Ordering Information
Specify part number followed by
Option Number (if desired).
CNY17-3-XXXE
Lead Free
Option Number
000 = No Options
060 = IEC/EN/DIN EN 60747-5-2
Option
W00 = 0.4" Lead Spacing Option
300 = Lead Bend SMD Option
500 = Tape and Reel Packaging
Option
Agilent CNY17-x
Phototransistor Optocoupler
High Collector-Emitter
Voltage Type
Data Sheet
Features
High collector-emitter voltage
(VCEO = 70 V)
High input-output isolation voltage
(Viso = 5000 Vrms)
Current Transfer Ratio
(CTR: min. 40% at IF = 10 mA,
VCE = 5 V)
Response time (tr: typ., 5 µs at
VCC = 10 V, IC = 2 mA, RL = 100 )
Dual-in-line package
UL approved
CSA approved
IEC/EN/DIN EN 60747-5-2 approved
Options available:
Leads with 0.4" (10.16 mm)
spacing (W00)
Leads bends for surface
mounting (300)
Tape and reel for SMD (500)
IEC/EN/DIN EN 60747-5-2
approvals (060)
Applications
System appliances, measuring
instruments
Signal transmission between
circuits of different potentials and
impedances
Feedback circuit in power supply
Description
The CNY17 contains a light emitting
diode optically coupled to a photo-
transistor. It is packaged in a 6-pin
DIP package and available in wide-
lead spacing option and lead bend
SMD option. Collector-emitter
voltage is above 70 V. Response
time, tr, is typically 5 µs and
minimum CTR is 40% at input
current of 10 mA.
Functional Diagram
Schematic
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
654
123
PIN NO. AND INTERNAL
CONNECTION DIAGRAM
1. ANODE
2. CATHODE
3. NC
4. EMITTER
5. COLLECTOR
6. BASE
1
2
ANODE
CATHODE
V
F
+
I
F
6
5
4
BASE
COLLECTOR
EMITTER
I
C
2
Package Outline Drawings
CNY17-X-000E
CNY17-X-W00E
CNY17-X-060E
ANODE
LEAD FREE
DATE
CODE *1
A CNY17 -
YYWW
6.5 ± 0.5
(0.256)
DIMENSIONS IN MILLIMETERS AND (INCHES)
7.3 ± 0.5
(0.287)
2.8 ± 0.5
(0.110)
2.54 ± 0.25
(0.1)
0.5 ± 0.1
(0.02)
3.5 ± 0.5
(0.138)
3.3 ± 0.5
(0.13)
0.5
(0.02)
7.62 ± 0.3
(0.3)
0.26
(0.010)
7.62 ~ 9.98
TYP.
MODEL
NO. *2
ANODE
LEAD FREE
DATE
CODE *1
A CNY17- V
YYWW
6.5 ± 0.5
(0.256)
DIMENSIONS IN MILLIMETERS AND (INCHES)
7.3 ± 0.5
(0.287)
2.8 ± 0.5
(0.110)
2.54 ± 0.25
(0.1)
0.5 ± 0.1
(0.02)
3.5 ± 0.5
(0.138)
3.3 ± 0.5
(0.13)
0.5
(0.02)
7.62 ± 0.3
(0.3)
0.26
(0.010)
7.62 ~ 9.98
TYP.
MODEL
NO. *2
6.5 ± 0.5
(0.256)
DIMENSIONS IN MILLIMETERS AND (INCHES)
7.3 ± 0.5
(0.287)
2.8 ± 0.5
(0.110)
2.54 ± 0.25
(0.1)
0.5 ± 0.1
(0.02)
3.5 ± 0.5
(0.138)
7.62 ± 0.3
(0.3)
10.16 ± 0.5
(0.4)
2.3 ± 0.5
(0.09)
6.9 ± 0.5
(0.272)
MODEL
NO. *2
ANODE
DATE
CODE *1
LEAD FREE
A CNY17 -
YYWW
0.26
(0.010)
3
CNY17-X-300E
30 seconds
60 ~ 150 sec 90 sec 60 sec
60 sec
25°C
150°C
200°C
250°C260°C (Peak Temperature)
217°C
Time (sec)
Temperature (°C)
Absolute Maximum Ratings
Storage Temperature, TS–55˚C to +150˚C
Operating Temperature, TA–55˚C to +100˚C
Lead Solder Temperature, max. 260˚C for 10 s
(1.6 mm below seating plane)
Average Forward Current, IF60 mA
Reverse Input Voltage, VR6 V
Input Power Dissipation, PI100 mW
Collector Current, IC150 mA
Collector-Emitter Voltage, VCEO 70 V
Emitter-Collector Voltage, VECO 6 V
Collector-Base Voltage, VCBO 70 V
Collector Power Dissipation 150 mW
Total Power Dissipation 250 mW
Isolation Voltage, Viso (AC for 1 minute, R.H. = 40 ~ 60%) 5000 Vrms
Solder Reflow Temperature Profile
1) One-time soldering reflow is
recommended within the
condition of temperature and
time profile shown at right.
2) When using another soldering
method such as infrared ray
lamp, the temperature may rise
partially in the mold of the
device. Keep the temperature on
the package of the device within
the condition of (1) above.
6.5 ± 0.5
(0.256)
DIMENSIONS IN MILLIMETERS AND (INCHES)
7.3 ± 0.5
(0.287)
2.54 ± 0.25
(0.1)
3.5 ± 0.5
(0.138)
7.62 ± 0.3
(0.3)
0.35 +0.15/-0.10
(0.014)
10.16 ± 0.3
(0.4)
1.2 ± 0.1
(0.047) 0.35 ± 0.25
(0.014) 1.0 ± 0.25
(0.039)
ANODE
DATE
CODE *1
LEAD FREE
A CNY17 -
YYWW
MODEL
NO. *2
4
Figure 1. Forward current vs. temperature. Figure 2. Collector power dissipation vs.
temperature.
Figure 3. Frequency response.
I
F
FORWARD CURRENT mA
0
T
A
AMBIENT TEMPERATURE °C
-25 75 125
60
25
20
40
0 50 100-55
80
P
C
COLLECTOR POWER DISSIPATION mW
0
T
A
AMBIENT TEMPERATURE °C
-25 75 125
100
25
50
200
0 50 100-55
150
160
* CTR = x 100%
IC
IF
Electrical Specifications (TA = 25˚C)
Parameter Symbol Min. Typ. Max. Units Test Conditions
Forward Voltage VF–1.41.7V I
F = 60 mA
Reverse Current IR–– 10µAV
R = 6 V
Terminal Capacitance Ct 100 pF V = 0, f = 1 MHz
Collector Dark Current ICEO –– 50nAV
CE = 10 V
Collector-Emitter Breakdown Voltage BVCEO 70 V IC = 0.1 mA, IF = 0
Emitter-Collector Breakdown Voltage BVECO 6– V I
E = 10 µA, IF = 0
Collector-Base Breakdown Voltage BVCBO 70 V IC = 0.1 mA, IF = 0
Collector Current IC4– 32mAI
F = 10 mA
*Current Transfer Ratio CNY17-1 CTR 40 80 % VCE = 5 V
CNY17-2 63 125
CNY17-3 100 200
CNY17-4 160 320
Collector-Emitter Saturation Voltage VCE(sat) –– 0.3V I
F = 10 mA, IC = 2.5 mA
Response Time (Rise) tr–5 10µsV
CE = 5 V, IC = 10 mA
Response Time (Fall) tf–5 10µsR
L = 100
Isolation Resistance Riso 1 x 1011 ––DC 500 V
40 ~ 60% R.H.
Floating Capacitance Cf 2 pF V = 0, f = 1 MHz
5
CTR CURRENT TRANSFER RATIO %
0
I
F
FORWARD CURRENT mA
250
120
10
40
80
200
5200
160
V
CE
= 5 V
T
A
= 25°C
R
BE
=
100 k
180
140
100
60
20 500 k
Figure 5. Current transfer ratio vs. forward
current.
Figure 6. Collector current vs. collector-
emitter voltage.
Figure 7. Relative current transfer ratio vs.
temperature.
Figure 8. Collector-emitter saturation
voltage vs. temperature.
Figure 9. Collector dark current vs.
temperature.
Figure 4. Forward current vs. forward voltage.
I
F
FORWARD CURRENT mA
1
V
F
FORWARD VOLTAGE V
2.0 3.0
10
5
500
1.00
T
A
= 75°C
0.5 1.5 2.5
2
20
50
100
200 T
A
= 50°C
T
A
= 25°C
T
A
= 0°C
T
A
= -25°C
IC COLLECTOR CURRENT mA
0
VCE COLLECTOR-EMITTER VOLTAGE V
810
30
15
45
20
PC (MAX.)
TA = 25°C
IF = 30 mA
IF = 20 mA
IF = 10 mA
IF = 5 mA
IF = 2 mA
10
5
20
25
35
40
46
RELATIVE CURRENT TRANSFER RATIO %
0
100
50
150
V
CE
= 5 V
I
F
= 10 mA
T
A
AMBIENT TEMPERATURE °C
-25 75250 50 100-55
ICEO COLLECTOR DARK CURRENT A
10
-13
80200 40 100-30
TA AMBIENT TEMPERATURE °C
VCE = 10 V
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
10
-6
60
VCE(SAT.) COLLECTOR-EMITTER
SATURATION VOLTAGE V
0
TA AMBIENT TEMPERATURE °C
-25 7525
0.02
0.16
0 50 100-55
0.10
IC = 2.5 mA
IF = 10 mA
0.04
0.06
0.08
0.12
0.14
Figure 11. Collector-emitter saturation
voltage vs. forward current.
Figure 10. Response time vs. load resistance.
0
IF FORWARD CURRENT mA
7.5 12.5
2
5.00 2.5 10.0
1
3
4
5
6
VCE(SAT.) COLLECTOR-EMITTER
SATURATION VOLTAGE V
TA = 25°C
IC = 0.5 mA
IC = 1 mA
IC = 2 mA
IC = 3 mA
IC = 5 mA
RESPONSE TIME µs
R
L
LOAD RESISTANCE k
0.5
1
0.05
0.5
0.02 0.2
2
I
F
= 10 mA
V
CC
= 5 V
T
A
= 25°C
tf
0.1
5
10
tr
V
CC
R
D
INPUT
R
L
OUTPUT
INPUT
OUTPUT 10%
90%
t
tt
t
f
ds
r
Test Circuit for Response Time Test Circuit for Frequency Response
VCC
RDRL
OUTPUT
~
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(916) 788-6763
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 6756 2394
India, Australia, New Zealand: (+65) 6755 1939
Japan: (+81 3) 3335-8152 (Domestic/Interna-
tional), or 0120-61-1280 (Domestic Only)
Korea: (+65) 6755 1989
Singapore, Malaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 6755 2044
Taiwan: (+65) 6755 1843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5989-0290EN
October 27, 2004
5989-1736EN