an offset, which is not effective. Value 0.0 mm
Type R
Chart 350,2
c227
Range3_OVF Status of the 3rd range monitoring:
1: Monitored quantity has exceeded the upper range limit. Type BO
Chart 350,4
c228
Range3_UF Status of the 3rd range monitoring:
1: Monitored quantity has exceeded the lower range limit. Type BO
Chart 350,4
L229
S. optRange2_max Source for the upper range limit of the 2nd range monitoring. The material position is
evaluated as standard. Value 3162
Type I
Chart 350,5
L230
S. optRange2 Source for the position actual value of the 2nd range monitoring. Value 3438
Type I
Chart 350,5
L231
S. optRange2_min Source for the lower range limit of the 2nd range monitoring. Value 3163
Type I
Chart 350,5
c232
Range2_OVF Display, “Monitored position has exceeded the upper range limit of the 2nd range
monitoring“. Type BO
Chart 350,7
c233
Range2_UF Display, Monitored position has exceeded the lower range limit of the 2nd range
monitoring“. Type
Chart 350,7
c234
Out of Range3 Status of the 3rd range monitoring:
1: Monitored quantity is outside the range limits. Type BO
Chart 350,4
L236
S. S RS-FlipFlop1 Source for the setting signal of the free RS flip-flop 1. Value 1277
Type I
Chart 430,1
L237
S. R RS-FlipFlop1 Source for the reset signal of the free RS flip-flop 1. Value 0454
Type I
Chart 430,1
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 109
6DD1903-0DB0 Edition 09.00
Parameter Description Data
c241
Blocking nsetp Absolute value of the speed setpoint for the knife blockage protection. Type R
Chart 490,3
c242
Blocking act Torque Absolute value of the actual torque for the blockage protection of the knife. Type R
Chart 490,3
L243 ... L250
S. Logic1_I1 ...
S. Logic1_I8
Sources for the digital input signals of the 1st parameterizable logic. Type I
Chart 415,1
L251 ... L254
Logic1_MS1 ...
Logic1_MS4
Masks for 4 setting functions of the 1st parameterizable logic (refer to Chart 400).
The inputs are selected using the bits of a mask which are set to ‘1’; the inputs are
then ANDed. The low word of the mask selects the non-inverted- and the high word,
the inverted inputs.
Example: Logic1_MS1 = 16#300F = 0011 0000 0000 1111b
Þ
AND logic operation: 1st setting condition = /I6 /I5 I4 I3 I2 I1
Type W
Chart 415,2 - 3
L255 ... L257
Logic1_MR1 ...
Logic1_MR3
Masks for 3 reset functions of the 1st parameterizable logic (evaluation, refer to L251
and Chart 400) Type W
Chart 415,2 - 3
L258
Logic1_MR Mask to select the inputs, which reset the 1st parameterizable block. The low word of
the mask selects the non-inverted- and the high word the inverted inputs (refer to
L251). The selected inputs (or inverted inputs) are ORed. If the result of the OR logic
operation is ‘1’, then the outputs Q = ‘0’, QN =’1’. The output Q then changes from ‘1’
to ‘0’, and a pulse is output at QEN.
Type W
Chart 415,3
c259
Logic1_Q Status output of the 1st parameterizable logic. The status is inverse to output QN. If
the status changes, a pulse is generated at the outputs QE (QN: ‘0’
Þ
‘1’) and QEN
(QN: ‘1’
Þ
‘0’) for the duration of a processing cycle.
Type BO
Chart 415,4
L263 ... L270
S. Logic2_I1 ...
S. Logic2_I8
Sources for the digital input signals of the 2nd parameterizable logic. Type I
Chart 415,5
L271 ... L274
Logic2_MS1 ...
Logic2_MS4
Masks for 4 setting functions of the 2nd parameterizable logic (refer to Chart 400).
The inputs, which are ANDed, are selected with the bits of a mask which are set to
‘1. The low word of the mask selects the non-inverted- the high word, the inverted
inputs.
Example: Logic2_MS1 = 16#300F = 0011 0000 0000 1111b
Þ
AND logic operation: 1st setting condition = /I6 /I5 I4 I3 I2 I1
Type W
Chart 415,6 - 7
L275 ... L277
Logic2_MR1 ...
Logic2_MR3
Masks for 3 reset functions of the 2nd parameterizable logic (evaluation, refer to L271
and Chart 400) Type W
Chart 415,6 - 7
L278
Logic2_MR Mask to select the inputs, which reset the 2nd parameterizable block. The low word of
the mask selects the non-inverted- and the high word the inverted inputs (refer to
L271). The selected inputs (or inverted inputs) are ORed. If the result of the OR logic
operation is ‘1’, then the outputs Q = ‘0’, QN =’1’. The output Q then changes from ‘1’
to ‘0’, and a pulse is output at QEN.
Type W
Chart 415,7
c279
Logic2_Q Status output of the 2nd parameterizable logic. The status is inverse to output QN. If
the status changes, a pulse is generated at the outputs QE (QN: ‘0’
Þ
‘1’) and QEN
(QN: ‘1’
Þ
‘0’) for the duration of a processing cycle.
Type BO
Chart 415,8
L282
S. AbsPos high Source for the high word of a 32-bit absolute value encoder value. Non-relevant bits
(e.g. multi-turn positions) can be masked-out using L296. Value 2314
Type I
Chart 160,1
L283
S. AbsPos low Source for the low word of a 16/32-bit absolute value encoder value. Non-relevant bits
(e.g. multi-turn positions) can be masked-out using L297. Value 2313
Type I
Chart 160,1
L284
Abs. Pos. Norm. Normalization value for the absolute position selected using L282, L283. In this case
it involves the “Cuts per revolution“ value. Value 8192.0
Type R
Chart 160,4
c285
Abs. Pos. CU Absolute value encoder position (L282, L283) before normalization. The value 1.0
corresponds to the smallest encoder step (resolution). Type R
Chart 160,3
L286
AbsPos Limit Range limit of the normalized absolute value encoder position. This is required to
shift the range of the position (refer to c292; Chart 160). Value 1.0
Type R
Chart 160,4
Parameters and Connectors
110 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L287
AbsPos Range Theoretical value range of the absolute value encoder position. The value is used to
shift the range of the absolute position (refer to c292; Chart 160). Value 1.0
Type R
Chart 160,5
L288
AbsPos_AddPos Offset to shift the range of the absolute position (refer to c292; Chart 160). Value 0.0
Type R
Chart 160,4
c290
AbsolutOffset Offset position for the absolute value generator (from the CU or on T400). It involves
the encoder position in the required zero position.
When a plant/system is first commissioned, the shears are positioned at the zero
position and the absolute value position is saved as offset position in the NOVRAM of
the T400. In cyclic operation, the saved offset position is subtracted from the
measured value.
Type R
Chart 150,4
c291
Abs.Pos. correct Absolute position (from the 16/32-bit source) after subtracting the absolute value
offset (c290). Type R
Chart 150,4
c292
Absolute Pos. 2 Absolute position (from the 16/32-bit source) after normalization and range
correction. The range correction is used to shift a discontinuous position (range
overflow) of the encoder position from the operating range of the encoder.
Type R
Chart 160,6
c293
Absole Pos. 1 Absolute position (from the 16/32-bit source) after normalization. Type R
Chart 160,4
L294
S. Save pulse Source of the signal to save the absolute position in the NOVRAM Value 1311
Type I
Chart 150,2
L295
S. AbsolutPos Source of the position value from an absolute value encoder (not relevant for TR
encoders). The value can be saved as zero offset in the NOVRAM. Value 3292
Type I
Chart 150,2
L296
Mask AbsPosHigh Mask to select the valid bits of the high word of the 32-bit absolute position. All of the
bits, selected with 1 are evaluated. Value 16#FFFF
Type W
Chart 160,2
L297
Mask AbsPosLow Mask to select the valid bits of the low word of the 16/32-bit absolute position. All of
the bits, selected with ‘1’ are evaluated. Value 16#FFFF
Type W
Chart 160,2
L298
S. AbsPos Valid Source of the signal, which signals the validity of the position value from the absolute
value encoder. Value 0976
Type I
Chart 150,2
L300
S. Calib_Absolute Source for the Absolute position valid“ signal to reference the knife. Value 0147
Type I
Chart 170,1
L301
S. CoarseRef. Sel. Source for the signal to enable the direction-dependent reference position. When this
function is enabled, for a positive speed, L312 is set as reference position and for a
negative speed, L311.
Value 0594
Type I
Chart 170,1
L302
S. Calib_ZeroPuls Source for the synchronizing pulse to reference the knife. Value 0415
Type I
Chart 170,1
L303
S. CalPhiOverflow Source for the “Knife position has exceeded the permissible range signal. The signal
is used to reset the status
Knife is calibrated
.Value 0684
Type I4
Chart 170,1
L304
S. CalPhiUnderflw Source for the Knife position has fallen below the permissible range signal. The
signal is used to reset the status
Knife is calibrated
.Value 0682
Type I
Chart 170,1
L305
S. CalibCoarseRef Source for the coarse reference pulse to set the knife position, when referencing,
with the jogging function, to the coarse reference value. Value 0529
Type I
Chart 170,4
L306
S. CoarseRef_Jog Source for the jogging signal in order to set the knife position to the coarse reference
value when referencing. Value 0593
Type I
Chart 170,4
L307
S. Set Shear Pos2 Source for an optional setting pulse to set the knife position. Value 0000
Type I
Chart 170,6
L308
S. Coarse Set Value Source for the setting value of the knife position when referencing to the coarse
reference value or when using an absolute value encoder (not for TR encoders). Value 3183
Type I
Chart 170,6
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 111
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L309
Calibrate Delay Delay, which is effective when referencing the knife position after the position
sensing of the absolute value encoder has been completed. Value 0.0 ms
Type SD
Chart 170,2
c310
Shear calibrated Referencing status of the knife. Type BO
Chart 170,5
L311
Synchr.Pos. neg. Setting value for the knife position for a negative knife speed. Value 1.0
Type R
Chart 170,3
L312
Synchr.Pos. pos. Setting value for the knife position for a positive knife speed. Value 0.0
Type R
Chart 170,3
c313
Set Val Shear Pos Actual setting value for the knife position. Type R
Chart 170,7
L314 ... L316
S. Enable Synchr1 ...
S. Enable Synchr3
3 alternative sources to enable the knife position synchronization. This means that
synchronization is permitted as a function of the current operating mode. Type I
Chart 120,1
L317
CoarseRef pos. Setting value for the knife position for the coarse referencing for a positive knife
speed. Value 0.0
Type R
Chart 170,3
L318
CoarseRef neg. Setting value for the knife position for the coarse referencing for a negative knife
speed. Value 1.0
Type R
Chart 170,3
L319
S.SynchrShearPos Source set value for the shear position at zero pulse (synchronization) Value 3311
Type I
Chart 170,6
L321, L322
S. OR4_1
S. OR4_2
2 sources for the inputs of OR-gate 4. Type
Chart 425,7
L323, L324
S. OR5_1
S. OR5_2
2 sources for the inputs of OR-gate 5. Type
Chart 425,7
L325, L326
S. NX_Cut Polygon
S. NY_Cut Polygon
Sources for the normalization factors for the cutting curve. Value 3001
Type I
Chart 450,1-5
L327
Set Cut Curve Initiates a re-calculation of the cutting curve with a positive edge at L237. (set L327 =
0; L327 = 1) Value 0
Type I
Chart 450,5
L328
Typ Cut Curve Order of the curve sections of the cutting curve.
0: 3rd order 2: 2nd order
1: 1st order (straight lines) 3: 3rd order (more rounded-off than for L508=0)
Value 1
Type I
Chart 450,6
L329, L330
LM1 Cut Curve
LM2 Cut Curve
Mask to define linear curve elements bit-by-bit. LM1 involves the sections between
points X1 and X16, LM2 the subsequent sections.
Example: LM1 = 0000 0000 0000 1001
è
The point 1 and point 2 as well as 4 and 5 are connected through a straight line,
independent of the selected curve type L328.
Value 0
Type I
Chart 450,6-7
L331 ... L338
S. ModeSwitch_I1 ...
S. ModeSwitch_I8
Sources for the digital input signal of the mode changeover. Type I
Chart 410,2
L339 ... L342
ModeSwitch_MS1 ...
ModeSwitch_MS4
Masks for 4 setting functions of the mode changeover (refer to Chart 400). The
inputs, which are ANDed, are selected using the bits of a mask which are set to ‘1’.
The low word of the mask selects the non-inverted, the high word, the inverted inputs.
Example: ModeSwitch_MS1 = 16#300F = 0011 0000 0000 1111b
Þ
AND logic operation: 1st setting condition = /I6 /I5 I4 I3 I2 I1
Type W
Chart 410,3 - 4
L343 ... L345
ModeSwitch_MR1 ...
ModeSwitch_MR3
Masks for the 3 reset functions of the mode changeover (evaluation, refer to L339
and Chart 400) Type W
Chart 410,3 - 4
Parameters and Connectors
112 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L346
ModeSwitch_MR Mask to select the inputs, which reset the mode changeover to synchronous
operation (setpoint input from a format generator). The low word of the mask selects
the non-inverted- and the high word the inverted inputs (refer to L339). The selected
inputs (or inverted inputs) are ORed. If the result of the OR logic operation is ‘1’, the
outputs Q = ‘0’, QN =’1’. Output Q then changes from ‘1’ to ‘0’, and a pulse is output
at output QEN.
Type W
Chart 410,4
c347
Mode Positioning Status output, mode changeover:
0: Synchronous operation (format generator inputs the setpoint)
1: Positioning mode
The status is inverse to output QN. If the status changes, a pulse is output at the
following outputs QE (QN: ‘0’
Þ
‘1’) and QEN (QN: ‘1’
Þ
‘0’) for the duration of one
processing cycle.
Type BO
Chart 410,5
c348
Error Mode Switch Monitoring output of the enable of the positioning mode. An error is generated, if an
illegal status occurs, selectable with L349, in the positioning mode. (e. g. if, for the
current material position, synchronous operation should be active.)
Type BO
Chart 410,7
L349
S. Mode Error Source for the error condition, which may only have the value ‘1’ when there is an
error in the positioning mode. This is used to monitor the mode changeover. Value 0454
Type I
Chart 410,6
L350 ... L389
Friction_X1,
Friction_Y1 ...
Friction_X20,
Friction_Y20
20 value pairs to specify the friction characteristic.
Input values < X1
Þ
output = Y1
Input values > X2
Þ
output = Y2
The X values must be parameterized in an increasing sequence.
This means: friction_X(n) < friction_X(n+1)
Type R
Chart 460,2 - 4
L390 ... L429
n_Cut_X1,
n_Cut_Y1 ...
n_Cut_X20,
n_Cut_Y20
20 value pairs to specify the cutting curve.
Input values < X1
Þ
output = Y1
Input values > X2
Þ
output = Y2
The X values must be parameterized in an increasing sequence.
This means: n_cut_X(n) < n_cut_X(n+1)
Type R
Chart 450,2 - 4
L430 ... L469
Inertia_X1,
Inertia_Y1 ...
Inertia_X20,
Inertia_Y20
20 value pairs to specify the moment of inertia characteristic.
Input values < X1
Þ
output = Y1
Input values > X2
Þ
output = Y2
The X values must be parameterized in an increasing sequence.
This means: moment of inertia_X(n) < moment of inertia_X(n+1)
Type R
Chart 460,2 - 4
L470 ... L489
P_X1,
KP_Y1 ...
KP_X10,
KP_Y10
20 value pairs to specify the characteristic for KP adaption (proportional gain of the
speed controller in the basic drive converter).
Input values < X1
Þ
output = Y1
Input values > X2
Þ
output = Y2
The X values must be parameterized in an increasing sequence.
This means: KP_X(n) < KP_X(n+1)
Type R
Chart 450,2 - 4
c490
KP_Diagr_Outp Output of the characteristic for KP adaption. Type R
Chart 450,5
c491
Cut Polygon Outp Output of the characteristic to specify the cutting curve. Type R
Chart 450,6
c492
Outp Friction Diag Friction characteristic output. Type R
Chart 460,5
c493
Inertia Poly Out Moment of inertia characteristic output (moment of inertia = ƒ(knife position) ) Type R
Chart 460,5
c495
Inertia Effective moment of inertia. Type R
Chart 460,8
L496
S. KP_Polygon Source for the input quantity of the KP characteristic. Value 3164
Type R
Chart 450,2
L497
S. Cut Polygon Source for the input quantity of the cutting curve. Value 3413
Type R
Chart 450,1
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 113
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L498
S. Friction Polyg. Source for the input quantity of the friction characteristic. (This is connected as
standard to the smoothed material velocity.) Value 3023
Type R
Chart 460,1
L499
S. Inertia Polygon Source for the input quantity of the moment of inertia characteristic. (This is
connected as standard with the knife position.) Value 3413
Type R
Chart 460,1
L500
S. Factor1 Friction Source for the 1st evaluation factor of the friction characteristic (refer to Chart 460)
Friction torque = Output_friction characteristic (ƒ(L502) + ƒ(L500) •ƒ(L501) )
Value 3000
Type I
Chart 460,7
L501
S. Factor2 Friction Source for the 2nd evaluation factor of the friction characteristic (refer to Chart 460;
L500). Value 3001
Type I
Chart 460,7
L502
S. Offset Friction Source for the offset value to determine the friction (refer to Chart 460; L500). Value 3000
Type I
Chart 460,7
L503
S. Factor Inertia Source for the evaluation factor of the moment of inertia characteristic (refer to Chart
460)
Moment of inertia = Output_characteristic •ƒ(L503) + ƒ(L504)
Value 3000
Type I
Chart 460,7
L504
S. Offset Inertia Source for the offset value to calculate the moment of inertia (refer to Chart 460;
L503) Value 3000
Type I
Chart 460,7
L505, L506
S. NX_Friction
S. NY_Friction
Sources for the normalization factors of the friction characteristic. Value 3001
Type I
Chart 460,1-5
L507
Set Friction Initiate re-calculation of the friction characteristic with a positive edge at L507. (set
L507 = 0; L507 = 1) Value 0
Type I
Chart 460,5
L508
Typ Friction Order of the curve segments of the friction characteristic.
0: 3rd order 2: 2nd order
1: 1st order (straight lines) 3: 3rd order (more rounded-off than for L508=0)
Value 1
Type I
Chart 460,6
L509, L510
LM1 Friction
LM2 Friction
Mask to define the linear curve segments bit-by-bit. LM1 involves the segments
between points X1 and X16, LM2, the subsequent segments.
Example: LM1 = 0000 0000 0000 1001
è
The point 1 and point 2 as well as 4 and 5 are connected through a straight line,
independent of the selected curve type L508.
Value 0
Type I
Chart 460,6 - 7
L511, L512
S. NX_Inertia
S. NY_Inertia
Sources for the normalization factors of the moment of inertia characteristic. Value 3001
Type I
Chart 460,1-5
L513
Set Inertia Initiate re-calculation of the moment of inertia characteristic with a positive edge at
L507. (set L513 = 0; L513 = 1) Value 0
Type I
Chart 460,5
L514
Typ Inertia Order of the curve segments of the moment of inertia characteristic.
0: 3rd order 2: 2nd order
1: 1st order (straight lines) 3: 3rd order (more rounded-off than for L508=0)
Value 1
Type I
Chart 460,6
L515, L516
LM1 Inertia
LM2 Inertia
Mask to define the linear curve segments bit-by-bit. LM1 involves the segments
between points X1 and X16, LM2, the subsequent segments.
Example: LM1 = 0000 0000 0000 1001
è
The point 1 and point 2 as well as 4 and 5 are connected through a straight line,
independent of the selected curve type L514.
Value 0
Type I
Chart 460,6 - 7
L517
S. Ramp_Local Value 3533
Type
Chart 260,6
L518
S. JogSpeed_neg Source of the velocity for the
Jogging
mode. This value is negated, and can be used
as velocity for jogging in the opposite direction. Value 3519
Type I
Chart 260,2
L519
JogSpeed Fixed speed setpoint (normalized) for the
Jogging
mode. Value 0.05
Type R
Chart 260,1
L520 ... L522
S. JogPositiv1 ...
S. JogPositiv3
3 sources to enable the
Jogging
function for positive speeds. Purpose: Evaluating
limit switches for linear systems. Enable signals, which are not used, must be
connected to ‘1’ (connector 0001).
Type I
Chart 260,1
Parameters and Connectors
114 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L523
S. JogSpeed1 Source for the positive speed setpoint (normalized) for
Jogging
. Value 3519
Type I
Chart 260,1
L524 ... L526
S. JogNegativ1 ...
S. JogNegativ3
3 sources to enable the
Jogging
function for negative speeds. Purpose: Evaluating
limit switches for linear systems. Enable signals, which are not used, must be
connected to ‘1’ (connector 0001).
Type I
Chart 260,1
L527
S. JogSpeed2 Source for the negative speed setpoint (normalized) for
Jogging
. Value 3518
Type I
Chart 260,1
L528
S.Jog1_Dir Source to select the direction of rotation in the
Jogging1
mode.
0: Positive
1: Negative
Value 0594
Type I
Chart 260,3
L529
S. Sel. Ref/Jog Source to select the
Jogging1
or
Referencing
mode. Effect of the selected signal:
0: Jogging1
1: Referencing
Value 0592
Type I
Chart 260,5
L530
S. LimSwitch Start Source for the status of the lefthand limit switch for automatic referencing. Automatic
in this case means that the direction is reversed when the limit switch is reached. Value 0000
Type I
Chart 260,1
L531
S. Limit Switch End Source for the status of the righthand limit switch for automatic referencing.
Automatic in this case means that the direction is reversed when the limit switch is
reached.
Value 0001
Type I
Chart 260,1
L532
S. Init_Ref_Dir Source for the signal to define the initial status when automatically referencing. This
means that it can be ensured, that the same direction of rotation is always used at the
start of referencing.
Value 1312
Type I
Chart 260,1
c533
Speed Local Velocity setpoint for the local
Jogging1
or
Referencing
modes. Type R
Chart 260,5
L534
S. Sel_SpeedLocal Source to select the knife velocity (refer to Chart 260); signal values
0: Speed setpoint from the cutting mode type
1: Speed setpoint from Jogging1 or Referencing
Value 0599
Type I
Chart 260,5
L535
S. Sel_SpeedStart Source to select the knife velocity (refer to Chart 260); signal values
0: Speed setpoint in accordance with L534
1: Speed setpoint for the
Approach starting position
mode
Value 0595
Type I
Chart 260,6
L536
S. Speed Cut Source for the reference speed (setpoint speed) in cutting operation. Value 3021
Type I
Chart 260,5
L537
S. Speed_Local Source for the reference speed (setpoint speed) in the local mode. Value 3533
Type I
Chart 260,5
L538
S. SpeedPosCtrl Source for the reference speed (setpoint speed) when approaching the starting
position. Value 3144
Type I
Chart 260,5
L539
Tfilt n_setp Smoothing time constant for the reference (setpoint) speed. Value 1.2 ms
Type SD
Chart 260,7
L540
StepsRampLocal Ramp steps of a simple ramp function. In the factory setting the duration of the
ramping is 5 task cycle time T3 = 512.8 ms = 64 ms. Value 5
Type
Chart 260,7
L541
S. Disable Spdsetp Source of the control signal to inhibit the speed output. The speed setpoint can be
settozerousingthesignal. Value 0000
Type I
Chart 260,7
L542
Spd_Referencing Speed setpoint (normalized) when referencing. For applications with linear axis, enter
negative values in order to bring the knife in the direction of the quiescent position. Value 0.05
Type R
Chart 260,2
L543, L544
S.Not3,S.Not4 Source for the 2 logical inverter. Type I
Chart 430,6
L545
S. TorqueFriction Source of the friction torque to generate the torque sum for the drive converter. Value 3029
Type I
Chart 240,6
L546
S. Dif_inertia Source of the moment of inertia for differentiating when calculating the oscillating
torque. Value 3495
Type I
Chart 240,1
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 115
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L547
S. FactorT_accel Source of the moment of inertia to calculate the accelerating torque. Value 3495
Type I
Chart 240,1
c548
Torque Setp > max Result of the comparison between the setpoint (reference)- and maximum torque. If
this quantity is 1, this means that the demanded torque cannot be provided (if the
basic drive uses the same limit values).
Type BO
Chart 240,7
c549
Torque Cut_Enable Status of the cutting torque enable.
1: Cutting torque is entered as additional torque Type BO
Chart 240,4
L550
S. Cut Torque Source for the cutting torque for the torque generation. Value 3824
Type I
Chart 240,1
L551
S. Cut Torque Pos Source of the knife position for the cutting torque input. Value 3413
Type I
Chart 240,1
L552
S. Torque Cut Light Source for the material identification (light barrier) for the cutting torque setpoint
input. Value 0250
Type I
Chart 240,1
L553
S. n_Acceleration Source of the speed setpoint to determine the accelerating torque. Value 3021
Type I
Chart 240,1
L554
S. Inertia Source for the moment of inertia input to generate the effective mass moment of
inertia. Value 3493
Type I
Chart 460,7
L555
S. Friction Source for the friction torque input to generate the effective friction torque. Value 3492
Type I
Chart 460,7
L556
S. Vref_OscillTorque Source of the velocity for the oscillating torque calculation. Value 3435
Type I
Chart 240,1
L557
S. Torque Cut Region Source for the signal to enable the torque-component oscillating-, accelerating- and
cutting torque. The effect of this enable signal:
0: Torques are set to 0
1: Torques, together with the friction torque, generate the reference
torque
Value 0576
Type I
Chart 240,6
L558
TD_Acceleration Differentiating time constant to determine the accelerating torque. Value 250 ms
Type SD
Chart 240,2
L559
TD_Inertia Differentiating time constant to determine the oscillating torque. Value 500 ms
Type SD
Chart 240,2
L560
S. F_Overspeed Source for the supplementary velocity. The knife velocity is increased as percentage
by the supplementary velocity connected (entered) here.
Example: Supplementary velocity = 0.05
Þ
the knife speed is increased by 5% with
respect to the material velocity when cutting.
Value 3000
Type I
Chart 265,1
L561
S. Speed_vCut Source for the velocity components from the cutting characteristic to take into
account the over velocity factor. Value 3491
Type I
Chart 265,1
L562
S. Enable Cut Curve Source for the control signal to enable the cutting curve. Control signal logic:
0: Setpoint velocity from the cutting curve = 0
1: Setpoint velocity from the cutting curve effective
Value 0576
Type I
Chart 265,6
L563
S. Speed_Vref Source for the reference velocity for the cutting curve. The supplementary setpoint
obtained from this (parameter c577) is given by:
c577 = L573 factor_overspeed (1 - cutting curve) reference velocity
Value 3435
Type I
Chart 265,5
L564
S. Speed_DV_FGEN Source for the velocity component of the setpoint generator. This is connected, as
standard to the speed output of the format generator. Value 3158
Type I
Chart 250,1
L565
S. Speed_FOVS Source for the overvelocity factor to evaluate the setpoint knife speed. This is
connected as standard to the
Factor overspeed
(d020). Value 3020
Type I
Chart 250,1
Parameters and Connectors
116 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L566
S. Speed_PosCtrl Source for the supplementary speed setpoint. This is connected, as standard to the
position controller output. Value 3144
Type I
Chart 250,1
L567
S. Speed_Set_OVS Source for the control signal to transfer the
Factor overspeed.
It is not permissible to
change the factor while cutting.
1: Accept
Factor overspeed
Value 0666
Type I
Chart 265,3
L568
S. Cut Speed Limits Source for the control signal to enable the setpoint speed in cutting operation. Control
signal logic:
0: Setpoint speed = 0
1: Speed setpoint limiting according to L575, L576
Value 0671
Type I
Chart 250,4
L569
F_over_min Lowest permissible value for the
Factor overspeed
. Value 1.0
Type R
Chart 265,2
L570
S. Speed_Vref Source for the material velocity to determine the knife velocity setpoint. Value 3435
Type I
Chart 250,1
L571
Overspeed_Max Optional weighting factor for the
Factor overspeed
(refer to Chart 265). This is also
used as upper limit of the cutting velocity. Value 1.0
Type R
Chart 265,2
L572
n_Cut_min Lower limit value of the cutting velocity. Value 0.3
Type R
Chart 265,2
L573
Factor Cut Curve Constant weighting factor for the supplementary velocity, which is generated from the
cutting curve. Value 1.0
Type R
Chart 265,7
L574
S. Max. Speed_Cut Source of the maximum speed for cutting operation modes. Value 3575
Type
Chart 250,5
L575
Cut Speed_Max Upper limit value of the velocity for cutting operation. Value 1.1
Type R
Chart 250,4
L576
Cut Speed_Min Lower limit value of the velocity for cutting operation. Value -0.1
Type R
Chart 250,4
c577
v_setp Cut Curve The velocity components resulting from the cutting curve and evaluation with
Factor
overspeed
.Type R
Chart 265,7
L578
max_Torque Cut Maximum positive torque (referred to the reference torque). This limit value is used to
evaluate as to whether more torque is demanded than is actually available. It can also
be transferred to the basic drive as torque limit (PZD7 in Chart 640).
Value 1.5
Type I
Chart 240,6
L579
min_Torque Cut Maximum negative torque (referred to the reference torque). This limit value can also
be transferred to the basic drive as torque limit (PZD8 in Chart 640). Value -1.5
Type I
Chart 240,6
L580
TorqueMax_Local Maximum torque (referred to the reference torque) for local operating modes. Value 0.4
Type I
Chart 240,4
c581
act. Max. Torque Actual positive torque limit. Type R
Chart 240,7
c582
act. Min. Torque Actual negative torque limit. Type R
Chart 240,7
L583
S.Speed_dVsetp Source of the signal which is treated as supplementary speed component during the
synchronous phase. Value 3561
Type I
Chart 265,5
L584
S. Reduced Torque Source for the control signal to changeover to the torque limit, specified using L587.
Using this control signal, for example, when cutting, the torque is limited to extremely
low values while the cutting tool is clamped to the material.
Value 0000
Type I
Chart 240,5
L585
S. Speed_dvCut Source for a supplementary speed setpoint. This is assigned as standard to the
speed generated from the cutting curve. Value 3577
Type I
Chart 250,1
L586
F_over_max Highest permissible value for the
Factor overspeed
value. Value 1.1
Type R
Chart 265,2
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 117
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L587
Torque Reduced Alternative torque limit value. The value can become effective while cutting with the
control signal selected using L584. Value 0.1
Type R
Chart 240,5
L588 ... L590
S. Torquet_1 ...
S. Torquet_3
Three sources for torque components, which should be effective in the cutting mode. Type I
Chart 240,5
L591
S. Compare3 Source for the input signal of a comparator with hysteresis (free block). Value 3000
Type I
Chart 350,6
L592
S. Compare3 Mid Center of the comparator range with hysteresis (free block). Value 3000
Type I
Chart 350,6
L593
S. Compare3 Range Source for the range limit of the comparator with hysteresis (free block). Value 3001
Type I
Chart 350,6
L594
Compare3 Hyst. Hysteresis of the comparator with hysteresis (free block). Value 0.0
Type I
Chart 350,7
L595
S. Compare 4 Source for the input signal of a comparator with hysteresis (free block). Value 3437
Type I
Chart 140,2
L596
S. Compare 4 Mid Center of the comparator range with hysteresis (free block). Value 3204
Type I
Chart 140,2
L597
S. Compare 4 Range Source for the range limit of the comparator with hysteresis (free block). Value 3366
Type I
Chart 140,2
L598
Compare 4 Hyst. Hysteresis of the comparator with hysteresis (free block). Value 0.0
Type I
Chart 140,3
L600
S.Task AENC_T400 Source of the control signal to enable the absolute value encoder evaluation of a SSI-
or EnDat encoder connected to the T400. As long as the control signal is ‘0’ then
none of the functions, shown in Chart 150, are processed.
Value 0091
Type I
Chart 50,5
L601
S.Task TR encoder Source of the control signal to enable the absolute value generator evaluation of a TR
encoder connected at the T400. As long as the control signal is ‘0’ then none of the
functions, shown in Chart 165, are processed.
Value 0090
Type I
Chart 50,5
L602
S.Task CU endocder Source of the control signal to enable the absolute value generator evaluation of an
encoder connected to the basic drive. As long as the control signal is ‘0’ then non of
the functions, shown in Chart 160, are processed.
Value 0092
Type I
Chart 50,5
L603
S.Task cut curve Source of the control signal to enable processing of the cutting curve. As long as the
control signal is ‘0’ the cutting curve is not processed. Value 0168
Type I
Chart 50,4
L605
S. DW_W_1 Source for a double-word-word converter (free block) Value 5000
Type I
Chart 440,4
L606, L607
S. ADDI1 X1
S. ADDI1 X2
Sources for the summands of the 1st integer adder. Value 2000
Type I
Chart 445,1
L608, L609
S. SUBI1 X1
S. SUBI1 X2
Sources for the inputs of the 1st integer subtractor. Value 2000
Type I
Chart 445,1
C610
Task AENC Status of the evaluation of an abs. value encoder at the T400 (SSI- or EnDat) 0:
No processing
1: Processing software is active
Type BO
Chart 50,6
C611
Task TR encoder Status of the evaluation of a TR encoder at T400
0: No processing
1: Processing software is active
Type BO
Chart 50,6
C612
Task CU encoder Status of the evaluation of the absolute value encoder from the basic drive
0: No processing
1: Processing software is active
Type BO
Chart 50,6
Parameters and Connectors
118 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
C613
Task cut curve Status of the processing of the cutting curve
0: The cutting curve is not processed (no supplementary speed setpoint)
1: Cutting curve processing is active
Type BO
Chart 50,6
L614
Off delay cut The cutting curve is processed, as standard, as long as the knife is within the cutting
range. Processing can be extended for a defined period of time with delay L614. Value 4.8 ms
Type SD
Chart 50,5
L615 ... L616
S. MUL3 X1 ...
S. MUL3 X2
Sources for the inputs of a free multiplier. Value 3001
Type I
Chart 445,5
L617 .. L619
S. SQRT_1 ...
S.SQRT_3
3 Source for the square root function to reduce the speed setpoint at the end of the
travel. Type
Chart 25,1
L620
S. ON StateMach Source for the starting signal for the automatic start-up sequence (commissioning
sequence) of the simulation mode. The drive can be powered-up, referenced, the
starting position approached and continuous cutting with a ‘1‘ at this signal.
Value 0000
Type I
Chart 810,1
L621
S. CU ready SM Source for the
Basic drive ready to power-up
signal in the simulation mode. Value 0340
Type I
Chart 810,2
L622
S. Web ready SM Source for the
Feed drive ready to power-up
signal, if the feed drive is also to be
activated in the simulation mode. Value 0001
Type I
Chart 810,2
L623
S. Fault SM Source for the
Fault
signal in the simulation mode. Value 0014
Type I
Chart 810,2
L624
CTW1 CU=OFF Value for control word 1 of the drive converter for the drive OFF status in the
simulation mode. Value 16#843E
Type W
Chart 810,4
L625
CTW1 CU=ON Value for the control word 1 of the drive converter for the drive ON status in the
simulation mode. Value 16#9C7F
Type W
Chart 810,5
L626
S. CU run SM Source for the
Basic drive operational
signal in the simulation mode. Value 0342
Type I
Chart 810,1
L627
S. Web run SM Source for the
Material drive operational
signal in the simulation mode. Value 0001
Type I
Chart 810,1
L628
S. Calibrated SM Source for the
Knife calibrated
signal in the simulation mode. Value 1310
Type I
Chart 810,2
L629
S. in Startpos SM Source for the
Knife in the starting position
signal in the simulation mode. Value 0647
Type I
Chart 810,2
L630
SCTW1 OFF SM Simulation value for the shears control word for the
No operation
operating mode. Value 16#0000
Type I
Chart 810,2
L631
SCTW1 Refer. SM Simulation value for the shears control word for the
Calibrating
operating mode. Value 16#0050
Type I
Chart 810,2
L632
SCTW1 Startp. SM Simulation value for the shears control word for the
Approach starting position
operating mode. Value 16#0110
Type I
Chart 810,3
L633
SCTW1 Cut SM Simulation value for the shears control word for the
Continuous cutting
operating
mode. Value 16#0032
Type I
Chart 810,4
L634
State Cut MS1 Setting mask to activate the cutting mode for simulation. (Refer to the programmable
logic STATE in Function Chart 400). Value 16#0007
Type I
Chart 810,3
L635
State Cut MR Mask to exit the cutting mode for simulation. (Refer to the programmable logic
STATE in Function Chart 400). Value 16#0500
Type I
Chart 810,4
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 119
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L636
MS1 SM on Setting mask to activate the drives for simulation. (Refer to the programmable logic
STATE in Function Chart 400). Value 16#0017
Type I
Chart 810,3
L637
MR SM off Mask to power-down the drives for simulation. (Refer to the programmable logic
STATE in Function Chart 400). Value 16#1008
Type I
Chart 810,4
L638
S. SCTW1bits SM Source for the word-to-binary converter to split-up the simulated shears control word
1 into binary (digital) values. Value 2622
Type I
Chart 810,6
L639
S. CTW1bits SM Source for the word-to-binary converter to split-up the simulated control word 1 into
binary (digital) values. Value 2621
Type I
Chart 810,6
L640, L641
S. SwitchDI_0,
S. SwitchDI_1
2 sources for the inputs of the 32bit integer changeover switch. The output is
selected with L642. Type
Chart 430,6
L642
S. SwitchDI_sel Source for the signal to select the input at 32bit integer changeover switch.
0: Source(L640)
1: Source(L641)
Value 0000
Type
Chart 425,5
L643
S. Cut Mode SM Source of the state machine logic for standalone operation of the T400. In factory
setting this input is used to distinguish between “cutting operation” and “approach
start position
Value 576
Type
Chart 810,2
L644
StateCut MR1 2nd condition mask for terminating the cutting operation request of the state machine. Value 16#0A00
Type
Chart 810,4
L645
S. Edge2 Source for the 2nd free edge function input. Type
Chart 430,4
L646
S. I_R_1 Source for a free integer-to-real converter. Value 2000
Type I
Chart 440,4
L647
S. R_I_1 Source for a free real-to-integer converter. Value 3000
Type I
Chart 440,4
L649
S.Reserve1 Source for a reserve variable, which is normalized with
Xref_normalization
. Value 3000
Type I
Chart 60,6
L650 ... L665
Fixedvalue1...
Fixed value 16
16 floating-point fixed values Value 0.0
Type R
Chart 70,3
L666 ... L670
Fixed value W1 ...
Fixed value W5
5 fixed values, word type (16 bit). When parameterizing using OP1S, word
parameters are entered bit-by-bit. Word parameters can be connected to integer
destinations.
Value 0
Type W
Chart 70,5
L671 ... L678
Fixed value Int1 ...
Fixed value Int8
8 fixed values, integer type (16 bit). When parameterizing using OP1S, integer
parameters are treated as signed, integer number. Integer parameters can be
connected to word destinations.
Value 0
Type I
Chart 70,5
L679 ... L684
FixedvalueDI1...
Fixed value DI6
6 fixed values, double-integer type (32 bit). When parameterizing using OP1S,
integer parameters are treated as signed, integer number. Value 0
Type DI
Chart 70,7
L685, L686
S. NOP1,
S. NOP2
Sources for 2 floating-point values, which are to be distributed to several locations.
Thefunctioncanalsobeusedtodelaythetransferofavalue,asitisprocessedin
the slowest time sector. (time delay achieved: approx. 200 ms ... 500 ms)
Value 3000
Type I
Chart 430,1
L687, L688
S. Bool_NOP1,
S. Bool_NOP2
Sources for 2 digital values, which should be distributed at several locations. The
function can also be used to delay the transfer of a value, as it is processed in the
slowest time sector. (possible time delay: approx. 200 ms ... 500 ms)
Value 0000
Type I
Chart 430,3
L689 ...L690
S. AND5_1 ...
S. AND5_2
2 sources for the inputs of the 5th freeAND block. Type
Chart 425,1
L691 ...L692
S. AND6_1 ...
S. AND6_2
2 sources for the inputs of the 6th freeAND block. Type
Chart 425,3
Parameters and Connectors
120 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L689 ...L690
S. AND7_1 ...
S. AND7_2
2 sources for the inputs of the 7th freeAND block. Type
Chart 425,5
L695, L695
S. S RS-FlipFlop4,
S. R RS-FlipFlop4
Sources for the set- and reset input of the 4th RS flip-flop (R dominant).
(free block). Type
Chart 430,4
L700 ... L702
S. AND1_I1 ...
S. AND1_I3
3 sources for the inputs of the 1st freeAND block. Type I
Chart 425,3
L703 ... L705
S. AND2_I1 ...
S. AND2_I3
3 sources for the inputs of the 2nd free AND blocks. Type I
Chart 425,3
L706 , L707
S. Switch1_0 ...
S. Switch1_1
2 sources for the inputs of the 1st free changeover switch. The output is selected
using L708. Type I
Chart 430,1
L708
S. Switch1_sel Source for the signal to select the input at changeover switch 1.
0: Source(L706)
1: Source(L707)
Type I
Chart 430,1
L709
S. Edge1 Source for the 1st free edge detection block. Value I
Chart 430,4
L710 ... L712
S. OR1_I1 ...
S. OR1_I3
3 sources for the inputs of the 1st free OR logic block. Type I
Chart 425,5
L713 ... L715
S. OR2_I1 ...
S. OR2_I3
3 sources for the inputs of the 2nd free OR logic block. Type I
Chart 425,5
L716, L717
S. Switch2_0 ...
S. Switch2_1
2 sources for the inputs of the 2nd free changeover switch. The output is selected
using L718. Type I
Chart 430,3
L718
S. Switch2_sel Source for the signal to select the input at changeover switch 2.
0: Source(L716)
1: Source(L717)
Value 0000
Type I
Chart 430,3
L720
S. Ramp Input Source for the input signal of the ramp-function generator. Value 3000
Type I
Chart 435,5
L721, L722
S. Ramp max,
S. Ramp min
Source for the upper- and lower limit value of the ramp-function generator.
Factory setting: Limited to: 0.0 to 1.0 Type I
Chart 435,6
L723
S. Ramp Setvalue Source for the setting value of the ramp-function generator. Value 3000
Type I
Chart 435,5
L724, L725
Ramp up time
Ramp down time
Ramp-up- and ramp-down times for the ramp-function generator. The times refer to a
change of the output by a value 1.0. Value 10000 ms
Type I
Chart 435,5-6
L726
S. Ramp enable Source for the control signal to enable the ramp-function generator. Value 0000
Type I
Chart 435,5
L727
S. Ramp set Source for the control signal to set the ramp-function generator to the value in
accordance with L723. Value 0000
Type I
Chart 435,5
L728
S. OnDelay1 Source for the 1st switch-on delay. Value 0000
Type I
Chart 436,1
L729
T_OnDelay1 1st switch-on delay time. Value 100 ms
Type SD
Chart 436,2
L730
S. OffDelay1 Source for the 1st switch-out delay. Value 0000
Type I
Chart 436,1
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 121
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L731
T_OffDelay1 1st switch-on delay time. Value 100 ms
Type SD
Chart 436,2
L732, L733
S.Not1,S.Not2 Sources for the 2 logical inverters. Type I
Chart 430,6
L734, L735
S. S RS-FlipFlop2
S. R RS-FlipFlop2
Sources for the set- and reset input of the 2nd RS flip-flop (R dominant).
(free block). Value 0000
Type I
Chart 430,1
L736, L737
S. S RS-FlipFlop3
S. R RS-FlipFlop3
Sources for the set- and reset input of the 3rd RS flip-flop (R dominant).
(free block). Value 0000
Type I
Chart 430,1
L738
S. set_PT1_Zero Source for the digital signal to set the output of the free lowpass filter to zero.
Behavior of the setting function:
Setting 0
è
1: Output is immediately set to zero
Setting 1
è
0: The output goes to the input value corresponding to L741
Value 0000
Type I
Chart 436,7
L739
Quality Quality of the bandstop filter. Practical values lie in the range 1.0 ... 10.0. Value 2.0
Type I
Chart 436,7
L740
S. PT1_inp Source of the input signal for a 1st order lowpass filter (free block). Value 3000
Type I
Chart 436,7
L741
Tfilt PT1 Filter time constant of the 1st order lowpass filter. Value 20 ms
Type SD
Chart 436,7
L742
S. Bandstop_inp Source of the input signal for a bandstop filter (free block). Value 3000
Type I
Chart 436,7
L743
S. StopFrequency Source of the input signal for the blocking frequency (in Hz) of the bandstop filter. Value 3002
Type I
Chart 436,7
L744, L745
S. Compare_X,
S. Compare_Y
Sources for the input signals of a comparator. Type I
Chart 435,6
L746
S. Limit_max Source for the upper limit of a free limiting block. Value 3001
Type I
Chart 435,1
L747
S. Limit_inp Source for the signal to be limited of a free limiting block. Value 3000
Type I
Chart 435,1
L748
S. Limit_min Source for the lower limit of a free limiting block. Value 3000
Type I
Chart 435,1
L749
S. Compare2 Source for the input signal of a comparator with hysteresis (free block). Value 3000
Type I
Chart 435,1
L750
S. Compare2 Range Source for the range limit of the comparator with hysteresis (free block). Value 3001
Type I
Chart 435,1
L751
Compare2 Hyst. Hysteresis of the comparator with hysteresis (free block). Value 0.1
Type I
Chart 435,2
L752
S. Compare2 Mid Center of the comparator range with hysteresis (free block). Value 3006
Type I
Chart 435,1
L753
S. Character_X Source for the input signal of a characteristic with 2 points. The output = Y1 if the
signal is less than X1; the output = Y2 if X2 is greater. A linear approximation is made
between the two points.
Value 3000
Type I
Chart 435,1
L754, L755
Character_X1,
Character_Y1
Value pair for the lefthand characteristic point (smaller X coordinate). Value 0.0
Type I
Chart 435,2 3
Parameters and Connectors
122 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L756, L757
Character_X2,
Character_Y2
Value pair for the righthand characteristic point (higher X coordinate). Value 1.0
Type I
Chart 435,2 - 3
L758
S. OffDelay2 Source for the 2nd switch-off delay. Value 0000
Type I
Chart 436,1
L759
T_OffDelay2 2nd switch-off delay time. Value 100 ms
Type SD
Chart 436,2
L760
S. Free Word Source for a 16-bit value, which is broken-down into individual bits (connectors 0760
to 0775) Value 2061
Type I
Chart 440,1
L761... L763
S. DW_high,
S. DW_low,
DW_Norm
2 sources for a double word, which is converted into a floating-point value. L763 is
the normalization; i. e. the output value for the input value 16#40000000. Type I
Chart 440,5 - 7
L764, L765
S. Word
Word_Norm
Source for a 16-bit value, which is to be converted into a floating-point value. L765 is
the normalization; i. e. the output value for the input value 16#4000. Type I
Chart 440,4 - 5
L766, L767
S. Float
Float_Norm
Source for a floating-point value, which is converted into type N2. L767 is the
normalization; i. e. the input value where the output = 16#4000. Type I
Chart 440,6 - 7
L768 ... L775
Testdata1_1
Testdata1_8
8, 16-bit test values for selection with L776. Type I
Chart 800,2-3
L776
S. Testdata1_Sel Source to select one of 8, 16-bit test values (L768 ... L775). Value 2000
Type I
Chart 800,3
L777 ... L784
Testdata2_1
Testdata2_8
8, 16-bit test values for selection with L785. Type I
Chart 800,2-3
L785
S. Testdata2_Sel Source to select one of 8, 16-bit test values (L777 ... L784). Value 2000
Type I
Chart 800,3
L786 ... L788
S. ADD1 X1 ...
S. ADD1 X3
Source for the summands of a free adder. Value 3000
Type I
Chart 445,3
L789 ... L791
S. ADD2 X1 ...
S. ADD2 X3
Source for the summands of a free adder. Value 3000
Type I
Chart 445,3
L792 ... L793
S. SUB1 X1 ...
S. SUB1 X2
Source for the inputs of a free subtractor (X1 X2). Value 3000
Type I
Chart 445,3
L794 ... L795
S. SUB2 X1 ...
S. SUB2 X2
Source for the inputs of a free subtractor (X1 X2). Value 3000
Type I
Chart 445,3
L796 ... L798
Q.MUL1 X1 ...
Q.MUL1 X3
Source for the inputs of a free multiplier. Value 3001
Type I
Chart 445,5
L799 ... L801
S. MUL2 X1 ...
S. MUL2 X3
Source for the inputs of a free multiplier. Value 3001
Type I
Chart 445,5
L802 ... L803
S. DIV1 X1 ...
S. DIV1 X2
Source for the inputs of a free divider (X1 / X2). Value 3001
Type I
Chart 445,5
L804 ... L805
S. DIV2 X1 ...
S. DIV2 X2
Source for the inputs of a free divider (X1 / X2). Value 3001
Type I
Chart 445,5
L806 ... L807
S. OR3_I1 ...
S. OR3_I2
2 sources for the inputs of the 3rd free OR block. Type I
Chart 425,5
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 123
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L808, L809
S. ADD3 X1,
S. ADD3 X2
Source for the summands of a free adder. Value 3000
Type
Chart 445,3
L810
S. Free W_B_2 Source for free word-to-binary converter. Value 2000
Type I
Chart 440,1
L811
S. R_DI Source for free real-to-double integer converter. Value 3000
Type
Chart 440,6
L812 ... L813
S. DIVI1 X1 ...
S. DIVI1 X2
Source for the inputs of a free integer divider (X1 / X2). Value 2001
Type I
Chart 445,1
L814 ... L815
S.MULI1X1...
S. MULI1 X2
Source for the inputs of a free integer multiplier. Value 2001
Type I
Chart 445,1
L816, L817
S. W_DW1 high
S. W_DW1 low
Source for a free word-to-double word converter. Value 2000
Type I
Chart 440,4
L818
S. Integrator_X Source for the input quantity of the freely-available integrator. Value 3000
Type I
Chart 435,5
L819
Integrator LU Upper limit value of the freely-available integrator Value 1.0
Type R
Chart 435,6
L820
Integrator LL Lower limit value of the freely-available integrator Value -1.0
Type R
Chart 435,6
L821
S. Integrator SV Source for the setting value of the freely-available integrator Value 3000
Type R
Chart 435,5
L822
Integrator T Integration time constant of the freely-available integrator Value 1000 ms
Type SD
Chart 435,5
L823
S. Integrator set Source for the setting signal of the freely-available integrator Value 0000
Type I
Chart 435,5
L824 , L825
S. Switch3_0 ...
S. Switch3_1
2 sources for the inputs of the 3rd free changeover switch. The output is selected
using L826. Type I
Chart 430,5
L826
S. Switch3_sel Source for the signal to select the input at changeover switch 3.
0: Source(L824)
1: Source(L825)
Value 0000
Type I
Chart 430,5
L827, L828
S. Switch4_0 ...
S. Switch4_1
2 sources for the inputs of the 4th free changeover switch. The output is selected with
L829. Type I
Chart 430,7
L829
S. Switch4_sel Source for the signal to select the input at changeover switch 4.
0: Source(L827)
1: Source(L828)
Value 0000
Type I
Chart 430,7
L830 ... .L832
S. AND_OR1_1 ...
S. AND_OR1_3
Sources of the 1st AND-OR logic in Chart 425. B1830 is the output. Type I
Chart 425,1
L833 ... .L835
S. AND_OR2_1 ...
S. AND_OR2_3
Sources of the 2nd AND-OR logic in Chart 425. B1833 is the output. Type I
Chart 425,1
L836 ... .L838
S. AND_OR3_1 ...
S. AND_OR3_3
Sources of the 3rd AND-OR logic in Chart 425. B0836 is the output. Type I
Chart 425,1
L840
S. Cut Error Source for the cutting error for statistical evaluation. Value 3196
Type I
Chart 520,6
Parameters and Connectors
124 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L841 ... L848
Statistic Limit1 ...
Statistic Limit8
Eight limit values to statistically evaluate cutting errors. The evaluation determines the
relative component of measured values, which lie between 2 adjacent limit values, or
below the lowest, or above the highest limit.
For example: Output “Component LV3<LV4“ = 0.34 indicates that 34% of the
measured values lie between StatisticLimit3 (inclusive) and StatisticLimit4
(exclusive).
Type R
Chart 520,6
L849
Statistic Number
Initialization par
.
Number of measured values determined via the error statistics. Value 100
Type I
Chart 520,6
L850
Statistic Absolut Defines whether the cutting error statistic should use signed measured values or
their absolute value.
0: Sign is taken into account
1: The absolute measured value is used
Value 1
Type BO
Chart 520,7
c851 ... c859
Portion < Limit 1 ...
Portion > Limit 8
Results of the cutting error statistics (referred to the number of measured values).
Portion < Limit1: Component of cuts more precise than the limit in L841
Portion LV1 .. LV2: Comp. between limit values in L841 and L842
Portion LV2 .. LV3: Comp. between limit values in L842 and L843
....
Portion > Limit8: Component of cuts less accurate than the limit in L848
Type R
Chart 520,8
L860
Logic3_MR Mask to select the inputs, which reset the 3rd parameterizable block. The low word of
the mask selects the non-inverted, and the high word, the inverted inputs (refer to
L869). The selected inputs (or inverted inputs) are ORed. If the result of this OR
logic operation is ‘1’, then outputs Q = ‘0’, QN =’1’. The output Q changes from ‘1’ to
‘0’ and a pulse is output at QEN.
Type W
Chart 420,3
L861 ... L868
S. Logic3_I1 ...
S. Logic3_I8
Sources for the digital input signals of the 3rd parameterizable logic. Type I
Chart 420,1
L869 ... L872
Logic3_MS1 ...
Logic3_MS4
Mask for 4 setting functions of the 3rd parameterizable logic (refer to Chart 400). The
inputs, which are ANDed with one another, are selected using the bits of a mask
which are set to ‘1’. The low word of the mask selects the non-inverted, the high word
the inverted input.
Example: Logic3_MS1 = 16#300F = 0011 0000 0000 1111b
Þ
AND logic operation: 1st setting condition = /I6 /I5 I4 I3 I2 I1
Type W
Chart 420,2 - 3
L873 ... L875
Logic3_MR1 ...
Logic3_MR3
Masks for 3 reset functions of the 3rd parameterizable logic (evaluation, refer to L869
and Chart 400) Type W
Chart 420,2 - 3
L876
S. Single Shot_1 Source of the 1st free single shot function input. Value 0000
Type
Chart 436,4
L877
T_Single Shot_1 Pulse duration of the 1st free single shot function. Value 0 ms
Type
Chart 436,5
L878
S. Single Shot_2 Source of the 1st free single shot function input. Value 0000
Type
Chart 436,4
L879
T_Single Shot_1 Pulse duration of the 2nd free single shot function. Value 0 ms
Type
Chart 436,5
L880
Logic4_MR Mask to select the inputs, which reset the 4th parameterizable block (refer to L860). Type W
Chart 420,7
L881 ... L888
S. Logic4_I1 ...
S. Logic4_I8
Sources for the digital input signals of the 4th parameterizable logic. Type I
Chart 420,5
L889 ... L892
Logic4_MS1 ...
Logic4_MS4
Masks for 4 setting functions of the 4th parameterizable logic (refer to L869 and Chart
400). Type W
Chart 420,6 - 7
L893 ... L895
Logic4_MR1 ...
Logikc_MR3
Masks for 3 reset functions of the 4th parameterizable logic (evaluation, refer to L869
and Chart 400) Type W
Chart 420,6 - 7
L986
S. Single Shot_3 Source of the 3rd free single shot function input. Value 0000
Type
Chart 436,4
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 125
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L897
T_Single Shot_3 Pulse duration of the 3rd free single shot function. Value 0 ms
Type
Chart 436,5
L898
S. OnDelay2 Source for the 2nd switch-on delay. Value 0000
Type
Chart 436,1
L899
T_OnDelay2 2nd switch-on delay time. Value 100 ms
Type
Chart 436,1
L900
CB Address Slave address of the communications module for operating T400 in the SRT400. Value 3
Type I
Chart 750,3
L901 ... L913
CB Param. 1 ...
CB Param. 13
Parameter set for the communications module when operating the T400 in the
SRT400. Refer to the Documentation of the communications module used for the
significance of the individual parameters. A change onlybecomes effective after a
0
è
1 edge for L914.
Type I
Chart 750,3 5
L914
CB Config set If a parameter for the communications module is changed (L901ff), it becomes
effectiveafter a 0
è
1 edge for L914. Type BO
Chart 750,3
c915
CB Config State Status of the configuration of the communications module. (0 = OK;
16#7CB3 configuration is not effective, as the drive converter is configuring the
module.)
Type W
Chart 750,5
L940 .. L947
S. Display R1 ...
S. Display R8
Sources for the 8 monitoring parameters d040 ... d047, floating-point type. This
allows connector values to be displayed, where no monitoring parameter is
configured.
Source Display Source Display
L940 d040 L944 d044
L941 d041 L945 d045
L942 d042 L946 d046
L943 d043 L947 d047
Type I
Chart 540,4
L948 .. L951
S. Display W1 ...
S. Display W4
Sources for the 8 monitoring parameters d048 ... d051, word type. This allows
connector values to be displayed, where no monitoring parameter is configured.
Source Display Source Display
L948 d048 L950 d050
L949 d049 L951 d051
Type I
Chart 540,4
L956 .. L959
S. Display I1 ...
S. Display I4
Sources for the 8 monitoring parameters d056 ... d059, integer type. This allows
connector values to be displayed, where no monitoring parameter is configured.
Source Display Source Display
L956 d056 L958 d058
L957 d057 L959 d059
Type I
Chart 540,6
L964 .. L967
S. Display B1 ...
S. Display B4
Sources for the 8 monitoring parameters d064 ... d067, BOOL type. This allows
connector values to be displayed, where no monitoring parameter is configured.
Source Display Source Display
L964 d064 L966 d066
L965 d065 L967 d067
Type I
Chart 540,6
L968 .. L971
S. Display DI1 ...
S. Display DI4
Sources for the 8 monitoring parameters d068 ... d071, double word type. This allows
connector values to be displayed, where no monitoring parameter is configured.
Source Display Source Display
L968 d068 L970 d070
L969 d069 L971 d071
Type I
Chart 540,6
L990
USS Enable
Initialization par.
Enables the USS slave functionality to operate the T400 in the SRT400 with OP1S.
Switch S1/8 must be simultaneously set to ON. The activation/ deactivation only
becomes effective after the module is reset. For USS operation, it is no longer
possible to access via the RS232 interface.
Value 1
Type BO
Chart 770,1
L991
USS Baud Rate Baud rate of the USS interface. (OP1S can only operate with 9600 baud or 19200
baud). Value 9600
Type DI
Chart 770,1
L992
USS Address Address of the USS interface. Value 0
Type I
Chart 770,1
Parameters and Connectors
126 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
Parameter Description Data
L993
USS 4-Wire Difference between 2-conductor- (half duplex) and 4-conductor operation (full duplex)
for the USS interface.
Value Significance Necessary for
0 RS485 2-conductor (half duplex) for OP1S
1 RS232 4-conductor (full duplex) for SIMOVIS
The end nodes at the USS bus (RS485) must terminate the bus with terminating
resistors. Switches S1/1 and S1/2 on the T400 switch theappropriateresistors in the
ON setting.
Value 0
Type I
Chart 770,1
c994
USS Status Receive-status word of the USS interface. (refer to SIMADYN D Communication
Error Messages /3/ and CFC Online Help). This value is onlyof significance, if the
T400 is operated without basic drive, and parameterization is to be realized via the
serial interface 1 of the T400 in the USS protocol.
Type W
Chart 770,4
c995 ... c996
PZD1 USS ...
PZD2 USS
Received process data of the USS interface. Type W
Chart 770,6
L997 ... L998
Q.PZD1 USS Slave ...
Q.PZD2 USS Slave
Sources for the two pieces of process data output at the USS interface. Type I
Chart 770,6
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 127
6DD1903-0DB0 Edition 09.00
6.3 Connectors
TC Chart Path name Significance
0000 70,2 Constant.FALSE.Q Fixed value, logical 0
0001 70,2 Constant.TRUE.Q Fixed value, logical 1
0010 510,3 input_CU.I5020.Q System error
0013 530,8 Ctrl_Error.ST3895.Q No fault
0014 530,8 Ctrl_Error.ST3890.Q Fault
0015 530,6 Ctrl_Error.F4985.Q Alarm
0040 380,2 RangeCheck.Cam.Q1 Cam1_Q
0041 380,2 RangeCheck.Cam.QN1 Cam1_QN
0042 380,4 RangeCheck.Cam.Q2 Cam2_Q
0043 380,4 RangeCheck.Cam.QN2 Cam2_QN
0044 380,6 RangeCheck.Cam.Q3 Cam3_Q
0045 380,6 RangeCheck.Cam.QN3 Cam3_QN
0046 380,8 RangeCheck.Cam.Q4 Cam4_Q
0047 380,8 RangeCheck.Cam.QN4 Cam4_QN
0048 380,8 RangeCheck.Cam.Q Cam group output; COR function for cam1 ... cam4
0049 380,8 RangeCheck.Cam.QN Cam group inverted
0068 780,5 Peer.Receive.QTS Peer receive, initialized
0069 780,5 Peer.Inv_Empfang.Q Peer receive, not initialized
0070 780,5 Peer.Transmit.QTS Peer send, initialized
0071 780,5 Peer.Inv_Senden.Q Peer send, not initialized
0078 780,7 Peer.Peer_Timeout.Q Peer timeout
0079 780,7 Peer.Peer_inv_Timeout.Q Peer no timeout
0090 50,8 inpAbsolut.enable_TR.QE Enable TR absolute value encoder
0091 50,8 inpAbsolut.SSI_local.QE Enable T400 absolute value encoder
0092 50,8 inpAbsolut.SSI_CU_enab.QE Enable CU absolute value encoder
0093 50,8 inpAbsolut.ModeAbsolut.Q Enable absolute value encoder
0094 480,8 RangeCheck.SpeedVgl.QU Shear speed > material speed
0095 480,8 RangeCheck.SpeedVgl.QM Shear speed = material speed
0096 480,8 RangeCheck.SpeedVgl.QL Shear speed < material speed
0103 480,4 Ctrl_Error.F4350.QU Overspeed, positive
0104 480,4 Ctrl_Error.F4350.QL Overspeed, negative
0107 490,4 Ctrl_Error.F4400.QM n_act < block limit
0109 490,5 Ctrl_Error.F4440.QL Torque < block torque
0110 490,5 Ctrl_Error.F4420.QL | n_set | < n_block
0111 490,5 Ctrl_Error.F4420.QU | n_set | > n_block
0112 490,5 Ctrl_Error.F4440.QU Torque > block torque
0116 490,7 Ctrl_Error.F4460.Q Knife is blocked
0117 500,5 Ctrl_Error.T1302.Q Configuring error, pulse encoder
0120 410,2 Constant.Parameter_Bin.Q1 Linear mode
0121 500,5 Ctrl_Error.F4571.QL Speed deviation not too high
0122 500,5 Ctrl_Error.F4571.QU Speed deviation too high
0125 500,7 Ctrl_Error.F4580.Q Speed deviation, error
0137 210,7 PosControl.PosControl.QU Position controller at its maximum
0138 210,7 PosControl.PosControl.QL Position controller at its minimum
0145 165,8 inpAbsolut.TR3250.Q TR encoder, load request
0146 165,3 inpAbsolut.TR3200.QN TR encoder, not read-in
0147 165,3 inpAbsolut.TR3200.Q TR encoder, read-in
0148 165,8 inpAbsolut.TR3400.Q TR load input
0149 165,8 inpAbsolut.TR3350.Q TR loading active
0150 165,8 inpAbsolut.TR3350.QN TR loading not active
0151 165,8 inpAbsolut.TR3260.QP TR reset knife position
0154 165,6 inpAbsolut.TR3520.Q TR starting error
0155 165,5 inpAbsolut.TR3610.Q TR timeout
0156 165,6 inpAbsolut.TR3570.Q TR zero frequency
Parameters and Connectors
128 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
0157 165,7 inpAbsolut.TR3690.Q TR error
0168 200,8 PosControl.FormGen.QCR FGEN in the cutting range
0169 200,8 PosControl.FormGen.QFR FGEN in the format range
0170 200,8 PosControl.FormGen.QHL Hardlock missing
0171 200,8 PosControl.FormGen.QF FGEN error
0172 200,4 PosControl.P1010.Q Enable format controller
0178 150,8 inpAbsolut.SSI_loc_err.Q AENC error
0179 150,8 inpAbsolut.AENC_OK.Q AENC OK (no error)
0200 220,3 Format.EnableFctrl.QP Calculate format controller (pos. edge of edge detection)
0201 220,3 Format.EnableFctrl.QN negative edge of edge detection
0207 180,5 Inc_Encoder.I1205.Q End of material strip for end cut
0208 180,7 Inc_Encoder.I1210.Q Set reference
0218 350,3 RangeCheck.Cut_Range.QU Range1 exceeded
0219 350,3 RangeCheck.Cut_Range.QL Range1 fallen below
0227 350,4 RangeCheck.KnifeRange.QU Range3 exceeded
0228 350,4 RangeCheck.KnifeRange.QL Range3 fallen below
0232 350,8 RangeCheck.Ref_Range.QU Range2 exceeded
0233 350,8 RangeCheck.Ref_Range.QL Range2 fallen below
0234 350,4 RangeCheck.PosOffRang.Q Out of range3
0236 430,3 RangeCheck.OptRSFF.Q RSFF1_Q
0237 430,3 RangeCheck.OptRSFF.QN RSFF1_QN
0241 110,4 input_T400.BIN.Q1 BinInput 1
0242 110,4 input_T400.BIN.Q2 BinInput 2
0243 110,4 input_T400.BIN.Q3 BinInput 3
0244 110,4 input_T400.BIN.Q4 BinInput 4
0245 110,4 input_T400.BIN.Q5 BinInput 5
0246 110,4 input_T400.BIN.Q6 BinInput 6
0247 110,4 input_T400.BIN.Q7 BinInput 7
0248 110,4 input_T400.BIN.Q8 BinInput 8
0249 110,8 input_T400.BQ3000.Q7 Coarse pulse 1
0250 110,8 input_T400.BQ3000.Q8 Coarse pulse 2
0251 110,4 input_T400.BIN.Q9 BinInput 1 inverted
0252 110,4 input_T400.BIN.Q10 BinInput 2 inv
0253 110,4 input_T400.BIN.Q11 BinInput 3 inv
0254 110,4 input_T400.BIN.Q12 BinInput 4 inv
0255 110,4 input_T400.BIN.Q13 BinInput 5 inv
0256 110,4 input_T400.BIN.Q14 BinInput 6 inv
0257 110,4 input_T400.BIN.Q15 BinInput 7 inv
0258 110,4 input_T400.BIN.Q16 BinInput 8 inv
0259 110,8 input_T400.Pin84_invers.Q Coarse pulse 1 inv.
0260 110,8 input_T400.Pin65_invers.Q Coarse pulse 2 inv.
0261 100,4 input_T400.BQ3000.Q1 Terminal 46
0262 100,4 input_T400.BQ3000.Q2 Terminal 47
0263 100,8 input_T400.BQ3000.Q3 Terminal 48
0264 100,8 input_T400.BQ3000.Q4 Terminal 49
0265 100,4 input_T400.Pin46_invers.Q Terminal 46 inv.
0266 100,4 input_T400.Pin47_invers.Q Terminal 47 inv.
0267 100,8 input_T400.Pin48_invers.Q Terminal 48 inv.
0268 100,8 input_T400.Pin49_invers.Q Terminal 49 inv.
0298 150,4 inpAbsolut.AbsPosValid.Q Absolute position valid
0300 620,4 input_CU.CA3100_invers.Q1 CU status1.0 inv
0301 620,4 input_CU.CA3100_invers.Q2 CU status1.1 inv
0302 620,4 input_CU.CA3100_invers.Q3 CU status1.2 inv
0303 620,4 input_CU.CA3100_invers.Q4 CU status1.3 inv
0304 620,4 input_CU.CA3100_invers.Q5 CU status1.4 inv
0305 620,4 input_CU.CA3100_invers.Q6 CU status1.5 inv
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 129
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
0306 620,4 input_CU.CA3100_invers.Q7 CU status1.6 inv
0307 620,4 input_CU.CA3100_invers.Q8 CU status1.7 inv
0308 620,4 input_CU.CA3100_invers.Q9 CU status1.8 inv
0309 620,4 input_CU.CA3100_invers.Q10 CU status1.9 inv
0310 620,4 input_CU.CA3100_invers.Q11 CU status1.10 inv
0311 620,4 input_CU.CA3100_invers.Q12 CU status1.11 inv
0312 620,4 input_CU.CA3100_invers.Q13 CU status1.12 inv
0313 620,4 input_CU.CA3100_invers.Q14 CU status1.13 inv
0314 620,4 input_CU.CA3100_invers.Q15 CU status1.14 inv
0315 620,4 input_CU.CA3100_invers.Q16 CU status1.15 inv
0317 120,2 Inc_Encoder.I1160.Q Enable synchronization
0320 620,8 input_CU.CA3200_invers.Q1 CU status2.0 inv
0321 620,8 input_CU.CA3200_invers.Q2 CU status2.1 inv
0322 620,8 input_CU.CA3200_invers.Q3 CU status2.2 inv
0323 620,8 input_CU.CA3200_invers.Q4 CU status2.3 inv
0324 620,8 input_CU.CA3200_invers.Q5 CU status2.4 inv
0325 620,8 input_CU.CA3200_invers.Q6 CU status2.5 inv
0326 620,8 input_CU.CA3200_invers.Q7 CU status2.6 inv
0327 620,8 input_CU.CA3200_invers.Q8 CU status2.7 inv
0328 620,8 input_CU.CA3200_invers.Q9 CU status2.8 inv
0329 620,8 input_CU.CA3200_invers.Q10 CU status2.9 inv
0330 620,8 input_CU.CA3200_invers.Q11 CU status2.10 inv
0331 620,8 input_CU.CA3200_invers.Q12 CU status2.11 inv
0332 620,8 input_CU.CA3200_invers.Q13 CU status2.12 inv
0333 620,8 input_CU.CA3200_invers.Q14 CU status2.13 inv
0334 620,8 input_CU.CA3200_invers.Q15 CU status2.14 inv
0335 620,8 input_CU.CA3200_invers.Q16 CU status2.15 inv
0336 170,7 Inc_Encoder.SaveAnd1.Q Storing of store value 1 (AND gate)
0337 170,7 Inc_Encoder.SaveAnd2.Q Storing of store value 2 (AND gate)
0340 620,4 input_CU.CA3100.Q1 CU status1.0
0341 620,4 input_CU.CA3100.Q2 CU status1.1
0342 620,4 input_CU.CA3100.Q3 CU status1.2
0343 620,4 input_CU.CA3100.Q4 CU status1.3
0344 620,4 input_CU.CA3100.Q5 CU status1.4
0345 620,4 input_CU.CA3100.Q6 CU status1.5
0346 620,4 input_CU.CA3100.Q7 CU status1.6
0347 620,4 input_CU.CA3100.Q8 CU status1.7
0348 620,4 input_CU.CA3100.Q9 CU status1.8
0349 620,4 input_CU.CA3100.Q10 CU status1.9
0350 620,4 input_CU.CA3100.Q11 CU status1.10
0351 620,4 input_CU.CA3100.Q12 CU status1.11
0352 620,4 input_CU.CA3100.Q13 CU status1.12
0353 620,4 input_CU.CA3100.Q14 CU status1.13
0354 620,4 input_CU.CA3100.Q15 CU status1.14
0355 620,4 input_CU.CA3100.Q16 CU status1.15
0360 620,8 input_CU.CA3200.Q1 CU status 2.0
0361 620,8 input_CU.CA3200.Q2 CU status 2.1
0362 620,8 input_CU.CA3200.Q3 CU status 2.2
0363 620,8 input_CU.CA3200.Q4 CU status 2.3
0364 620,8 input_CU.CA3200.Q5 CU status 2.4
0365 620,8 input_CU.CA3200.Q6 CU status 2.5
0366 620,8 input_CU.CA3200.Q7 CU status 2.6
0367 620,8 input_CU.CA3200.Q8 CU status 2.7
0368 620,8 input_CU.CA3200.Q9 CU status 2.8
0369 620,8 input_CU.CA3200.Q10 CU status 2.9
0370 620,8 input_CU.CA3200.Q11 CU status 2.10
Parameters and Connectors
130 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
0371 620,8 input_CU.CA3200.Q12 CU status 2.11
0372 620,8 input_CU.CA3200.Q13 CU status 2.12
0373 620,8 input_CU.CA3200.Q14 CU status 2.13
0374 620,8 input_CU.CA3200.Q15 CU status 2.14
0375 620,8 input_CU.CA3200.Q16 CU status 2.15
0376 145,5 Inc_Encoder.RefposControl.CUT Cuttings pulse for manual cutting
0377 145,5 Inc_Encoder.RefposControl.CPR Pulse correct reference position
0378 145,5 Inc_Encoder.RefposControl.SPR Pulse to set reference position
0379 145,5 Inc_Encoder.RefposControl.SPS Actual setpoint for the shear position is the starting position
0380 145,5 Inc_Encoder.RefposControl.CSP Pulse at the beginning of the manual cutting pulse
0410 120,6 Inc_Encoder.MESSER.QFC Encoder error1
0412 120,7 Inc_Encoder.I1100.SN Knife speed, negative
0413 120,8 Inc_Encoder.MESSER.SS Position synchronized
0414 120,7 Inc_Encoder.not_SS_Geber1.Q Position not synchronized
0415 120,8 Inc_Encoder.I1450.Q Synch. position 32 ms pulse
0416 120,8 Inc_Encoder.CBT335.Q Synch. position 100 ms pulse
0417 120,7 Inc_Encoder.MESSER.QPM Maximum position exceeded
0418 120,7 Inc_Encoder.SyncOR.Q Knife has synchronized or violated the max. position
0419 120,7 Inc_Encoder.MESSER.SYP Synchronizing pulse, encoder1 (also w/o enable at SP)
0420 130,8 Inc_Encoder.LongPuls.Q Long pulse (pulse extension for synchronizing pulses)
0424 130,2 Inc_Encoder.RefKorrAND.Q Reference position correction pulse
0431 130,5 Inc_Encoder.MATERIAL.SYP Synchronizing pulse, encoder2 (also w/o enable at SP)
0432 130,5 Inc_Encoder.MATERIAL.SS Position2 with synchronizing pulse set
0433 130,6 Inc_Encoder.MATERIAL.QFC Encoder error2
0434 130,6 Inc_Encoder.MatSyncPuls.Q Synchronizing pulse2 extended to 32 ms
0435 130,8 Inc_Encoder.VZ_VRef.QU Material velocity > zero
0436 130,8 Inc_Encoder.VZ_VRef.QE Material velocity = zero
0437 130,8 Inc_Encoder.VZ_VRef.QL Material velocity < zero
0442 135,7 Ctrl_Error.F4600.QL Reference error
0443 135,7 Ctrl_Error.F4610.QP Reference error pulse
0448 135,3 Inc_Encoder.FirstMark.Q Mark set (the first pass mark was detected)
0449 135,3 Inc_Encoder.FirstMark.QN Mark not set (wait for the first pass mark)
0453 330,5 RangeCheck.I1410.Q In the synchronous range
0454 330,5 RangeCheck.I1420.Q In the format range
0455 330,7 RangeCheck.SynchrANDcut.Q Cutting / synchronous
0456 330,7 RangeCheck.CutSynchron.Q Enable cutting (in respect to speed and position)
0459 330,3 RangeCheck.I3100.QU n_knife > 0
0460 330,3 RangeCheck.I3100.QM Knife stationary
0464 330,8 RangeCheck.I3120.QM Knife in the change position
0469 135,8 Inc_Encoder.MarkCounter.Q0 Pass mark counter equal to zero
0470 135,8 Inc_Encoder.MarkCounter.QU Pass mark counter at its upper limit
0471 135,8 Inc_Encoder.MarkCounter.QL Pass mark counter at its lower limit
0490 330,8 PosControl.Positionierung.QF Knife in the change position
0499 230,5 PosControl.Positionierung.QP PosRG; positioning being executed
0500 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q1 SCTW1.0
0501 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q2 SCTW1.1
0502 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q3 SCTW1.2
0503 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q4 SCTW1.3
0504 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q5 SCTW1.4
0505 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q6 SCTW1.5
0506 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q7 SCTW1.6
0507 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q8 SCTW1.7
0508 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q9 SCTW1.8
0509 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q10 SCTW1.9
0510 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q11 SCTW1.10
0511 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q12 SCTW1.11
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 131
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
0512 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q13 SCTW1.12
0513 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q14 SCTW1.13
0514 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q15 SCTW1.14
0515 270,8 Ctrl_STW_Prio.ShearSTW1_int.Q16 SCTW1.15
0518 270,3 Ctrl_STW_Prio.Hand_Auto.Q Manual operation
0519 270,6 Ctrl_STW_Prio.Simulate.Q Simulation mode
0520 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q1 SCTW2.0
0521 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q2 SCTW2.1
0522 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q3 SCTW2.2
0523 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q4 SCTW2.3
0524 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q5 SCTW2.4
0525 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q6 SCTW2.5
0526 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q7 SCTW2.6
0527 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q8 SCTW2.7
0528 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q9 SCTW2.8
0529 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q10 SCTW2.9
0530 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q11 SCTW2.10
0531 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q12 SCTW2.11
0532 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q13 SCTW2.12
0533 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q14 SCTW2.13
0534 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q15 SCTW2.14
0535 280,8 Ctrl_STW_Prio.ShearSTW2_int.Q16 SCTW2.15
0536 260,7 Speed.Vlokal_Zero.QM Speed_local = 0
0537 260,7 Speed.Vlokal_not0.Q Speed_local <> 0
0543 430,8 Free_FBs.Not3.Q Not3_Q; output negator (free block)
0544 430,8 Free_FBs.Not4.Q Not4_Q; output negator (free block)
0548 240,8 Torque.M_gt_max.Q M_set > M_max
0549 240,4 Torque.MC1020.Q Cutting torque enable
0554 520,3 Enable.DelayCut.Q Cutting pulse, extended to 32 ms
0555 320,3 Ctrl_STW_Prio.LGT_ST.Q Material detection (light barrier OR control bit)
0560 300,2 Op_Modes.AND_Stop.Q Output AND logic gate to exit cutting operation
0561 300,5 Op_Modes.CP3130.Q Request continuous cut, cutting program
0562 300,5 Op_Modes.CP3300.Q0 End of cut program 1
0563 300,5 Op_Modes.CP3410.Q Last cut, special sample
0564 300,5 Ctrl_STW_Prio.OR_Anford_cont.Q Request continuous cutting
0565 300,6 Op_Modes.CN3500.Q Program continuous cutting
0566 300,6 Op_Modes.CN3500.QN No continuous cutting
0567 300,6 Op_Modes.FM3210.Q Continuous cutting with sheet length
0568 310,6 Op_Modes.SP3500.Q Program, single cut
0569 310,6 Op_Modes.SP3500.QN No single cut
0570 310,6 Op_Modes.SG3500.Q Program, sample cut
0571 310,6 Op_Modes.SG3500.QN No sample cut
0572 310,6 Op_Modes.FM3200.Q Sample with sheet length
0573 320,7 Op_Modes.TL3500.Q Program, end cut
0574 320,7 Op_Modes.TL3500.QN No end cut
0575 300,7 Op_Modes.FM3250.Q Special length selected
0576 320,4 Enable.PR_M0.Q Cutting operation active
0577 320,4 Enable.PR_MN.Q No cutting operation
0579 520,6 Enable.CUT.Q Cutting pulse for active cutting operation
0580 320,4 Enable.Edge_Cutmode.QP Start of cutting operation
0581 320,4 Enable.Edge_Cutmode.QN End of cutting operation
0584 530,6 Ctrl_Error.CA3130.Q Acknowledge
0590 210,3 PosControl.R3002.Q Approach start position OR knife change position
0591 290,6 Ctrl_STW_Prio.LOC_RQ.Q Request local mode 1
0592 290,6 Ctrl_STW_Prio.MODE.Q2 Operating mode, calibrate
0593 290,6 Ctrl_STW_Prio.MODE.Q3 Operating mode, jogging 1
Parameters and Connectors
132 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
0594 290,6 Ctrl_STW_Prio.MODE.Q4 Operating mode, jogging 2
0595 290,7 Ctrl_STW_Prio.MODE.Q5 Operating mode, approach starting position
0596 290,7 Ctrl_STW_Prio.MODE.Q6 Operating mode, knife change position.
0597 290,7 Ctrl_STW_Prio.NOTMOD.Q No local operation requested
0598 290,7 Ctrl_STW_Prio.ReqLocalMode.Q Local operation requested
0599 290,8 Ctrl_STW_Prio.CB3160.Q Operating mode, local operation 2
0600 290,8 Ctrl_STW_Prio.Not_BA_Lokal.Q Not operating mode, local operation 2
0601 290,7 Ctrl_STW_Prio.MOD_C.Q3 Setting pulse, continuous cut
0602 290,7 Ctrl_STW_Prio.MOD_C.Q4 Setting pulse, sample cut
0603 290,7 Ctrl_STW_Prio.MOD_C.Q5 Setting pulse, single cut
0604 290,7 Ctrl_STW_Prio.MOD_C.Q6 Select end cut
0608 190,6 Format.Set_FMT_Limit.Q Dynamic format setpoint limitation active
0609 810,2 StateMachine.EIN_Input.Q Status of the ON signal for test operation
0610 810,7 StateMachine.STW_Bits.Q1 Bit0 of the control word 1 of test bit operation
0611 810,7 StateMachine.STW_Bits.Q2 Bit1 of the control word 1 of test bit operation
0612 810,7 StateMachine.STW_Bits.Q3 Bit2 of the control word 1 of test bit operation
0613 810,7 StateMachine.STW_Bits.Q4 Bit3 of the control word 1 of test bit operation
0614 810,7 StateMachine.STW_Bits.Q5 Bit4 of the control word 1 of test bit operation
0615 810,7 StateMachine.STW_Bits.Q6 Bit5 of the control word 1 of test bit operation
0616 810,7 StateMachine.STW_Bits.Q7 Bit6 of the control word 1 of test bit operation
0617 810,7 StateMachine.STW_Bits.Q8 Bit7 of the control word 1 of test bit operation
0618 810,7 StateMachine.STW_Bits.Q9 Bit8 of the control word 1 of test bit operation
0619 810,7 StateMachine.STW_Bits.Q10 Bit9 of the control word 1 of test bit operation
0620 810,7 StateMachine.STW_Bits.Q11 Bit10 of the control word 1 of test bit operation
0621 810,7 StateMachine.STW_Bits.Q12 Bit11 of the control word 1 of test bit operation
0622 810,7 StateMachine.STW_Bits.Q13 Bit12 of the control word 1 of test bit operation
0623 810,7 StateMachine.STW_Bits.Q14 Bit13 of the control word 1 of test bit operation
0624 810,7 StateMachine.STW_Bits.Q15 Bit14 of the control word 1 of test bit operation
0625 810,7 StateMachine.STW_Bits.Q16 Bit15 of the control word 1 of test bit operation
0626 810,2 StateMachine.EIN_puls.QP Pulse for a positive edge at connector 0609
0627 810,2 StateMachine.EIN_puls.QN Pulse for a negative edge at connector 0609
0628 810,4 StateMachine.Startpos.Q Output AND logic gate; refer to Chart 810
0629 810,5 StateMachine.Cut.Q Output logic for the test mode
0630 810,5 StateMachine.Cut.QN 0629 inverted
0631 425,4 IncEncoder.AND3.Q Output of the 3rd free AND logic gate
0632 810,2 StateMachine.Eichen.Q Enable referencing for test operation
0633 425,4 IncEncoder.AND4.Q Output of the 4th free AND logic gate
0635 810,5 StateMachine.WR_EIN.Q Enable change ON for test operation
0636 810,4 StateMachine.WR_EIN.QN Enable change ON inverse for test operation
0640 340,4 RangeCheck.ACALC.QU Position > calculation position
0641 340,4 RangeCheck.ACALC.QL Position < calculation position
0644 340,4 RangeCheck.SISTR.QM In the starting position
0645 430,5 Free_FBs.Edge2.QP Edge2_Q
0646 430,5 Free_FBs.Edge2.QP Edge2_QN
0647 340,7 RangeCheck.SISTRT.Q Knife is in the starting position
0648 340,4 RangeCheck.CALC.QN Position fall below calc. Pos.
0649 340,4 RangeCheck.CALC.QP Calculated position reached
0660 360,5 Enable.CD3720.Q Drive converter ready
0661 360,5 Enable.WR_not_Ready.Q Drive converter not ready
0662 360,5 Enable.CD3700.Q Enable inverter
0663 360,5 Enable.CD3705.Q No inverter enable
0664 360,6 Enable.CD3740.Q Enable setpoint
0665 360,6 Enable.NoSetpoint.Q No setpoint enable
0666 360,7 Enable.CD3750.Q Controller enable
0667 360,7 Enable.CD3760.Q No controller enable
0670 370,5 Enable.inv_PC_enable.Q Position controller not enabled
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 133
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
0671 370,5 Enable.CD3800.Q Enable position controller
0676 370,4 Format.CD3370.Q Open brake
0680 370,4 Format.CD3390.Q Enable brake control
0681 480,7 Ctrl_Error.F4300.QL Knife position, underflow
0682 480,7 Ctrl_Error.F4320.QP Knife position, underflow pulse
0683 480,7 Ctrl_Error.F4500.QU Knife position, overflow
0684 480,7 Ctrl_Error.F4520.QP Knife position, overflow pulse
0687 430,4 Constant.Parameter_Bin.Q7 Free binary connector
0688 430,4 Constant.Parameter_Bin.Q8 Free binary connector
0689 425,2 Free_FBs.AND5.Q Output 5th AND gate
0691 425,4 Free_FBs.AND6.Q Output 6th AND gate
0693 425,6 Free_FBs.AND7.Q Output 7th AND gate
0694 470,3 Ctrl_Error.F4110.Q CB error
0695 430,5 Free_FBs.RS_FF4.Q RSFF4_Q
0696 430,5 Free_FBs.RS_FF4.QN RSFF4_QN
0699 470,3 Ctrl_Error.F4130.Q CU error
0700 425,4 Free_FBs.AND1.Q AND1_Q
0701 340,4 RangeCheck.Xref_Startlen.QU Ref. Pos. > start length
0702 340,4 RangeCheck.Xref_Startlen.QL Fef. Pos. < start length
0703 425,4 Free_FBs.AND2.Q AND2_Q
0704 470,8 Ctrl_Error.F4230.Q User error 1
0705 480,8 Ctrl_Error.F4280.Q User error 2
0708 430,6 Free_FBs.Edge1.QN Output positive edge detected (free block)
0709 470,6 Free_FBs.Edge1.QP Output negative edge detected (free block)
0710 425,6 Free_FBs.OR1.Q OR1_Q
0713 425,6 Free_FBs.OR2.Q OR2_Q
0720 435,8 Free_FBs.RampGen.QU Ramp-function generator at the upper limit value
0721 435,8 Free_FBs.RampGen.QL Ramp-function generator at the lower limit value
0722 435,6 Free_FBs.RampGen.QE Ramp Y=X
0728 436,2 Free_FBs.OnDelay1.Q OnDelay1_Q; switch-in delayed signal
0730 436,2 Free_FBs.OffDelay1.Q OffDelay1_Q; switch-out delayed signal
0732 430,8 Free_FBs.Not1.Q Not1_Q; output negator (free block)
0733 430,8 Free_FBs.Not2.Q Not2_Q; output negator (free block)
0734 430,3 Free_FBs.RS_FF1.Q RSFF2_Q; Q output of an RS flip-flop
0735 430,3 Free_FBs.RS_FF1.QN RSFF2_QN; QN output of an RS flip-flop
0736 430,3 Free_FBs.RS_FF3.Q RSFF3_Q; Q output of an RS flip-flop
0737 430,3 Free_FBs.RS_FF3.QN RSFF3_QN; QN output of an RS flip-flop
0743 435,7 Free_FBs.Compare.QE Compare X = Y (output, free block)
0744 435,7 Free_FBs.Compare.QU Compare X > Y
0745 435,7 Free_FBs.Compare.QL Compare X < Y
0746 430,3 Free_FBs.Begrenzer.QU Limiter at its upper limit (free block)
0747 430,3 Free_FBs.LimitOR.Q Limiter at its limit (free block)
0748 430,3 Free_FBs.Begrenzer.QL Limiter at its lower limit
0749 435,3 Free_FBs.Comp2.QU Compare2 X > Y (output, comparator with hysteresis)
0750 435,3 Free_FBs.Comp2.QM Compare2 X = Y (input in range)
0751 435,3 Free_FBs.Comp2.QL Compare2 X < Y
0758 436,2 Free_FBs.OffDelay2.Q Off Delay2_Q
0760 440,3 Free_FBs.Free_W_B_1.Q1 Word to bit converter, bit 0
0761 440,3 Free_FBs.Free_W_B_1.Q2 Word to bit converter, bit 1
0762 440,3 Free_FBs.Free_W_B_1.Q3 Word to bit converter, bit 2
0763 440,3 Free_FBs.Free_W_B_1.Q4 Word to bit converter, bit 3
0764 440,3 Free_FBs.Free_W_B_1.Q5 Word to bit converter, bit 4
0765 440,3 Free_FBs.Free_W_B_1.Q6 Word to bit converter, bit 5
0766 440,3 Free_FBs.Free_W_B_1.Q7 Word to bit converter, bit 6
0767 440,3 Free_FBs.Free_W_B_1.Q8 Word to bit converter, bit 7
0768 440,3 Free_FBs.Free_W_B_1.Q9 Word to bit converter, bit 8
Parameters and Connectors
134 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
0769 440,3 Free_FBs.Free_W_B_1.Q10 Word to bit converter, bit 9
0770 440,3 Free_FBs.Free_W_B_1.Q11 Word to bit converter, bit 10
0771 440,3 Free_FBs.Free_W_B_1.Q12 Word to bit converter, bit 11
0772 440,3 Free_FBs.Free_W_B_1.Q13 Word to bit converter, bit 12
0773 440,3 Free_FBs.Free_W_B_1.Q14 Word to bit converter, bit 13
0774 440,3 Free_FBs.Free_W_B_1.Q15 Word to bit converter, bit 14
0775 440,3 Free_FBs.Free_W_B_1.Q16 Word to bit converter, bit 15
0780 810,7 StateMachine.SSTW_Bits.Q1 Bit0 of the shears control word 1 of the test operation
0781 810,7 StateMachine.SSTW_Bits.Q2 Bit1 of the shears control word 1 of the test operation
0782 810,7 StateMachine.SSTW_Bits.Q3 Bit2 of the shears control word 1 of the test operation
0783 810,7 StateMachine.SSTW_Bits.Q4 Bit3 of the shears control word 1 of the test operation
0784 810,7 StateMachine.SSTW_Bits.Q5 Bit4 of the shears control word 1 of the test operation
0785 810,7 StateMachine.SSTW_Bits.Q6 Bit5 of the shears control word 1 of the test operation
0786 810,7 StateMachine.SSTW_Bits.Q7 Bit6 of the shears control word 1 of the test operation
0787 810,7 StateMachine.SSTW_Bits.Q8 Bit7 of the shears control word 1 of the test operation
0788 810,7 StateMachine.SSTW_Bits.Q9 Bit8 of the shears control word 1 of the test operation
0789 810,7 StateMachine.SSTW_Bits.Q10 Bit9 of the shears control word 1 of the test operation
0790 810,7 StateMachine.SSTW_Bits.Q11 Bit10 of the shears control word 1 of the test operation
0791 810,7 StateMachine.SSTW_Bits.Q12 Bit11 of the shears control word 1 of the test operation
0792 810,7 StateMachine.SSTW_Bits.Q13 Bit12 of the shears control word 1 of the test operation
0793 810,7 StateMachine.SSTW_Bits.Q14 Bit13 of the shears control word 1 of the test operation
0794 810,7 StateMachine.SSTW_Bits.Q15 Bit14 of the shears control word 1 of the test operation
0795 810,7 StateMachine.SSTW_Bits.Q16 Bit15 of the shears control word 1 of the test operation
0800 680,4 input_CB.INV_SER1.Q1 CB CTW1.0 inv
0801 680,4 input_CB.INV_SER1.Q2 CB CTW1.1 inv
0802 680,4 input_CB.INV_SER1.Q3 CB CTW1.2 inv
0803 680,4 input_CB.INV_SER1.Q4 CB CTW1.3 inv
0804 680,4 input_CB.INV_SER1.Q5 CB CTW1.4 inv
0805 680,4 input_CB.INV_SER1.Q6 CB CTW1.5 inv
0806 680,4 input_CB.INV_SER1.Q7 CB CTW1.6 inv
0807 680,4 input_CB.INV_SER1.Q8 CB CTW1.7 inv
0808 680,4 input_CB.INV_SER1.Q9 CB CTW1.8 inv
0809 680,4 input_CB.INV_SER1.Q10 CB CTW1.9 inv
0810 680,4 input_CB.INV_SER1.Q11 CB CTW1.10 inv
0811 680,4 input_CB.INV_SER1.Q12 CB CTW1.11 inv
0812 680,4 input_CB.INV_SER1.Q13 CB CTW1.12 inv
0813 680,4 input_CB.INV_SER1.Q14 CB CTW1.13 inv
0814 680,4 input_CB.INV_SER1.Q15 CB CTW1.14 inv
0815 680,4 input_CB.INV_SER1.Q16 CB CTW1.15 inv
0817 435,7 Free_FBs.Integrator.QU Free integrator at its upper limit
0818 435,7 Free_FBs.Integrator.QL Free integrator at its lower limit
0820 680,8 input_CB.INV_SHEAR_CB.Q1 CB CTW2.0 inv
0821 680,8 input_CB.INV_SHEAR_CB.Q2 CB CTW2.1 inv
0822 680,8 input_CB.INV_SHEAR_CB.Q3 CB CTW2.2 inv
0823 680,8 input_CB.INV_SHEAR_CB.Q4 CB CTW2.3 inv
0824 680,8 input_CB.INV_SHEAR_CB.Q5 CB CTW2.4 inv
0825 680,8 input_CB.INV_SHEAR_CB.Q6 CB CTW2.5 inv
0826 680,8 input_CB.INV_SHEAR_CB.Q7 CB CTW2.6 inv
0827 680,8 input_CB.INV_SHEAR_CB.Q8 CB CTW2.7 inv
0828 680,8 input_CB.INV_SHEAR_CB.Q9 CB CTW2.8 inv
0829 680,8 input_CB.INV_SHEAR_CB.Q10 CB CTW2.9 inv
0830 680,8 input_CB.INV_SHEAR_CB.Q11 CB CTW2.10 inv
0831 680,8 input_CB.INV_SHEAR_CB.Q12 CB CTW2.11 inv
0832 680,8 input_CB.INV_SHEAR_CB.Q13 CB CTW2.12 inv
0833 680,8 input_CB.INV_SHEAR_CB.Q14 CB CTW2.13 inv
0834 680,8 input_CB.INV_SHEAR_CB.Q15 CB CTW2.14 inv
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 135
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
0835 680,8 input_CB.INV_SHEAR_CB.Q16 CB CTW2.15 inv
0836 425,3 Free_FBs.andOR3.Q Output 3rd AND-OR logic
0837 425,2 Free_FBs.ANDor3.Q AND Output 3rd AND-OR logic
0840 680,4 input_CB.SER1.Q1 CB control word1, bit 0
0841 680,4 input_CB.SER1.Q2 CB control word1, bit 1
0842 680,4 input_CB.SER1.Q3 CB control word1, bit 2
0843 680,4 input_CB.SER1.Q4 CB control word1, bit 3
0844 680,4 input_CB.SER1.Q5 CB control word1, bit 4
0845 680,4 input_CB.SER1.Q6 CB control word1, bit 5
0846 680,4 input_CB.SER1.Q7 CB control word1, bit 6
0847 680,4 input_CB.SER1.Q8 CB control word1, bit 7
0848 680,4 input_CB.SER1.Q9 CB control word1, bit 8
0849 680,4 input_CB.SER1.Q10 CB control word1, bit 9
0850 680,4 input_CB.SER1.Q11 CB control word1, bit 10
0851 680,4 input_CB.SER1.Q12 CB control word1, bit 11
0852 680,4 input_CB.SER1.Q13 CB control word1, bit 12
0853 680,4 input_CB.SER1.Q14 CB control word1, bit 13
0854 680,4 input_CB.SER1.Q15 CB control word1, bit 14
0855 680,4 input_CB.SER1.Q16 CB control word1, bit 15
0860 680,8 input_CB.SHEAR_CB.Q1 CB SCTW bit 0
0861 680,8 input_CB.SHEAR_CB.Q2 CB SCTW bit 1
0862 680,8 input_CB.SHEAR_CB.Q3 CB SCTW bit 2
0863 680,8 input_CB.SHEAR_CB.Q4 CB SCTW bit 3
0864 680,8 input_CB.SHEAR_CB.Q5 CB SCTW bit 4
0865 680,8 input_CB.SHEAR_CB.Q6 CB SCTW bit 5
0866 680,8 input_CB.SHEAR_CB.Q7 CB SCTW bit 6
0867 680,8 input_CB.SHEAR_CB.Q8 CB SCTW bit 7
0868 680,8 input_CB.SHEAR_CB.Q9 CB SCTW bit 8
0869 680,8 input_CB.SHEAR_CB.Q10 CB SCTW bit 9
0870 680,8 input_CB.SHEAR_CB.Q11 CB SCTW bit 10
0871 680,8 input_CB.SHEAR_CB.Q12 CB SCTW bit 11
0872 680,8 input_CB.SHEAR_CB.Q13 CB SCTW bit 12
0873 680,8 input_CB.SHEAR_CB.Q14 CB SCTW bit 13
0874 680,8 input_CB.SHEAR_CB.Q15 CB SCTW bit 14
0875 680,8 input_CB.SHEAR_CB.Q16 CB SCTW bit 15
0876 436,5 Free_FBs.Impuls1.Q Single Shot_1
0878 436,5 Free_FBs.Impuls2.Q Single Shot_2
0896 436,5 Free_FBs.Impuls3.Q Single Shot_3
0898 436,2 Free_FBs.OnDelay2.Q On Delay2_Q
0918 660,7 input_CB.no_Timeout_CB.Q No timeout CB
0919 660,4 output.CB_TxD_Error.Q CB send not initialized
0920 660,4 input_CB.CB_not_init.Q CB receive not initialized
0921 660,4 input_CB.R3300.QTS CB receive initialized
0922 660,4 output.SD3100.QTS CB send initialized
0924 660,7 input_CB.CB_Timout_OR.Q Timeout CB
0933 421,3 Ctrl_Linear.Logik_5.Q Logic5_Q
0934 421,3 Ctrl_Linear.Logik_5.QN Logic5_QN
0935 421,3 Ctrl_Linear.Logik_5.QE Logic5_QE
0936 421,3 Ctrl_Linear.Logik_5.QEN Logic5_QEN
0941 421,6 Ctrl_Linear.Logik_6.Q Logic6_Q
0942 421,6 Ctrl_Linear.Logik_6.QN Logic6_QN
0943 421,6 Ctrl_Linear.Logik_6.QE Logic6_QE
0944 421,6 Ctrl_Linear.Logik_6.QEN Logic6_QEN
0971 600,5 input_CU.R1000.QTS CU receive initialized
0972 600,5 output.SD1200.QTS CU send initialized
0973 600,5 input_CU.R1000.QT CU timeout
Parameters and Connectors
136 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
0974 600,5 input_CU.DRIVE.BS CU operational
0976 600,5 input_CU.Resync_Delay.Q CU operation delayed
0977 600,4 input_CU.I5060.Q Resynchronization pulses
0978 510,6 Ctrl_State.ST5000.Q Fan control
0981 600,5 input_CU.CU_not_CRV.Q CU receive not initialized
0982 600,5 output.CU_inv_init.Q CU send not initialized
0983 600,5 input_CU.CU_inv_Timeout.Q No CU timeout
0984 600,5 input_CU.CU_inv_Betrieb.Q CU not operational
1257 415,4 Ctrl_Linear.Knife_up.QEN Logic1_QEN
1258 415,4 Ctrl_Linear.Knife_up.QE Logic1_QE
1259 415,4 Ctrl_Linear.Knife_up.Q Logic1_Q
1260 415,4 Ctrl_Linear.Knife_up.QN Logic1_QN
1277 415,8 Ctrl_Linear.Knife_down.QEN Logic2_QEN
1278 415,8 Ctrl_Linear.Knife_down.QE Logic2_QE
1279 415,8 Ctrl_Linear.Knife_down.Q Logic2_Q
1280 415,8 Ctrl_Linear.Knife_down.QN Logic2_QN
1300 170,3 Inc_Encoder.Delay_AbsPosOK.Q Set AbsPos valid
1306 170,7 Inc_Encoder.I1150.Q Set knife position
1307 170,7 Inc_Encoder.CL1960.Q Set to coarse ref. 32 ms
1308 170,7 Inc_Encoder.CL1990.QP Set to coarse reference
1309 170,5 Inc_Encoder.CL3060.QN Knife is not calibrated
1310 170,5 Inc_Encoder.CL3060.Q Knife is calibrated
1311 170,3 Inc_Encoder.CL3045.QP Calibration, starting pulse
1312 170,3 Inc_Encoder.CL3045.QN Calibration, end pulse
1313 170,5 Inc_Encoder.Edge_Calibr.QP Pulse when shear status changes to calibrated”
1314 170,5 Inc_Encoder.Edge_Calibr.QN Pulse when shear status changes to not calibrated”
1321 425,8 Free_FBs.OR4.Q Output 4th freeOR gate
1323 425,8 Free_FBs.OR5.Q Output 5th freeOR gate
1344 410,5 Ctrl_Linear.enPosition.QEN Starting pulse, synchronous operation
1345 410,5 Ctrl_Linear.enPosition.QE Starting pulse, positioning operation
1346 410,5 Ctrl_Linear.enPosition.QN Mode, synchronous operation
1347 410,5 Ctrl_Linear.enPosition.Q Mode, positioning
1348 410,7 Ctrl_Linear.PosError.Q Error for modechangeover
1360 140,8 Inc_Encoder.EnableSP_Ref.Q Enable pass mark synchronization
1363 140,6 Inc_Encoder.FirstMarkRef.Q Material position in the synchronizing range
1591 350,8 Free_FBs.Compare3.QU Output, comparator 3: X > Y
1592 350,8 Free_FBs.Compare3.QM Output, comparator 3: X in range
1593 350,8 Free_FBs.Compare3.QL Output, comparator 3: X < Y
1595 140,3 Free_FBs.Compare4.QU Output, comparator 4: X > Y
1596 140,4 Free_FBs.Compare4.QM Output, comparator 4: X in range
1597 140,3 Free_FBs.Compare4.QL Output, comparator 4: X < Y
1806 425,6 Free_FBs.OR3.Q Output, 3rd free OR logic gate
1810 440,3 Free_FBs.Free_W_B_2.Q1 FreeWord2_0 (outputs, word->binary converter)
1811 440,3 Free_FBs.Free_W_B_2.Q2 FreeWord2_1 (outputs, word->binary converter)
1812 440,3 Free_FBs.Free_W_B_2.Q3 FreeWord2_2 (outputs, word->binary converter)
1813 440,3 Free_FBs.Free_W_B_2.Q4 FreeWord2_3 (outputs, word->binary converter)
1814 440,3 Free_FBs.Free_W_B_2.Q5 FreeWord2_4 (outputs, word->binary converter)
1815 440,3 Free_FBs.Free_W_B_2.Q6 FreeWord2_5 (outputs, word->binary converter)
1816 440,3 Free_FBs.Free_W_B_2.Q7 FreeWord2_6 (outputs, word->binary converter)
1817 440,3 Free_FBs.Free_W_B_2.Q8 FreeWord2_7 (outputs, word->binary converter)
1818 440,3 Free_FBs.Free_W_B_2.Q9 FreeWord2_8 (outputs, word->binary converter)
1819 440,3 Free_FBs.Free_W_B_2.Q10 FreeWord2_9 (outputs, word->binary converter)
1820 440,3 Free_FBs.Free_W_B_2.Q11 FreeWord2_10 (outputs, word->binary converter)
1821 440,3 Free_FBs.Free_W_B_2.Q12 FreeWord2_11 (outputs, word->binary converter)
1822 440,3 Free_FBs.Free_W_B_2.Q13 FreeWord2_12 (outputs, word->binary converter)
1823 440,3 Free_FBs.Free_W_B_2.Q14 FreeWord2_13 (outputs, word->binary converter)
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 137
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
1824 440,3 Free_FBs.Free_W_B_2.Q15 FreeWord2_14 (outputs, word->binary converter)
1825 440,3 Free_FBs.Free_W_B_2.Q16 FreeWord2_15 (outputs, word->binary converter)
1830 425,3 Free_FBs.andOR1.Q Output, 1st AND-OR logic
1831 425,2 Free_FBs.ANDor1.Q AND Output, 1st AND-OR logic
1833 425,3 Free_FBs.andOR2.Q Output, 2nd AND-OR logic
1834 425,2 Free_FBs.ANDor2.Q AND Output, 2nd AND-OR logic
1860 420,4 Ctrl_Linear.Logic_3.Q Output Q of the 3rd parameterizable logic
1861 420,4 Ctrl_Linear.Logic_3.QN Output QN of the 3rd parameterizable logic
1862 420,4 Ctrl_Linear.Logic_3.QE Output QE of the 3rd parameterizable logic
1863 420,4 Ctrl_Linear.Logic_3.QEN Output QEN of the 3rd parameterizable logic
1880 420,8 Ctrl_Linear.Logic_4.Q Output Q of the 4th parameterizable logic
1881 420,8 Ctrl_Linear.Logic_4.QN Output QN of the 4th parameterizable logic
1882 420,8 Ctrl_Linear.Logic_4.QE Output QE of the 4th parameterizable logic
1883 420,8 Ctrl_Linear.Logic_4.QEN Output QEN of the 4th parameterizable logic
2000 70,2 Constant.Konst_W.Y1 0 (word)
2001 70,2 Constant.Konst_W.Y2 1 (word)
2002 70,2 Constant.SPS450_ID.Y3 2 (word)
2003 70,2 Constant.SPS450_ID.Y6 3 (word)
2004 70,2 Constant.SPS450_ID.Y7 4 (word)
2005 70,2 Constant.SPS450_ID.Y8 5 (word)
2006 70,2 Constant.Konst_W.Y3 Constant 16#FFFF; corresponds to -1
2010 510,2 input_CU.I5010.QS System status word
2012 630,4 Ctrl_State.CE3200.QS Control word 1 for the basic drive
2013 630,8 Ctrl_State.CE3500.QS Control word 2 for the basic drive
2014 530,8 Ctrl_Error.F4960.Y Error word
2015 530,6 Ctrl_Error.F4985.QS Alarm word
2016 510,7 Ctrl_State.ST3900.QS Control status
2017 520,5 Ctrl_State.CBT340.QS Shears status
2020 110,7 input_T400.BI1030.QS Status binary inputs (inverted and not inverted)
2022 520,8 Enable.CUT_count.Y Cut counter
2061 790,3 Peer.RecPZD1.YWL PZD1 receive for peer-to-peer
2062 790,3 Peer.RecPZD1.YWH PZD2 receive for peer-to-peer
2063 790,3 Peer.RecPZD2.YWL PZD3 receive for peer-to-peer
2064 790,3 Peer.RecPZD2.YWH PZD4 receive for peer-to-peer
2065 790,3 Peer.RecPZD3.Y PZD5 receive for peer-to-peer
2155 200,8 PosControl.FormGen.YFC Error code of the format generator
2301 610,3 input_CU.R1020.Y1 PZD1 from CU
2302 610,3 input_CU.R1020.Y2 PZD2 from CU
2303 610,3 input_CU.R1020.Y3 PZD3 from CU
2304 610,3 input_CU.R1020.Y4 PZD4 from CU
2305 610,3 input_CU.R1020.Y5 PZD5 from CU
2306 610,3 input_CU.R1020.Y6 PZD6 from CU
2307 610,3 input_CU.R1020.Y7 PZD7 from CU
2308 610,3 input_CU.R1020.Y8 PZD8 from CU
2309 610,3 input_CU.R1021.Y1 PZD9 from CU
2310 610,3 input_CU.R1021.Y2 PZD10 from CU
2311 610,3 input_CU.R1021.Y3 PZD11 from CU
2312 610,3 input_CU.R1021.Y4 PZD12 from CU
2313 610,3 input_CU.R1021.Y5 PZD13 from CU
2314 610,3 input_CU.R1021.Y6 PZD14 from CU
2315 610,3 input_CU.R1021.Y7 PZD15 from CU
2316 610,3 input_CU.R1021.Y8 PZD16 from CU
2357 620,2 input_CU.CTW_STATES.Y1 CU status word 1
2359 620,6 input_CU.CTW_STATES.Y2 CU status word 2
2400 120,4 Constant.PulseMesser.Y Pulse number 1 (knife encoder)
2412 120,6 Inc_Encoder.MESSER.YFC Error code, knife position sensing
Parameters and Connectors
138 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
2420 130,2 Constant.PulseRef.Y Pulses, encoder 2
2434 130,6 Inc_Encoder.MATERIAL.YFC Error code 2
2465 135,8 Inc_Encoder.MarkCounter.Y Pass mark number
2536 270,6 Ctrl_STW_Prio.Simul_STW1.Y Shears control word 1
2544 280,6 Ctrl_STW_Prio.Simul_STW2.Y Shears control word 2
2586 135,3 Inc_Encoder.MarkLimit.Y Mark limit (limit value for the pass mark counter)
2588 135,3 Inc_Encoder.Marken_I16.Y Mark number 1 (pass mark number calculated from the format)
2605 440,5 Free_FBs.DW_W1.YWH DW_W1 high (output, double word->word converter)
2606 440,5 Free_FBs.DW_W1.YWL DW_W1 low (output, double word->word converter)
2607 445,2 Free_FBs.ADDI_1.Y ADDI_Y (output, integer adder 1)
2608 445,2 Free_FBs.SUBI_1.Y SUBI_Y (output, integer subtractor 1)
2621 810,6 StateMachine.SW_STW1.Y Control word1, test mode
2622 810,5 StateMachine.SSTW_Cut.Y Shears control word 1, test mode
2623 810,5 StateMachine.SM_const..Y7 Shears control word 2, test mode
2647 440,5 Free_FBs.R_I1.Y R_I1 (output, floating-point -> integer converter)
2666 70,6 Constant.Konst_W.Y4 Word, fixed value 1
2667 70,6 Constant.Konst_W.Y5 Word, fixed value 2
2668 70,6 Constant.Konst_W.Y6 Word, fixed value 3
2669 70,6 Constant.Konst_W.Y7 Word, fixed value 4
2670 70,6 Constant.Konst_W.Y8 Word, fixed value 5
2671 70,6 Constant.Konst_I.Y1 Integer, fixed value 1
2672 70,6 Constant.Konst_I.Y2 Integer, fixed value 2
2673 70,6 Constant.Konst_I.Y3 Integer, fixed value 3
2674 70,6 Constant.Konst_I.Y4 Integer, fixed value 4
2675 70,6 Constant.Konst_I.Y5 Integer, fixed value 5
2676 70,6 Constant.Konst_I.Y6 Integer, fixed value 6
2677 70,6 Constant.Konst_I.Y7 Integer, fixed value 7
2678 70,6 Constant.Konst_I.Y8 Integer, fixed value 8
2766 440,8 Free_FBs.Float_N2.Y Output float to N2 converter (free block)
2776 800,5 Constant.CW1_von_CB.Y Test value 1 (for simulation, control word 1 from CB)
2781 640,6 output.Vsoll.Y Setpoint 1 CU (N2)
2785 800,5 Constant.Scherensteuerw.Y Test value 2 (for simulation, shears control word)
2787 640,6 output.M_soll.Y Setpoint 2 CU (N2)
2789 640,4 output.Sollwert3_CU.Y Setpoint 3 CU (N2)
2792 640,4 output.Sollwert4_CU.Y Setpoint 4 CU (N2)
2795 640,4 output.Sollwert4_DW.YWH Setpoint 5 high CU
2796 640,4 output.Sollwert4_DW.YWL Setpoint 5 low CU
2801 670,3 input_CB.R3310_CB_virt.Y1 PZD1 from CB
2802 670,3 input_CB.R3310_CB_virt.Y2 PZD2 from CB
2803 670,3 input_CB.R3310_CB_virt.Y3 PZD3 from CB
2804 670,3 input_CB.R3310_CB_virt.Y4 PZD4 from CB
2805 670,3 input_CB.R3310_CB_virt.Y5 PZD5 from CB
2806 670,3 input_CB.R3310_CB_virt.Y6 PZD6 from CB
2807 670,3 input_CB.R3310_CB_virt.Y7 PZD7 from CB
2808 670,3 input_CB.R3310_CB_virt.Y8 PZD8 from CB
2809 670,3 input_CB.CB_virt_Rec.Y1 PZD9 from CB
2810 670,3 input_CB.CB_virt_Rec.Y2 PZD10 from CB
2812 445,2 Free_FBs.DIVI_1.Y DIVI_1 Y (output, integer divider)
2813 445,2 Free_FBs.DIVI_1.MOD DIVI_1 Y (MOD) (modulo output, integer divider)
2814 445,2 Free_FBs.MULI_1.Y MULI_1 Y (output, integer multiplier)
2826 700,3 output.Istwert1_CB.Y Actual value 1 CB
2829 700,3 output.Istwert2_CB.Y Actual value 2 CB
2832 700,3 output.Istwert3_CB.Y Actual value 3 CB
2835 700,3 output.Istwert4_CB.Y Actual value 4 CB
2838 700,4 output.Istwert5_CB_DW.YWH Actual value 5 CB high word
2839 700,4 output.Istwert5_CB_DW.YWL Actual value 5 CB low word
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 139
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
2843 680,3 input_CU.STW1CU_sel.Y CB CTW1 control word2 from the COMBOARD
2845 680,5 input_CU.CTW_STATES.Y3 CB shearsCTW; shears control word from COMBOARD
2846 690,4 Ctrl_State.CBT300.QS Status word 1 for COMBOARD
2847 690,8 Ctrl_State.CBT320.QS Status word 2 for COMBOARD
2968 530,5 Ctrl_Error.F4900.QS Error bits
2994 770,4 USS-Slave.USS_Receive.YTS USS status
2995 770,7 USS-Slave.USS_PZD.Y1 PZD1 USS, receive
2996 770,7 USS-Slave.USS_PZD.Y2 PZD2 USS, receive
3000 70,2 Constant.Zahlen_Const.Y1 0.0
3001 70,2 Constant.Zahlen_Const.Y2 1.0
3002 70,2 Constant.Zahlen_Const.Y3 2.0
3003 70,2 Constant.Zahlen_Const.Y4 PI
3004 70,2 Constant.Zahlen_Const.Y5 2 PI
3005 70,2 Constant.Zahlen_Const.Y6 PI / 2
3006 70,2 Constant.Zahlen_Const.Y7 0.5
3007 70,2 Constant.Zahlen_Const.Y8 -1.0
3020 265,5 Speed.FFACTS.Y Factor, overspeed
3021 250,7 Speed.R1260.Y n_set cut
3023 260,8 Speed.R1290.Y Speed setpoint n_set
3025 240,7 Torque.M1420.Y Reference (setpoint) torque
3026 240,4 Torque.MJ1150.Y Accelerating torque
3027 240,4 Torque.MA1350.Y Oscillating torque
3028 240,5 Torque.MC1030.Y Cutting torque
3029 460,7 Torque.FPosControl.Y Frictional torque
3038 380,2 RangeCheck.DX_CamPos.Y Cam_dx
3040 380,2 RangeCheck.NFV_Knife_norm.Y Speed norm for cams = f(knife position)
3041 380,2 RangeCheck.NFV_Fsymech.Y Speed norm for cams = f(norm. knife position)
3042 380,2 RangeCheck.NFV_mm_s.Y Speed norm for cams = f(reference position)
3043 380,2 RangeCheck.NFV_Fsymech.Y Speed norm for cams = f(norm. reference position)
3050 80,2 Constant.UproFsymec.Y Revolutions/Fsymech
3061 790,3 Peer.RecPZD1.YR Peer: PZD2 and PZD3 as floating-point value
3063 790,3 Peer.RecPZD2.YR Peer: PZD5 and PZD5 as floating-point value
3091 60,4 Constant.AngleConst.Y1 AX
3092 60,4 Constant.AngleConst.Y2 AY
3094 180, 7 Inc_Encoder.DX_Setval.Y Setting value, pass mark
3095 60,4 Constant.LXLGTnorm.Y Distance, light barrier normalized
3096 60,4 Constant.Norm_EntfernungS.Y Distance, cut normalized
3097 60,4 Constant.NormSchopflaeng.Y Crop length, normalized
3098 60,4 Constant.LF_norm.Y Long Format, normalized
3099 60,4 Constant.LXLGnorm.Y Light barrier + distance to the cut (normalized)
3100 60,4 Constant.Zahlen_Const.Y8 Angular normalization
3101 60,2 Constant.KONST1.Y1 Fixed value AX
3102 60,2 Constant.KONST1.Y2 Fixed value AY
3103 60,7 Constant.KONST3.Y2 Fixed value AZ
3104 80,4 Constant.KONST2.Y1 V_reference
3105 60,6 Constant.KONST2.Y6 Fsymech
3106 60,3 Constant.KONST2.Y4 Distance, light barrier - knife
3107 60,3 Constant.KONST2.Y5 Distance to the cut
3108 60,7 Constant.COS_Epsilon.Y Cosine epsilon
3109 60,4 Constant.KONST1.Y8 Knife change position
3110 60,2 Constant.KONST2.Y2 TopCut size
3111 60,2 Constant.KONST2.Y3 Long Format
3112 60,7 Constant.KONST1.Y4 Starting angle, M cut input
3113 60,7 Constant.KONST1.Y5 Final angle, M cut input
3114 60,7 Constant.RefNorm.Y Normalization factor for the material position
3115 80,3 Constant.MessradKorr.Y Circumference of the measuring wheel
Parameters and Connectors
140 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
3116 80,3 Constant.KONST2.Y8 Gearbox factor, measuring wheel
3117 80,2 Constant.KONST3.Y1 Feed/revolution
3118 60,4 Constant.Norm_AX.Y Angle, end of cut, normalized
3119 60,4 Constant.Norm_AY.Y Angle, start of cut, normalized
3122 60,7 Constant.KONST3.Y7 Distance, material detetction to knife
3123 60,7 Constant.NormAbstdMat.Y Distance, material detetction to knife (normalized)
3129 60,4 Constant.Norm_MWP.Y Knife change position, normalized
3132 210,6 PosControl.PosControl.YE System deviation, PC
3143 210,7 PosControl.PosControl.Y Output, position controller
3144 210,8 PosControl.R1160.Y Output, PC smoothed
3145 210,6 PosControl.PosControl.YI Integral component, PC
3157 200,8 PosControl.FormGen.YDS FGEN Xset
3158 200,8 PosControl.FormGen.YDV FGEN Vset
3159 200,8 PosControl.FormGen.SIN FGEN sin*sin
3160 200,8 PosControl.FormGen.FEL Format, electrical
3161 200,8 PosControl.FormGen.PST Starting position
3162 200,8 PosControl.FormGen.LST Starting length
3163 200,8 PosControl.FormGen.YAR AREF for AZ
3164 200,8 PosControl.FormGen.AM1 Acceleration, phase 1
3165 200,8 PosControl.FormGen.AM2 Acceleration, phase 2
3166 200,8 PosControl.FormGen.DG1 Diagnostics output 1
3167 200,8 PosControl.FormGen.DG2 Diagnostics output 2
3168 200,8 PosControl.StartLenKorr.Y Start length + offset
3175 220,3 Format.P3140.Y Next setpoint format
3180 150,7 inpAbsolut.Absolutgebe.YP AENC position normalized
3181 150,7 inpAbsolut.Absolutgebe.YSP AENC speed
3182 150,7 inpAbsolut.Absolutgebe.Y AENC position with revolutions (multi-turn encoder)
3183 150,8 inpAbsolut.AbsNorm.Y Position of the absolute value encoder, normalized
3184 220,7 Format.P1070.Y Output, format controller
3185 220,3 Format.ErrAdd.Y Cutting error
3192 265,6 Speed.R1050.Y Supplementary angle, cutting curve
3195 60,5 Constant.AbstandInvers.Y Distance, light barrier normalized, inverted
3196 220,3 Format.CutError.Y Cutting error in [mm]
3197 200,2 PosControl.LIM_AREF.Y Limited reference position (material position)
3203 180,7 Inc_Encoder.Dx_EnSync.Y Position before the setting value (position value shortly before the
pass marks)
3204 180,7 Inc_Encoder.I1220.Y Position setting value, reference
3205 180,4 Inc_Encoder.SL3050.Y Distance, light barrier + format
3206 180,4 Inc_Encoder.SL3110.Y Distance, light barrier - format
3209 180,7 Inc_Encoder.DX_Pass.MOD Distance, pass mark modulo format setpoint
3214 90,7 Input_T400.AE1_Filter.Y AI1 smoothed
3216 350,3 RangeCheck.Cut_Range.Y Limited position after range1
3218 80,5 Constant.KONST3.Y4 Gearbox factor, knife drive
3219 90,7 input_T400.AE2_Filter.Y AI2 smoothed
3221 350,5 RangeCheck.KnifeRange.Y Limited position after range3
3223 70,8 Constant.NormFixLage1.Y Fixed position 1 normalized
3224 70,8 Constant.NormFixLage2.Y Fixed position 2 normalized
3225 70,8 Constant.NormFixLage3.Y Fixed position 3 normalized
3226 70,8 Constant.NormFixLage4.Y Fixed position 4 normalized
3230 350,8 RangeCheck.Ref_Range.Y Limited position after range2
3233 70,8 Constant.KONST4.Y3 Fixed position 1
3234 70,8 Constant.KONST4.Y4 Fixed position 2
3235 70,8 Constant.KONST4.Y5 Fixed position 3
3236 70,8 Constant.KONST4.Y6 Fixed position 4
3241 490,3 Ctrl_Error.F4410.Y Blocking, | setpoint velocity |
3242 490,3 Ctrl_Error.F4430.Y Blocking, absolute torque value
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 141
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
3279 90,6 input_T400.AE3_Filter.Y AI3 smoothed
3283 90,6 input_T400.AE4_Filter.Y AI4 smoothed
3285 160,3 inpAbsolut.SSI_CU_dw_r.Y Absolute position from the basic drive before conditioning
3287 90,6 input_T400.AE5_Filter.Y AI5 smoothed
3290 150,4 inpAbsolut.SSI_offset.Y Absolute offset
3291 150,4 inpAbsolut.SSI_CU_ofs.Y Absolute position, corrected
3292 160,7 inpAbsolut.SSI_CU_vofs.Y Absolute position 2 (without offset)
3311 170,4 Inc_Encoder.I1120.Y Shear position set value for synchronization (zero pulse)
3313 170,7 Inc_Encoder.I1140.Y Setting value, knife position
3317 170,4 Inc_Encoder.SV_Coarse.Y Setting value, knife position; referencing with coarse pulse
3319 610,7 input_CU.Istwert1_CU.Y Actual value1 from CU as real
3322 610,7 input_CU.Istwert2_CU.Y Actual value2 from CU as real
3325 610,7 input_CU.Istwert3_CU.Y Actual value3 from CU as real
3328 610,7 input_CU.Istwert4_CU.Y Actual value4 from CU as real
3334 610,7 input_CU.1.Y Actual value DW1 from CU
3335 170,8 Inc_Encoder.StoreVal1.Y 1st value stored in non-volatile memory
3336 170,8 Inc_Encoder.StoreVal2.Y 2nd value stored in non-volatile memory
3366 140,2 Constant.KONST1.Y6 Half pass mark synchronizing window width
3367 135,8 Inc_Encoder.RefPosModulo.Y Reference position divided by the format setpoint
3368 135,8 Inc_Encoder.RefPosModulo.MOD Reference position modulo divided by the format setpoint
3370 145,5 Inc_Encoder.RefposControl.COR Correction value for the reference position
3400 80,6 Constant.n_Schere_Hz.Y Reference frequency 1
3401 80,6 Constant.n_Schere.Y Reference speed 1
3402 80,6 Constant.inv_NnennShear.Y Reference speed 1 negated
3410 120,7 Inc_Encoder.I1100.Y Absolute value, knife speed
3411 120,7 Inc_Encoder.I1360.Y Knife speed, smoothed
3412 120,7 Inc_Encoder.MESSER.Y Knife speed
3413 120,7 Inc_Encoder.KnifePos.Y Knife position
3414 120,7 Inc_Encoder.MESSER.YP Knife position, normalized
3415 120,7 Inc_Encoder.MESSER.YPS Knife position at synchronization event (zero pulse)
3420 80,5 Constant.inv_NnennWeb.Y Reference speed 2, negated
3421 80,5 Constant.n_Treiber.Y Reference speed 2
3422 80,4 Constant.PR2RP_B4.Y Reference pulses 2 material sensing before rounding-off (float)
3434 130,6 Inc_Encoder.MATERIAL.Y Speed2
3435 130,6 Inc_Encoder.I1320.Y Speed2 smoothed
3436 130,5 Inc_Encoder.I1320.YP Position 2 before offset correction
3437 135,5 Inc_Encoder.MarkenSynchron.Y Position2
3438 135,5 Inc_Encoder.I1330.Y Reference position
3440 130,6 Inc_Encoder.MATERIAL.YPS Synchr. position
3441 135,5 Inc_Encoder.RefPosOffs.Y Reference position minus offset
3442 135,5 Inc_Encoder.RefPosOffset.Y Reference position offset
3445 135,5 Inc_Encoder.I2000.Y Position, material in [mm]
3447 130,6 Inc_Encoder.P3050.Y Format actual value
3473 230,7 PosControl.Positionierung.DIA PosRG diagnostics
3474 230,7 PosControl.LageRegler.Y PosRG Vset
3480 230,7 PosControl.PosRG_Vmax.Y PosRG Vmax fixed value
3484 230,5 PosControl.Positionierung.YX PosRG reference position
3485 230,5 PosControl.Positionierung.YV PosRG setpoint velocity
3486 230,6 PosControl.PT1_Vpos.Y PosRG_V_filt
3489 230,2 PosControl.LageRegler.YE Position difference of the position controller
3490 450,5 PosControl.K3050.Y Output of the KP characteristic
3491 450,6 Speed.CC1040.Y Output, cutting curve
3492 460,6 Torque.FR1100.Y Output, friction characteristic
3493 460,6 Torque.J1000.Y Output, moment of inertia characteristic
3494 460,6 Torque.FrictionCurve.YP Output derivation of the friction curve
3495 460,7 Torque.J1060.Y Moment of inertia
Parameters and Connectors
142 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
3496 460,6 Torque.InertiaCurve.YP Output derivation of the inertia curve
3497 450,6 Speed.Cut_Curve.YP Output derivation of the cutting curve
3498 230,7 PosControl.a_mal_J.Y Torque setpoint output PosRG
3517 260,8 Speed.RampLokal.Y Output ramp function for local speed
3518 260,3 Speed.neg_Tippen.Y Negated speed setpoint for inching
3519 260,1 Constant.KONST3.Y5 Speed setpoint for inching (fixed value)
3533 260,6 Speed.R3150.Y Velocity in the local mode
3558 240,3 Torque.MJ1000.Y Differential of the speed setpoint
3559 240,3 Torque.MA1300.Y Differential of the moment of inertia
3561 265,5 Speed.CC1150.Y Cutting speed for speed reduction
3575 250,5 Speed.R3013.Y Max. speed for cutting modes
3577 265,7 Speed.CC1205.Y Vset from the cutting curve
3581 240,8 Torque.TQ3000.Y Actual torque limit, pos.
3582 240,8 Torque.TQ3100.Y Actual torque limit, neg.
3592 60,7 Constant.NormDxPM.Y Distance between pass marks (normalized)
3593 60,7 Constant.KONST1.Y7 Distance between pass marks
3604 440,5 Free_FBs.I_R1.Y I_R1_Y (output, integer->floating-point converter)
3606 190,2 Constant.KONST3.Y8 Saw blade width
3608 190,6 Format.FMT_Limit2.Y Actual minimum format
3613 190,4 Format.FM32b_norm.Y Format DW
3615 445,6 Free_FBs.MUL3.Y MUL_3 (output, multiplier 3)
3616 190,3 Format.FMT16_norm.Y Format, word
3617 250,4 Speed.SQRT.Y Square root function output
3618 190,5 Format.Q_FloatFormat.Y Format, float
3619 250,4 Speed.SQRT_neg.Y Output square root invers
3620 190,8 Format.Format_MUX.Y Format request
3621 190,4 Constant.FixFormate.Y1 Fixformat 1
3622 190,5 Constant.FixFormate.Y2 Fixformat 2
3623 190,5 Constant.FixFormate.Y3 Fixformat 3
3624 190,5 Constant.FixFormate.Y4 Fixformat 4
3625 190,6 Constant.FixFormate.Y5 Fixformat 5
3629 190,8 Format.Format_norm.Y Format setpoint
3630 220,7 Format.P1055.Y Setpoint, format controller
3631 220,7 Format.AktFormat.Y Actual Format setpoint [mm]
3649 60,7 Constant.NormRes1.Y Reserve1 normalized
3650 70,3 Constant.Festwert1.Y1 Fixed value1
3651 70,3 Constant.Festwert1.Y2 Fixed value2
3652 70,3 Constant.Festwert1.Y3 Fixed value3
3653 70,3 Constant.Festwert1.Y4 Fixed value4
3654 70,3 Constant.Festwert1.Y5 Fixed value5
3655 70,3 Constant.Festwert1.Y6 Fixed value6
3656 70,3 Constant.Festwert1.Y7 Fixed value7
3657 70,3 Constant.Festwert1.Y8 Fixed value8
3658 70,3 Constant.Festwert2.Y1 Fixed value9
3659 70,3 Constant.Festwert2.Y2 Fixed value10
3660 70,3 Constant.Festwert2.Y3 Fixed value11
3661 70,3 Constant.Festwert2.Y4 Fixed value12
3662 70,3 Constant.Festwert2.Y5 Fixed value13
3663 70,3 Constant.Festwert2.Y6 Fixed value14
3664 70,3 Constant.Festwert2.Y7 Fixed value15
3665 70,3 Constant.Festwert2.Y8 Fixed value16
3685 430,2 Constant.KONST4.Y7 Free floating-point connector
3686 430,2 Constant.KONST4.Y8 Free floating-point connector
3705 480,2 Ctrl_Error.MinLageNorm.Y Min. Shear Pos. Norm.
3706 430,2 Free_FBs.Switch1.Y Output 1st selection switch (free block)
3707 480,2 Ctrl_Error.MaxLageNorm.Y Max. shear pos. Norm.
Parameters and Connectors
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 143
6DD1903-0DB0 Edition 09.00
TC Chart Path name Significance
3708 480,4 Ctrl_Error.LageErrMax.Y Position error lower limit
3709 480,4 Ctrl_Error.LageErrMin.Y Position error upper limit
3715 480,2 Ctrl_Error.Grenzwerte.Y1 Knife position lower limit
3716 430,4 Free_FBs.Switch2.Y Output 2nd selection switch (free block)
3717 480,2 Ctrl_Error.Grenzwerte.Y2 Knife position upper limit
3720 435,8 Free_FBs.RampGen.Y Ramp-function generator output
3740 436,7 Free_FBs.FreePT1.Y Output, lowpass filter (free block)
3742 436,7 Free_FBs.SperrFilt.Y Output, bandstop filter (free block)
3747 435,3 Free_FBs.Begrenzer.Y Output, limiter block (free block)
3753 435,3 Free_FBs.Kennlin.Y Output, 2-point characteristic (free block)
3763 440,7 Free_FBs.Free_N4_R.Y Output, double word to float converter (free block)
3765 440,5 Free_FBs.Free_N2_R.Y Output, word to float converter (free block)
3779 640,3 output.Vsoll_NSW.Y Setpoint 1 CU
3785 640,3 output.Msoll_NSW.Y Setpoint 2 CU
3786 445,4 Free_FBs.ADD1.Y ADD_1 (output, adder 1)
3789 445,4 Free_FBs.ADD2.Y ADD_2 (output, adder 2)
3792 445,4 Free_FBs.SUB1.Y SUB_1 (output, subtractor 1)
3794 445,4 Free_FBs.SUB2.Y SUB_2 (output, subtractor 2)
3796 445,6 Free_FBs.MUL1.Y MUL_1 (output, multiplier 1)
3799 445,6 Free_FBs.MUL2.Y MUL_2 (output, multiplier 2)
3802 445,6 Free_FBs.DIV1.Y DIV_1 (output, divider 1)
3804 445,6 Free_FBs.DIV2.Y DIV_2 (output, divider 2)
3808 445,4 Free_FBs.ADD3.Y ADD_3 (output 3rd adder)
3814 670,7 input_CB.CB_DW1.Y Setpoint DW1 CB
3818 670,7 input_CB.Sollwert1_CB.Y Setpoint 1 CB
3819 435,7 Free_FBs.Integrator.Y Output, free integrator
3821 670,7 input_CB.Sollwert2_CB.Y Setpoint 2 CB
3824 670,7 input_CB.Sollwert3_CB.Y Setpoint 3 CB
3825 430,6 Free_FBs.Switch3.Y Switch3 (output, changeover switch)
3827 430,8 Free_FBs.Switch4.Y Switch4 (output, changeover switch)
3932 670,7 input_CB.Sollwert4_CB.Y Setpoint 4 CB
5000 70,2 Constant.Konst_DI.Y1 0 (double word)
5001 70,2 Constant.Konst_DI.Y2 1 (double word
5061 790,3 Peer.RecPZD1.YDI Peer receive: PZD2 and PZD3 as double word
5063 790,3 Peer.RecPZD2.YDI Peer receive: PZD4 and PZD5 as double word
5179 150,7 inpAbsolut.Absolutgebe.YOP AENC encoder position (original value)
5402 80,6 Constant.RP_Schere.Y Reference pulses 1
5403 80,6 Constant.RPneg_Schere.Y Reference pulses 1 negated
5422 80,4 Constant.RP_Treiber.Y Reference pulses 2
5423 80,4 Constant.negRPweb.Y Reference pulses 2 negated
5640 430,8 Free_FBs.Switch_DI.Y Output 32bit integer changeover switch
5679 70,8 Constant.Konst_DI.Y3 Fixed value DI1
5680 70,8 Constant.Konst_DI.Y4 Fixed value DI2
5681 70,8 Constant.Konst_DI.Y5 Fixed value DI3
5682 70,8 Constant.Konst_DI.Y6 Fixed value DI4
5683 70,8 Constant.Konst_DI.Y7 Fixed value DI5
5684 70,8 Constant.Konst_DI.Y8 Fixed value DI6
5811 440,7 Free_FBs.R_DI_1.Y R_DI (real
è
double word-converter)
5814 445,2 Free_FBs.MULI_1.YDI MULI_1 (double word output, integer-multiplier)
5816 440,6 Free_FBs.WDW1.Y W_DW1 (output, word->double word-converter)
Typical commissioning
144 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
7 Typical commissioning
7.1 General procedure
System type
General settings
H120: 0 = Rotary axis 1= Linear axis
H104 = Reference velocity (the max. knife velocity which occurs must be less than 2 * H104!)
H111 = Longitudinal format; Format length, at which the knife slide, at the highest material velocity, remains for at least 0.5 s in the
quiescent position + clearance to the material ID
H115 = Circumference of the measuring wheel (sensor wheel) in [mm]
è
General settings for linear axis
Linear axis Rotary axis
Commissioning the application
Faults and alarms
H966 Fault mask: Non-relevant fault/error sources are suppressed (bits in the mask are set to 0)
H967 Alarm mask: Non-relevant fault/error sources are suppressed
è
Behavior at the first cut in automatic mode
è
General settings for rotary axis
è
Incremental encoder (rotary axis)
è
Entering the format setpoints
è
Settings for jog
è
Incremental encoder (linear axis)
è
Settings for reverse positioning
è
Application control
è
Controlling the cutting operation
è
Op.-loop contr. of the basic unit from the T400 (prereq.: the basic unit has been gen. commissioned, incl. mot. parameterization)
è
Setting the speed controller, basic unit
System type
Linear axis Rotary axis
è
Setting theposition controller
è
Supplementary torques (optional)
è
Cutting curve (optional)
End of the commissioning phase
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 145
6DD1903-0DB0 Edition 10.00
Application control
L620 Source for the enable input
L626 Source for the "automatic mode" input
L627 = 0013 Inhibit automatic operation when a fault occurs
H841 = 2621 Intern. generate control word 1 for the basic unit
H844 = 2622 Internally generate the shears control word
H581 = 0627 Acknowledge fault when withdrawing the enable
Control type
Local (T400 internal)
H841 = Source for control word 1 for the basic unit
H844 = Source for the shears control word
From external automation
device
End of the application control
H520 .. H535 Define sources for bits of the shears control word 2
General settings for systems with rotary axis
General settings
H105 = Fsymech (scope (circumference) of the knife movement)
H100 = 360 (degrees)
H101 = Knife exit angle (Fig. 4-1)
H102 = Knife entry angle (Fig. 4-1)
H103 = Symmetry of the velocity characteristic (Fig. 4-2)
H154 = 0 Characteristic type: Sinusoidal sections
H117 = H105 Knife slide feed per motor revolution
Parameters for the knife position
H642 = Tolerance bandwidth to identify "knife in the starting position" (refer to H105; refer below)
H719 = Source to enable position monitoring fault/errors (factory setting: only for cutting operating modes)
End of the general settings for systems with rotary axis
Typical commissioning
146 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Connection, incremental
encoder knife position
H407 = 0x7FC2
H408 = 0x0030
Via backplane bus from the encoder
emulation of the basic drive At terminals 81, 82
H408 = 0x0000
Power-down the T400 and power-up again
H400 = Pulses per knife revolution
H420 = Pulses per revolution of the measuring wheel
Adjust the encoder at the knife, so that the zero pulse lies in the center of the cutting range
Connection,
synchronizing signal Connection,
synchronizing signal
Via backplane bus
from the basic drive Terminal 83
H407 = 0x7F42 H407 = 0x7F02 H407 = 0x7F82
Terminal 83 Via backplane bus
from the basic drive
L542 = Velocity when referencing (referred to the rated velocity)
Pass mark synchronization?
Connect the zero pulse of the knife position encoder at terminal 64.
H425 = 0317 synchronize with the knife zero pulse
no
Connect the light barrier at terminal 64 (terminal 88 to
ground)
Use everypass mark?
H425 = 1
H425 = 1360 sense the pass marks as a function of the position
H366 = permissible deviation from the expected value (refer to Fsymech)
H446 = permit offset equalization
H444 = percentage offset equalization per machining cycle (e.g. 0.5 % of Fsymech)
Position of the light barrier
H431 = 3094
L202 = 3094 H431 = 3099
L202 = 3099
yes
yes
no
Mark first reaches the light barrier Mark first reaches the knife
Incremental encoder (rotary axis)
Zero pulse Zero pulse + coarse pulse Absolute value encoder
Referencing technique
H424 = 0413 for the zero pulse of the knife encoder:
material position = material position - cut format
è
Absolute value generator
L542 = 0.0 Velocity reference.
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 147
6DD1903-0DB0 Edition 10.00
Connection, incremental
encoder knife position
H407 = 0x7FC2
H408 = 0x0030
Via backplane bus from the encoder
emulation of the basic drive At terminals 81, 82
When synchronized
to reference point?
Zero pulse only at the ref. point Zero pulse + coarse pulse Limit switch edge Absolute value encoder
Referencing technique
H408 = 0x0004
L530 = inverse input, proximity switch
L531 = input, proximity switch
L532 = 0
H408 = 0x0000
Power-down the T400 and power-up again
H400 = Pulses per motor revolution (feed drive of the knifeslide)
H420 = Pulses per revolution of the measuring wheel
H405 = 0599 H405 = 0317
Only when jogging or referencing Always (factory setting)
Connection,
synchronizing signal Connection,
synchronizing signal
Via backplane bus
from the basic drive Terminal 83
H407 = 0x7F42 H407 = 0x7F02 H407 = 0x7F82
Terminal 83 Via backplane bus
from the basic drive
L542 = velocity when referencing (refer to the rated velocity)
Pass mark
synchronization?
L530 = Limit switch at front (in mat. flow direction; Fig. 4-12)
L531 = Limit switch at the rear
H425 = 0 inhibit synchronization
no
Connect a light barrier to terminal 64 (terminal 88 to ground)
Use each
pass mark?
H425 = 1
H425 = 1360 sense the pass marks as a function of the position
H366 = permissible deviation from the expected value (refer to Fsymech)
H446 = offset equalization permitted
H444 = percentage offset equalization per processing cycle (e.g. 0.5 % of Fsymech)
Light barrier
position
H431 = 3094
L202 = 3094 H431 = 3099
L202 = 3099
yes
yesno
Mark first reaches the light barrier Mark first reaches the knife
Incremental encoder (linear axis)
è
Absolute value encoder
H405 = 0 no synchronizing
L542 = 0.0 velocity reference
Typical commissioning
148 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
General settings for systems with linear axis
General settings
H101 = 0
H103 = 0
H154 = 2 Characteristic type: linear ramp with rounding-off
H117 = Feed of the knife slide per motor revolution
Parameters for the knife position
H197 = 3441 Shift the material coordinate system to the knife quiescent position
L201 = 3168 Shift the coordinate system for "Starting length"
H451 = 3662 Format range for the linear axis
H642 = Tolerance bandwidth for identifying "knife in the starting position" (refer to H105; refer below)
H715 = Lowest position value of the knife slide in the range in [mm] (recommended: 0)
H717 = Highest position value of the knife slide in operation in [mm]
H718 = Knifeposition monitoring tolerance in [mm]
H719 = Source to enable position monitoring errors (factory setting: Only for cutting operating modes)
L574 = 3617 Decrease velocity to zero at the end of traversing
End of the general settings for linear systems
Distance normalization
H105 Fsymech = accelerating travel at max. material velocity
H100 = H105
H102 = H105
Formula Vmax max. material velocity
Amax max. acceleration of the knife slide
Xacc = Vmax²
2·Amax with:
H154 Acceleration travel
0 H105 > Xacc
1 H105 > 2 * Xacc
2 H105 > 1.1 * Xacc
Characteristic
type
Caution
: In order to avoid rounding-off errors for the position/distance sensing, H105 must be set a multiple of the measuring
wheel resolution.
Example: From Xacc H105 > 45 mm is obtained
Measuring wheel circumference: 400 mm
Pulses/revolution, measuring wheel: 4 * 2048 = 8192
Resolution, measuring wheel: 0.04883 mm => 45 mm corresponds to 921.6 pulses
Select Fsymech: H105 = 922 * 0.04883 = 45.019 mm
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 149
6DD1903-0DB0 Edition 10.00
Step response OK?
Setting the speed controller, basic drive
L660 = 1.0
Generate a speed step (short!)
Settings and wiring changes (re-establish the original settings after the adjustment has been made!)
L896 = 0 to use pulse_3 (Chart 436) to generate a pulse
L897 = 100 ms pulse duration
L660 = 0.1 fixed value 11 as speed setpoint ( start with 10%)
H777 = 2660 fixed value 11 as alternative speed setpoint (chart 640,1)
H778 = 896 enter alternative speed setpoint with pulse_3
H146 = 0.1 test with a low P-gain of the position controller
Monitor the setpoint and actual value using an oscilloscope
H220 = 3412 output the speed actual value knife as first analog value (factory setting)
H226 = 3779 output the speed setpoint as 2nd analog value
Power-up the system - reference - traverse to starting position
yes
no
Initiate pulse:
L896 = 1
L896 = 0
Correct KP, Tn of the speed
controller in the basic drive
Test with rated speed
L660 = 1.0
Speed-dependent KP gain
(in this case, e.g. for SIMOVERT MC)
P235 = KP value for L660 = 0.1
P236 = KP value for L660 = 1.0
P232 = 150 adapt KP as function of the setpoint speed (reference speed)
Re-establish the original settings before the test
yes
no
End of the speed controller setting, basic drive
Setting the position controller
H140 = 0.1 generate the supplementarysetpoint for
the position controller (larger steps for linear systems)
Power-up the system - reference- moveto the starting position
Monitor the setpoint and actual value using an oscilloscope
H220 = 3412 output the speed actual value knife as first analog value (factory setting)
H226 = 3779 output the speed setpoint as 2nd analog value
Start with a low P gain
H146 = 0.1 P gain of the position control
Step response OK?
H146 modify the P gain
H140 = 0 withdraw the suppl. setp. for pos. contr.
Re-establish the original settings before the test
End of the position controller setting
no
yes
Typical commissioning
150 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
System
with linear axis system with rotary axis
Enter the format setpoint
Floating-point value 16bit word 32bit word Fixed value
Source, format setpoint
H617 source (float)
H619 = 2001 H614 source (word)
H615 normalization/digit
H619 = 2003
H614 source (double word)
H612 normalization/digit
H619 = 2002
H621 fixed value format
H619 = 2004
Adapt limit values
H627 max. format
H628 min. format
H173 = 0 format is not accepted for the knife synchronizing
pulse H173 = 0413 format accepted for the knife synchronizing
pulse
H172 = source for an optional condition to accept the format for the next step. (e.g. when the start of the material has been detected.
It is not permissible to accept the format during the cut!) The signal edge is evaluated.
End of input, format setpoint
Light barrier, start
of the material
H122 = Clearance between the material detection and quiescent
knife position (linear axis) and center of the knife
(rotary axis; Fig. 4-7) L213 = 1 simulate "material present"
Present Not present
Behavior at the first step in the automatic mode (const. cutting)
Startofthefirstcut
Set the initial value of the material position to zero
L687 = 0577 delay "no cutting mode"
L198 = 0687 change over the setting value of the material position,
with a delay, from 0 to "starting length"
General formula:
Feed for 1st section = longitudinal format - setting value (at L199)
After material feed by
"logitudinal format
Immediately after the
start of cutting
operation
(e.g.: wait for the 1st pass mark)
H110 = crop length
Set the crop cut enable to '1' in the shears
control word 1
Length of the
1st section
Different format length
Format lengths
End
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 151
6DD1903-0DB0 Edition 10.00
Settings for re-positioning
Examples
H481 < 5m/s²
10 mm = 500
1
/s²
H478 = 500 1/s²
20 ms = 25000
1
/s³
Logic which is recommended to activate positioning
Sources (the factory settings are in brackets)
L331 de-activation signal (0665 no_enable)
L332 optional abort condition (0644 in_start position)
L333 start condition 1 (0576 cutting mode)
L334 start condition 2 (e.g. cut completed; knife raised, or similar.)
L335 optional
L336 end of condition 1 (0499 positioning/setpoint generator active)
L337 end of condition 2 (1347 positioning_mode)
L338 optional start condition (0236 material_cut)
Conditions to start positioning
L339 = 0x008C material_cut AND cut_completed AND cutting mode
Conditions for exiting the positioning mode
L343 = 0x2040 positioning_no_longer_active AND positioning_mode
L346 = 0x0003 no_enable OR optional abort condition
Behavior, if the knife slide does not return to the starting position in time for the
next cut (cause: format too short, velocity too high or cut type too long )
L196 = 1348 delays the start of the new cut until positioning has been completed.
The reference format size can no longer be maintained!
H481 acceleration
H478 rounding-off
H479 final rounding-off (calculation, analog to H478)
H481 < max. slide acceleration
slide feed/motor revolution
H478 = H481
time to establish torque
End of the settings for return positioning
H523 source for jogging 1
H524 source for jogging 2
H497 source to enable jogging (factory setting: if cutting mode is not active)
L521 source for front limit switch, inverse (inhibits jogging 1 if the limit switch is active)
L522 source for rear limit switch, inverse (inhibits jogging 2 if the limit switch is active)
L519 velocity for jogging (referred to H104 V_rated)
L540 number of ramp-up stages for the velocity when jogging and referencing
Settings for jogging
End of the settings for jogging
Checking distance normalization
:
Move the knife, after referencing, into the start position
Move the knife to the end of the traversing distance (in the direction of the material flow)
The knife position (d413) must be the same as the distance between the knife and the
starting pos.! (if this is not identical, correct H117 feed/revolution and H400 pulses/revolution)
Typical commissioning
152 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Cutting operation control
Define the sequence (time) for the cutting signal using free
blocks (refer to the example in Section 7.1).
Reset the cutting logic (STATE_Logic2) with the start of the
cutting pulse.
End of cut
Time-controlled
Reset the cutting logic with the "knife at the bottom" signal.
Contact-controlled (knife at the
top; knife at the bottom)
Start cutting with STATE_logic2 (Chart 415)
Define the prerequisites for the start of cutting. The inputs and thelogical equations to initiate a cut are specified. Operation must
always be enabled.
General conditions (automatic cut)
1. Cutting mode must be active
2. The knife must be in synchronism with the material
3. A cut has still not been made (so that cuts aren't made a multiple number of times one after the other)
Optional conditions (automatic cut)
4. The knife is located within the permitted lowering range (this takes into account that there is sufficient time to raise the knife).
Manual cut in the automatic mode
A manual cut is initiated, with the material running, by setting the material position to the "starting length" value(refer below). The
start of the cut is obtained from the conditions 1 to 5 above. If the material is stationary, this could be confusing for operating
personnel, as the cut would only be made when the material web starts to move again. Thus, if the material web is stationary,
immediately make a manual cut.
Conditions
5. Material velocity = 0
6. Cutting mode
7. Manual cut request
8. Knife in the quiescent position
Conditions for a manual cut (the cutting mode has been disabled)
9. Request manual cut (this should be in the form of a pulse, which is available for at least as long as the cut lasts)
10. Cutting mode not active
11. The material must be stationary
"Material cut" is set with a reset pulse from the cutting logic (connector 1277) (this prevents multiple cuts)
Use STATE_logic1 (Chart 415) for "raise knife".
Start conditions for "raise knife"
General conditions
1. Enable signal present
2. Knife not at the top
Automatic mode
3. Knife at the bottom
4. Cutting mode
5. Optional: Outside the permissible lowering range (alternative
to "knife below")
Manual operation
6. Request "raise knife"
7. No cutting mode active
Manual cut in the
automatic mode
Implementation: STATE logic3 (Chart 421)
L195 = 0935 use a positive output pulse in order to set the material position to "starting length".
Start conditions
1. Cutting operation
2. Knife in the start position
3. Manual cut request
Exit condition
4. No manual cut request
is used
End of the cut control
not required
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 153
6DD1903-0DB0 Edition 10.00
Type
L158 = 2 Type: SSI or EnDat connected directly to T400 term.
L160 = Number of cuts per revolution
L161 = Number of revolutions (0 for single-turn encoders)
L295 = 3181 Source, absolute position
L298 = 0179 Position value, if no error has been recognized
L300 = 0298 Set calibration valid if the position value is valid
Position actual value encoder = c181
At terminals 76 ...79 At the basic drive
Absolute value generator
Connection
Protocol structure, SSI encoder
L165 = 0 SSI rotary encoder
L162 Number of leading bits without position info
L163 Position of the interrupt bit (optional)
L166 Coding (0 binary; 1 gray; 2 gray excess)
L167 Parity bit (0 no; 1 yes)
L165 = 2 EnDat rotary encoder
No position overflows may occur when traversing the complete travel.
Move the knife slide to the start of the traversing travel (for the quiescent position)
Encoder position actual value (refer above) must be greater than 0
Move the knife slide to the end of the traversing distance
The position actual value (refer above) must be less than the number of revolutions of the multiturn encoder
If required, rotate the encoder until the conditions are fulfilled.
System Rotary axis
Linear axis
Correct the zero offset
Move the kife to the required zero position.
L542 = 0 referencing velocity = zero
Initiate referencing (shears control word 1 = 0x0050)
Referencing completed (shears control word 1 = 0x0000)
=> Offset position value is saved
CAUTION:
After commissioning has been completed, it is not permissible to output any referencing command, otherwise the zero
setting will be changed! For operation without automation, set L631 to 0 (Chart 810).
SSI EnDat
TR encoder
SSI or EnDat
L158 = 3 Type: Absolute value encoder from the basic drive
L282 = Define source for the high word
L283 = Define source for the low word
L296, L297 suppress non-relevant bits per mask
L284 = Steps per revolution
L286 = L287 number of revolutions (measuring range; 1.0 for
single-turn encoders)
L300 = 0298 set calibration after power-on delayed
Position actual value, encoder = c292
è
Settings for TR encoder
End, absolute value encoder
Type
Typical commissioning
154 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
TR encoder
TR absolute value encoders are incremental encoders, which, when requested, output the actual absolute position as a sequence
of pulses at tracks A and B (refer to Chart 165) via binary input (digital input) (load input) of the encoder.
L158 = 1 enable operation with TR encoder
L141= 0592 read-in the starting position with referencing request
Connect connector 0148 with the encoder load input via the digital output
Connect L140 with the digital input (connected with the load output of the encoder)
End, TR encoder
Format controller
Cut error =
knife position - reference position
H185 = knife position
H178 = reference position
Define the 1st cutting instant:
Connect H200 with the cutting pulse (for rotary axis, knife zero pulse, 0413)
System
Pass marksH197 =
Cut error =
format setpoint - reference position at zero pulse
of the knife
H185 = 3630 setpoint format
H178 = 3440 reference position for zero pulse
Cut error =
knife position - reference position - 1
H185 = 3414 knife position
H178 = 3436 reference position
H195 = 3001 fixed value 1.0
Linear axis Rotary axis
3438 3441 Present None
Define max. correction range (normalized to Fsymech)
setH180>0(e.g.0.1)
set H181< 0 (e.g. -0.1)
H179 integrating time; if required, increase until controller output d183 is stable.
End, format controller
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 155
6DD1903-0DB0 Edition 10.00
Attention: The zero pulse of the encoder for the shear position must be active if the shear is in
the center of cutting range. This zero pulse must reset shear position and material
position.
1
AXAY
Cutting characteristic
0v_ref. from the cutting characteristic (c577)
0
0
X1
Integral (v_ref) 0
0AXAY
Supplementary angle
0
X1· KR3159 (FGEN_sin²)
0
X1
0
Knife angle
1
AXAY
Cutting characteristic
0
v_ref. from the cutting characteristic (c577)
0
0
X1
Integral (v_ref)
0
0AXAY
Supplementary angle
0
X1· KR3159 (FGEN_sin²)
0
X1
0
Knife angle
0
Range
Exclusively in the synchronous range
Cutting characteristic
Range 0° ...
α
2: values between 0.3 and 1.0
Range
α
2 ...
α
1 : value = 1.0
Range
α
1 .. 360°: values between 0.3 and 1.0
H605 = 1 (task is always processed)
Cutting characteristic (only rotary axis)
Extending beyond the synchronous range
Variante
Velocity reduction in the angular range
α
1 ..
α
2
α
1
α
2
Cutting characteristic
Range 0° ...
α
2: values between -0.7 and 1.0
Range
α
2 ...
α
1 : value = 0.0
Range
α
1 .. 360°: values between -0.7 and 1.0
L583 = 3491 cutting characteristic is interpretted as supplementary velocity
H189 > 0 enable max. supplementary angle (0.1 = 36°)
H190 < 0 enable min. supplementary angle
H193 = H105 * 60 / H104
e.g.: H105 = 750 mm; H104 = 240 m/min
==> H193 = 187.5 ms
Any velocity change in the angular range
α
1 ..
α
2
End, cutting characteristic
Version 1 Version 2
Version 2
Version 1
α
1
α
2
0
Typical commissioning
156 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
7.2 Parameterizing the basic drive
Purpose CUMC CUVC CUDC
Status word 1 as PZD1 at T400 P734.1 = 32 P734.1 = 32 U734.1 = 32
Actual speed as PZD2 at T400 P734.2 = 91 P734.2 = 91 U734.2 = 40
Torque P734.5 = 241 P734.5 = 241 U734.5 = 142
Control type: Closed-loop speed control; vector control P367 = 3
P290 = 0 P100 = 4
Main setpoint PZD2 from T400 (for DC Master: Bypass ramp-
function generator and speed setpoint limiting) P443 = 3002 P443 = 3002 P625 = 3002
De-activate ramp-function generator P462 = 0 s
P464 = 0 s
P469 = 0 s
P462 = 0 s
P464 = 0 s
P469 = 0 s
refer to main
setpoint
Reference speed (this must be greater than 150 RPM; if required,
increase H104 V_rated) P353 = d119 P353 = d119 H143 = d119
Bits for control word 1 P554 = 3100
P555 = 3101
P558 = 3102
P564 = 3106
P565 = 3107
P568 = 3108
P569 = 3109
P575 = 3115
P585 = 3409
P554 = 3100
P555 = 3101
P558 = 3102
P564 = 3106
P565 = 3107
P568 = 3108
P569 = 3109
P575 = 3115
P585 = 3409
P654 = 3100
P655 = 3101
P658 = 3102
P664 = 3106
P665 = 3107
P668 = 3108
P669 = 3109
P675 = 3115
P685 = 3409
Remove speed setpoint limiting P452 = 200 %
P453 = -200 % P452 = 200 %
P453 = -200 % refer to the main
setpoint
De-activate smoothing for speed setpoint and actual value P221 = 0 ms
P223 = 0 ms P221 = 0 ms
P223 = 0 ms refer to the main
setpoint
Supplementary torque PZD5 from T400 (optional) P262 = 3005 P506 = 3005
P473 = 0 P502 = 3005
Set torque limits to maximum P263 = 200 %
P264 = -200 % P492 = 200 %
P498 = -200 % P171 = 200 %
P172 = -200 %
Data transmission task cycle between T400 and drive U950.11 = 2 U950.11 = 3
Prerequisite is that the basic drive has been commissioned, including all
of the parameters have been set which define the motor.
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 157
6DD1903-0DB0 Edition 10.00
7.3 Troubleshooting
Problem Possible cause Remedy
Knife drive rotates in the
incorrect direction 1. Encoder tracks interchanged
2. Direction revised per software (observe
zero pulses; refer to the following problem
profile)
1. Interchange encoder tracks A, B
2. H401 = 3402
H318 = -1.0
H780 = -1.0
Rotary axis: Knife and material
position are reset by the same
synchronizing pulse. Torque
surges sporadically occur.
1. The two position sensing functions (knife
and material) use different synchronizing
signal edges (phase sequence, tracks A
and B of the encoder are different); the
position values are then not
simultaneously reset.
1. Always use the rising (front) edge of the
synchronizing pulse.
H408 Bit2 = 1 (e.g. H408 = 0x0004)
H428 Bit2 = 1
CAUTION: Both bits must be identical!
Cut length incorrect 1. Format setpoint (reference value) is not
transferred (d630 is not equal to the
format which has been entered)
2. Format shorter than possible (c348,
B1348 briefly to ‘1’)
3. Incorrect position normalization for knife or
material
4. Measuring wheel slip
1. Set the length setpoint to valid
(SCTW1.4, [270,8] ) ;
Remove limits (H627, H628);
Locate the calculation position H649 in
the operating range;
Allow format constant calculation (H172
... H173)
2. Reduce the material velocity
3. Check the position sensing; Changes
made to H400, H407, H408, H420,
H428, H429 only become effective after
the T400 has been powered-down!
4. Compensate slip using a factor at H121
Shears to not stop after "cont.
cut” has been withdrawn
(SCTW1.2)
1. “Longitudinal format” too short
2. Calculation position is not within the
operating range (no changeover to
"longitudinal format" to stop; refer to d630)
3. "Knife in the starting position" not received
1. Set H111 to the format with delay interval
of 0.5 s between 2 cuts + clearance to
the material detection.
2. Locate H649 in the operating range
3. Knife position fluctuates around the
starting position (increase range H642;
"smooth" closed-loop position control)
Brief events are not always
recognized 1. Transfer pulses which are too short from
a fast into a slower sampling time
2. Processing sequence of freely-assigned
blocks was not observed
1. Pulses<25msfromT1toT3shouldbe
extended to 2*T3 (e.g. zero pulses from
the encoder)
2. The sampling time and sequence of
freely-assigned blocks must be
observed! (refer to function charts)
"In the synchronous range"
becomes active after re-
positioning
1. For linear axes, the knife cannot re-enter
the synchronous range (cutting range) for
a reverse movement
1. Locate the range limit (H451) to a
position outside the operating range
Typical commissioning
158 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
7.4 Example of “cut to length”
Involves Description / required behavior
Hardware constellation T400 in the SRT400. Speed interface: ±10V analog signal (100% = 8 V).
System velocity Up to 60 m/min
Cut duration Max. 500 ms
Cut monitoring There is no checkback signal for the knife position. The cutting tool immediately
returns to the quiescent position after the cut.
Cut start 50 ms after synchronism has been achieved
End of cut After the max. cutting duration has expired + 50 ms safety margin.
It then immediately returns to the starting position.
Clamps Clamps are controlled when synchronism has been reached. Duration, 400 ms.
Format input The cut format is not changed during operation.
Material start 100 mm should be cut from the start of the material.
Manual cut, automatic
operation The cut is executed immediately after request. The cut length is not defined.
The knife must be located in the starting position!
Manual cut, automatic
mode disabled This is only permissible when the material and slides are at a standstill. Any
slide position.
Referencing Automatic after the automatic mode has been activated.
Light barrier to
detect material
start
Measuring wheel
Circumference: 400 mm
2048 pulses/revolution
Knife
FORMAT
Material movement
Spindle
Pitch: 20 mm/revolution
Limit switch,
front
Working range 800 mm
Starting position (quiescent position)
and reference point for dimensioning
(in this example!)
Accelerating range
Rear limit switch
Proximityswitch
start position
Possible synchronous range
Braking range
Clearance, light barrier-knife
450 mm
Proximityswitch
starting position
Limit switch, rear
Limit switch, front
1
0
1
0
1
0
Knife position
0.0
10 10
Motor
1024 pulses/rev
40
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 159
6DD1903-0DB0 Edition 10.00
Interfaces Connection Terminal Ground Type
Enable 0241 53 61 Digital input
Jogging, forwards 0242 54 61
Jogging, reverse 0243 55 61
Automatic mode 0244 56 61
Manual cut 0245 57 61
Limit switch, rear 0246 58 61
Limit switch, front 0247 59 61
Limit, switch, starting position 0249 83, 84 61
Light barrier, start of material 0250 65 66
Control signal for cutting H269 51 50 Digital output
Control signal for clamping H270 52 50
Fault message H271 46 50
Speed setpoint, spindle drive H220 97 99 Analog output
Incremental encoder, wheel 62, 63 85 HTL input
Incremental encoder, spindle drive 81, 82 66, 86,87,88 HTL input
7.4.1 System specifications
Par. Value Function Plan
H100 40 The knife position is normalized to the length of the accelerating travel (40 mm) 60, 1
H101 0 Synchronizing ramp starts at knife position 0 60, 1
H102 40 Synchronizing ramp ends at knife position 40 ( set H102 H100) 60, 1
H103 0 Synchronizing ramp starts at knife position 0 60, 5
H104 60 m/min System reference velocity 80, 4
H105 40 The material position is normalized to the length of the accelerating travel (40 mm) 60, 5
H122 450 mm Distance between the material detection and reference point 60, 6
H115 400 mm Measuring wheel circumference 80, 1
H117 20 mm Feed of the knife slide per motor revolution 80, 1
H120 1 Operation with linear axis 410, 1
H154 2 Curve type 2 (linear ramp with rounding-off) 200, 4
H197
L201 3441
3168 Shift the coordinate system for the reference position by Fsymech (40 mm). This means that
the reference position has the value "actual format" when the cut position reaches the
quiescent position of the knife. This simplifies the input of material position-dependent
dimensions (e.g. the distance between the material start detection and the knife quiescent
position can be measured)
200, 1
H451 3662 Shifts the lower range limit of the synchronous range monitoring to a value outside the
traversing distance (-1000 mm). (For linear axes, the knife slide cannot enter the synchronous
range when reversing out of the quiescent position)
330, 2
H642 0.025 Tolerance bandwidth to identify "in start position" to 0.025 40 mm = 1 mm 340, 2
H715 0 Min. position of the knife slide 0 mm 480, 1
H717 800 Max. position of the knife slide, 800 mm 480, 1
H718 10 10 mm tolerance bandwidth to the knife position monitoring (to initiate a fault) 480, 3
L574 3617 Reduces the reference velocity to zero at the end of the traversing distance 250, 5
H220 3779 Speed setpoint output at analog output 1 95, 1
H225 0,625 Scaling, analog output 1 to output 1.0 as 8 V 95, 5
Typical commissioning
160 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
7.4.2 Format setpoint
Par. Value Function Chart
H619 2004 Select fixed format 1 as format request 190, 6
H621 xxxx mm Enter the required cut format 190, 4
H110 100 mm Crop length (this is cut from the start of the material) 60, 1
H511 1 Set crop cut enable 270, 2
H111 2,5 m Select the longitudinal format so that for this cut format, the knife remains stationary for
approx. 1 s in the starting position between two cuts + H122 (450 mm) 60, 1
L198 0436 If the material is stationary in the shears and for a manual cut, the material position is set to
the value of the actual knife position 180, 1
L199 3414 refer above, L198 180, 1
7.4.3 Incremental encoders
Par. Value Function Chart
H400 1024 Motor for knife feed; pulses per revolution (factory setting) 120, 3
H407 0x7F02 Source of the encoder tracks from terminals 81, 82 and synchronizing pulse from terminal 83 120, 2
H408
H428 0x0004
0x0004 Direction of rotation - independent of the front edge of the proximity switch signal (starting
position) is used for synchronization (this is only effective, if identical to H428!) 120, 3
H405 0599 Synchronization only enabled for jogging or referencing 120, 4
H420 2048 Measuring wheel; pulses per revolution 130, 3
H425 0000 The material position may not be set by the synchronizing pulses! 130, 2
7.4.4 Jogging and referencing
Par. Value Function Chart
L519 0.05 Velocity when jogging = 5% of 60 m/min (this results in 5 cm/s; factory setting) 260, 1
L521 0257 No forwards jogging, if the "front limit switch " is occupied 260, 2
L525 0256 No reverse jogging, if the "rear limit switch" is occupied 260, 2
L530 0259 Reverse referencing, if "proximity switch starting position" = 0 260, 2
L531 0249 Forwards referencing, if "proximity switch starting position" = 1 260, 2
L532 0000 Initial direction of rotation is automaticallyobtained due to L531, L532 260, 2
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 161
6DD1903-0DB0 Edition 10.00
7.4.5 Controlling the cut sequence
Par. Value Function Chart
L758 0245 A pulse, min. 1000 ms is generated from the manual cut input (terminal 57) 436, 1
L759 1000 ms Manual cut pulse duration 436, 2
Logic to initiate a cut (logic2)
L263 0665 I1 = No enable (factory setting) 415, 5
L264 0576 I2 = Cutting mode (factory setting) 415, 5
L265 0455 I3 = Starting condition (cutting/synchronism; Chart 330, 8) 415, 5
L266 0730 I4 = Cutting pulse (OffDelay1_Q; Chart 436,3) 415, 5
L267 0436 I5 = Standstill, material (n_Ref = 0; Chart 130, 8) 415, 5
L268 0237 I6 = Material not cut (Chart 430, 2) 415, 5
L269 0644 I7 = In the starting position (Chart 340, 4) 415, 5
L270 0935 I8 = Manual cut 415, 5
L271 0x0026 MS1 = Cutting mode AND start condition AND material_not _cut 415, 6
L272 0x0A90 MS2 = Standstill material AND manual cut request AND cut pulse_completed AND no_cut
operation 415, 6
L273 0x08D0 MS3 = Standstill_material AND manual cut request AND cut pulse_completed AND in_starting
position 415, 6
L275 0x8010 MR1 = Standstill_material AND no_manual cut request 415, 6
L276 0x0000 De-activate factory setting 415, 6
L278 0x0009 MR = no_enable OR cut pulse 415, 6
Pulse generation
L876 1279 Clamping pulse from the output, logic 2 436, 4
L877 400 ms Clamping pulse duration 436, 5
L728 0876 Derive the switch-on delay for the cutting pulse from the clamping signal 436, 1
L729 50 ms Duration of the switch-on delay for the cutting pulse 436, 2
Enable
0TT0
Cutting
control
STATE Logik2
OffDelay1
50 ms
Pulse_1
400 ms
Start reverse
positioning
OnDelay1
50 ms
Cutting operation
Starting condition
Material cut
Material standstill
Manual cut
Cutting pulse
Pulse_2
500 ms
Cutting pulse
Clamping pulse
Clamping pulse
Cutting pulse
Start, reverse
positioning
Output, start cut
50 ms 50 ms
500 ms
400 ms
t
In starting position
R
S
Q
Q
in the format range Material not cut
RS flipflop1
Typical commissioning
162 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
Par. Value Function Chart
L878 0728 Source for the cutting pulse = output OnDelay1 436, 4
L879 500 ms Cut pulse duration 436, 5
L730 0878 Source, switch-off delay for the end of cut identification from the cut pulse 436, 1
L731 50 ms Duration, switch-off delay for the end of cut identification 436, 2
L709 0730 Source of the edge generation at the end of cutting = OffDelay1 430, 4
H269 0878 Connect digital output, terminal 52 with the clamping pulse 100, 1
H270 0876 Connect digital output, terminal 51 with the cut pulse 100, 1
Par. Value Function: Initiating a manual cut Chart
H933 0576 I1 = Cutting operation (Chart 320, 5) 421, 1
H934 0644 I2 = in the starting position (Chart 340, 4) 421, 1
H935 0758 I3 = Manual cut request 421, 1
H937 0x0007 MS1 = Cutting operation AND in_starting position AND manual cut request 421, 2
H938 0x0104 MS2 = no_cutting operation AND manual cut request 421, 2
H940 0x0400 MR = no_manual cut request 421, 3
L195 0935 Set the material position to initiate a manual cut in the automatic mode 180, 1
7.4.6 Return positioning
Par. Value Function Chart
L331 0665 I1: Not enabled (factory setting) 410, 2
L332 0644 I2: in the starting position (factory setting) 410, 2
L333 0576 I3: Cutting operation (factory setting) 410, 2
L334 0708 I4: End of the cutting pulse 410, 2
L336 0499 I6: Positioning active (factory setting) 410, 2
L337 1347 I7: Positioning mode (factory setting) 410, 2
L339 0x020C MS1: Cutting operation AND end_of the_cut pulse AND not_in_start position 410, 3
L343 0x2040 MR1: Positioning_not_active AND mode_positioning 410, 3
L346 0x0001 MR: No_enable 410, 4
L196 1348 Fault processing if the knife isn't at the starting position on time; this means that larger formats
(sheets) are cut than specified! 180, 2
H481 625 1/s² Angular acceleration of the slide drive (in 40 mm up to 60 m/min = 1 m/s)
²
5.12
402min
60
2
2
s
m
mm
m
X
v
a=
=
=
è
r
²
fa
mmU
Us
==
20 625
230, 3
H478 30000
1/s³ Rounding-off: The torque is established when accelerating
(time to establish the torque: H481 / H478 = 20 ms) 230, 4
H479 15000
1/s³ Final rounding-off: The torque is reduced when braking down to standstill
(time to reduce the torque: H481 / H479 = 40 ms) 230, 4
Typical commissioning
Sheet-Cutter/Cut to Length - SIMADYN D - Manual 163
6DD1903-0DB0 Edition 10.00
7.4.7 T400 operation without external automation system
Par. Value Function Chart
H841 2621 Internally generate control word 1 for the drive converter 680, 1
H844 2622 Internally generate shears control word 1 680, 5
L620 0241 "Enable" from terminal 53 810, 1
L626 0244 "Automatic mode" from terminal 56 810, 1
L627 0635 Only enable automatic mode, if the drive converter is operational (e.g. no fault) 810, 1
H653 0001 Simulate drive converter ready 360, 2
H654 0001 Simulate drive converter ready 360, 1
L621 0001 Simulate drive converter ready 810, 2
H656 0013 Ready to run only if no fault is present 360, 1
H581 0627 Acknowledge fault by withdrawing the enable signal at terminal 53 530, 4
H966 0x30E0 Suppress non-relevant faults/error bits in the fault word 530, 4
H967 0x30E0 Suppress non-relevant fault bits in the alarm word 530, 4
7.4.8 Diagnostics
Par. Value Assigning free bits in the shears status word Chart
H548 0876 Clamping pulse 520, 1
H549 1279 Positioning 520, 2
H550 0878 Cut pulse 520, 1
H551 0730 Extended cut pulse (OffDelay1) 520, 2
H552 0632 Automatic mode 520, 1
H553 0250 Light barrier, material detection 520, 2
Typical commissioning
164 Sheet-Cutter/Cut to Length - SIMADYN D - Manual
6DD1903-0DB0 Edition 10.00
7.5 Function flow PLC (principle)
Inverter ready
Power ON
no
yes
Enable inverter
Inverter active no
yes
Cutting mode
requested
Shear calibrated?
Referencing shear
CB Shear control word Bit 6 = 1
Shear in
start position?
Move shear to start position
CB Shear control word Bit 8 = 1
End of cut?
Enable continuous cut
CB Shear control word Bit 1 = 1
Stop referencing shear
CB Shear control word Bit 6 = 0
Stop moving to start position
CB Shear control word Bit 8 = 0
End continuous cut
CB Shear control word Bit 1 = 0
Format setpoint valid
CB Shear control word Bit 4 = 1
no
yes
no
yes
yes
no
no
yes
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
Function charts for the standard software package Sheet Cutter/Cut to Length
General
Contents
Block diagram control
Block diagram shear controller
General symbols
Control symbols
Constant
Configuration setting
General constants
Fixed values
Pulse encoder normalizations
T400
Analog inputs
Analog outputs
Binary outputs and bidirectional I/O
Binary inputs
Position sensing
Shear drive
Reference position (material)
Displacement correction and pass mark counter
Suppressing pass marks (position-dependent)
Correction of reference position
Absolute-value encoder on T400 and normalization
Absolute-value encoder (CU)
TR encoder
Calibrate shear
Set reference position
10
20
25
30
35
50
60
70
80
90
95
100
110
120
130
135
140
145
150
160
165
170
180
Shear control
Format setpoint selection
Format generator (FGEN)
Position controller (PC)
Format controller (FC)
Positioning with ramp generator (PosRG)
Torque calculation
Cutting speed
Speed local modes and setpoint for inverter
Cut curve and overspeed
Control logic
Shear control word 1 (SCTW1)
Shear control word 2 (SCTW2)
Operation mode priority
Operation modes 1
Operation modes 2
Operation modes 3
Range monitoring 1
Range monitoring 2
Range monitoring 3
Enable inverter / setpoints / controller
Enable position controller / brake control logic
Cam group
Free function blocks
Definition of the logic function block STATE
Mode switching (positioning/format mode)
Parameterizable logic 1 (raise/lower knife)
Parameterizable logic 2
Parameterizable logic 3
AND/OR gates
Miscellaneous functions
Control functions
Time dependent functions
Type conversion
Arithmetics
190
200
210
220
230
240
250
260
265
270
280
290
300
310
320
330
340
350
360
370
380
400
410
415
420
421
425
430
435
436
440
445
Contents Chart Contents Chart
- 10 -
General
Contents
Diagrams
KP-adaption and cut polygon
Friction and inertia
Diagnostics
CU-, CB- and user faults
Shear position and speed
Blocking protection
Pulse encoder fault detection
System status and control logic status
Status shear
Faults and alarms
Display parameters
Inverter interface
General settings
Process data reception
Inverter status words
Control words
Process data transmission
COMBOARD
General settings
Process data reception
Control words
Status words
Process data transmission
Optional communication
COMBOARD configuration
USS slave
Generel settings peer to peer
Peer to peer process data
Test operation
Multiplexer selected fixed values
Startup state machine
450
460
470
480
490
500
510
520
530
540
600
610
620
630
640
660
670
680
690
700
750
770
780
790
800
810
Contents Chart
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 20 -
General
Block diagram control
PLC
Communication
board
CB
or
State machine for
simple stand
alone
application
(Chart 810)
Shear Control Words
Control words for inverter
control unit CU
Normalizations
Status Words
Inverter
Control Unit
CU
Priority handling
Enabling
Operation modes Enable fault signallingDiagnostics
Normalizations
Shear Controller
setpoints
actual values
Faults and
alarms
Controlling shear: mode
switching between
positioning/format mode
Chart 670, 700
Chart 270, 280, 680, 810 Chart 290
Chart 25
Chart 300 .. 330
Chart 410 ff
Chart 610, 640
Chart 330, 340, 470 .. 500
Chart 360 .. 370
Chart 630, 680
Chart 530
Chart 620
setpoints
actual values
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 25 -
General
Block diagram shear controller
Referencing shear
Shear drive position
and speed
Normalization of
position and speed
Reference drive
position and speed
Actual sheet size
Setpoint sheet size
Format controller
Positioning
POSRG
Displacement
correction
Pass mark counter
Format generator
Cutting curve
Enable
synchronization
Pulse encoder shear
Pulse encoder
measuring wheel
Position controller PC
(Chart 210)
Set reference position
Position controller
(Chart 230)
Setpoint speed
(positioning mode)
Pre-control torque
(position mode)
Setpoint speed
(format mode,
chart 250)
Additional torque
components
Pre-control torque
(format mode)
position shear
Reference speed
Local modes:
Jogging, referencing
Setpoint speed
(local modes)
Chart 170
Chart 120
Chart 60, 80
Chart 230
Chart 120, 140
Chart 180
Chart 135
Chart 135
Chart 220
Chart 190
Chart 130, 220
Chart 130
Chart 200
Chart 260
Chart 265, 450
Chart 240
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
0
1
2
3
4
- 30 -
General
General symbols
Parameter name
(factory setting)
Hxyz
Parameter name
dxyz
H234 (fact.)
B (chart)
Parameter name
+
-
1
0
-1
Technology parameters
1
1
0
&
Technology parameter
e.g. H231
Display parameter
e.g. d123
Connection to a floating-
point source (fact.) which
can be modified with
H123
H123 (fact.)
K (chart)
Parameter name
OR operation
Inputs and outputs may
be of binary or vector data
type
Logic and arithmetics
Y
X2
X1
Logical inversion
AND operation
Inputs and outputs may
be of binary or vector data
type
Multiplication
Y = X1 * X2
X1
X2
Y
Divider
Y =
X1
X2
X Y
Absolute value
Y = | X |
X Y
Negation
Y = - X
Adder
Y = X1 + X2
X2
X1 Y
Miscellaneous
Multiplexer
(here 5 inputs)
Selection
Operational amplifier
Selcetion between 2
inputs
Sign determination
Y = sign ( X )
Selection
X Y
Symbol ExplanationsExplanationsExplanations SymbolSymbol
A+
Coarse
pulse
A-
B+
B-
N+
N-
Inkremental encoder
Here: tracks A, B and
zero pulse N;
(RS422)
Edge detektor
generates a pulse for the
rizing edge of X
YX
H123 (fact.)
KR (chart)
Parameter name
R-S-Flip-Flop
Set
Reset
R
S
Q
Q
Connection to a integer
source (fact.) which can
be modified with H123
Connection to a boolean
source (fact.) which can
be modified with H123
1
H123 (3412)
KR (120,7)
S.Setpoint speed
Excample:
Parameter name (factory setting)
(chart, Sector) for
factory setting
Data type symbol:
BBOOL
K16bit
KK 32bit
KR floating point
Parameter
number
S&H
Sampling 1 value
X storage value
Y store value
S storage condition
X Y
S
Miscellaneous
Symbol Explanations
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 35 -
General
Control symbols
PT1
DT1
Xmin
Xmax
x
y
T0
Kp Tn
Y
X
X<Y
X>Y
Y=X
Low pass filter
T time constant
T
TdT
High pass filter
T = smooting time
constant
Td = derivative action
time constant
Limiter function
Xmin <= X <= Xmax
X
Switch on delay T1
T1
Converter
here: fixed point to
floating point
(100% converted to 1.0)
hysteresis
1.0
100 %
Limiter
signalling if the input
quantity exceed the
limits
interval limit
average interval value
X > Y
Y < X
X = Y
upper
limit
lower
limit input at the
lower limit
input at the
upper limit
input output
input
Limit value monitor with
hysteresis
proportional gain integral action time
enable
system
deviation output
integral
value
PI controller
Curve defined by 2 points
(X1,Y1) and (X2,Y2)
symmetrical to the Y-axis
Ramp function with
setting function
input output
X1
X2
Y1
Y2
Y
ramp-up time
input output
ramp-down time
setting value set
ExplanationsSymbol ExplanationsSymbol Symbol Explanations
Switch off delay T1
T1
0T
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
Restore factory setting
General settings
Language select.
(0)
H000
Software version
d002
Software-Id
d001
0 german
1 english
Key EEPROM
(0)
H984
Status EEPROM
d985
Restore factory setting
Set H984 = 165
Modified parameters are restored to factory
setting.
This operation can not be canceled!
T400 Baseboard
(0)
H982
Use T400 as baseboard
(special applications without
inverter)
TechBoardParaTyp
(0)
H980
COMBOARD ParaTyp
(0)
H981
Choose data type for
floating-point parameters
Serial No.
d003
Hardware-Id
d004
- 50 -
Constant
Configuration setting
AbsEncoder Type
(0)
L158
0: no absolute encoder
1: TR-encoder
2: SSI/EnDat (T400)
3: SBM2 encoder (CU)
B0090 Enable TR encoder
B0091 Enable T400-Abs enc.
B0092 Enable CU encoder
B0093 Enable absolute encod.
Select the absolute
encoder
Disabling of special tasks
Enable TR encod.
c090
En.T400 AbsEnc
c091
c093
Enable AbsEnc c092
En. CU AbsEnc
T400 absolute encoder
(chart 150)
L600 (0091)
B (50,8)
S.Task AENC_T400
Task AENC
c610
L601 (0090)
B (50,8)
S.Task TR encoder
Task TR encoder
c611
TR encoder (chart 140)
L602 (0092)
B (50,8)
S.Task CU encoder
Task CU encoder
c612
Absolute encoder on CU
(chart 160)
L603 (0168)
B (200,8)
S.Task cut curve Task cut curve
c613
0T
Off delay cut
(4.8 ms)
L614
Drive code
(0)
H923
SYMADYN D
d998
SIMOVIS SW ID
d999
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 60 -
Constant
General constants
Shear constanst
End of cutting range norm.KR3118
AX Angle
(20.0)
H101
Start cutting range norm.KR3119
AY Angle
(340.0)
H102
Angle edge pointKR3103
Edge point AZ
(0.5)
H103
TopCut size
KR3110
TopCut size
(200.0 mm)
H110
Distance
shear to light gate
KR3106
Dist. Light Gate
(1500.0 mm)
H106
Distance to cut
KR3107
Dist. Cut
(0.0 mm)
H107
Long format
(100.0 m)
H111
Long format
KR3111
Fsymech
(1000 mm)
H105 FsymechKR3105
Dist. light gate norm.KR3095
Dist. to cut normKR3096
TopCut size norm.KR3097
Long format norm.KR3098
H095 (3106)
KR (60,2)
S.DistLightGate
H096 (3107)
KR (60,2)
S.Dist.Cut
H097 (3110)
KR (60,2)
S.TopCut size
H098 (3111)
KR (60,2)
S.Long format
Start cut torqueKR3112
Angle_CUT_ON
(315.0)
H112
End cut torqueKR3113
Angle_CUT_OFF
(345.0)
H113
X_Shear Norm
(360.0)
H100
Dist. light gate + cutKR3099
X Shear normalizationKR3100
End of cutting rangeKR3091
Start cutting rangeKR3092
Reference constants
Xref_normalization [60,7]
Epsilon
(0.0°)
H108 cos_EpsilonKR3108
Xref_normalizationKR3114
Xref_Norm
d114
knife change positionKR3109
Knife change position
(180.0)
H109 KC pos. normalizedKR3129
Reserve1 norm.KR3649
L649 (3000)
KR (70,2)
S.Reserve1
Xref_normalization [60,7]
pass mark dist. norm.KR3592
dX_Pass mark
(1000 mm)
H592
Dist. between
pass marks
KR3593
-1
Neg. dist. light gate norm.KR3195
Distance material norm.KR3123
Distance materialKR3122
Distance Material
(1500 mm)
H122
cos
H091 (3101)
KR (60,2)
S.AX
AX_fixed value
KR3101
AY_fixed value
KR3102 H092 (3102)
KR (60,2)
S.AY
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 70 -
Constant
Fixed values
Constants
B0000 logical 00
B0001 logical 11
word 0K20000
word 1K20011
double word 0KK50000
double word 1KK50011
Real 0.0KR30000.0
Real 1.0KR30011.0
Real 2.0KR30022.0
PIKR30033.141592654
2 PIKR30046.283185307
PI / 2KR30051.570796327
fixed value1
(0.0)
L650 fixed value1KR3650
fixed value2
(0.0)
L651 fixed value2KR3651
fixed value3
(0.0)
L652 fixed value 3KR3652
fixed value4
(0.0)
L653 fixed value 4KR3653
fixed value5
(0.0)
L654 fixed value5KR3654
fixed value6
(0.0)
L655 fixed value6KR3655
fixed value7
(0.0)
L656 fixed value7KR3656
fixed value8
(0.0)
L657 fixed value8KR3657
fixed value W1
(0)
L666
fixed value W2
(0)
L667
fixed value W1K2666
fixed value W2K2667
fixed value9
(0.0)
L658 fixed value9KR3658
fixed value10
(0.0)
L659 fixed value10KR3659
fixed value11
(0.0)
L660 fixed value11KR3660
fixed value12
(0.0)
L661 fixed value12KR3661
fixed value13
(-1000.0)
L662
fixed value13
(format range lin. axes)
KR3662
fixed value14
(0.0)
L663
fixed value 14
(CoarseRefValue 170,6)
KR3663
fixed value15
(1000.0 mm)
L664
fixed value 15
(Format 190,4)
KR3664
fixed value16
(1200.0 mm)
L665
fixed value 16
(Special sheet 190,2)
KR3665
fixed value W3
(0)
L668
fixed value W4
(0)
L669
fixed value W3K2668
fixed value W4K2669
fixed value W5
(0)
L670 fixed value W5K2670
fixed value Int1
(0)
L671
fixed value Int2
(0)
L672
fixed value I1K2671
fixed value I2K2672
fixed value Int3
(0)
L673
fixed value Int4
(0)
L674
fixed value I3K2673
fixed value I4K2674
fixed value Int5
(0)
L675 fixed value I5K2675
fixed value Int6
(0)
L676
fixed value Int7
(0)
L677
fixed value I6K2676
fixed value I7K2677
fixed value Int8
(0)
L678 fixed value I8K2678
fixed value DI1
(0)
L679
fixed value DI2
(0)
L680
fixed value DI3
(0)
L681
fixed value DI4
(0)
L682
fixed value DI5
(0)
L683
fixed value DI6
(0)
L684
fixed value DI1KK5679
fixed value DI2KK5680
fixed value DI3KK5681
fixed value DI4KK5682
fixed value DI5KK5683
fixed value DI6KK5684
Floating-Point-fixed values 16bit-fixed values 32bit-fixed values
word 16#FFFF
Integer -1
K200616#FFFF
Real 0.5KR30060.5
Real -1.0KR3007-1.0
word 2K20022
word 3K20033
word 4K20044
word 5K20055
Fixed pos.1 norm.KR3223
Fixed pos.1
(0 mm)
H233 Fixed pos.1KR3233
Fixed pos.2 norm.KR3224
Fixed pos.2
(0 mm)
H234 Fixed pos.2KR3234
Fixed pos.3 norm.KR3225
Fixed pos.3
(0 mm)
H235 Fixed pos.3KR3235
Fixed pos.4 norm.KR3226
Fixed pos.4
(0 mm)
H236 Fixed pos.4KR3236
H232 (3100)
KR (60,4)
S.Norm.Fixed pos.
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 80 -
Constant
Pulse encoder normalizations
Feed/Revolution
(1000 mm)
H117 Refer.Speed 1
(1/min)
KR3401
Ref. frequency1
(Hz)
KR3400
60.0 s/min
1000 mm/m
Revolutions/FsymechKR3050
Reference speedKR3104
4
i_Meas.Wheel
(1.0)
H116
SizeMeas.Wheel
(500 mm)
H115
1000 mm/m
4
Reference speed2KR3421
Reference pulses2KK5422
Refer. pulses 1KK5402
Feed/RevolutionKR3117
cos_Epsilon [60,7]
Xref_normalization [60,7]
Reference Speed
(100 m/min)
H104
Reference speed
[80,5]
Pulses Encoder1
[120,4]
Pulse Encoder2 [130,4]
Fsymech [60,7]
i_Encoder1
(1.0)
H118
M
Encoder
1
i
Feeder
drive
i_Meas.Wheel
H116
Scheme for reference position measuring
without no measuring wheel.
Warning:
This reference measuring will never have the
same accuracy as with measuring wheel.
Gear box
(optional)
Gear shearKR3218
Circumference
Meas. Wheel
KR3115
inverter settings:
Ref. Speed = Refer.Speed 1
(P353 with SIMOVERT MC)
n_Ref. Shear
d119
H121 (3001)
KR (70,2)
S.Slip Factor
i_measure
wheel
KR3116
-1
neg. reference pulses2KK5423
(float) reference pulses2KR3422
-1
neg. ref. speedKR3420
-1
neg. ref. speed1KR3402
-1
neg. ref. pulses 1KK5403
H123 (3000)
KR (70,2)
S.Meas.WheelCorr
dMeas.Wheel_max
(20 mm)
H142
dMeas.Wheel_min
(-20 mm)
H143
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 90 -
T400
Analog inputs
PT1
Hardware filter
500 µs
ADPT1
12 bit
5 V
AI1 Scale Factor
(1.0)
H210
AI1 Offset
(0.0)
H211
AI1 TimeConstant
(25 ms)
H212 AI1 smoothed
d214
PT1
Hardware filter
500 µs
ADPT1
12 bit
5 V
AI2 Scale Factor
(1.0)
H215
AI2 Offset
(0.0)
H216
AI2 TimeConstant
(25 ms)
H217 AI2 smoothed
d219
Terminal 92
Terminal 93
Terminal 90
Terminal 91
+
-
+
-
±10 V
±10 V
Calculation cycle:
Input Task Cycle time
AI1 T3 12,8 ms
AI2 T3 12,8 ms
AI3 T4 51,2 ms
AI4 T4 51,2 ms
AI5 T4 51,2 ms
H213 (0000)
B (70,2)
S. Disable AI1
0.0
1
0
0.0
H218 (0000)
B (70,2)
S. Disable AI2
1
0
AI1 smoothedKR3214
AI2 smoothedKR3219
PT1
Hardware filter
500 µs
ADPT1
12 bit
5 V
AI3 Scale Factor
(1.0)
H276
AI3 Offset
(0.0)
H277
AI3 TimeConstant
(100 ms)
H278
AI3 smoothed
d279
Terminal 94
+
-
±10 V
AI3 smoothedKR3279
PT1
Hardware filter
500 µs
A
DPT1
12 bit
5 V
AI5 Scale Factor
(1.0)
H284
AI5 Offset
(0.0)
H285
AI5 TimeConstant
(100 ms)
H286
AI5 smoothed
d287
Terminal 96
+
-
±10 V
AI5 smoothedKR3287
PT1
Hardware filter
500 µs
A
DPT1
12 bit
5 V
AI4 Scale Factor
(1.0)
H280
AI4 Offset
(0.0)
H281
AI4 TimeConstant
(100 ms)
H282
AI4 smoothed
d283
Terminal 95
+
-
±10 V
AI4 smoothedKR3283
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 95 -
T400
Analog outputs
DA
H224
(0.0)
AO1 Offset
H225
(1.0)
AO1 ScaleFactor
12 Bit
D
A
H230
(0.0)
AO2 Offset
H231
(1.0)
AO2 ScaleFactor
12 Bit
±10 V
±10 V
10 V
-10 V
10 V
-10 V
H226 (3414)
KR (120,7)
S. AnalogOutput 2
Analog Output 1
d223
Analog Output 2
d229
5 V
5 V
H220 (3412)
KR (120,7)
S. AnalogOutput 1
PT1
AO1 TimeConst
(0 ms)
H222
0.0
H221 (0000)
B (70,2)
S. Disable AO1
1
0
1
0
PT1
H227 (0000)
B (70,2)
S. Disable AO2
AO2 TimeConst
(0 ms)
H228
0.0
Terminal 99
Terminal 99
Terminal 97
Terminal 98
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 100 -
T400
Binary outputs and bidirectional I/O
Term. 51
Term. 45
24V
KL46 input
d261
Bidirectional I/O
Term. 46
B0265 Term. 46 inv
B0261 Term. 46
H271 (0014)
B (530,8)
S.BiDir Out 1
Enable BiDir1
(1)
H265
KL47 input
d262
Term. 47
B0266 Term. 47 inv
B0262 Term. 47
H272 (0676)
B (70,2)
S.BiDir Out 2
Enable BiDir2
(1)
H266
KL48 input
d263
Term. 48
B0267 Term. 48 inv
B0263 Term. 48
H273 (0978)
B (70,2)
S.BiDir Out 3
Enable BiDir3
(1)
H267
KL48 input
d264
Term. 49
B0268 Term. 49 inv
B0264 Term. 49
H274 (0000)
B (70,2)
S.BiDir Out 4
Enable BiDir4
(0)
H268
H269 (1259)
B (415,4)
S.Bin.Output 1
H270 (1279)
B (415,8)
S.Bin.Output 2
Term. 52
Supply voltage for output
drivers
Binary outputs
1
1
1
1
Warning!
H265 .. H268 are initialization parameters. Modification
takes place after the next power on.
If bidirectional outputs are enabled as output the
corresponding input value is inverted!
E.g.: H269 =1
d264 displays a level inverse to
terminal 49.
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 110 -
T400
Binary inputs
5V
24V
Term. 54
KL54 BinInput2
d242
5V
24V
Term. 60
5V
24V
Term. 59
5V
24V
Term. 58
5V
24V
Term. 57
5V
24V
Term. 56
5V
24V
Term. 55
5V
24V
Term. 53
KL53 BinInput1
d241 KL84 CoarsePuls1
d249
KL65 CoarsePuls2
d250
Coarse Pulse Inputs (T1)Binary Inputs (T3)
B0241 BinInput 1
B0251 BinInput 1 inv.
B0242 BinInput 2
B0252 BinInput 2 inv.
KL55 BinInput3
d243
B0243 BinInput 3
B0253 BinInput 3 inv.
KL56 BinInput4
d244
B0244 BinInput 4
B0254 BinInput 4 inv.
KL57 BinInput5
d245
B0245 BinInput 5
B0255 BinInput 5 inv.
KL58 BinInput6
d246
B0246 BinInput 6
B0256 BinInput 6 inv.
KL59 BinInput7
d247
B0247 BinInput 7
B0257 BinInput 7 inv.
KL60 BinInput8
d248
B0248 BinInput 8
B0258 BinInput 8 inv.
5V
24V
Term. 65
5V
24V
Term. 84
B0249 CoarsePulse 1
B0259 CoarsePuls 1 inv.
B0250 CoarsePulse 2
B0260 CoarsePuls 2 inv.
1
1
1
1
1
1
1
1
1
1
Bit 0 BinInput 1
Bit 6 BinInput 7
Bit 1 BinInput 2
Bit 2 BinInput 3
Bit 3 BinInput 4
Bit 4 BinInput 5
Bit 5 BinInput 6
Bit 7 BinInput 8
Bit 8 BinInput 1 inv
Bit 9 BinInput 2 inv
Bit 12 BinInput 5 inv
Bit 10 BinInput 3 inv
Bit 11 BinInput 4 inv
Bit 13 BinInput 6 inv
Bit 14 BinInput 7 inv
Bit 15 BinInput 8 inv
Status BinInput
d005
Status bin. inputsK2020
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 120 -
Position sensing
Shear drive
1
0
81
from inverter
82
83
84
1
0
Mode Encoder1
Bit 7 (1)
H407
Mode Encoder1
Bit 6 (11)
H407
Coarse pulse
handling
SyncMode Encod_1
Bit 4..6 (000)
H408 Mode
Pulses
Synchronization
Reference speed
Pos. Shear
d413
Speed Shear
d411
Error Enc1
d410
Enable
synchronization
Mode Encoder1
Bits 0..5, 8..15
H407
Speed and position
shear drive
Speed
Position
Group error
track A
track B
Zero pulse
Pulse encoder
A
B
N
Coarse pulse
Position set for
synchr. pulse
PT1
Position set value
Position sensing
Reset position
H401 (3401)
KR (80,6)
S. Refer.Speed_1
H403 (1311)
B (170,4)
S. Reset Pos_1
H404 (1306)
B (170,7)
S. Set Pos_1
H405 (0317)
B (120,2)
S. Sync1 Enable
H406 (3313)
KR (170,7)
S. Pos.SetValue_1
Pulses per
revolution
Set position
H402 (5402)
KK (80,6)
S. Ref.Pulses_1 Reference
pulses
B0410 Error encoder 1
Tfilt n Shear
(20 ms)
H417
Speed shearKR3412
n Shear smoothedKR3411
Position shear norm.KR3414
B0413 Position synchronized
Pulse Encoder1
(1024)
H400
Pulse Encoder1
K2400
B0414 Position ot synchr.
0T
0T
32 ms
H416
(100 ms)
Pos.Sync Delay
B0415
Pos.Sync32ms
B0416
Pos.Sync100ms
Abs speed shearKR3410
B0412 Shear speed negative
1
0
1
MaxPulses Enc_1
(0)
H409 Maximum
position
Error code Enc1
d412
Error code
Maximum position
overflow B0417 Shear max. pos ovf.
H414 (0413)
B (120,7)
S.PosSyncPuls
Position shearKR3413
X_Shear norm. [60,4]
L314 (0599)
B (290,8)
S.Enable Synchr1
L315 (0168)
B (200,8)
S.Enable Synchr2
L316 (0595)
B (290,7)
S.Enable Synchr3
1
B0317
Enable
synchronization
Enable synchronization
1
B0418 Sync_OR_Overflow
Synchronization pulse B0419 Synchronization pulse 1
Attention!
Initialization parameters
H400, H407, H408
become effective after next
power-up!
Pos. at synchronization Pos. at synchronizationKR3415
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 130 -
Position sensing
Reference position (material)
62
Coarse pulse
handling
H428
Bit 4..6 (000)
SyncMode Encoder2
+
-
(N+)
Coarse pulse
(N-)
+
-
+
-
Mode
Pulses
Synchronization
Reference speed
Speed2
d435
Mode Encoder2
(16#7F02)
H429
Speed and position
reference drive
Speed
Position
Group error
Pulses per revolution
63
64
65
86
87
88
Terminal
Position at
synchronization
Measuring wheel
here:
RS422 encoder
H421 (3421)
KR (80,4)
S. Refer.Speed_2
H422 (5422)
KK (80,4)
S. Refer.pulses_2 Reference pulses
Set position
Max.PulsesEnc_2
(0)
H430 Maximum position
H423 (0208)
B (180,7)
S. set Pos_2
H424 (1345)
B (410,5)
S. Pos_2 correct
Correct position
H425 (0317)
B (120,2)
S.Enable Synchr2
Enable synchronization
H426 (3204)
KR (180,7)
S. Pos. Set Value2
Position set value
H427 (3630)
KR (220,7)
S.Pos.corr.Val2
Position correct. value
Error Encoder2
d433
B0433 Error encoder2
Speed2KR3434
PT1
Tfilt Speed2
(4.8 ms)
H436
Speed2 smoothedKR3435
Synchron. positionKR3440
H441 (3114)
KR (60,6)
S.actForm_Norm
actual formatKR3447
Actual Format
d447
Pulses Encoder2
(1024)
H420 Pulses encoder2K2420
Position set for
synchronization
Error code
Error code Enc2
d434
Error code encoder 2K2434
H415 (0576)
B (320,5)
S.En Pos_2 corr
&
Position2 act. valueKR3436
B0432 Position2 set for synchr.
Synchronization pulse B0431 Synchronization pulse 2
0T
32 ms
B0434 Sync2 pulse 32ms
0TB0420
Long Pulse
H419 (0431)
B (130,6)
S.Long Pulse
T_LongPulse
(32 ms)
H418
Comparator
Y
X
X > Y
X = Y
X < Y
B0435 n_Ref > 0
B0436 n_Ref = 0
B0437 n_Ref < 00.0
H455 (3219)
KR (90,7)
S.vRef simul. Enable speed simulation
Simulated speed
H454 (0000)
B (70,2)
S.EnableVrefSim.
Attention!
Initialization parameters
H420, H428, H429
become effective after next
power-up!
1
H369 (0000)
B (70,2)
S.XrefCorrection
B0424
A+
A-
B+
B-
Synchroni-
zation pulse
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 135 -
Position sensing
Displacement correction and pass mark counter
position2
d437
position2KR3437
ResetDisplCorr
(1)
H446 Correct Increm.
(0.02 %)
H444
H431 (3094)
KR (180,7)
S.Ref_Mark_Pos
H432 (0453)
B (330,5)
S.FreezeCorrect.
Reference positionKR3438
Reference Pos.
d438
1
0
B0442 Reference error
B0443 Ref. error pulse
Reference Error
d442
Reference Min.
(-0.5)
H443
H439 (3001)
KR (70,2)
S.RefPosFactor
Material positionKR3445
Xref_normalization [60,7]
MaterialPosition
d445
Monitioring material position
Position
actual value
Setpoint mark pos.
Act. value mark pos.
Freeze correction
Start Correction
Position corr.
Disable
Displacement correction
Increment
Synchron. position [130,7]
Position1 act. value [130,6]
Position2 set for synchr. [130,6]
H448 (0434)
B (130,6)
S.SetFirstMark
H449 (0577)
B (320,5)
S.ResetFirstMark
R
S
Q
Q
B0448 first mark
B0449 not first mark
0
1
H587 (0448)
B (135,3)
S.MarkSelect
H585 (2001)
K (70,2)
S.MarkQuantity1
H586 (2588)
K (135,4)
S.MarkQuantity2 Mark limitK2586
Up pulse
Reset
Set
Set value
Upper limit
Counter status
Pass mark counter
Down pulse
Lower limit
counter at upper limit
counter at lower limit
counter status zero
H465 (0420)
B (130,6)
S.MarkPulsUp
H466 (0000)
B (70,2)
S.MarkPulsDown
H467(0434)
B (130,6)
S.MarkCntReset
H468 (0000)
B (70,2)
S.MarkCntSet
H469 (2000)
K (70,2)
S.MarkCnt SV
H470 (2586)
K (135,3)
S.MarkCnt LU
H471 (2000)
K (70,2)
S.MarkCnt LL
Pass mark statusK2465
B0470 PM maximum
B0471 PM minimum
B0469 PM zero
H588 (3630)
KR (220,7)
S.PM_Format
H589 (3592)
KR (60,7)
S.PM_dX_Mark
I
R
0.5
number of marks -1
K2588
H440 (3001)
KR (70,2)
S.Ref.Pos.Offset Ref. pos. - offsetKR3441
Wait for the 1st mark after enble cutting
Ref. pos. offsetKR3442
H367 (3445)
KR (135,5)
S.RefPos modulo
H368 (3631)
KR (220,7)
S.Format modulo Refpos modulo formatKR3368
Refpos / formatKR3367
H376 (0446)
B (135,1)
S.DisableOfsCorr
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 140 -
Position sensing
Suppressing pass marks (position dependent)
Y
X
X<Y
X>Y
X=Y
L595 (3437)
KR (135,5)
S.Compare4
Compare4 Hyst
(0.0)
L598
B1595
Compare4 X>Y
B1596
Compare4 X=Y
B1597
Compare4 X<Y
L596 (3204)
KR (180,7)
S. Compare4 Mid
L597 (3366)
KR (140,2)
S.Compare4 Range
1
&
H363 (0449)
B (135,3)
S.EnableMark_1
H364 (0000)
B (70,2)
S.EnableMark_2
KR3366
WindowPassmark
(0.05)
H366
B1363
Mark within window
H360 (1363)
B (140,6)
S.EnSynchrRef1
H361 (0576)
B (320,5)
S.EnSynchrRef2
H362 (0001)
B (70,2)
S.EnSynchrRef3
B1360
Enable pass mark-
synchronization
Synchronization is enabled within a window close to the
expected synchronization position.
For the first mark synchronization is always enabled until
the first mark was detected.
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 145 -
Position sensing
Correction of the reference position (after manual cut or disabling cutting modes)
Ref. pos. - offset (KR3441) [135,5]
Position shear norm. (KR3414) [120,8]
Start length (KR3162) [200,8]
AREF for AZ (KR3163) [200,8]
Format setpoint (KR3629) [190,8]
Long format norm. (KR3098) [60,5]
Actual format setpoint (KR3630) [220,7]
Tmax manual cut
(5000 ms)
H375
Shear in start position (B0644) [340,4]
n_shear = 0 (B0460) [330,3]
n_Ref = 0 (B0436) [130,8]
Cutting active (B0576) [320, 5]
OM local (B0599) [290,8]
S.SV LightGate (L213) [180,1]
H370 (0000)
B (70,2)
S.ReqManualCut
H371 (0000)
B (70,2)
S.EnablManualCut
H372 (0000)
B (70,2)
S.start of cut
H373 (0000)
B (70,2)
S.enf of cut
H374 (0424)
B (130,2)
S.RefCorrPulse
Reference correct. valueKR3370
Reference pos.FGEN
Timeout for the cutting duration
Shear position
Start length
Stop length
Format setpoint
Long format
Format setpoint FGEN
Shear in start position
Shear standing still
Material standing still
Automatic/manual mode
Jogging or referencing
Material detection
Request manual cut
Enable manual cut
Start of cutting pulse
End of cutting pulse
Pulse reference position corrected
Pos. correction value
Manual cut pulse
Correction pulse
Set pulse
Pos. setpoint = start pos.
B0376 Manual cut pulse
B0377 Correct reference position
B0378 Set reference position
B0379 Shear pos. setpoint
= start position
Note:
Logic for adapting the reference position after switching between local modes and continous
cutting respectively for manual cutting.This logic enables to continue the automatic cutting as
long as the line has not been moved too far (condition: material position < start length).
Manual cuts are allowed only for systems when cutting is possible even with standing line
(true for the most linear systems).
In automatic cutting mode the shear has to be positioned to the start position after manual
cutting. This is true even if the shear is allready in this position. The logic for starting the
positioning has to be changed in this way.
For rotary systems set H440 = 3000 [135, 4];
Connect to:
H427 [130,2]
Cutting logic (application specific)
H369 [130,1]
L212 [180,1]
H130 [210,1] and L535 [260,6]
Request manual cutting
Manual cut pulse
Start of cut pulse
End of cut pulse
t
Timing diagram for manual cutting
Manual cut pulse
B0380 Manual cut pulse
Use this function only for test and only for systems with linear axis!
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 150 -
Position sensing
Absolute-value encoder on T400 and normalization
AENC resolution
(8192)
L160
AENC NumberTurns
(0)
L161
AENC Zero Bits
(0)
L162
AENC PosAlarmbit
(0)
L163
AENC Frequency
(0)
L164
AENC EncoderType
(2)
L165
AENC DataCode
(0)
L166
AENC Parity
(0)
L167
AENC i_Gearbox
(1.0)
L168
AENC Pos.Norm
(1.0)
L169
AENC n_Norm
(1.0)
L170
AENC n_max
(6000.0)
L171
L173 (3000)
KR (70,2)
S.AENC Offset
L172 (0000)
B (70,2)
S.AENC Reset
&
&
1
AENC Mask YF
(16#FFFF)
L174
AENC Mask YFC
(16#FFFF)
L175
AENC YF
c176 AENC YFC
c177
B0178 AENC_error
AENC Error
c178
Erorr code hardware
General error code
Position send by encoder
Position norm. (Single)
Speed
AENC encoder positionKK5179
AENC Pos.SingleKR3180
AENC SpeedKR3182
c181
AENC Pos.Multi
c182
AENC Speed
Position offset
Re-initialize
Absolute-value encoder 1
at T400 terminals
1
B0179 AENC_OK
AENC EncoderPos.
c179
AENC Pos.MultiKR3181
Position norm. (Multi)
AENC Pos.Single
c180
Absolute pos. offsetKR3290
Absolute position correctedKR3291
Abs Pos. correct
c291
Store actual position as
offset in NOVRAM
0: read offset
1: store offset
L294 (1311)
B (170,4)
S.Save pulse
L295 (3292)
KR (160,8)
S.AbsolutPos
RD /WR
Value SAVE
AbsolutOffset
c290
L298 (0976)
B (600,5)
S.AbsPos_Valid
&
1
B0298 Absolute position valid
d_AbsolutPos.
d024
L183 (3291)
KR (150,4)
S.AbsPosition
Normalize a position in [revolutions] to the internal normalization
Abs. position norm.KR3183
X Shear normalization [60,4]
Revolutions/Fsymech [80,3]
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
L283 (2313)
K (610,3)
S.AbsPos low
L282 (2314)
K (610,3)
S.AbsPos high
DW
R
high
low
Comparator
Y
X
X > Y
X = Y
X < Y
0
1
L284
(8192.0)
Abs.Pos. Norm.
Abs.Pos. CU
c285 AbsPos Range
(1.0)
L287
Overflow handling
If the position exceeds the
upper limits (L286) L287 is
subtracted
corrected
position
- 160 -
Speed and Position
Absolute-value encoder (CU)
Absolute position 2KR3292
Absolute Pos. 2
c292
AbsolutePos. 1
c293
L286
(1.0)
AbsPos Limit
Excample for shifting the position value of a single turn absolute-value encoder
AbsPos AddPos
(0.0)
L288
1.0
0.5
AbsolutePos.1
1.0
0.5
Absolute position 2
Absolute Pos.1 + AbsPos_AddPos
1 revolution
AbsPosLimit = 1.0
AbsPos Range = 1.0
&
&
Mask AbsHigh
(16#FFFF)
L296
Mask AbsLow
(16#FFFF)
L297
KR3285
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 165 -
Position sensing
TR encoder
L140 (0000)
B (70,2)
S.TR Load Output
&
L141 (0000)
B (70,2)
S.TR StartLoad
TR load active [165,8]
L142 (0663)
B (360,6)
S.TR WR disabled
&
1
T0
B0147 TR encoder
complete
TR complete
c147
B0146 TR encoder
not complete
TR StartDelay
(1000 ms)
L153
&
&
B0148 TR Load input
B0149 TR loading active
B0150 TR loading inactive
B0145 TR Load request
TR End Delay
(120 ms)
L146
TR Load input
c148
TR LoadingActive
c149
T0
T0
T0
T0
&
1
TR n_ErrorDelay
(1.0 s)
L152
TR TimeoutDelay
(20.0 s)
L151
TR StartErrDelay
(1.0 s)
L150)
TR loading inactive [165,8]
TR request loading [165,8]
TR loading active [165,8]
L143 (0460)
B (330,3)
S.TR n_zero
L139 (0584)
B (530,6)
S.TR Acknowledge
B0157 TR Error
TR Load request
c145
TR start error
c154
TR Timeout
c155
TR FrequencyZero
c156
B0154 TR start error
B0155 TR Timeout
B0156 TR frequency zero
TR Error
c157
TR error [165,7]
L144 (0090)
B (50,8)
S.TR Enable
Note:
Only flip-flops used with
input R dominant
Monitoring the loading procedure
Control of the loading operation
R
S
Q
QR
S
Q
Q
R
S
Q
Q
R
S
Q
Q
R
S
Q
Q
R
S
Q
Q
B0151 TR reset shear pos.
&
TR encoder signal loading
active as '1' at terminal load
output
connect to TR-
encoder
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 170 -
Position sensing
Calibrate shear
L302 (0415)
B (120,8)
S.Calib_ZeroPuls
Calibration is unvalidated
B1310 Shear is calibrated
Shear calibrated
c310
&
OM Local2 [290,8]
1
L300 (0147)
B (165,3)
S.Calib_Absolute
1
L303 (0684)
B (480,4)
S.CalPhiOverflow
L304 (0682)
B (480,4)
S.CalPhiUnderflw
User error pulse encoder [500,5]
OM Referencing
[290,6]
Set to coarse ref. 32 ms [170,6]
Calibration is validated
R dominant
B1309 Shear is not calibrated
L305 (0529)
B (280,8)
S.Calib.CoarseRef
B1308 Set to coarse reference
B1307 Set to coarse ref. 32 ms
32 ms
T
&
0
10
1
1
L306 (0593)
B (290,6)
S.CoarseRef_Jog
Shear speed negative [120,8]
CoarseRef pos.
(0.0)
L318
CoarseRef neg.
(1.0)
L317
B1306 Set shear position
T0
Calibrate Delay
(0.0 ms)
L309
L307 (0000)
B (70,2)
S.SetShearPos2
L308 (3183)
KR (150,8)
S.ShearSetValue
Set value shear positionKR3313
Set shear position
SetVal ShearPos
c313
R
S
Q
Q
&
B1311
Start pulse referencing
B1312
End pulse referencing
L301 (0594)
B (290,6)
S.CoarseRef.Sel.
1
&
B1300
set abs. pos. valid
set abs. pos. valid [170,3]
Enable absolute encoder [50,8]
0
1
Synchr.Pos. neg.
(1.0)
L311
Synchr.Pos. pos..
(0.0)
L312
Coarse set value
KR3317
B1313 Pulse calibrated
B1314 Pulse not calibrated
H335 (3414)
KR (120,8)
S.Store Value_1
H336 (1308)
B (170,7)
S.EnStoreVal_1A
H337 (0513)
B (270,8)
S.EnStoreVal_1B
&
Stored value 1
KR3335
Store
ValueStored value
H338 (3415)
KR (120,6)
S.Store Value_2
H339 (0413)
B (120,7)
S.EnStoreVal_2A
H340 (0507)
B (270,8)
S.EnStoreVal_2B
&
Stored value 2
KR3338
Store
ValueStored value
L319 (3311)
KR (170,4)
S.SynchrShearPos
Synchr. set value
KR3311
Storage of 2 values
(non volatile)
B0336
B0339
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 180 -
Position sensing
Set reference position
0
10
1
0
1
0
1
0
1
L200 (3629)
KR (190,7)
S.SV_Format
L210 (0000)
B (70,2)
S.SV_BA1 cut
L211 (0511)
B (270,8)
S.SV_enTopCut
L201 (3162)
KR (200,8)
S.SV_StartLength
L202 (3000)
KR (70,2)
S.SV_SetValue
Dist. light - formatKR3206
Dist. light + formatKR3205
Set value ref. positionKR3204
&
L212 (0577)
B (320,4)
S.SV noCutMode
L213 (0250)
B (110,8)
S.SV LightGate
L214 (0573)
B (320,6)
S.SV End Cut
B0207 Wait for end of web
WaitingForWebEnd
c207
B0208 Set reference position
Set Ref.Position
c208
SetValue RefPos.
c204
Start with material in
the cut region
Start without material in
the cut region
1
1
First set value is different to the set
value used with zero pulse
synchronization setting
TopCut size norm. [60,7]
R
S
Q
Q
R
S
Q
Q
MOD
Set value pass markKR3094
L209 (3099)
KR (60,5)
S.Dist.PassMark
Act. setpoint format [220,7]
L203 (3006)
KR (70,2)
S.OffsetSetValue
Position close to set valueKR3203
L205 (3123)
KR (60,7)
S.SV Dist. Light
L196 (0000)
B (70,2)
S.SV set Ref_2
0
1
L199 (3000)
KR (70,2)
S.SV_StartVal
L198 (0000)
B (70,2)
S.SV_StartSel
1
L195 (0000)
B (70,2)
S.SV set Ref_1
L197 (3098)
KR (60,5)
S.SV_Longformat
Distance modulo formatKR3209
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 190 -
Shear control
Format setpoint selection
Format request [190,8]
0.0
Format setpoint valid
SCTW1.4 [270,8]
Format DW Norm.
(0.1 mm)
H612 Format DW
d613
H611 (2806)
K (670,3)
S.Format DW low Format DWKR3613
H610 (2807)
K (670,3)
S.Format DW high
Convert double word to floating-point value
normalizing to [mm]
DW
R
high
low
H614 (2806)
K (670,3)
S.Format Word
R
W
Format W Norm.
(1 mm)
H615 Format Word
d616 Format Word
KR3616
0
1
2
3
4
5
6
7
8
H621
(1500.0 mm)
Fixformat 1
H622
(1200.0 mm)
Fixformat 2
H617 (3664)
KR (70,3)
S.Format float Format float
d618 H619 (2001)
K (70,2)
S.FormatSelect
H623
(1000.0 mm)
Fixformat 3
H624
(1000.0 mm)
Fixformat 4
H625
(1000.0 mm)
Fixformat 5
FormatRequest
d620
Format floatKR3618
Format request
KR3620
0
1
H626 (3665)
KR (70,3)
S.Special sheet
Accept new format setpoint
Xref_normalization [60,7]
Maximum Format
(100.0 m)
H627
Select special sheet [300,6]
H628
(0.6 m)
Minimum Format
Format setpoint normalized to the
mechanical synchron format Fsymech
Format setpointKR3629
Format setpoint
d629
S&H
KR3621 KR3622 KR3623 KR3624
KR3625
Actual format setpoint [220,7]
Start length [200,8]
Refpos limited [200,2]
0
1
0.0
H608 (0000)
B (70,2)
S.Limit Format B0608 Limit Format
Actual minimum formatKR3608
Saw Blade Width
(0.0mm)
H606 KR3606 H607 (3606)
KR (190,2)
S.SawBladeWidth
Range: 0 ... 65535
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 200 -
Shear control
Format generator (FGEN)
H152 (3197)
KR (200,2)
S. FGEN RefPos
H151 (3435)
KR (130,6)
S. FGEN V_Ref
H150 (3184)
KR (220,7)
S. FGEN Format
H153 (3020)
KR (265,5)
S.Speedfactor
Format constants
AX
AY
AZ
Reference position
Reference speed
Actual format
size
Factor overspeed
Shear calibrated [170,5]
Factor Overspeed [265,5]
value changed?
Cutting active [320,4]
H173 (0413)
B (120,8)
S.FormatChange_1
H174 (1345)
B (410,5)
S.FormatChange_2
B0172 Update format constants
Update format
constants
FGEN _XsetpKR3157Position setpoint
Speed setpoint
Start position
Start length
Reference pos. for AZ
Electrical format
Acceleration Phase 1
Acceleration Phase 2
sinus²(angle)
Diagnostics_1
Diagnostics_2
Shear within cut region
Shear within format region
Hardlock missing
Group error
FGEN_VsetpKR3158
FGEN_sin*sin
d159
FGEN_sin²KR3159
Electric formatKR3160
ElectricFormat
d160
FGEN_Xsetp
d157 FGEN_Vsetp
d158
Start positionKR3161
StartPosition
d161
Start lengthKR3162
Start length
d162
AREF for AZKR3163
AREF for AZ
d163
Acc Phase1KR3164
Acc Phase1
d164
Acc Phase2KR3165
Acc Phase2
d165
FGEN Diagn.1KR3166
FGEN Diagnostic1
d166
FGEN Diagn.2KR3167
FGEN Diagnostic2
d167
FG in CutReg
d168
B0168 FGEN in
cut region
B0169 FGEN in
format region
B0170 Hardlock
missing
B0171 FGEN error
FG in FormatReg
d169
Hardlock missing
d170 FGEN Error
d171
Format generator
H197 (3438)
KR (135,5)
S.RefPos Limit RefPos limited
KR3197
RefPos max
(100000.0)
H198
H199
(0.0)
RefPos min
H201 (3118)
KR (60,4)
S.AX_Formatgen
H202 (3119)
KR (60,4)
S.AY_Formatgen
H203 (3103)
KR (60,7)
S.AZ_Formatgen
H172 (0000)
B (70,2)
S.FormatChange_3
1
Start length
offset
KR3168Ref. pos. offset[135,5]
Error code FGEN
error code
K2155
FGEN Error code
d155
FGEN Curve Type
(0)
H154 Curve type
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
Kp Tn
- 210 -
Shear control
Position controller (PC)
x
y
Tn Pos.Ctrl.
(6 ms)
H147
1
output PC filt
d144
Set different limits for the
position controller for cutting
mode and local modes
H139 (0671)
B (370,5)
S. PC Enable
freeze
integral
component
Deviation PC
d132
H124 (3157)
KR (200,8)
S.SetpPosition 1
Position not synchr. [120,8]
H125 (3192)
KR (265,6)
S.SetpPosition 2
0
1
H127 (3161)
KR (200,8)
S.SetpPosition 4
(start position)
H128 (3129)
KR (60,4)
S.SetpPosition 5
(knife change pos.)
0
1
H130 (0595)
B (290,7)
S.GotoStartPos
H129 (0596)
B (290,7)
S. GotoKnifeChPos
0
1
PosReg_Max_cut
(1.0)
H133
PosReg_Max_loc
(0.1)
H134
0
1
PosReg_Min_cut
(-1.0)
H135
PosReg_Min_loc
(-0.1)
H136
H131 (3414)
KR (120,7)
S.ActValuePosPC Deviation PCKR3132
KP Pos.Ctrl
(2.5)
H146
H141 (0001)
B (70,2)
S. PC_set YI=0
output PCKR3143
PT1
output PC filtKR3144
B0133 PC at maximum
B0135 PC at minimum
H148
(4.8 ms)
Tfilt PC
Integrator value PCKR3145
IntegratorValPC
d145
H140
(0.0)
PC TestSetp.
Note:
All position values on this chart
are
normalized values
!
H126 (3000)
KR (70,2)
S.SetpPosition 3 H137 (3707)
KR (480,2)
S.Max.Setp.Pos.
H138 (3705)
KR (480,2)
S.Min.Setp.Pos.
B0590
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 220 -
Shear control
Format controller
Select the actual format setpoint
0
1
H175 (3629)
KR (190,7)
S. FC_FormatSetp1
H176 (3098)
KR (60,5)
S. FC_FormatSetp2
H177 (0575)
B (300,7)
S. FC_FormSel
H178 (3436)
KR (130,5)
S. FC actFormat
FC_max
(0.0)
H180
H181
(0.0)
FC_min
The calculation of cutting errors
depends on the system structure
H182 (0577)
B (320,4)
S. freeze_FC
H179
(20 ms)
Integral Time FC
Output FC-Int
d183
Output format controllerKR3184
Output FC
d184
freeze integral
component
Actual format setpointKR3630
Setpoint FC
d630
H185 (3414)
KR (120,7)
S. FC FormatSetp
H195 (3000)
KR (70,2)
S. FC actFormat_2
KR3185
Cutting errorKR3196
Cutting Error
d196
H186 (3114)
KR (60,6)
S. FC FormatNorm
The "actual format setpoint" is the sheet size of the actual
cutting cycle. A modification takes place after updating the
format constants (see chart 200).
In continuous cutting modes the format controller is calculated
once a cutting cycle, e.g. after the end of cutting operation.
H192 (3000)
KR (70,2)
S.FC FormatSetp2
H200 (0172)
B (200,4)
S.EnFormatCtrl
Task: "Format controller"
Task: "Update format constants"
(B0172 chart 200,4 )
B0200 Calculate format controller
B0201
next format setpointKR3175 Act. format setpoint
in [mm]
KR3631
Xref_normalization [60,7]
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
PT1
Vsetp PosRG
d474
1
0
H477 (0000)
B (70,2)
S. PosRG TargetSel
x
y
KP PosRG
(1.0)
H487
- 230 -
Shear control
Positioning with ramp generator PosRG
position normalization
H475 (3161)
KR (200,8)
S. PosRG Target1
H476 (3000)
KR (70,2)
S. PosRG Target2 x*
v*
a*
QP
vmax
amax
X
Rounding-Off
(500.0)
H478
FinalRoundingOff
(100.0)
H479
PosRG_Amax
(150.0)
H481
H482 (3050)
KR (80,2)
S. PosRG_Xnorm
H483 (3400)
KR 80,7)
S. PosRG_Vnorm speed normalization
H484 (3414)
KR (120,7)
S.PosRG Startpos
H485 (3412)
KR (120,7)
S.PosRG VStart
H486 (1346)
B (410,5)
S. PosRG_set
Starting values for position and speed
use set values
Kp Tn
Tn PosRG
(0.0 ms)
H488
H490 (1347)
B (410,5)
S. PosRG_PI enabl
H489 (3414)
KR (120,7)
S. PosRG_actPos
H491 (0000)
B (70,2)
S. PosRG_clear_I
H492 (0001)
B (70,2)
S. PosRG_freeze_I
enable
clear integral component
freeze integral component
Tfilt_X_PosRG
(3.2 ms)
H493
-1
PosRG_VLimit
(1.2)
H496
Vsetp_PosRGKR3474
PosRG Acc_norm
(0.0)
H497
0.001 Torque setp PosRGKR3498
Setpoint generator for position,
speed and acceleration
B0499 PosRG active
PosRG active
d499
PosRG setpoint positionKR3484
PosRG setpoint speedKR3485
PosRG_X_smoothedKR3486
dPos_PosRG
KR3489
PosRG diagnosticsKR3473
PosRG_Diagn_Sel
(0)
H473
PosRG-
Diagnostics
H495 (3480)
KR (230,8)
S.PosRG Vmax
PosRG_Vmax
(1.0)
H480 PosRG Vmax fixed valueKR3480
H494 (3486)
KR (230,5)
S. PosRG_PosSetp H498 (3485)
KR (230,5)
S.PosRG Vsetp
Pre-control with the speed
setpoint from the ramp
generator
Position controller for positioning
to start position
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 240 -
Shear control
Torque calculation
L550 (3824)
KR (670,7)
S.CutTorque
L551 (3413)
KR (120,7)
S.CutTorqPos.
L552 (0250)
B (110,8)
S.TorqCutLight
&
Comparator
Y
X
X > Y
X = Y
X < Y
Comparator
Y
X
X > Y
X = Y
X < Y
Start cut torque [60,7]
End cut torque [60,7]
0
1
0.0
L553 (3021)
KR (250,6)
S.n_Acceleration
TD_Acceleration
(250 ms)
L558
TD_Inertia
(500 ms)
L559
L556 (3435)
KR (130,6)
S.Vref_OszilTorque
0
1
0.0
L557 (0576)
B (320,4)
S.ToruqeCutRegion
Setpoint torqueKR3025
Torque Setp
d025
TorqAcceleration
d026
Oscill. torque
KR3027
Oscill. Torque
d027
Cutting torqueKR3028
Cutting torque
d028
KR3026
B0549 Torque cut enable
TorqueCut_Enable
c549
0
1
0
1
-1
1
Actual value
maximum torque
KR3581
act.max.Torque
c581
Actual value
minimum torque
KR3582
act.min.Torque
c582
1
0
1
B0548 Torque setpoint
> max. torque
0.05
TorqueSetp > max
c548
min_Torque Cut
(-1.5)
L579
TorqueMax_Local
(0.4)
L580
0.0
L584 (0000)
B (70,2)
S.ReducedTorque
OM_Local [290,8]
TorqueReduced
(0.1)
L587
0
1
L547 (3495)
KR (460,8)
S.Dif_Inertia
L546 (3495)
KR (460,8)
S.FactorT_accel
KR3559
KR3558
L545 (3029)
KR (460,8)
S.TorqueFriction
L588 (3026)
KR (240,4)
S.Torque_1
L590 (3028)
KR (240,4)
S.Torque_3
L589 (3027)
KR (240,4)
S.Torque_2
max_Torque Cut
(1.5)
L578
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 250 -
Shear control
Cutting speed
0
1
0
1
L565 (3020)
KR (265,5)
S.Speed_FOVS
L566 (3144)
KR (210,8)
S.Speed_PosCtrl
L568 (0671)
B (370,5)
S.CutSpeedLimits
L564 (3158)
KR (200,8)
S.Speed_DV_FGEN
0.0
0.0
Speed setpoint cuttingKR3021
SpeedSetp_Cut
d021
CutSpeed_Max
(1.1)
L575
L576
(-0.1)
CutSpeed_Min
L570 (3435)
KR (130,6)
S.Speed_VRef
L585 (3577)
KR (265,7)
S.Speed_dvCut
L617 (3707)
KR (480,2)
S.SQRT_1
L618 (3414)
KR (120,8)
S.SQRT_2
L619 (3001)
KR (70,2)
S.SQRT_3
X
-1
Square rootKR3617
Neg. square rootKR3619
L574 (3575)
KR (250,5)
S.Max.Speed_Cut
max. cut speedKR3575
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 260 -
Shear control
Speed local modes and setpoint for inverter
L520 (0593)
B (290,6)
S.JogPositiv1
L521 (0001)
B (70,2)
S.JogPositiv2
L522 (0001)
B (70,2)
S.JogPositiv3
&
0
1
0.0
L524 (0594)
B (290,6)
S.JogNegativ1
L525 (0001)
B (70,2)
S.JogNegativ2
L526 (0001)
B (70,2)
S.JogNegativ3
&
0
1
0.0
0
1
L528 (0594)
B (290,6)
S.Jog1_Dir
0
1
L529 (0592)
B (290,6)
S.Sel. Ref/Jog
-1
R
S
Q
Q
0
1
L530 (0000)
B (70,2)
S.LimSwitchStart
L531 (0001)
B (70,2)
S.LimitSwitchEnd
Spd_Referencing
(0.05)
L542
Speed local mode
KR3533
Speed Local
c533
Speed setpoint switching for automatical referencing.
Speed reversion when reaching the limit switches.
Speed setpoint for jogging.
If required use limit switches to
stop the shear.
0
1
0
1
L534 (0599)
B (290,8)
S.Sel_SpeedLocal L535 (0595)
B (290,7)
S.Sel_SpeedStart
L536 (3021)
KR (250,6)
S.Speed_Local
L537 (3517)
KR (260,8)
S.Speed_Local
L538 (3144)
KR (210,8)
S.SpeedPosCtrl
speed setpoint
KR3023
PT1
speed setp
d023
0.0
L541 (0000)
B (70,2)
S.DisableSpdsetp
Tfilt n_setp
(1.2 ms)
L539
0
1
Speed setpoint for the inverter
L532 (1312)
B (170,4)
S.Init_Ref_Dir
1
-1
L518 (3519)
KR (260,2)
S.JogSpeed_neg
JogSpeed
(0.05)
L519 JogSpeed_negKR3518
L527 (3518)
KR (260,3)
S.JogSpeed2
L523 (3519)
KR (260,2)
S.JogSpeed1
JogSpeed
KR3519
Ramp localKR3517
L517 (3533)
KR (260,6)
S.Ramp_Local
StepsRampLocal
(5)
L540
B0537 speed_local <> 0
B0536 speed_local = 0
1
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 265 -
Shear control
Cut curve and overspeed
L560 (3000)
KR (70,2)
S.F_Overspeed
F_over_max
(1.1)
L586
L561 (3491)
KR (450,6)
S.Speed_vCut
S&H
L567 (0666)
B (360,7)
S.Speed_Set_OVS
Factor Overspeed
KR3020
Factor Overspeed
d020
0
1
L572
(0.3)
n_Cut_min
L563 (3435)
KR (130,6)
S.Speed_VRef
L562 (0576)
B (320,5)
S.EnableCutCurve
0.0
L573
(1.0)
FactorCutCurve
Task : "Task cut curve" (may be disabled [50,5])
H187 (3577)
KR (265,7)
S.V CutCurve
H188 (0413)
B (120,8)
S.Cutc_Int=0
x
y
CutCurve_max
(0.0)
H189
H190
(0.0)
CutCurve_min
H193
(600 ms)
T Int CutCurve
S&H
H191 (0169)
B (200,8)
S. SampleCut
Position cut curveKR3192
store input
set integral value = 0
H194 (3159)
KR (200,8)
S.Phi_cut_reduce
V_setp cut curveKR3577
v_setp CutCurve
c577
L569
(1.0)
F_over_min
Overspeed_Max
(1.0)
L571
1.0
KR3561 L583 (3561)
KR (265,5)
S.Speed_dVsetp
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 270 -
Steuerung
Shear control word (SCTW1)
Shear control word 1
H500 (0860)
B (680,8)
S.ShearCTW1 Bit0 ... Bit15
Bit 0
Bit 6 Referencing
Bit 1 Continous cutting
Bit 2 Test cut
Bit 3 Single cut
Bit 4 Format setpoint valid
Bit 5 Light gate web start
Bit 7
Bit 8 Approach start position
Bit 9
Bit 12 End cut
Bit 10 Enable cut program
Bit 11 Crop cut
Bit 13
Bit 14 Approach knife change pos.
Bit 15 Option special sheet
B (680,8)
H502 (0862) B (680,8)
H501 (0861)
B (680,8)
H503 (0863)
B (680,8)
H504 (0864)
B (680,8)
H505 (0865)
B (680,8)
H506 (0866)
B (680,8)
H507 (0867)
B (680,8)
H508 (0868)
B (680,8)
H509 (0869)
B (680,8)
H510 (0870)
B (680,8)
H511 (0871)
B (680,8)
H512 (0872)
B (680,8)
H513 (0873)
B (680,8)
H514 (0874)
B (680,8)
H515 (0875)
Bit 0
Bit 6 Referencing
Bit 1 Continous cutting
Bit 2 Test cut
Bit 3 Single cut
Bit 4 Format setpoint valid
Bit 5 Light gate web start
Bit 7 Enable Meßwert speichern
Bit 8 Approach start position
Bit 9
Bit 12 End cut
Bit 10 Enable cut program
Bit 11 Crop cut
Bit 13
Bit 14 Approach knife change pos.
Bit 15 Option special sheet
0
1
Mask1 LocMode
(16#FFFF)
H516
Mask1 AutoMode
(16#FFFF)
H517
&
B0518 Manual mode
Manual mode
(0)
H518
0
1
Simulation
(0)
H519
B0519 Simulation mode
H537 (2621)
K (810,6)
S.SCTW1_simul
B0500 SCTW1.0
B0501 SCTW1.1
B0502 SCTW1.2
B0503 SCTW1.3
B0504 SCTW1.4
B0505 SCTW1.5
B0506 SCTW1.6
B0507 SCTW1.7
B0508 SCTW1.8
B0509 SCTW1.9
B0510 SCTW1.10
B0511 SCTW1.11
B0512 SCTW1.12
B0513 SCTW1.13
B0514 SCTW1.14
B0515 SCTW1.15
Shear control word 1
via PLC
d539
SCTW1_PLC
Shear CTW1
d536
Shear CTW1K2536
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 280 -
Control logic
Shear control word 2 (SCTW2)
Shear control word 2
H520 (0000)
B (70,2)
S.ShearCTW2 Bit0 ... Bit15
Bit 0
Bit 6
Bit 1 External fault/alarm 1
Bit 2 External fault/alarm 2
Bit 3 Jogging 1
Bit 4 Jogging 2
Bit 5
Bit 7 No quick stop
Bit 8
Bit 9 Coarse reference
Bit 12 Opt. enable cut mode
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15 Fault acknowledge
B (70,2)
H522 (0000) B (110,4)
H521 (0241)
B (110,4)
H523 (0242)
B (110,4)
H524 (0243)
B (70,2)
H525 (0000)
B (70,2)
H526 (0000)
B (680,4)
H527 (0842)
B (70,2)
H528 (0000)
B (100,8)
H529 (0264)
B (70,2)
H530 (0000)
B (70,2)
H531 (0000)
B (70,2)
H532 (0000)
B (70,2)
H533 (0000)
B (70,2)
H534 (0000)
B (70,2)
H535 (0000)
0
1
Mask2 LocMode
(16#FFFF)
H540
Mask2 AutoMode
(16#FFFF)
H541
&0
1
H542 (2623)
K (810,6)
S.SCTW2_simul
B0520 SCTW2.0
B0521 SCTW2.1
B0522 SCTW2.2
B0523 SCTW2.3
B0524 SCTW2.4
B0525 SCTW2.5
B0526 SCTW2.6
B0527 SCTW2.7
B0528 SCTW2.8
B0529 SCTW2.9
B0530 SCTW2.10
B0531 SCTW2.11
B0532 SCTW2.12
B0533 SCTW2.13
B0534 SCTW2.14
B0535 SCTW2.15
Shear control word 2
(source selection)
d543
SCTW2_PLC
Shear CTW2
d544
Bit 0
Bit 6
Bit 1 External fault/alarm 1
Bit 2 External fault/alarm 2
Bit 3 Jogging 1
Bit 4 Jogging 2
Bit 5
Bit 7 No quick stop
Bit 8
Bit 9 Coarse reference
Bit 12 Opt. enable cut mode
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15 Fault acknowledge
Manual mode [200,3] Simulation mode
[200,3]
Shear CTW2K2544
Optional enable. May be connected to
H600 [290,1] or inverted to H566 [300,1]
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 290 -
Control logic
Priority handling
SCTW1.6 Referencing [270,8]
SCTW2.3 Jogging 1 [280,8]
Priority evaluation
local operation modes
The value '1' at the input with the
highest priority is switched
through.
highest priority
lowest priority
Enable all inputs zero
I2
I1
I3
I4
I5
I6
Q1
Q2
Q3
Q4
Q5
Q6
SCTW2.4 Jogging 2 [280,8]
SCTW1.8 Appr. start pos. [270,8]
SCTW1.14 Appr.knife change
pos [270,8]
Shear calibrated [170,5]
&
&
H590 (0666)
B (360,7)
S.Enable Prio1
1
B0591 Request local mode 1
RequestLocal1
d591
B0592 OM referencing
B0593 OM Jogging 1
B0594 OM Jogging 2 B0599 OM local
B0595 OM appr. start position
B0596 OM appr. knife chg. pos.
B0597 no request local mode
B0598 request local mode
d595
OM Start Pos. d596
OM knifeChgPos d598
OM local
OM Local2
d599
&
no request local mode [290,8]
no end cut [320,7]
no continous cutting [300,6]
no test cut [310,6]
no single cut [310,6]
no fault [530,8]
Shear standing in start position [340,7]
H600 (0001)
B (70,2)
S.Enable Prio2
SCTW1.2 Test cut [270,8]
SCTW1.3 Single cut [270,8]
SCTW1.12 End cut [270,8]
B0601 Pulse continous cutting
d605
Enable Prio2
B0602 Pulse test cut
B0603 Pulse single cut
B0604 Enable end cut
Activation of cutting operation modes
(automatic modes)Request cont. cutting [300,6]
1
1
B0600 not OM local
Shear calibrated [170,5]
&
&
H597 (0577)
B (320,5)
S.EnableJog
H594 (0537)
B (260,7)
S.Hold OM Local
1
Priority evaluation
local operation modes
The value '1' at the input with the
highest priority is switched
through.
highest priority
lowest priority
Enable all inputs zero
I2
I1
I3
I4
I5
I6
Q1
Q2
Q3
Q4
Q5
Q6
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 300 -
Control logic
Operation modes 1
SCTW1.10 Enable cut program [270,8]
Cut program
H560 (2809)
K (670,3)
S. NumberOfSheets
SCTW1.15 Option special sheet [270,8]
B0561 Request cont. cutting
by cut program 1
B0562 End cut program 1
B0563 Request special sheet
Req. Cut Prog1
d561
End Cut Prog1
d562
Special Sheet
d563
Request local mode [290,8]
B0565 OM continous cutting
B0566 no cont. cutting
OM cont. cutting
d565
1
Pulse cont. cutting [290,8]
Shear not calibrated[170,5]
Controller disabled [360,7]
Starting condition
Stopping conditions
Continous
cutting
&
Shear standing in start position [340,7]
Passed calculation position [340,4]
1
State switching
B0567 Standard sheet size
SCTW1.1 Cont. cutting [270,8]
1
B0564 Request cont. cutting
Test with standard size [310,6]
B0575 Use special sheet size
1
special sheet size
d575
Request cont. cutting [300,5]
For the first and the lastcut the output
'Standard sheet size' is set to '0'
H566 (0000)
B (70,2)
S.AND_CutStop_1
H567 (0001)
B (70,2)
S.AND_CutStop_2
&
B0560
Stop cutting H564 (0560)
B (300,2)
S.Stop cutting
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 310 -
Control logic
Operation modes 2
Request local mode [290,8]
B0568 OM single cut
B0569 no single cut
OM Single cut
d568
1
Pulse single cut [290,8]
Shear not calibrated[ 170,5]
Controller disabled [360,7]
Starting condition
Stopping conditions
Single cut
&
Shear standing in start position [340,7]
Passed calculation position [340,4]
1
State switching
Request local mode [290,8]
B0570 OM test cut
B0571 no test cut
OM Test cut
d570
1
Pulse test cut [290,8]
Shear not calibrated[170,5]
Controller disabled [360,7]
Starting condition
Stopping conditions
Test cut
&
Shear standing in start position [340,7]
Passed calculation position [340,4]
1
State switching
B0572 Test with standard size
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 320 -
Control logic
Operation modes 3
SCTW1.5 Light gate [270,8]
Request local mode [290,8]
B0573 OM end cut
B0574 no end cut
OM End cut
d573
&
1
Enable end cut [290,8]
Shear not calibrated [170,5]
Controller disabled [360,7]
Starting condition
Stopping conditions
End cut
&
Shear standing in start position [340,7]
Passed calculation position [340,4]
1
State switching
1
OM Continous cutting [300,6]
OM Single cut [310,6]
OM Test cut [310,6]
OM End cut [320,7]
B0576 Cutting active
B0577 Cutting disabled
Cutting active
d576
1
1
H572 (0555)
B (320,2)
S.Light OM_EndCut
Coarse pulse 2 [110,8]
B0555
Material detected
B0580 Start cutting mode
B0581 End cutting mode
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 330 -
Control logic
Range monitoring 1
Testing if the knife is in the
region where it runs
synchronous to the material
Limit n_zero
(0.002)
H457
Y
X
X<Y
X>Y
X=Y
x
y
H450 (3413)
KR (120,7)
S. RangeTest
H451 (3091)
KR (60,4)
S.RangeTestStart
H452 (3092)
KR (60,4)
S.RangeTestEnd
B0453 in synchronous range
in SynchrRange
d453
B0454 in format range
H456 (3411)
KR (120,7)
S. n Standstill
Hyst n_zero
(0.001)
H458
0.0
B0459 n_shear > 0
Y
X
X<Y
X>Y
X=Y
n_shear > 0
d459
B0460 n_shear = 0
d460
n_Shear Zero
KCPos_Range
(2.0)
H462
Y
X
X<Y
X>Y
X=Y
H461 (3413)
KR (120,7)
S.ActPos_KCPos
KCPos_Hyst
(1.0)
H463
Y
X
X<Y
X>Y
X=Y
InKnifeChangePos
d464
B0464 Knife in change pos.
Zero speed detection for
the shear drive Test if the shear position is
the knife change position
1
1
H472 (3109)
KR (60,4)
S. Setp_KCPos
&
Cutting active [320,5]
Format mode [410,5]
B0455 Cutting/synchronous
&
n_Shear = n_Ref (0095) [480,8]
B0456 Cutting possible
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 340 -
Control logic
Range monitoring 2
Comparator
Startpos Range
(0.01)
H642
Y
X
X<Y
X>Y
X=Y
H640 (3414)
KR (120,7)
S.Act.Pos. (Start)
Startpos_Hyst
(0.003)
H643
B0647 Shear standing in start position
Y
X
X<Y
X>Y
X=Y
in starting position
d644
B0644 Shear in start position
Generate a pulse for calculation at
special shear position
H641 (3161)
KR (200,8)
S.Start Position
H645 (0460)
B (330,3)
S.n_zero (Start)
&
T0
DelayStartpos
(500 ms)
H646 StandingStartpos
d647
H648 (3414)
KR (120,7)
S.Pos. (CalcPos)
Y
X
X > Y
X = Y
X < Y
Pos.CalcPuls
(0.75)
H649
B0649 Passed calculation position
B0640 Pos. > calculation position
B0641 Pos. < calculation position
Testing if the shear is standing in start position
The start position is given in internal position normalization!
Comparator
Y
X
X > Y
X = Y
X < Y
B0701 Ref. pos. > start length
B0702 Ref. pos. < start length
Is the material position bigger than "start length"?
(After passing the "start length" the shear starts accelerating
to web speed (true with big sheets or linear systems) )
Reference position
RefPos limited [200, 2]
Start length [200, 8]
B0648 fall below calculation position
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 350 -
Control logic
Range monitoring 3
Watching or limitation of the shear position
(T3)
x
y
L216 (3413)
KR (120,7)
S. optRange1
L217 (3000)
KR (70,2)
S.optRange1_min
L215 (3001)
KR (70,2)
S.optRange1_max
B0218 Range1_Overflow
Range1_OVF
c218
B0219 Range1_Underflow
c219
Range1_UF
Range1_limitedKR3216
x
y
L221 (3413)
KR (120,7)
S.optRange3
L222 (3000)
KR (70,2)
S.Range3ShiftMin
L220 (3000)
KR (70,2)
S.Range3ShiftMax
Rng3_Factor_Max
(1.0)
L223
Range3_max
(1000 mm)
L224
L225
(0.0)
Rng3_Factor_Min
L226
(0.0 mm)
Range3_min
Range monitoring with variable limits
(in T3; e.g. speed depending)
B0227 Range3_Overflow
Range3_OVF
c227
B0228 Range3_Underflow
c228
Range3_UF
Range3_limitedKR3221
Watching or limiting an actual value position
(in T3)
x
y
L230 (3438)
KR (135,5)
S. optRange2
L231 (3163)
KR (200,8)
S.optRange2_min
L229 (3162)
KR (200,8)
S.optRange2_max
B0232 Range2_Overflow
Range2_OVF
c232
B0233 Range2_Underflow
c233
Range2_UF
Range2_limitedKR3230
The monitoring and limitation function of this chart are for free usage.
1
B0234
out of Range3
Out of Range3
c234
Y
X
X<Y
X>Y
X=Y
L591 (3000)
KR (70,2)
S.Compare3
Compare3 Hyst
(0.0)
L594
B1591
Compare3 X>Y
B1592
Compare3 X=Y
B1593
Compare3 X<Y
L592 (3000)
KR (70,2)
S. Compare3 Mid
L593 (3001)
KR (70,2)
S.Compare3 Range
T3/50
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 360 -
Control logic
Enable inverter / setpoints / controller
H650 (0591)
B (290,6)
S.EnableLocal
H651 (0843)
B (680,4)
S.Enable_PLC
0T
EnableDelayLoc
(10 s)
H659
1
H653 (0320)
B (620,8)
S.CU ready 1
(Flying restart)
H654 (0342)
B (620,4)
S.CU ready 2
(Run)
H655 (0150)
B (165,8)
S.CU ready 3
(TR encoder inactive)
H656 (0001)
B (70,2)
S.CU ready 4
&
H657 (0844)
B (680,4)
S.Enable Ramp
H658 (0845)
B (680,4)
S.Start Ramp
H652 (0846)
B (680,4)
S.Enable Setp.
&
1
&
Enable from brake control [370,4]
B0660 Inverter ready
B0662 Enable inverter
B0663 Pulse disable
Enable Inverter
d662
B0664 Enable setpoints
EnableSetpoints
d664
B0666 Controller enabled
EnableController
d666
B0667 Controller disabled
Inverter ready
d660
B0661 Inverter not ready
B0665 Disable setpoints
1
1
1
1
&
H661 (0001)
B (70,2)
S.optEnableCntrl
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 370 -
Control logic
Enable position controller / brake control logic
H667 (0666)
B (360,7)
S.EPC SetpEnable
H668 (1310)
B (170,5)
S.EPC calibrated
H669 (0600)
B (290,8)
S.EPC OM_local
H670 (1346)
B (410,5)
S.EPC option
&
EPC Enable Position Control
1
Operation modes using position controller
Cutting active [320,5]
Shear standing in start position [340,7]
OM approach start pos. [290,8]
OM approach knife chg. pos. [290,8]
B0671 Enable position controller
EnablePosControl
d671
B0670 Disable position controller
1
H672 (0344)
B (620,4)
S.Brake_CU_off
H673 (0660)
B (360,5)
S.BrakeCUready
H674 (0345)
B (620,4)
S.Quick stop
H675 (0001)
B (70,2)
S.Brake_option
&
Brake control logic
B0676 Release brake
Release brake
d676
0T T 0
T_Brake close
(200 ms)
H678
T_Brake release
(200 ms)
H679
B0680 Enable from brake control
EnableFrom Brake
d680
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 380 -
Control logic
Cam group
XA XB
DT
Cam1_XB
(0.6)
L048
Cam1_XA
(0.5)
L047
Cam1_DT
(0.0 ms)
L049
B0040
Cam1_Q
B0041
Cam1_QN
Position
XA XB
DT
Cam2_XB
(0.6)
L051
Cam2_XA
(0.5)
L050
Cam2_DT
(0.0 ms)
L052
B0042
Cam2_Q
B0043
Cam2_QN
Position
XA XB
DT
Cam3_XB
(0.6)
L054
Cam3_XA
(0.5)
L053
Cam3_DT
(0.0 ms)
L055
B0044
Cam3_Q
B0045
Cam3_QN
Position
XA XB
DT
Cam4_XB
(0.6)
L057
Cam4_XA
(0.5)
L056
Cam4_DT
(0.0 ms)
L058
B0046
Cam4_Q
B0047
Cam4_QN
Position
L040 (3038)
KR (380,2)
S.ActPos. Cam
L041 (3411)
KR (120,7)
S.Speed Cam
speed_norm_1KR3040
L042 (3040)
KR (380,3)
S.SpeedNorm.Cam
Cam Pos.Max
(360.0)
L045
Cam Pos.Min
(0.0)
L046
Actual value
position
Actual value speed
Normalization
speed
Separate enable inputs for
positive and negative speed Treatment of position overflows
Cam controller
general settings and inputs
Cam 1 Cam 2 Cam 3 Cam 4
L038 (3413)
KR (120,7)
S.Cam_X+
L039 (3000)
KR (70,2)
S.Cam X-
L043 (0001)
B (70,2)
S.CamEnable pos.
L044 (0000)
B (70,2)
S.CamEnable neg.
Position sourceSpeed source Speed normalizations
Position shear
Position shear norm.
Reference position
Material position
Speed shear
Web speed
(Speed2)
speed_norm_2KR3041
speed_norm_3KR3042
speed_norm_4KR3043 Cam deltaPos.Max
(100.0)
L037
B0048
Cam active
B0049
Cam not active
Logical OR
of all cams
Cam ResetMode
(0)
L036
B0048 inverted
Cam_dx
KR3038
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
1
&
1
1
1
1
1
1
1
Bit 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
=
MS1
&
16
16
16
Logic for MS1
MS2 Logic for MS2
(see MS1)
MS3 Logic for MS3
(see MS1)
MS4 Logic for MS4
(see MS1)
MR1 Logic for MR1
(see MS1)
MR2 Logic for MR2
(see MS1)
MR3 Logic for MR3
(see MS1)
1
R dominant
QE
Q
QN
QEN
I1
I2
I3
I4
I5
I6
I7
I8
MS1
MS2
MS3
MS4
MR1
MR2
MR3
Selection
masks
Boolean
inputs
- 400 -
Free function blocks
Definition of the logic function block STATE
STATE
XS1
Input
Input
Input
Input
Input
Input
Input
Note:
XS1 is set to 1 if all bits of the "Input" quantity masked
by MS1 are set '1'.
I1I2I3I4I5I6I7I8 I1I2I3I4I5I6I7I8
0123456789101115 14 13 12
Masks
Bit
corresponding input
Example:
MS1 = 16#3080 = 0011 0000 1000 0000b
Corresponding logic function: XS1 = I6 · I5 · I8
R
S
Q
Q
Input
MR
MR
&
1
1
16
16
16
QS
QR
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 410 -
Free function blocks
Mode switching (positioning/format mode)
L331 (0665)
B (360,6)
S.ModeSwitch_I1
L332 (0644)
B (340,4)
S.ModeSwitch_I2
L333 (0576)
B (320,4)
S.ModeSwitch_I3
L334 (1257)
B (415,4)
S.ModeSwitch_I4
L335 (0120)
B (410,2)
S.ModeSwitch_I5
L336 (0499)
B (230,5)
S.ModeSwitch_I6
L337 (1347)
B (410,5)
S.ModeSwitch_I7
L338 (0236)
B (430,2)
S.ModeSwitch_I8
ModeSwitch_MS1
(16#009C)
L339
ModeSwitch_MS2
(0)
L340 ModeSwitch_MS3
(0)
L341
ModeSwitch_MS4
(0)
L342
L343
(16#2040)
ModeSwitch_MR1
L344
(16#0000)
ModeSwitch_MR2
L345
(16#0000)
ModeSwitch_MR3
L346
(16#0003)
ModeSwitch_MR
B1347
Positioning mode
B1346
Format mode
B1345
Start positioning
B1344
Start format mode
ModePositioning
c347
STATE
I1
MS1 MS2 MS3 MS4
Set masks
I2
I3
I4
I5
I6
I7
I8
Q
QN
QE
QEN
MR1 MR2 MR3 MR
Reset masks
L349 (0454)
B (330,5)
S.ModeError
B1348
Mode switching error
ErrorModeSwitch
c348
May be used to watch the mode switching
respectively to detect if the speed is to fast
for the actual format size.
Mode LinearAxis
(0)
H120 B0120 ModeLinear
Disable
in starting position
Cutting mode
Knife at the top position
Mode linear axis
Positioning active
Mode Positioning
Material cut
&
Ref.pos > start length [340,4]
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 415 -
Free function blocks
Parametrizable logic 1 (raise/lower knife)
L243 (0665)
B (360,6)
S.Logic1_I1
L244 (0576)
B (320,4)
S.Logic1_I2
L245 (0244)
B (110,4)
S.Logic1_I3
L246 (0245)
B (110,4)
S.Logic1_I4
L247 (0234)
B (350,5)
S.Logic1_I5
L248 (0000)
B (70,2)
S.Logic1_I6
L249 (0247)
B (110,4)
S.Logic1_I7
L250 (0248)
B (110,4)
S.Logic1_I8
Logic1_MS1
(16#000A)
L251
Logic1_MS2
(16#0012)
L252
Logic1_MS3
(16#0240)
L253
Logic1_MS4
(0)
L254
L255
(16#4200)
Logic1_MR1
L256
(0)
Logic1_MR2
L257
(0)
Logic1_MR3
L258
(16#0005)
Logic1_MR
B1259
Logic1_Q
B1260
Logic1_QN
B1258
Logic1_QE
B1257
Logic1_QEN
Logic1_Q
c259
L263 (0665)
B (360,6)
S.Logic2_I1
L264 (0576)
B (320,4)
S.Logic2_I2
L265 (1346)
B (410,5)
S.Logic2_I3
L266 (0245)
B (110,4)
S.Logic2_I4
L267 (0234)
B (350,5)
S.Logic2_I5
L268 (0237)
B (430,2)
S.Logic2_I6
L269 (0247)
B (110,4)
S.Logic2_I7
L270 (0248)
B (110,4)
S.Logic2_I8
Logic2_MS1
(16#1026)
L271
Logic2_MS2
(16#4280)
L272
Logic2_MS3
(0)
L273
Logic2_MS4
(0)
L274
L275
(16#8200)
Logic2_MR1
L276
(16#0012)
Logic2_MR2
L277
(0)
Logic2_MR3
L278
(16#0009)
Logic2_MR
B1279
Logic2_Q
B1280
Logic2_QN
B1278
Logic2_QE
B1277
Logic2_QEN
Logic2_Q
c279
STATE
I1
MS1 MS2 MS3 MS4
Set masks
I2
I3
I4
I5
I6
I7
I8
Q
QN
QE
QEN
MR1 MR2 MR3 MR
Reset masks
STATE
I1
MS1 MS2 MS3 MS4
Set masks
I2
I3
I4
I5
I6
I7
I8
Q
QN
QE
QEN
MR1 MR2 MR3 MR
Reset masks
Parameter setting for the function
"raise knife"
(Disable)
(Cutting mode)
(Knife at top position)
(Knife at bottom position)
(Out of lowering range) (Out of lowering range)
(Disable)
(Cutting mode)
(Knife at bottom position)
(Format mode)
Parameter setting for the function
"lower knife"
(Manual mode UP)
(Manual mode DOWN)
(Manual mode UP)
(Manual mode DOWN)
(Material still not cut)
STATE_Logic1 STATE_Logic2
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 420 -
Free function blocks
Parameterizable logic 2
L861 (0000)
B (70,2)
S.Logic3_I1
L862 (0000)
B (70,2)
S.Logic3_I2
L863 (0000)
B (70,2)
S.Logic3_I3
L864 (0000)
B (70,2)
S.Logic3_I4
L865 (0000)
B (70,2)
S.Logic3_I5
L866 (0000)
B (70,2)
S.Logic3_I6
L867 (0000)
B (70,2)
S.Logic3_I7
L868 (0000)
B (70,2)
S.Logic3_I8
Logic3_MS1
(16#0000)
L869
Logic3_MS2
(16#0000)
L870
Logic3_MS3
(16#0000)
L871
Logic3_MS4
(16#0000)
L872
L873
(16#0000)
Logic3_MR1
L874
(16#0000)
Logic3_MR2
L875
(16#0000)
Logic3_MR3
L860
(16#0000)
Logic3_MR
B1860
Logic3_Q
B1861
Logic3_QN
B1862
Logic3_QE
B1863
Logic3_QEN
L881 (0000)
B (70,2)
S.Logic4_I1
L882 (0000)
B (70,2)
S.Logic4_I2
L883 (0000)
B (70,2)
S.Logic4_I3
L884 (0000)
B (70,2)
S.Logic4_I4
L885 (0000)
B (70,2)
S.Logic4_I5
L886 (0000)
B (70,2)
S.Logic4_I6
L887 (0000)
B (70,2)
S.Logic4_I7
L888 (0000)
B (70,2)
S.Logic4_I8
Logic4_MS1
(16#0000)
L889
Logic4_MS2
(16#0000)
L890
Logic4_MS3
(16#0000)
L891
Logic4_MS4
(16#0000)
L892
L893
(16#0000)
Logic4_MR1
L894
(16#0000)
Logic4_MR2
L895
(16#0000)
Logic4_MR3
L880
(16#0000)
Logic4_MR
B1880
Logic4_Q
B1881
Logic4_QN
B1882
Logic4_QE
B1883
Logic4_QEN
STATE
I1
MS1 MS2 MS3 MS4
Set masks
I2
I3
I4
I5
I6
I7
I8
Q
QN
QE
QEN
MR1 MR2 MR3 MR
Reset masks
STATE
I1
MS1 MS2 MS3 MS4
Set masks
I2
I3
I4
I5
I6
I7
I8
Q
QN
QE
QEN
MR1 MR2 MR3 MR
Reset masks
STATE_Logic3 STATE_Logic4
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 421 -
Free function blocks
Parameterizable logic 3
H933 (0000)
B (70,2)
S.Logic5_I1
H934 (0000)
B (70,2)
S.Logic5_I2
H935 (0000)
B (70,2)
S.Logic5_I3
H936 (0000)
B (70,2)
S.Logic5_I4
Logic5_MS1
(16#0000)
H937
Logic5_MS2
(16#0000)
H938
H939
(16#0000)
Logic5_MR1
H940
(16#0000)
Logic5_MR
B0933
Logic5_Q
B0934
Logic5_QN
B0935
Logic5_QE
B0936
Logic5_QEN
STATE
I1
MS1 MS2
Set masks
I2
I3
I4
Q
QN
QE
QEN
MR1 MR
Reset masks
H941 (0000)
B (70,2)
S.Logic6_I1
H942 (0000)
B (70,2)
S.Logic6_I2
H943 (0000)
B (70,2)
S.Logic6_I3
H944 (0000)
B (70,2)
S.Logic6_I4
Logic6_MS1
(16#0000)
H945
Logic6_MS2
(16#0000)
H946
H947
(16#0000)
Logic6_MR1
H948
(16#0000)
Logic6_MR
B0941
Logic6_Q
B0942
Logic6_QN
B0943
Logic6_QE
B0944
Logic6_QEN
STATE
I1
MS1 MS2
Set masks
I2
I3
I4
Q
QN
QE
QEN
MR1 MR
Reset masks
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 425 -
Free function blocks
AND/OR gates
L830 (0000)
B (70,2)
S.AND_OR1_1
L831 (0000)
B (70,2)
S.AND_OR1_2
L832 (0000)
B (70,2)
S.AND_OR1_3
B1830
AND_OR1
&
1
L833 (0000)
B (70,2)
S.AND_OR2_1
L834 (0000)
B (70,2)
S.AND_OR2_2
L835 (0000)
B (70,2)
S.AND_OR2_3
B1833
AND_OR2
&
1
H631 (0001)
B (70,2)
S.AND3_1
H632 (0001)
B (70,2)
S.AND3_2
&
B0631
AND3_Q
H633 (0001)
B (70,2)
S.AND4_1
H634 (0001)
B (70,2)
S.AND4_2
&
B0633
AND4_Q
&
L700 (0001)
B (70,2)
S.AND1_1
L701 (0001)
B (70,2)
S.AND1_2
L702 (0001)
B (70,2)
S.AND1_3
B0700
AND1_Q
&
L703 (0001)
B (70,2)
S.AND2_1
L704 (0001)
B (70,2)
S.AND2_2
L705 (0001)
B (70,2)
S.AND2_3
B0703
AND2_Q
1
1
L710 (0000)
B (70,2)
S.OR1_1
L711 (0000)
B (70,2)
S.OR1_2
L712 (0000)
B (70,2)
S.OR1_3
B0710
OR1_Q
L713 (0000)
B (70,2)
S.OR2_1
L714 (0000)
B (70,2)
S.OR2_2
L715 (0000)
B (70,2)
S.OR2_3
B0713
OR2_Q
L836 (0000)
B (70,2)
S.AND_OR3_1
L837 (0000)
B (70,2)
S.AND_OR3_2
L838 (0000)
B (70,2)
S.AND_OR3_3
B0836
AND_OR3
&
1
L806 (0000)
B (70,2)
S.OR3_1
L807 (0000)
B (70,2)
S.OR3_2 B1806
OR3_Q
1
T3/7
T3/8
T3/9
T3/10
T3/11
T3/12
T3/13
T3/44
T3/5
T3/6
Remark:
The computation order of free function blocks (charts
425 to 445) can be read beside each block.
E.g..: T3/9 means 9. free block in task T3
L691 (0001)
B (70,2)
S.AND6_1
L692 (0001)
B (70,2)
S.AND6_2
&
B0691
AND6_Q
T1/8
L693 (0001)
B (70,2)
S.AND7_1
L694 (0001)
B (70,2)
S.AND7_2
&
B0693
AND7_Q
T1/9
L689 (0001)
B (70,2)
S.AND5_1
L690 (0001)
B (70,2)
S.AND5_2
&
B0689
AND5_Q
T1/7
L321 (0000)
B (70,2)
S.OR4_1
L322 (0000)
B (70,2)
S.OR4_2 B1321
OR4_Q
1
T1/14
L323 (0000)
B (70,2)
S.OR5_1
L324 (0000)
B (70,2)
S.OR5_2 B1323
OR5_Q
1
T1/15
B0837
B1834
B1831
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 430 -
Free function blocks
Miscellaneous functions
0
1
1
R
S
Q
Q
L237 (0454)
B (330,5)
S.R RS-FlipFlop1
L236 (1277)
B (415,8)
S.S RS-FlipFlop1
B0236 RSFF1_Q
B0237 RSFF1_QN
R
S
Q
Q
L735 (0000)
B (70,2)
S.R RS-FlipFlop2
L734 (0000)
B (70,2)
S.S RS-FlipFlop2
B0734 RSFF2_Q
B0735 RSFF2_QN
L708 (0000)
B (70,2)
S.Switch1_sel
L706 (3000)
KR (70,2)
S.Switch1_0
L707 (3000)
KR (70,2)
S.Switch1_1 Switch1
KR3706
0
1
L718 (0000)
B (70,2)
S.Switch2_sel
L716 (3000)
KR (70,2)
S.Switch2_0
L717 (3000)
KR (70,2)
S.Switch2_1 Switch2
KR3716
L732 (0000)
B (70,2)
S.Not1
B0732 Not1_Q
1
L733 (0000)
B (70,2)
S.Not2
B0733 Not2_Q
L645 (0000)
B (70,2)
S.Edge2
B0645 Edge2_Q
B0646 Edge2_QN
0
1
L826 (0000)
B (70,2)
S.Switch3_sel
L824 (3000)
KR (70,2)
S.Switch3_0
L825 (3001)
KR (70,2)
S.Switch3_1 Switch3
KR3825
0
1
L829 (0000)
B (70,2)
S.Switch4_sel
L827 (3000)
KR (70,2)
S.Switch4_0
L828 (3001)
KR (70,2)
S.Switch4_1 Switch4
KR3827
Parameter setting for:
"material cut"
R
S
Q
Q
L737 (0000)
B (70,2)
S.R RS-FlipFlop3
L736 (0000)
B (70,2)
S.S RS-FlipFlop3
B0736 RSFF3_Q
B0737 RSFF3_QN
0
1
L642 (0000)
B (70,2)
S.SwitchDI_sel
Switch_DI
KK5640
L640 (5422)
KK (80,4)
S.SwitchDI_0
L641 (5684)
KK (70,8)
S.SwitchDI_1
32bit integer switch
T1/4
T3/18
T3/19
T3/21
T3/22 T3/23 T3/24
T3/25
T3/46
T3/47
T3/54
L685 (3000)
KR (70,2)
S.NOP1
L686 (3000)
KR (70,2)
S.NOP2
KR3685
KR3686
in T5
in T5
L687 (0000)
B (70,2)
S.Bool_NOP1
L688 (0000)
B (70,2)
S.Bool_NOP2
B0687
in T5
B0688
in T5
1
L543 (0000)
B (70,2)
S.Not3
B0543 Not1_Q
1
L544 (0000)
B (70,2)
S.Not4
B0544 Not2_Q
T3/52
T3/53
R
S
Q
Q
L696 (0000)
B (70,2)
S.R RS-FlipFlop4
L695 (0000)
B (70,2)
S.S RS-FlipFlop4
B0695 RSFF4_Q
B0696 RSFF4_QN
T1/12
L709 (0000)
B (70,2)
S.Edge1
B0709 Edge1_Q
B0708 Edge1_QN
T3/20
S dominant!
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 435 -
Free function blocks
Control functions
Y
X
X<Y
X>Y
X=Y
Comparator
Y
X
X > Y
X = Y
X < Y
L744 (3000)
KR (70,2)
S.Compare_X
L745 (3000)
KR (70,2)
S.Compare_Y
B0744 Compare X>Y
B0745 Compare X<Y
B0743 Compare X=Y
L749 (3000)
KR (70,2)
S.Compare2
Compare2 Hyst
(0.1)
L751
B0749 Compare2 X>Y
B0750 Compare2 X=Y
B0751 Compare2 X<Y
L756
(1.0)
Character_X2
Character_X1
(0.0)
L754
Character_Y1
(0.0)
L755
Character_Y2
(1.0)
L757
L753 (3000)
KR (70,2)
S.Character_X Character_Y
KR3753
2-Point-Characteristic
Comparator
with hysteresis
Integrator LU
(1.0)
L819
L820
(-1.0)
Integrator LL
L823 (0000)
B (70,2)
S.Integrator set
L818 (3000)
KR (70,2)
S.Integrator_X
L821 (3000)
KR (70,2)
S.Integrator SV
Integrator T
(1000 ms)
L822
x
y
KR3819
B0817 Int upper limit
B0818 Int lower limit
L752 (3006)
KR (70,2)
S. Compare2 Mid
L750 (3001)
KR (70,2)
S.Compare2 Range
L727 (0000)
B (70,2)
S.Ramp set
L720 (3000)
KR (70,2)
S.Ramp input
L723 (3000)
KR (70,2)
S.Ramp Set Value
x
yB0720 Ramp at max
B0721 Ramp at min
Ramp down time
(10000ms)
L725 L721 (3001)
KR (70,2)
S.Ramp max
L722 (3007)
KR (70,2)
S.Ramp min
Ramp outputKR3720
Ramp function
Integrator
L726 (0000)
B (70,2)
S.Ramp enable
T3/41
T3/43
T3/48
T1/1
T3/49
(additional comparators on chart 350)
x
y
L746 (3001)
KR (70,2)
S.Limit_max
L748 (3000)
KR (70,2)
S.Limit_min
L747 (3000)
KR (70,2)
S.Limit_inp
B0748 Limit_min
B0746 Limit_max
Limit_outKR3747
1
B0747
Limit_active
Limiter
T3/42
T3/45
B0722
Ramp Y=X
Ramp up time
(10000ms)
L724
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 436 -
Free function blocks
Time dependent functions
PT1
L740 (3000)
KR (70,2)
S.PT1_inp
PT1_outKR3740
Tfilt PT1
(20ms)
L741
L742 (3000)
KR (70,2)
S.Bandstop_inp
Band stopKR3742
L743 (3002)
KR (70,2)
S.StopFrequency
Band-stop
filter
Low pass filter
order 1
Quality
(2.0)
L739
L738 (0000)
B (70,2)
S.set_PT1_zero
T1/2
T1/3
T0
0T
L728 (0000)
B (70,2)
S.OnDelay1
T_OnDelay1
(100ms)
L729
B0728 OnDelay1_Q
L730 (0000)
B (70,2)
S.OffDelay1
T_OffDelay1
(100ms)
L731
B0730 OffDelay1_Q
T3/14
T3/16
T
L876 (0000)
B (70,2)
S.SingleShot_1
B0876 SingleShot_1
T_SingleShot_1
(0 ms)
L877
T
L878 (0000)
B (70,2)
S.SingleShot_2
B0878 SingleShot_2
T_SingleShot_2
(0 ms)
L879
T
L896 (0000)
B (70,2)
S.SingleShot_3
B0896 SingleShot_3
T_SingleShot_3
(0 ms)
L897
T1/9
T1/10
T1/11
0T
L758 (0000)
B (70,2)
S.OffDelay2
T_OffDelay2
(100ms)
L759
B0758 OffDelay2_Q
T3/17
T0
L898 (0000)
B (70,2)
S.OnDelay2
T_OnDelay2
(100ms)
L899
B0898 OnDelay2_Q
T3/15
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 440 -
Free function blocks
Type conversion
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B0760 FreeWord_0
B0761 FreeWord_1
B0762 FreeWord_2
B0763 FreeWord_3
B0764 FreeWord_4
B0765 FreeWord_5
B0766 FreeWord_6
B0767 FreeWord_7
B0768 FreeWord_8
B0769 FreeWord_9
B0770 FreeWord_10
B0771 FreeWord_11
B0772 FreeWord_12
B0773 FreeWord_13
B0774 FreeWord_14
B0775 FreeWord_15
L760 (2061)
K (790,3)
S.FreeWord DW_Norm
(1.0)
L763
1.0
100 %
L762 (2000)
K (70,2)
S.DW_low
L761 (2000)
K (70,2)
S.DW_high
W
DW
high
low
Word_Norm
(1.0)
L765
1.0
100 %
L764 (2000)
K (70,2)
S.Word
DW_floatKR3763
Word_Float
KR3765
100 %
1.0
L767
(1.0)
Float_Norm
L766 (3000)
KR (70,2)
S.Float Float_N2
K2766
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B1810 FreeWord2_0
B1811 FreeWord2_1
B1812 FreeWord2_2
B1813 FreeWord2_3
B1814 FreeWord2_4
B1815 FreeWord2_5
B1816 FreeWord2_6
B1817 FreeWord2_7
B1818 FreeWord2_8
B1819 FreeWord2_9
B1820 FreeWord2_10
B1821 FreeWord2_11
B1822 FreeWord2_12
B1823 FreeWord2_13
B1824 FreeWord2_14
B1825 FreeWord2_15
L810 (2000)
K (70,2)
S.FreeW_B2
R
I
L646 (2000)
K (70,2)
S.I_R_1 I_R1_Y
KR3604
W
DW
high
low
DW_W1 highK2605
DW_W1 lowK2606
L605 (5000)
KK (70,2)
S.DW_W1
L817 (2000)
K (70,2)
S.W_DW1 low
L816 (2000)
K (70,2)
S.W_DW1 high
W
DW
high
low W_DW1KK5816
I
R
L647 (3000)
KR (70,2)
S.R_I1 R_I1
K2647
T3/33
T3/34
T3/35
T3/36
T3/1
T3/2
T3/3
T3/4
T3/55
DI
R
L811 (3000)
KR (70,2)
S.R_DI D_DI
KK5811
T3/56
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 445 -
Free function blocks
Arithmetics
L606 (2000)
K (70,2)
S.ADDI1 X1
L607 (2000)
K (70,2)
S.ADDI1 X2
ADDI_YK2607
L608 (2000)
K (70,2)
S.SUBI1 X1
L609 (2000)
K (70,2)
S.SUBI1 X2
SUBI_YK2608
L812 (2001)
K (70,2)
S.DIVI1 X1
L813 (2001)
K (70,2)
S.DIVI1 X2
DIVI_1 YK2812
DIVI_1 (MOD)K2813
X1 modulo X2
L814 (2001)
K (70,2)
S.MULI1 X1
L815 (2001)
K (70,2)
S.MULI1 X2
MULI_1 YK2814
MULI_1 (DW)KK5814
double word result
L786 (3000)
KR (70,2)
S.ADD1 X1
L787 (3000)
KR (70,2)
S.ADD1 X2
L788 (3000)
KR (70,2)
S.ADD1 X3
ADD_1KR3786
L789 (3000)
KR (70,2)
S.ADD2 X1
L790 (3000)
KR (70,2)
S.ADD2 X2
L791 (3000)
KR (70,2)
S.ADD2 X3
ADD_2KR3789
L792 (3000)
KR (70,2)
S.SUB1 X1
L793 (3000)
KR (70,2)
S.SUB1 X2
SUB_1KR3792
L794 (3000)
KR (70,2)
S.SUB2 X1
L795 (3000)
KR (70,2)
S.SUB2 X2
SUB_2KR3794
L796 (3001)
KR (70,2)
S.MUL1 X1
L797 (3001)
KR (70,2)
S.MUL1 X2
L798 (3001)
KR (70,2)
S.MUL1 X3
MUL_1KR3796
L799 (3001)
KR (70,2)
S.MUL2 X1
L800 (3001)
KR (70,2)
S.MUL2 X2
L801 (3001)
KR (70,2)
S.MUL2 X3
MUL_2KR3799
L802 (3001)
KR (70,2)
S.DIV1 X1
L803 (3001)
KR (70,2)
S.DIV1 X2
DIV_1KR3802
L804 (3001)
KR (70,2)
S.DIV2 X1
L805 (3001)
KR (70,2)
S.DIV2 X2
DIV_2KR3804
T3/26
T3/27
T3/28
T3/29
T3/30
T3/31
T3/32
T3/37
T3/38
T3/39
T3/40
T1/5
L615 (3001)
KR (70,2)
S.MUL3 X1
L616 (3001)
KR (70,2)
S.MUL3 X2
MUL_3KR3615
T3/51
L808 (3000)
KR (70,2)
S.ADD3 X1
L809 (3000)
KR (70,2)
S.ADD3 X2
ADD_3KR3808
T1/13
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 450 -
Polygons
KP_Adaption and cut polygon
KP_X1
(0.0)
L470
KP_Y1
(1.0)
L471
KP_X10
(2.0)
L488
X
Y
KP_Y10
(1.0)
L489
L496 (3164)
KR (200,8)
S.KP_Polygon
output KP polygonKR3490
KP_Diagr_Outp
c490
10 points
Parameter number L470 ... L489
even: X-values
odd: Y-values
n_cut_X1
(0.0)
L390
n_cut_Y1
(1.0)
L391
n_cut_X20
(360.0)
L428
X
Y
Y
dY
dX
n_cut_Y20
(1.0)
L429
L497 (3413)
KR (120,7)
S.CutPolygon Output cut polygonKR3491
Cut Polygon Outp
c491
20 points
Parameter number L390 ... L429
even: X-values
odd: Y-values
KP-Adaption
Cut Polygon
Speed = f(Position)
L325 (3001)
KR (70,2)
S.NX_CutPolygon L326 (3001)
KR (70,2)
S.NY_CutPolygon
set CutCurve
(0)
L327
LM1 CutCurve
(16#0000)
L329
LM2 CutCurve
(16#0000)
L330
Type CutCurve
(1)
L328
Validate changes Type Masks for linear section
definition
L189 (3000)
KR (70,2)
S.V_CutPolygon
L190 (3001)
KR (70,2)
S.NV_CutPolygon
YV cut polygon
KR3497
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 460 -
Polygons
Friction and inertia
Inertia_X1
(0.0)
L430
Inertia_Y1
(1.0)
L431
Inertia_X20
(360.0)
L468
Inertia_Y20
(1.0)
L469
L499 (3413)
KR (120,7)
S. InertiaPolygon
InertiaKR3495
Inertia
c495
L504(3000)
KR (70,2)
S.Offset Inertia
L503 (3000)
KR (70,2)
S.Factor Inertia
Y inertia polygon
KR3493
InertiaPolyOut
c493
Inertia = f(shear position)
20 points
Parameter number L430 ... L469
even: X-values
odd: Y-values
Friction_X1
(0.0)
L350
Friction_Y1
(0.0)
L351
Friction_X20
(1.0)
L388
Friction_Y20
(0.0)
L389
L498 (3023)
KR (260,8)
S.FrictionPolyg.
output
friction diagram
KR3492
OutpFrictionDiag
c492
20 points
Parameter number L350 ... L389
even: X-values
odd: Y-values
L502 (3000)
KR (70,2)
S.Offset Friction
L500 (3000)
KR (70,2)
S.Factor1Friction
L501 (3001)
KR (70,2)
S.Factor2Friction
Friction
d029
Friction polygon
L555 (3492)
KR (460,5)
S.Friction
FrictionKR3029
L554 (3493)
KR (460,5)
S.Inertia
L511 (3001)
KR (70,2)
S.NX_Inertia
L512 (3001)
KR (70,2)
S.NY_Inertia
SetInertia
(0)
L513
LM1 Inertia
(16#0000)
L515
LM2 Inertia
(16#0000)
L516
Type Inertia
(1)
L514
L505 (3001)
KR (70,2)
S.NX_Friction
L506 (3001)
KR (70,2)
S.NY_Friction
SetFriction
(0)
L507
LM1 Friction
(16#0000)
L509
LM2 Friction
(16#0000)
L510
Type Friction
(1)
L508
Validate changes Type Masks for linear section
definition
Validate changes Type Masks for linear section
definition
L193 (3000)
KR (70,2)
S.V_Inertia
L194 (3001)
KR (70,2)
S.NV_Inertia
YV Inertia
KR3496
L191 (3000)
KR (70,2)
S.V_Friction
L192 (3001)
KR (70,2)
S.NV_Friction
YV Friction
KR3494
X
Y
Y
dY
dX
X
Y
Y
dY
dX
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 470 -
Diagnostics
CU-, CB- and user fault
H690 (0920)
B (660,4)
S.CB Fault 1
H691 (0919)
B (660,4)
S. CB Fault 2
H692 (0924)
B (660,7)
S. CB Fault 3
1
Comboard Faults
T0B0694 CB Fault
CB FaultDelay
(1000 ms)
H693 CB Fault
d694
H695 (0984)
B (600,5)
S.CU Fault 1
H696 (0973)
B (600,5)
S. CU Fault 2
H697 (0982)
B (600,5)
S. CU Fault 3
1
Inverter faults
T0B0699 CU Fault
CU FaultDelay
(200 ms)
H698 CU Fault
d699
H700 (0000)
B (70,2)
S.User Fault 1
H701 (0000)
B (70,2)
S.User Fault 2
H702 (0000)
B (70,2)
S. User Fault 3
1
User fault 1
T0B0704 User Fault 1
UserFault1Delay
(1000 ms)
H703 User Fault1
d704
H707 (0000)
B (70,2)
S.User Fault 4
H708 (0000)
B (70,2)
S.User Fault 5
H709 (0000)
B (70,2)
S.User Fault 6
1
User fault 2
T0B0705 User Fault 2
UserFault2Delay
(1000 ms)
H706 User Fault2
d705
H710 (0342)
B (620,4)
S.UserFaultEnabl
&
&
Enable user fault
monitoring
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 480 -
Diagnostics
Shear position and speed
Comparator
Y
X
X > Y
X = Y
X < Y
Shear Pos.Min
(-20.0)
H715
Position shear [120,8]
Fault monitoring shear position
Shear calibrated [170,5]
B0681 Shear pos. underflow
B0682 Shear pos. underflow pulse
Comparator
Y
X
X > Y
X = Y
X < Y
Shear Pos.Max
(390.0)
H717
Position shear [120,8]
B0683 Shear pos. overflow
B0684 Shear pos. overflow pulse
Y
X
X<Y
X>Y
X=Y
Fault monitoring
shear speed
L100 (3411)
KR (120,7)
S.Diagn n_shear
n_Shear Max
(1.2)
L101
n_Shear Hyst
(0.05)
L102
0.0
B0103 Overspeed positive
Overspeed pos
c103
B0104 Overspeed negative
Overspeed neg
c104
KR3715
min. shear pos. norm.
KR3705
Shear Pos.Toler.
(10.0)
H718
X Shear normalization [60,4]
KR3717
max. shear pos norm.KR3707
X Shear normalization [60,4]
Position error lower limitKR3708
Position error upper limitKR3709
H719 (0600)
B (290,8)
S.EnShearPosErr
&
&
Y
X
X<Y
X>Y
X=Y
B0094 n_shear > n_Ref
0.001
SynchronToleranc
(1%)
L094
n_shear smoothed
(3411) [120,8]
Speed2 smoothed
(3435) [130,6]
B0096 n_shear < n_Ref
B0095 n_shear = n_Ref
Comparison of line speed
and shear speed
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 490 -
Diagnostics
Blocking protection
L105 (3411)
KR (120,7)
S.Blocking speed
L108 (3023)
KR (260,8)
S.Blocking nsetp
L112 (3325)
KR (610,7)
S.Blocking act Torque
Y
X
X<Y
X>Y
X=Y
speed BlockLim
(0.005)
L106 0.001
0.0
Y
X
X<Y
X>Y
X=Y
0.0
BlockingDelay
(1000 ms)
L115
B0107 speed < n_Blocking
L110
(0.01)
n_setp BlockLim
0.001
Y
X
X<Y
X>Y
X=Y
0.0
L113
(0.8)
actTorq.BlockLim
0.05
&
B0111 n_setp > n_Blocking
B0112 Torque > BlockLim
Blocking nsetp
c241
B0110 n_setp < n_Blocking
Blocking act Torque
c242
B0109 Torque < BlockLim
Abs_nsetpKR3241
Abs_actTorqueKR3242
T0B0116 Shear blocking
Shear Blocking
c116
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 500 -
Diagnostics
Pulse encoder fault detection
L118 (3319)
KR (610,7)
S.actSpeed_CU
1
Encoder error1 [120,8]
Encoder error2 [130,8]
User fault: incorrect parameter set
B0117 Encoder fault user
EncoderFaultUser
c117
Comparison of measured speed on
T400 with speed from CU
L119 (3411)
KR (120,7)
S.actSpeed_T400
Comparator
Y
X
X > Y
X = Y
X < Y
Speed error
c120
L121
(0.1)
Limit Delta_n
L123 (0150)
B (165,8)
S.Enable Delta_n
&
Delta_n > Limit
c122
B0122 Delta_n > Limit
B0121 Delta_n < Limit
B0125 Delta_n fault
T0
Delta_n Delay
(10.0 s)
L124 Delta_n Fault
c125
In case of differences:
- check pulse encoder parameters
- check pulse encoder simulation board (CU)
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 510 -
Status
System status and status control logic
Status Control logic
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
Inverter ready
TR encoder load
Enable pos. controller
In starting position
n_shear = 0
Quick stop from CU
TR start error
TR frequency zero
TR Timeout
Enable setpoints
Fault
Shear calibrated
n_shear > 0
Release brake
Inverter operation
TR-load input [165,8] ]
0
Enable position controller [370,5]
Shear standing in start position [340,7]
CU Status1.5 (No quick stop) [620,4]
n_shear = 0 [330,3]
Inverter ready [360,6]
Status control logicK2016
StatusContrlLogic
d016
0T
Fault [530,8]
CU Status 1.2 (operation) [620,4]
TR start error [165,6]
TR frequency zero [165,6]
TR Timeout [165,6]
Enable setpoints [360,6]
Shear calibrated [170,5]
Release brake [370,4]
n_shear > 0 [330,3]
System error
System Status
K2010
Task manager
Hardware
Communication
User error
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
&
B0010 System error
SystemErrorMask
(16#FFFF)
H970
Fan_off_Delay
(30 s)
H978
System Status
d010
B0978 fan
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 520 -
Status
Status shear
Status shear
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
Zero pulse shear
Shear calibrated
in synchronous range
in format range
in starting position
End cut program
In knife change position
Mode positioning
Raise shear
Lower shear
Shear top position
Synchr. pulse reference
Shear bottom position
Light barrier
Shear calibrated [170,5]
in synchronous range [330,5]
in format range [330,5]
Shear standing in start position [340,8]
Knife in changepos [330,8]
End cut program 1 [300,6]
Pos.Sync 100ms [120,8]
H547 (1347)
B (410,5)
S.ShearStatusB7 ... 15
B (415,4)
H548 (1259)
B (415,8)
H549 (1279)
B (110,4)
H550 (0244)
B (110,4)
H551 (0245)
B (130,8)
H552 (0420)
B (110,8)
H553 (0250)
B (70,2)
H554 (0000)
B (70,2)
H555 (0000)
Status shear
K2017
Status shear
d017
StatisticLimit1
(0.1)
L841
StatisticLimit2
(0.25)
L842
StatisticLimit3
(0.5)
L843
StatisticLimit4
(0.75)
L844
StatisticLimit5
(1.0)
L845
StatisticLimit6
(1.5)
L846
StatisticLimit7
(2.0)
L847
StatisticLimit8
(5.0)
L848
L840 (3196)
KR (220,3)
S.Cut Error
StatisticNumber
(100)
L849
H579 (0554)
B (520,3)
S.CutPulses
H578 (0000)
B (70,2)
S.Counter Set
&
Count pulses
Clear 2
Clear 1
Sheet counter
Sheet counterK2022
Sheet counter
d022
Counter Reset
(0)
H577
Cutting error
statistic
0T
Statistic Absolut
(1)
L850)
Sample new data
Portion < Limit1
c851
Portion LV1 < LV2
c852
Portion LV2 < LV3
c853
Portion LV3 < LV4
c854
Portion LV4 < LV5
c855
Portion LV5 < LV6
c856
Portion LV6 < LV7
c857
Portion LV7 < LV8
c858
8 limits
LV1 .. LV8
LV1
LV2
LV3
LV4
LV5
LV6
LV7
LV8
Actual value cutting error
Use absolute values
H574 (0168)
B (200,8)
S.CutPulsDelay
32 ms
B0554 Cut Pulse
Cutting active [320,5]
Normalized results
e.g.: (0.23 = 23 %)
Extending the pulse which is used as
cut pulse
Portion > Limit8
c859
B0579
Count pulses
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 530 -
Status
Faults and alarms
&
bitwise ANDed
Fault Mask
(16#33E2)
H966
Fault word X is
stored with rizing
edge
(Send to the inverter)
Fault status
1
at least 1 bit
set
Fault Bits
d968
H950 (0694)
B (470,3)
S. Fault Bit 0 ..15
B (470,3)
H951 (0699)
B (70,2)
H952 (0000)
B (470,8)
H954 (0705)
B (480,4)
H955 (0682)
B(470,8)
H953 (0704)
B (480,4)
H956 (0103)
B (480,4)
H957 (0104)
B (490,7)
H958 (0116)
B (500,7)
H959 (0125)
B (280,8)
H960 (0521)
B (280,8)
H961 (0522)
B (480,4)
H962 (0684)
B (135,7)
H963 (0443)
B (165,7)
H964 (0157)
B (70,2)
H965 (0000)
&
bitwise ANDed
Alarm Mask
(16#FFFF)
H967
(Send to the inverter)
1
Set if at least one bit of the
alarm status word is set
Actual Alarm
d015
Fault status wordK2014
B0014 Fault
B0015 Alarm
Alarm status wordK2015
Actual Faults
d014
0T
0
1
0
1
0
FaultStartDelay
(10 s)
H969
store X
store X
X Y
H580 (0343)
B (620,4)
S.AcknEndofFault 0T
H581 (0000)
B (110,4)
S.Acknowledge_1
H582 (0847)
B (680,4)
S.Acknowledge_2
Delay_EndOfError
(10 s)
H583
B0584 Acknowledge
Acknowledge
d584
0
Fault acknowledge
1
1
1
B0013 No fault
CU Status 1.3 [620,4]
K2968
(factory setting)
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
F122, A103
Overspeed
F116 , A097
CB-fault
F117, A098
CU-fault
F118, A099
F119, A100
User fault 1
F120, A101
User fault 2
F121, A102
Shear pos. < Minimum
F123, A104
Overspeed negative
F124, A105
Shear blocked
F125, A106
Fault speed sensing
F126, A107
External fault 1
F128, A109
Shear pos. > Maximum
F127, A108
External fault 2
F130, A111
Fault TR encoder
F129, A110
Reference pos. < Min
F131, A112
1
at least 1 bit
set
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 540 -
Diagnostics
Display parameters
Note:
The display parameters on this chart will be
updated about each 200 ms.
CPU load
CPU load T1
d986
CPU load T2
d987
CPU load T3
d988
CPU load T4
d989
CPU load T5
d990
L940 (3401)
KR (80,6)
S.Display R1 Display R1
d040
L941 (3050)
KR (80,4)
S.Display R2 Display R2
d041
L942 (3421)
KR (80,4)
S.Display R3 Display R3
d042
L943 (3440)
KR (130,6)
S.Display R4 Display R4
d043
L944 (3498)
KR (230,7)
S.Display R5 Display R5
d044
L945 (3192)
KR (265,6)
S.Display R6 Display R6
d045
L946 (3099)
KR (60,7)
S.Display R7 Display R7
d046
L947 (3094)
KR (180,7)
S.Display R8 Display R8
d047
L948 (2776)
K (480,8)
S.Display W1 Display W1
d048
L949 (2785)
K (440,8)
S.Display W2 Display W2
d049
L950 (2671)
K (70,6)
S.Display W3 Display W3
d050
L951 (2672)
K (70,6)
S.Display W4 Display W4
d051
L956 (2302)
K (610,3)
S.Display I1 Display I1
d056
L957 (2809)
K (670,3)
S.Display I2 Display I2
d057
L958 (2802)
K (670,3)
S.Display I3 Display I3
d058
L959 (2806)
K (670,3)
S.Display I4 Display I4
d059
L968 (5402)
KK (80,8)
S.Display DI1 Display DI1
d068
L969 (5422)
KK (80,4)
S.Display DI2 Display DI2
d069
L970 (5061)
KK (790,3)
S.Display DI3 Display DI3
d070
L971 (5063)
KK (790,3)
S.Display DI4 Display DI4
d071
L964 (0317)
B (170,7)
S.Display B1 Display B1
d064
L965 (0172)
B (200,4)
S.Display B2 Display B2
d065
L966 (0567)
B (300,6)
S.Display B3 Display B3
d066
L967 (0412)
B (120,7)
S.Display B4 Display B4
d067
Type floating-point
Type Word
Type 16bit Integer
Type BOOL
Type 32bit Integer
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 600 -
Inverter interface
General settings
maximum
time interval
between 2
telegrams
Timeout
Receiver initialized
Control and monitoring functions for
the inverter interface
100 ms
CU Receive init
d971
B0973 CU timeout
Inverter in operation B0974 CU in operation
CU Timeout
d973
CU in operation
d974
T
T0
T Resynchr T400
(10.0 s)
H977
H975 (0666)
B (360,7)
S.DisableResynch
Disable
&
ResynchrDelay
(1000 ms)
H976
Synchronization the T400 by
the inverter clock after a
positive edge here.
CU clock has to be 1.6 ms!
B0971 CU receive init.
B0981 CU receive not init.
1
1
1
B0983 CU no timeout
Transmitter initialized B0972 CU transmit init.
B0982 CU transmit not init.
1
CU Transmit init
d972
B0984 CU not in operation
B0976 CU operation delayed
B0977
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 610 -
Inverter interface
Process data reception
PZD1 (Status word1)
1.0
100 %
CU actValue1 Norm
(1.0)
H318 CU ActValue1
d319
PZD2 (speed act. value)
Receive process data
from inverter
PZD 3
PZD4 (Status word2)
PZD5 (Torque act. value)
CU actValue2 Norm
(1.0)
H321 CU ActValue2
d322
CU actValue3 Norm
(1.0)
H324 CU ActValue3
d325
PZD 6
1.0
100 %
1.0
100 %
PZD1 from CUK2301
d301 d316
PZD1 .. PZD16 from CU
PZD2 from CUK2302
PZD3 from CUK2303
PZD4 from CUK2304
PZD5 from CUK2305
PZD6 from CUK2306
PZD7 (Current act. value)
PZD7 from CUK2307
PZD 8
PZD8 from CUK2308
PZD 9
PZD9 from CUK2309
PZD 10
PZD10 from CUK2310
PZD 11
PZD11 from CUK2311
PZD 12
PZD12 from CUK2312
PZD 13
PZD13 from CUK2313
PZD 14
PZD14 from CUK2314
PZD 15
PZD15 from CUK2315
PZD 16
PZD16 from CUK2316
H317 (2302)
K (610,3)
S.ActValue1 CU
ActValue1 CUKR3319
H320 (2303)
K (610,3)
S.ActValue2 CU
ActValue2 CUKR3322
H323 (2305)
K (610,3)
S.ActValue3 CU
ActValue3 CUKR3325
CU DW1 Norm
(1.0)
H333 CU ActValue DW1
d334
1.0
100 %
H329 (2315)
K (610,3)
S.DW1 low CU ActValue DW1 CUKR3334
H330 (2316)
K (610,3)
S.DW1 high CU
Four 16bit process data are converted to floating-point
Convert a double word to floating-point
W
DW
high
low
CU actValue4 Norm
(1.0)
H327 CU ActValue4
d328
1.0
100 %
H326 (2306)
K (610,3)
S.ActValue4 CU
ActValue4 CUKR3328
. . .
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
CU Status word 1 CU Status word 2
H356 (2301)
K (610,3)
S.StatusWord1 CU
B0340 CU status1.0
B0341 CU status1.1
B0342 CU status1.2
B0343 CU status1.3
B0344 CU status1.4
B0345 CU status1.5
B0346 CU status1.6
B0347 CU status1.7
B0348 CU status1.8
B0349 CU status1.9
B0350 CU status1.10
B0351 CU status1.11
B0352 CU status1.12
B0353 CU status1.13
B0354 CU status1.14
B0355 CU status1.15
B0360 CU status2.0
B0361 CU status2.1
B0362 CU status2.2
B0363 CU status2.3
B0364 CU status2.4
B0365 CU status2.5
B0366 CU status2.6
B0367 CU status2.7
B0368 CU status2 .8
B0369 CU status2 .9
B0370 CU status2.10
B0371 CU status2.11
B0372 CU status2.12
B0373 CU status2.13
B0374 CU status2.14
B0375 CU status2.15
H358 (2304)
K (610,3)
S.StatusWord2 CU
- 620 -
Inverter interface
Inverter status words
B0315 CU status1.15 inv
B0300 CU status1.0 inv
.....
...
...
B0335 CU status2.15 inv
B0320 CU status2.0 inv
.....
...
...
inverted status bits
inverted status bits
Status word2 CU
d359
Status word1 CU
d357
K2357 K2359
Bit 0 Ready to switch on
Bit 6 Switch-on inhibit
Bit 1 Ready for operation
Bit 2 Run
Bit 3 Fault active
Bit 4 OFF2 active
Bit 5 OFF3 active
Bit 7 Alarm active
Bit 8 No setp./act.value deviation
Bit 9 PcD-control requested
Bit 12 requ. enger. main contactor
Bit 10 Comp. value reached
Bit 11 Low voltage fault
Bit 13 Ramp function gener. active
Bit 14 positive speed setpoint
Bit 15
Bit 0 Flying restart/exitation
Bit 6 Fault overtemperature
Bit 1
Bit 2 Overspeed
Bit 3 External fault 1 active
Bit 4 External fault 2 active
Bit 5 Alarm overload
Bit 7 Alarm overtemperature
Bit 8 Alarm overtemp. motor
Bit 9 Fault overtemp. motor
Bit 12 Bypass contactor ener.
Bit 10
Bit 11 Fault motor blocked
Bit 13
Bit 14
Bit 15 Pre-charging acktive
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 630 -
Inverter interface
Control words
Control word 1
for inverter
H740 (0840)
B (680,4)
S.ControlW1 Bit0 ... Bit15
B (280,8)
H742 (0527) B (680,4)
H741 (0841)
B (360,5)
H743 (0662)
B (360,7)
H744 (0664)
B (360,7)
H745 (0664)
B (360,7)
H746 (0664)
B (530,6)
H747 (0584)
B (680,4)
H748 (0848)
B (680,4)
H749 (0849)
B(70,2)
H750 (0001)
B (680,4)
H751 (0851)
B (680,4)
H752 (0852)
B (680,4)
H753 (0853)
B (680,4)
H754 (0854)
B (70,4)
H755 (0001)
Control word1 CU
K2012
Control word 2
for inverter
H760 (0000)
B (70,2)
S.ControlW2 Bit0 ... Bit15
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9 Enable speed controller
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B (70,2)
H762 (0000) B (70,2)
H761 (0000)
B (70,2)
H763 (0000)
B (70,2)
H764 (0000)
B (70,2)
H765 (0000)
B (70,2)
H766 (0000)
B (70,2)
H767 (0001)
B (70,2)
H768 (0001)
B (360,7)
H769 (0666)
B (70,2)
H770 (0001)
B (70,2)
H771 (0000)
B (70,2)
H772 (0001)
B (70,2)
H773 (0001)
B (70,2)
H774 (0000)
B (70,2)
H775 (0000)
Control word2 CU
K2013
Control Word1 CU
d012
Control Word2 CU
d013
0 = OFF1
Setpoint enable
0 = OFF2 (pulse disable)
0 = OFF3 (quick stop)
1 = Inverter enable
Ramp funct. gen. enable
Start ramp funct. gen.
0=>1 Fault acknowledge
Jogging 1
Jogging 2
Counter clockw. enable
1 = Control requested
Clockwise seq. enable
Raise motor potentiom.
Lower motor potentiom.
0 = External fault
1
15
2
3
4
5
6
7
8
9
10
11
12
13
14
0
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 640 -
Inverter interface
Process data transmission
100 %
1.0
Process data
transmission to the
inverter
H780
(1.0)
Setpoint1CU Norm
H790
(1.0)
Setpoint3CU Norm
100 %
1.0
100 %
1.0
H786
(1.0)
Setpoint2CU Norm
100 %
1.0
H797
(1.0)
Setpoint5CU Norm
100 %
1.0
H793
(1.0)
Setpoint4CU Norm
conversion to double word
PZD 1
Control word 1
PZD 2
Speed setpoint
PZD 3
PZD 4
Control word 2
PZD 5
Torque setpoint
PZD 6
KP_Adaption
PZD 7
PZD 8
H776 (3023)
KR (260,8)
S.Setpoint1A CU
Setpoint1 CU N2K2781
H783 (3498)
KR (230,7)
S.Setpoint2B CU
Setpoint2 CU N2
d787
Setpoint2 CU N2K2787
H788 (3490)
KR (450,5)
S.Setpoint3 CU Setpoint3 CU
d789
Setpoint3 CUK2789
H791 (3000)
KR (70,2)
S.Setpoint4 CU Setpoint4 CU
d792
Setpoint4 CUK2792
H794 (3000)
KR (70,2)
S.Setpoint5_CU
Setpoint5 high CU
d795
W
DW
high
low
Setpoint5 high CUK2795
Setpoint5 low CUK2796
H721 (2012)
K (630,4)
S. PZD1 CU
PZD1 to CU
d731
H722 (2781)
K (640,6)
S. PZD2 CU
H723 (2000)
K (70,2)
S. PZD3 CU
H724 (2013)
K (630,8)
S. PZD4 CU
H725 (2787)
K (640,6)
S. PZD5 CU
H726 (2789)
K (640,4)
S. PZD6 CU
H727 (2792)
K (640,4)
S. PZD7 CU
H728 (2795)
K (640,4)
S. PZD8 CU
PZD8 to CU
d738
. . . . . .
d796
Setpoint5 low CU
0
1
0
1
H777 (3474)
KR (230,8)
S.Setpoint1B CU
H778 (1347)
B (410,5)
S.Setp1_CU_sel
Setpoint1 CU
d779
KR3779
H782 (3025)
KR (240,7)
S.Setpoint2A CU Setpoint2 CU
d785
KR3785
Setpoint1 CU N2
d781
H784 (1347)
B (410,5)
S.Setp2_CU_sel
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 660 -
COMBOARD
General settings
CB Enable
(1)
H925
CB tmax Run
(100ms)
H926
maximum time
interval between 2
telegrams
Timeout
Receive status
Enable
&
CB Receive Status
d927
1
bitwise ANDed;
at least one bit = 1 T0
tmax CB PowerON
(20s)
H929
Control and monitoring faults for the
COMBOARD interface
Mask CB Status
(16#FFFF
H928
16 bit
B0924 Timeout CB
Timeout CB
d924
Receiver initialized
CB Receive init
d921
B0921 CB receive init.
B0920 CB receive not init.
1
Transmitter initialized B0922 CB transmit init.
B0919 CB transmit not init.
1
CB Transmit init
d922
B0918 No timeout CB
1
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 670 -
COMBOARD
Process data reception
PZD 1
Control word 1
1.0
100 %
CB Setpoint1 Norm
(1.0)
H817 CB Setpoint1
d818
PZD 2
Master velocity
Process data word
received via COMBOARD
PZD 3
Factor overspeed
PZD 4
Control word 2
PZD 5
Acceleration
CB Setpoint2 Norm
(1.0)
H820 CB Setpoint2
d821
PZD 6
Sheet size
1.0
100 %
PZD1 from CBK2801
d801 d810
PZD1 .. PZD10 CB inp
PZD2 from CBK2802
PZD3 from CBK2803
PZD4 from CBK2804
PZD5 from CBK2805
PZD6 from CBK2806
PZD 7
Cutting force
PZD7 from CBK2807
PZD 8
Distance to cut
PZD8 from CBK2808
PZD 9
Number of cuts
PZD9 from CBK2809
PZD 10
Shear control word
PZD10 from CBK2810
H816 (2802)
K (670,3)
S.Setpoint1 CB
Setpoint1 CBKR3818
H819 (2803)
K (670,3)
S.Setpoint2 CB
Setpoint2 CBKR3821
CB DW1 Norm
(1.0)
H813 CB Setpoint DW1
d814
1.0
100 %
H811 (2807)
K (670,3)
S.DW1 low CB Setpoint DW1 CBKR3814
H812 (2808)
K (670,3)
S.DW1 high CB
Convert 16-bit integers to floating-point
Convert double word to floating point
. . . .
W
DW
high
low
CB Setpoint3 Norm
(1.0)
H823 CB Setpoint3
d824
1.0
100 %
H822 (2807)
K (670,3)
S.Setpoint3 CB
Setpoint3 CBKR3824
CB Setpoint4 Norm
(1.0)
H931 CB Setpoint4
d932
1.0
100 %
H930 (2805)
K (670,3)
S.Setpoint4 CB
Setpoint4 CBKR3932
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
CB control word 1 (for CU) CB Shear control word
H841 (2801)
K (670,3)
S.CB_Control W1
B0840 CB Control W1.0
B0841 CB Control W1.1
B0842 CB Control W1.2
B0843 CB Control W1.3
B0844 CB Control W1.4
B0845 CB Control W1.5
B0846 CB Control W1.6
B0847 CB Control W1.7
B0848 CB Control W1.8
B0849 CB Control W1.9
B0850 CB Control W1.10
B0851 CB Control W1.11
B0852 CB Control W1.12
B0853 CB Control W1.13
B0854 CB Control W1.14
B0855 CB Control W1.15
Bit 0
Bit 6 Referencing
Bit 1 Continous cutting
Bit 2 Test cut
Bit 3 Single cut
Bit 4 Format setpoint valid
Bit 5 Light gate web start
Bit 7
Bit 8 Approach start position
Bit 9
Bit 12 End cut
Bit 10 Enable cut program
Bit 11 Crop cutfreigabe
Bit 13
Bit 14 Approach knife change pos.
Bit 15 Option special sheet
B0860 CB SCTW.0
B0861 CB SCTW.1
B0862 CB SCTW.2
B0863 CB SCTW.3
B0864 CB SCTW.4
B0865 CB SCTW.5
B0866 CB SCTW.6
B0867 CB SCTW.7
B0868 CB SCTW .8
B0869 CB SCTW .9
B0870 CB SCTW.10
B0871 CB SCTW.11
B0872 CB SCTW.12
B0873 CB SCTW.13
B0874 CB SCTW.14
B0875 CB SCTW.15
H844 (2810)
K (670,3)
S.CB ShearCTW
- 680 -
COMBOARD
Control words
B0815 CB CTW1.15 inv
B0800 CB CTW1.0 inv
.....
...
...
B0835 CB SCTW.15 inv
B0820 CB SCTW.0 inv
.....
...
...
inverted control bits
inverted control bits
CB Shear CTW
d845
CB CTW1
d843
H842 (2621)
K (810,6)
S.CB CTW Simulation
0
1
Simulation mode [270,6]
K2843
K2845
Bit 0 (0 = OFF1)
Bit 6 (Setpoint enable)
Bit 1 (0 = OFF2 )
Bit 2 (0 = OFF 3 (quick stop) )
Bit 3 (Inverter enable)
Bit 4 (Ramp funct. gen. enable)
Bit 5 (Start ramp funct. gener.)
Bit 7 (Fault acknowledge)
Bit 8 (Jogging 1)
Bit 9 (Jogging 2)
Bit 12 (Counter-clockwise enable)
Bit 10 (Control requested)
Bit 11 (Clockwise sequ. enable)
Bit 13 (Raise motor potentiom.)
Bit 14 (Lower motor potentiom.)
Bit 15 (1 = external fault)
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
Status word 1
for COMBOARD
L000 (0340)
B (620,4)
S.Status1CB Bit0 ... Bit15
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B (620,4)
L002 (0342) B (620,4)
L001 (0341)
B (620,4)
L003 (0343)
B (620,4)
L004 (0344)
B (620,4)
L005 (0345)
B (620,4)
L006 (0346)
B (620,4)
L007 (0347)
B (620,4)
L008 (0308)
B
L009 (0001)
B (330,3)
L010 (0459)
B (70,2)
L011 (0000)
B (70,2)
L012 (0000)
B (70,2)
L013 (0000)
B (70,2)
L014 (0000)
B (70,2)
L015 (0000)
Status word1 CBK2846
StatusWord1 CB
d846
- 690 -
COMBOARD
Status words
Status word 2
for COMBOARD
L020 (0000)
B (70,2)
S.Status2CB Bit0 ... Bit15
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B (70,2)
L022 (0000) B (70,2)
L021 (0000)
B (70,2)
L023 (0000)
B (70,2)
L024 (0000)
B (70,2)
L025 (0000)
B (240,8)
L026 (0548)
B (70,2)
L027 (0000)
B (70,2)
L028 (0000)
B (70,2)
L029 (0000)
B (70,2)
L030 (0000)
B (70,2)
L031 (0000)
B (70,2)
L032 (0000)
B (70,2)
L033 (0000)
B (70,2)
L034 (0000)
B (70,2)
L035 (0000)
Status word 2 CBK2847
StatusWord2 CB
d847
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 700 -
COMBOARD
Process data transmission
100 %
1.0
Process data send via
COMBOARD
H827
(1.0)
ActValue1 CB Norm
ActValue1 CB
d826
H833
(1.0)
ActValue3 CB Norm
100 %
1.0
100 %
1.0
H830
(1.0)
ActValue2 CB Norm
100 %
1.0
H840
(1.0)
ActValue5 CB Norm
100 %
1.0
H836
(1.0)
ActValue4 CB Norm
Conversion to double word
H825 (3435)
KR (130,6)
S.ActValue1 CB
ActValue1 CBK2826
H828 (3411)
KR (120,7)
S.ActValue2 CB ActValue2 CB
d829
ActValue2 CBK2829
H831 (3445)
KR (135,5)
S.ActValue3 CB ActValue3 CB
d832
ActValue3 CBK2832
H834 (3000)
KR (70,2)
S.ActValue4 CB ActValue4 CB
d835
ActValue4 CBK2835
H837 (3000)
KR (70,2)
S.ActValue5 CB
ActValue5 high CB
d838
W
DW
high
low
ActValue5 high CBK2838
ActValue5 low CBK2839
H901 (2846)
K (690,4)
S. PZD1 CB
PZD1 CB out
d911
H902 (2826)
K (700,3)
S. PZD2 CB
H903 (2829)
K (700,3)
S. PZD3 CB
H904 (2847)
K (690,8)
S. PZD4 CB
H905 (2307)
K (610,3)
S. PZD5 CB
H906 (2305)
K (610,3)
S. PZD6 CB
H907 (2832)
K (700,3)
S. PZD7 CB
H908 (2835)
K (700,3)
S. PZD8 CB
PZD10 CB out
d920
. . . . . .
PZD 1
Status word 1
PZD 2
Material velocity
PZD 3
Speed act. value shear
PZD 4
Status word 2
PZD 5
Current act. value
PZD 6
Torque act. value
PZD 7
PZD 8
PZD 9
PZD 10
Shear status word
H909 (2838)
K (700,4)
S. PZD9 CB
H910 (2017)
K (520,5)
S. PZD10 CB
d839
ActValue5 low CB
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
CB Param. 1
(0)
L901
CB Param. 2
(2)
L902
CB Param. 3
(0)
L903
CB Param. 4
(0)
L904
CB Param. 5
(0)
L905
CB Param. 6
(0)
L906
CB Param. 7
(0)
L907
CB Param. 8
(0)
L908
CB Param. 9
(0)
L909
CB Param. 10
(0)
L910
CB Param. 13
(0)
L913
CB Param. 11
(0)
L911
CB Param. 12
(0)
L912
CB Config set
(1)
L914
CB Address
(3)
L900
CB Config State
c915
Configuration valid
Slave bus address
Parameter setting for
the COMBOARD
(depending of the type of
COMBOARD)
Status of the
configuration
Configuration of COMBOARDs:
These parameters are reserved for using
COMBOARDs in SRT400 applications.
For the configuration of a COMBOARD placed in slot
G (lower position) of the electronic box of inverters use
parameters of the inverter (e.g. P918 for the bus
address with Masterdrives MC).
The modifications of any parameter L900 to L913
becomes valid after setting
L914= 0 and L914=1.
Configuration COMBOARD
- 750 -
Optional communication
COMBOARD configuration
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
USS Enable
(1)
L990
USS Baud Rate
(9600)
L991
Baud rate
(OP1S: 9600 bps or 19200 bps)
USS bus address
Receive statusEnable
- 770 -
Optional communication
USS slave
USS Address
(0)
L992
USS 4-Wire
(0)
L993
Duplex / half duplex operation
0: RS485 (2 wires)
1: RS232 (4 wires)
Receive
L997 (2000)
K (70,2)
S.PZD1 USS Slave
PZD1
PZD2
PZD1
PZD2
Transmit
PZD1 USSK2995
PZD2 USSK2996
L998 (2000)
K (70,2)
S.PZD2 USS Slave
PZD1 USS
c995 PZD2 USS
c996
USS Status
c994
USS StatusK2994
USS slave operation
The USS slave coupling is required for visualizing or changing
parameters using OP1S or SIMOVIS only if the T400 is working
stand alone in the SRT400 rack .
For enabling set T400 switch S1/8 = ON. The switching becomes
valid after the next power on. Online communications with other
service tools using the same interface (e.g. CFC) will be disabled!
If there is no access with OP1S caused by not supported
parameter setting (e.g. wrong baud rate) set S1/8 = OFF and use
the Service-IBS program to correct the parameters.
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 780 -
Optional communication
General settings peer to peer
Peer Enable
(0)
L066
tmax Peer Run
(100ms)
L067
maximum time
interval between 2
telegrams
Timeout
Receive status
Enable
&
PeerReceiveStat
c069
1
bitwise ANDed
at least one bit = 1 T0
tmax PeerPowerON
(20s)
L077
Peer to Peer
Mask Peer Status
(16#FFFF)
L076
16 bit
B0078 Peer timeout
Peer Timeout
c078
1
B0079 Peer no timeout
Peer Baud Rate
(19200)
L060 Baud rate
Receiver initialized
1
B0068 Peer receive initialized
B0069 Peer receive not initialized
Transmitter initialized
1
B0070 Peer transmit initialized
B0071 Peer transmit not initialized
Peer Receive init
c068
Peer Transmit init
c070
NOTE:
After enable the Peer to Peer
interface the T400 board has to been
restarted (power off - power on).
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
- 790 -
Optional communication
Peer to peer process data
Process data
transmission
L071 (2000)
K (70,2)
S. Peer PZD1
L072 (2000)
K (70,2)
S. Peer PZD2
L073 (2000)
K (70,2)
S. Peer PZD3
L074 (2000)
K (70,2)
S. Peer PZD4
L075 (2000)
K (70,2)
S. Peer PZD5
2
1
0
L083 (3000)
K (70,2)
S.Peer Float1
L080 (5000)
K (70,2)
S.Peer DW1
Peer Sendtype1
(0)
L085
2
1
0
Peer Sendtype2
(0)
L086
L084 (3000)
K (70,2)
S.Peer Float2
L081 (5000)
K (70,2)
S.Peer DW2
W
DW
W
DW
Process data
reception
PZD1 from PeerK2061
PZD1 Peer ... PZD5
c061 ... c065
PZD2 from PeerK2062
PZD3 from PeerK2063
PZD4 from PeerK2064
PZD5 from PeerK2065
Peer DW1KK5061
Peer Float1KR3061
Peer DW2KK5063
Peer Float2KR3063
PZD 2 + PZD 3
PZD 4 + PZD 5
PZD 1
W
DW
W
DW
PZD 2 + PZD 3
PZD 4 + PZD 5
PZD 1
Process data words PZD2, PZD3 und PZD4, PZD5 may be
transmitted either as word, double word or floating-point values.
Note:
Before connecting F
loating-point
receiver channels (e.g.
KR3061) to other function blocks make sure that you receive
floating-point data from this channel! This avoids additional
computation time for the error handling of "not-a-number" values.
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
0
1
2
3
4
5
6
7
8
L776 (2000)
K (70,2)
S.Testdata1_Sel
Testdata1
K2776
Testdata1_1
(16#847E)
L768 Testdata1_2
(16#9C7F)
L769
Testdata1_3
(16#057F)
L770 Testdata1_4
(16#067F)
L771
Testdata1_5
(16#84FE)
L772 Testdata1_6
(0)
L773
Testdata1_7
(0)
L774 Testdata1_8
(0)
L775
0
1
2
3
4
5
6
7
8
L785 (2000)
K (70,2)
S.Testdata2_Sel
Testdata2
K2785
Testdata2_1
(16#0032)
L777 Testdata2_2
(16#0034)
L778
Testdata2_3
(16#0038)
L779 Testdata2_4
(16#0050)
L780
Testdata2_5
(16#0130)
L781 Testdata2_6
(16#0810)
L782Testdata2_7
(16#1010)
L783 Testdata2_8
(16#0430)
L784
- 800 -
Test operation
Multiplexer selected fixed values
Continous cut
Factory setting:
Test data for shear control word1 (SCTW1)
Test cut
Single cut
Referencing
Approach start pos.
Crop cut
End cut
Cut program
Factory setting:
Test data for control word 1 (CTW1)
Function diagram 87654321
FPlan_SPS450e.vsd
Sheet cutter / Cut to Length10.01.01
V1.02
L620 (0000)
B (70,2)
S.ON StateMach
L621 (0340)
B (620,4)
S.CU ready SM
L622 (0001)
B (70,2)
S.Web ready SM
L623 (0014)
B (530,8)
S.Fault SM
MS1 SM on
(16#0017)
L636
I2
I3
I4
I5
MS1 MR
Q
I1
STATE
Q
1
0
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B0610 CTW1_SM_0
B0611 CTW1_SM_1
B0612 CTW1_SM_2
B0613 CTW1_SM_3
B0614 CTW1_SM_4
B0615 CTW1_SM_5
B0616 CTW1_SM_6
B0617 CTW1_SM_7
B0618 CTW1_SM_8
B0619 CTW1_SM_9
B0620 CTW1_SM_10
B0621 CTW1_SM_11
B0622 CTW1_SM_12
B0623 CTW1_SM_13
B0624 CTW1_SM_14
B0625 CTW1_SM_15
&
1
0
&
1
0
1
0
L626 (0342)
B (620,4)
S.CU run SM
L627 (0001)
B (70,2)
S.Web runSM
L628 (1310)
B (170,5)
S.Calibrated SM
L629 (0647)
B (340,4)
S.in Startpos SM
SCTW1 OFF SM
(16#0000)
L630
SCTW1 Refer. SM
(16#0050)
L631
SCTW1 Startp SM
(16#0110)
L632
SCTW1 Cut SM
(16#0032)
L633
Bit 0
Bit 6
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 7
Bit 8
Bit 9
Bit 12
Bit 10
Bit 11
Bit 13
Bit 14
Bit 15
B0780 SCTW1_SM_0
B0781 SCTW1_SM_1
B0782 SCTW1_SM_2
B0783 SCTW1_SM_3
B0784 SCTW1_SM_4
B0785 SCTW1_SM_5
B0786 SCTW1_SM_6
B0787 SCTW1_SM_7
B0788 SCTW1_SM_8
B0789 SCTW1_SM_9
B0790 SCTW1_SM_10
B0791 SCTW1_SM_11
B0792 SCTW1_SM_12
B0793 SCTW1_SM_13
B0794 SCTW1_SM_14
B0795 SCTW1_SM_15
StateCut MS1
(16#0007)
L634
StateCut MR
(16#0500)
L635
ON state machine (810,2)
B0609 ON state machine
- 810 -
Test operation
Startup state machine
SCTW1 test operation
K2622
CTW1 test operation
K2621
MR SM off
(16#1008)
L637
CTW1 CU=OFF
(16#843E)
L624
CTW1 CU=ON
(16#9C7F)
L625
L638 (2622)
K (810,5)
S.SCTW1bits SM
L639 (2621)
K (810,6)
S.CTW1bits SM
B0626
B0627
B0635
B0629
B0630
B0636
B0628B0632
SCTW2 test operation
K262316#1080
StateCut MR1
(16#0A00)
L644
I2
I3
MS1 MR
Q
I1 STATE
Q
MR1
I4
L643 (0576)
B (320,5)
S.CutMode SM