PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE FOR EVALUATION AND REFERENCE PURPOSES ONLY AND ARE SUBJECT TO CHANGE BY
MICRON WITHOUT NOTICE. PRODUCTS ARE ONLY WARRANTED BY MICRON TO MEET MICRON’S PRODUCTION DATA SHEET SPECIFICATIONS.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 1©2005 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
DDR SDRAM
UNBUFFERED DIMM
MT16VDDT3264A – 256MB
MT16VDDT6464A – 512MB
MT16VDDT12864A – 1GB
MT16VDDT25664A – 2GB
(
ADVANCE
)
For the latest data sheet, please refer to the Micron Web
site: www.micron.com/products/modules
Features
184-pin, dual in-line memory module (DIMM)
Fast data transfer rates: PC2100 or PC2700
Utilizes 266 MT/s and 333 MT/s DDR SDRAM
components
256MB (32 Meg x 64), 512MB (64 Meg x 64), 1GB
(128 Meg x 64), and 2GB (256 Meg x 64)
•V
DD = VDDQ = +2.5V
•V
DDSPD = +2.3V to +3.6V
2.5V I/O (SSTL_2 compatible)
Commands entered on each positive CK edge
DQS edge-aligned with data for READs; center-
aligned with data for WRITEs
Internal, pipelined double data rate (DDR)
architecture; two data accesses per clock cycle
Bidirectional data strobe (DQS) transmitted/
received with data—i.e., source-synchronous data
capture
Differential clock inputs (CK and CK#)
Four internal device banks for concurrent operation
Programmable burst lengths: 2, 4, or 8
Auto precharge option
Auto Refresh and Self Refresh Modes
15.6µs (256MB), 7.8125µs (512MB, 1GB, and 2GB)
maximum average periodic refresh interval
Serial Presence Detect (SPD) with EEPROM
Programmable READ CAS latency
Gold edge contacts
Figure 1: 184-Pin DIMM (MO-206)
NOTE: 1. Consult Micron for product availability.
2. CL = CAS (READ) Latency.
OPTIONS MARKING
•Package
184-pin DIMM (standard) G
184-pin DIMM (lead-free)1Y
Memory Clock, Speed, CAS Latency2
6ns/166MHz (333 MT/s) CL = 2.5 -335
7.5ns/133 MHz (266 MT/s) CL = 2 -2621
7.5ns/133 MHz (266 MT/s) CL = 2 -26A1
7.5ns/133 MHz (266 MT/s) CL = 2.5 -265
•PCB
Standard 1.25in. (31.75mm) See page 2 note
Low-Profile 1.20in. (30.48mm) See page 2 note
Standard 1.25in. (31.75mm)
Low-Profile 1.15in. (29.21mm)
Table 1: Address Table
256MB 512MB 1GB 2GB
Refresh Count 4K 8K 8K 8K
Row Addressing 4K (A0–A11) 8K (A0–A12) 8K (A0–A12) 16K (A0–A13)
Device Bank Addressing 4 (BA0, BA1) 4 (BA0, BA1) 4 (BA0, BA1) 4 (BA0, BA1)
Device Configuration 128Mb (16 Meg x 8) 256Mb (32 Meg x 8) 512Mb (64 Meg x 8) 1Gb (128 Meg x 8)
Column Addressing 1K (A0–A9) 1K (A0–A9) 2K (A0–A9, A11) 2K (A0–A9, A11)
Module Rank Addressing 2 (S0#, S1#) 2 (S0#, S1#) 2 (S0#, S1#) 2 (S0#, S1#)
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 2©2005 Micron Technology, Inc.
Table 2: Part Numbers and Timing Parameters
PART NUMBER MODULE
DENSITY
CONFIGURATION MODULE
BANDWIDTH
MEMORY CLOCK/
DATA RATE
LATENCY
(CL - tRCD - tRP)
MT16VDDT3264AG-335__ 256MB 32 Meg x 64 2.7 GB/s 6ns/333 MT/s 2.5-3-3
MT16VDDT3264AY-335__ 256MB 32 Meg x 64 2.7 GB/s 6ns/333 MT/s 2.5-3-3
MT16VDDT3264AG-262__ 256MB 32 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT16VDDT3264AY-262__ 256MB 32 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT16VDDT3264AG-26A__ 256MB 32 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT16VDDT3264AY-26A__ 256MB 32 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT16VDDT3264AG-265__ 256MB 32 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT16VDDT3264AY-265__ 256MB 32 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT16VDDT6464AG-335__ 512MB 64 Meg x 64 2.7 GB/s 6ns/333 MT/s 2.5-3-3
MT16VDDT6464AY-335__ 512MB 64 Meg x 64 2.7 GB/s 6ns/333 MT/s 2.5-3-3
MT16VDDT6464AG-262__ 512MB 64 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT16VDDT6464AY-262__ 512MB 64 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT16VDDT6464AG-26A__ 512MB 64 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT16VDDT6464AY-26A__ 512MB 64 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT16VDDT6464AG-265__ 512MB 64 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT16VDDT6464AY-265__ 512MB 64 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT16VDDT12864AG-335__ 1GB 128 Meg x 64 2.7 GB/s 6ns/333 MT/s 2.5-3-3
MT16VDDT12864AY-335__ 1GB 128 Meg x 64 2.7 GB/s 6ns/333 MT/s 2.5-3-3
MT16VDDT12864AG-262__ 1GB 128 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT16VDDT12864AY-262__ 1GB 128 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT16VDDT12864AG-26A__ 1GB 128 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT16VDDT12864AY-26A__ 1GB 128 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT16VDDT12864AG-265__ 1GB 128 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT16VDDT12864AY-265__ 1GB 128 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT16VDDT25664AG-335__ 2GB 256 Meg x 64 2.7 GB/s 6ns/333 MT/s 2.5-3-3
MT16VDDT25664AY-335__ 2GB 256 Meg x 64 2.7 GB/s 6ns/333 MT/s 2.5-3-3
MT16VDDT25664AG-262__ 2GB 256 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT16VDDT25664AY-262__ 2GB 256 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-2-2
MT16VDDT25664AG-26A__ 2GB 256 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT16VDDT25664AY-26A__ 2GB 256 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2-3-3
MT16VDDT25664AG-265__ 2GB 256 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
MT16VDDT25664AY-265__ 2GB 256 Meg x 64 2.1 GB/s 7.5ns/266 MT/s 2.5-3-3
NOTE:
All part numbers end with a two-place code (not shown), designating component and PCB revisions. Consult factory for
current revision codes. Example: MT16VDDT6464AG-265A1.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 3©2005 Micron Technology, Inc.
NOTE:
1. Pin 115 is No Connect for 256MB, or A12 for 512MB, 1GB, 2GB.
2. Pin 167 is No Connect (NC) for 256MB, 512MB, and 1GB, or A13 for 2GB.
Figure 2: Pin Locations: 184-Pin DIMM
Table 3: Pin Assignment
(184-Pin DIMM Front)
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
1VREF 24 DQ17 47 DNU 70 VDD
2DQ025 DQS2 48 A0 71 NC
3VSS 26 VSS 49 DNU 72 DQ48
4DQ127 A9 50 VSS 73 DQ49
5DQS028 DQ18 51 DNU 74 VSS
6DQ229 A7 52 BA1 75 CK2#
7V
DD 30 VDDQ 53 DQ32 76 CK2
8 DQ3 31 DQ19 54 VDDQ 77 VDDQ
9NC32 A5 55 DQ33 78 DQS6
10 NC 33 DQ24 56 DQS4 79 DQ50
11 VSS 34 VSS 57 DQ34 80 DQ51
12 DQ8 35 DQ25 58 VSS 81 VSS
13 DQ9 36 DQS3 59 BA0 82 NC
14 DQS1 37 A4 60 DQ35 83 DQ56
15 VDDQ 38 VDD 61 DQ40 84 DQ57
16 CK1 39 DQ26 62 VDDQ 85 VDD
17 CK1# 40 DQ27 63 WE# 86 DQS7
18 VSS 41 A2 64 DQ41 87 DQ58
19 DQ10 42 VSS 65 CAS# 88 DQ59
20 DQ11 43 A1 66 VSS 89 VSS
21 CKE0 44 DNU 67 DQS5 90 NC
22 VDDQ 45 DNU 68 DQ42 91 SDA
23 DQ16 46 VDD 69 DQ43 92 SCL
Table 4: Pin Assignment
(184-Pin DIMM Back)
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
93 VSS 116 VSS 139 VSS 162 DQ47
94 DQ4 117 DQ21 140 DNU 163 NC
95 DQ5 118 A11 141 A10 164 VDDQ
96 VDDQ 119 DM2 142 DNU 165 DQ52
97 DM0 120 VDD 143 VDDQ 166 DQ53
98 DQ6 121 DQ22 144 DNU 1672NC/A13
99 DQ7 122 A8 145 VSS 168 VDD
100 VSS 123 DQ23 146 DQ36 169 DM6
101 NC 124 VSS 147 DQ37 170 DQ54
102 NC 125 A6 148 VDD 171 DQ55
103 NC 126 DQ28 149 DM4 172 VDDQ
104 VDDQ 127 DQ29 150 DQ38 173 NC
105 DQ12 128 VDDQ 151 DQ39 174 DQ60
106 DQ13 129 DM3 152 VSS 175 DQ61
107 DM1 130 A3 153 DQ44 176 VSS
108 VDD 131 DQ30 154RAS#177DM7
109 DQ14 132 VSS 155 DQ45 178 DQ62
110 DQ15 133 DQ31 156 VDDQ 179 DQ63
111 CKE1 134 DNU 157 S0# 180 VDDQ
112 VDDQ 135 DNU 158 S1# 181 SA0
113 NC 136 VDDQ 159 DM5 182 SA1
114 DQ20 137 CK0 160 VSS 183 SA2
115 NC/A12 138 CK0# 161 DQ46 184 VDDSPD
U1 U2 U3 U4 U6 U7 U8 U9
U19 U18 U17 U16 U14 U13 U12 U11
U10
PIN 93
PIN 144
PIN 145
PIN 184
PIN 1 PIN 52 PIN 53 PIN 92
Front View
Back View
Indicates a VDD or VDDQ pin Indicates a VSS pin
Low-Profile 1.15in. (29.21mm)
PIN 93
PIN 144
PIN 145
PIN 184
PIN 1 PIN 52 PIN 53 PIN 92
Indicates a VDD or VDDQ pin Indicates a VSS pin
Front View
Back View
U1 U2 U3 U4 U6 U7 U8 U9
U19
U10 U11 U12 U13 U15 U16 U17 U18
Standard 1.25in. (31.75mm)
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 4©2005 Micron Technology, Inc.
Table 5: Pin Descriptions
Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 3 for more information
PIN NUMBERS SYMBOL TYPE DESCRIPTION
63, 65, 154 WE#, CAS#, RAS# Input Command Inputs: RAS#, CAS#, and WE# (along with S#) define
the command being entered.
16, 17, 75, 76, 137, 138 CK0, CK0#, CK1,
CK1#, CK2, CK2#
Input Clock: CK, CK# are differential clock inputs. All address and
control input signals are sampled on the crossing of the
positive edge of CK,and negative edge of CK#. Output data
(DQs and DQS) is referenced to the crossings of CK and CK#.
21, 111 CKE0, CKE1 Input Clock Enable: CKE HIGH activates and CKE LOW deactivates
the internal clock, input buffers and output drivers. Taking
CKE LOW provides PRECHARGE POWER-DOWN and SELF
REFRESH operations (all device banks idle), or ACTIVE POWER-
DOWN (row ACTIVE in any device bank). CKE is synchronous
for POWER-DOWN entry and exit, and for SELF REFRESH entry.
CKE is asynchronous for SELF REFRESH exit and for disabling
the outputs. CKE must be maintained HIGH throughout read
and write accesses. Input buffers (excluding CK, CK# and CKE)
are disabled during POWER-DOWN. Input buffers (excluding
CKE) are disabled during SELF REFRESH. CKE is an SSTL_2 input
but will detect an LVCMOS LOW level after VDD is applied and
until CKE is first brought HIGH. After CKE is brought HIGH, it
becomes an SSTL_2 input only.
157, 158 S0#, S1# Input Chip Selects: S# enables (registered LOW) and disables
(registered HIGH) the command decoder. All commands are
masked when S# is registered HIGH. S# is considered part of
the command code.
52, 59 BA0, BA1 Input Bank Address: BA0 and BA1 define to which device bank an
ACTIVE, READ, WRITE, or PRECHARGE command is being
applied.
27, 29, 32, 37, 41, 43, 48,
115 (512MB, 1GB, 2GB), 118,
122, 125, 130, 141, 167 (2GB)
A0–A11
(256MB)
A0–A12
(512MB, 1GB)
A0–A13
(2GB)
Input Address Inputs: Provide the row address for ACTIVE
commands, and the column address and auto precharge bit
(A10) for READ/WRITE commands, to select one location out of
the memory array in the respective device bank. A10 sampled
during a PRECHARGE command determines whether the
PRECHARGE applies to one device bank (A10 LOW, device
bank selected by BA0, BA1) or all device banks (A10 HIGH). The
address inputs also provide the op-code during a MODE
REGISTER SET command. BA0 and BA1 define which mode
register (mode register or extended mode register) is loaded
during the LOAD MODE REGISTER command.
5, 14, 25, 36, 56, 67, 78, 86 DQS0–DQS7 Input/
Output
Data Strobe: Output with READ data, input with WRITE data.
DQS is edge-aligned with READ data, centered in WRITE data.
Used to capture data.
97, 107, 119, 129, 149, 159,
169, 177
DM0–DM7 Input Data Write Mask: DM LOW allows WRITE operation. DM HIGH
blocks WRITE operation. DM lines do not affect READ
operation.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 5©2005 Micron Technology, Inc.
2, 4, 6, 8, 12, 13, 19, 20, 23,
24, 28, 31, 33, 35, 39, 40, 53,
55, 57, 60, 61, 64, 68, 69, 72,
73, 79, 80, 83, 84, 87, 88, 94,
95, 98, 99, 105, 106, 109, 110,
114, 117, 121, 123, 126, 127,
131, 133, 146, 147, 150, 151,
153, 155, 161, 162, 165, 166,
170, 171, 174, 175, 178, 179
DQ0–DQ63 Input/
Output
Data I/Os: Data bus.
92 SCL Input Serial Clock for Presence-Detect: SCL is used to synchronize the
presence-detect data transfer to and from the module.
181,182, 183 SA0–SA2 Input Presence-Detect Address Inputs: These pins are used to
configure the presence-detect device.
91 SDA Input/
Output
Serial Presence-Detect Data: SDA is a bidirectional pin used to
transfer addresses and data into and out of the presence-
detect device.
1V
REF Supply SSTL_2 reference voltage.
15, 22, 30, 54, 62, 77, 96, 104,
112, 128, 136, 143, 156, 164,
172, 180
VDDQ Supply DQ Power Supply: +2.5V ±0.2V.
7, 38, 46, 70, 85, 108, 120,
148, 168
VDD Supply Power Supply: +2.5V ±0.2V.
3, 11, 18, 26, 34, 42, 50, 58,
66, 74, 81, 89, 93, 100, 116,
124, 132, 139, 145, 152, 160,
176
VSS Supply Ground.
184 VDDSPD Supply Serial EEPROM positive power supply: +2.3V to +3.6V.
44, 45, 47, 49, 51, 134, 135,
140, 142, 144
DNU Do Not Use: These pins are not connected on these modules,
but are assigned pins on other modules in this product family.
9, 10, 71, 82, 90, 101, 102,
103, 113, 115 (256MB), 163,
167 (256MB, 512MB, 1GB),
173
NC No Connect: These pins should be left unconnected.
Table 5: Pin Descriptions (Continued)
Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 3 for more information
PIN NUMBERS SYMBOL TYPE DESCRIPTION
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 6©2005 Micron Technology, Inc.
Figure 3: Functional Block Diagram – Standard PCB
BA0, BA1
A0-A11 (256MB)
A0-A12 (512MB, 1GB)
A0-A13 (2GB)
RAS#
CAS#
WE#
CKE1
CKE0
BA0, BA1: DDR SDRAMS
A0-A11: DDR SDRAMS
A0-A12: DDR SDRAMS
A0-A13: DDR SDRAMS
RAS#: DDR SDRAMS
CAS#: DDR SDRAMS
WE#: DDR SDRAMS
CKE0: DDR SDRAMS U1, U3, U6, U8, U11, U13, U14, U16
CKE1: DDR SDRAMS U2, U4, U5, U7, U10, U12, U15, U17
VREF
VSS
DDR SDRAMS
DDR SDRAMS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
U8
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
U6
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
U13
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
U14
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
U16
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM0
S0#
U3
U17
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U2
U15
U5
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
S1#
DM CS# DQS
DM CS# DQS DM CS# DQS
DM CS# DQS DM CS# DQS
DM CS# DQS
DQS0
DM4
DQS4
DM1
DQS1
DM5
DQS5
U12
DM CS# DQS
DM2
DQS2
DM6
DQS6
DM CS# DQS
DM CS# DQS
U11 U7
DM CS# DQS
DM CS# DQS
DM CS# DQS DM CS# DQS
DM3
DQS3
DM7
DQS7
U4
DM CS# DQS
U10
DM CS# DQS
VDDQ
VDD DDR SDRAMS
DDR SDRAMS
U4, U6,
U13, U15
CK0
CK0#
120
U1-U3,
U16-U18
CK1
CK1#
120
U7-U12
CK2
CK2#
120
VDDSPD SPD/EEPROM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
3pF
3
3
3
3
3
3
A0
SA0
SERIAL PD
U19 SDA
A1
SA1
A2
SA2
WP
SCL
3
NOTE:
1. All resistor values are 22 unless otherwise specified.
2. Per industry standard, Micron modules utilize various component speed
grades, as referenced in the module part number guide at
www.micron.com/numberguide.
Standard modules use the following SDRAM devices:
MT46V16M8TG (256MB); MT46V32M8TG (512MB); MT46V64M8TG (1GB);
MT46V128M8TG (2GB)
Lead-free modules use the following SDRAM devices:
MT46V16M8P (256MB); MT46V32M8P (512MB); MT46V64M8P (1GB);
MT46V128M8P (2GB)
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 7©2005 Micron Technology, Inc.
Figure 4: Functional Block Diagram – Low-Profile PCB
A0
SA0
SERIAL PD
U10 SDA
A1
SA1
A2
SA2
BA0, BA1
A0-A11 (256MB)
A0-A12 (512MB, 1GB)
RAS#
BA0, BA1: DDR SDRAMS
A0-A11: DDR SDRAMS
A0-A12: DDR SDRAMS
RAS#: DDR SDRAMS
CAS#: DDR SDRAMS
CKE0: DDR SDRAMS U1–U4, U6–U9
CKE1: DDR SDRAMS U11, U14, U16–U19
WE#: DDR SDRAMS
CAS#
CKE0
CKE1
WE#
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
U9
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
U7
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
U6
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
U4
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
U2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM0
S0#
U3
WP
SCL
U11
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U12
U13
U16
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
S1#
DM CS# DQS
DM CS# DQS DM CS# DQS
DM CS# DQS DM CS# DQS
DM CS# DQS
DQS0
DM4
DQS4
DM1
DQS1
DM5
DQS5
U17
DM CS# DQS
DM2
DQS2
DM6
DQS6
DM CS# DQS
DM CS# DQS
U8 U18
DM CS# DQS
DM CS# DQS
DM CS# DQS DM CS# DQS
DM3
DQS3
DM7
DQS7
U14
DM CS# DQS
U19
DM CS# DQS
DDR
SDRAM
X 4
CK0
CK0#
V
DDSPD
V
DDQ
V
DD
V
REF
VSS
SPD
DDR SDRAMS
DDR SDRAMS
DDR SDRAMS
DDR SDRAMS
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DDR
SDRAM
X 6
CK1
CK1#
DDR
SDRAM
X 6
CK2
CK2#
120
3pF
120
3pF
120
3pF
NOTE:
1. All resistor values are 22 unless otherwise specified.
2. Per industry standard, Micron modules utilize various component speed
grades, as referenced in the module part number guide at
www.micron.com/numberguide.
Standard modules use
MT46V16M8TG for 256MB; MT46V32M8TG for 512MB; MT46V64M8TG
for 1GB
Lead-free modules use
MT46V16M8P for 256MB; MT46V32M8P for 512MB; MT46V64M8P for
1GB
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 8©2005 Micron Technology, Inc.
General Description
The MT16VDDT3264A, MT16VDDT6464A,
MT16VDDT12864A, and MT16VDDT25664A are high-
speed CMOS, dynamic random-access, 256MB,
512MB, 1GB and 2GB memory modules organized in
x64 configuration. DDR SDRAM modules use inter-
nally configured quad-bank DDR SDRAM devices.
DDR SDRAM modules use a double data rate archi-
tecture to achieve high-speed operation. Double data
rate architecture is essentially a 2n-prefetch architec-
ture with an interface designed to transfer two data
words per clock cycle at the I/O pins. A single read or
write access for the DDR SDRAM module effectively
consists of a single 2n-bit wide, one-clock-cycle data
transfer at the internal DRAM core and two corre-
sponding n-bit wide, one-half-clock-cycle data trans-
fers at the I/O pins.
A bidirectional data strobe (DQS) is transmitted
externally, along with data, for use in data capture at
the receiver. DQS is an intermittent strobe transmitted
by the DDR SDRAM during READs and by the memory
controller during WRITEs. DQS is edge-aligned with
data for READs and center-aligned with data for
WRITEs.
DDR SDRAM modules operate from differential
clock inputs (CK and CK#); the crossing of CK going
HIGH and CK# going LOW will be referred to as the
positive edge of CK. Commands (address and control
signals) are registered at every positive edge of CK.
Input data is registered on both edges of DQS, and out-
put data is referenced to both edges of DQS, as well as
to both edges of CK.
Read and write accesses to DDR SDRAM modules
are burst oriented; accesses start at a selected location
and continue for a programmed number of locations
in a programmed sequence. Accesses begin with the
registration of an ACTIVE command, which is then fol-
lowed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the device bank and row to be
accessed (BA0, BA1 select devices bank; A0–A11 select
device row for 256MB; A0–A12 select device row for
512MB, 1GB; A0–A13 select device row for 2GB). The
address bits registered coincident with the READ or
WRITE command are used to select the device bank
and the starting device column location for the burst
access.
DDR SDRAM modules provide for programmable
READ or WRITE burst lengths of 2, 4, or 8 locations. An
auto precharge function may be enabled to provide a
self-timed row precharge that is initiated at the end of
the burst access.
The pipelined, multibank architecture of DDR
SDRAM modules allows for concurrent operation,
thereby providing high effective bandwidth by hiding
row precharge and activation time.
An auto refresh mode is provided, along with a
power-saving power-down mode. All inputs are com-
patible with the JEDEC Standard for SSTL_2. All out-
puts are SSTL_2, Class II compatible. For more
information regarding DDR SDRAM operation, refer to
the 128Mb, 256Mb, 512Mb, or 1Gb DDR SDRAM com-
ponent data sheets.
Serial Presence-Detect Operation
DDR SDRAM modules incorporate serial presence-
detect (SPD). The SPD function is implemented using
a 2,048-bit EEPROM. This nonvolatile storage device
contains 256 bytes. The first 128 bytes can be pro-
grammed by Micron to identify the module type and
various SDRAM organizations and timing parameters.
The remaining 128 bytes of storage are available for
use by the customer. System READ/WRITE operations
between the master (system logic) and the slave
EEPROM device (DIMM) occur via a standard I2C bus
using the DIMM’s SCL (clock) and SDA (data) signals,
together with SA (2:0), which provide eight unique
DIMM/EEPROM addresses. Write protect (WP) is tied
to ground on the module, permanently disabling hard-
ware write protect.
Mode Register Definition
The mode register is used to define the specific
mode of operation of the DDR SDRAM. This definition
includes the selection of a burst length, a burst type, a
CAS latency and an operating mode, as shown in
Figure 5, Mode Register Definition Diagram, on page 9.
The mode register is programmed via the MODE REG-
ISTER SET command (with BA0 = 0 and BA1 = 0) and
will retain the stored information until it is pro-
grammed again or the device loses power (except for
bit A8, which is self-clearing).
Reprogramming the mode register will not alter the
contents of the memory, provided it is performed cor-
rectly. The mode register must be loaded (reloaded)
when all device banks are idle and no bursts are in
progress, and the controller must wait the specified
time before initiating the subsequent operation. Vio-
lating either of these requirements will result in
unspecified operation.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 9©2005 Micron Technology, Inc.
Mode register bits A0–A2 specify the burst length,
A3 specifies the type of burst (sequential or inter-
leaved), A4–A6 specify the CAS latency, and A7–A11
(256MB) or A7–A12 (512MB, 1GB), or A7–A13 (2GB)
specify the operating mode.
Burst Type
Accesses within a given burst may be programmed
to be either sequential or interleaved; this is referred to
as the burst type and is selected via bit M3.
The ordering of accesses within a burst is deter-
mined by the burst length, the burst type and the start-
ing column address, as shown in Table 6, Burst
Definition Table, on page 10.
Burst Length
Read and write accesses to the DDR SDRAM are
burst oriented, with the burst length being program-
mable, as shown in Figure 5, Mode Register Definition
Diagram. The burst length determines the maximum
number of column locations that can be accessed for a
given READ or WRITE command. Burst lengths of 2, 4,
or 8 locations are available for both the sequential and
the interleaved burst types.
Reserved states should not be used, as unknown
operation or incompatibility with future versions may
result.
When a READ or WRITE command is issued, a block
of columns equal to the burst length is effectively
selected. All accesses for that burst take place within
this block, meaning that the burst will wrap within the
block if a boundary is reached. The block is uniquely
selected by A1–Ai when the burst length is set to two,
by A2-Ai when the burst length is set to four and by A3-
Ai when the burst length is set to eight (where Ai is the
most significant column address bit for a given config-
uration; see Note 5, of Table 6, Burst Definition Table,
on page 10). The remaining (least significant) address
bit(s) is (are) used to select the starting location within
the block. The programmed burst length applies to
both READ and WRITE bursts.
Read Latency
The READ latency is the delay, in clock cycles,
between the registration of a READ command and the
availability of the first bit of output data. The latency
can be set to 2 or 2.5 clocks, as shown in Figure 6, CAS
Latency Diagram.
Figure 5: Mode Register Definition
Diagram
Burst LengthCAS Latency BT0*
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Mode Register (Mx)
Address Bus
976543
8210
Operating Mode
A10
A12 A11
BA0
BA1
10
11
12
13
0*
14
Burst LengthCAS Latency BT0*0*
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Mode Register (Mx)
Address Bus
976543
8210
Operating Mode
A10
A11
BA0
BA1
10
11
12
13
* M13 and M12 (BA0 and BA1) must be “0, 0” to select the
base mode register (vs. the extended mode register).
512MB and 1GB Modules
256MB Module
M3 = 0
Reserved
2
4
8
Reserved
Reserved
Reserved
Reserved
Operating Mode
Normal Operation
Normal Operation/Reset DLL
All other states reserved
0
1
-
0
0
-
0
0
-
0
0
-
0
0
-
0
0
-
Valid
Valid
-
0
1
Burst Type
Sequential
Interleaved
CAS Latency
Reserved
Reserved
2
Reserved
Reserved
Reserved
2.5
Reserved
Burst Length
M0
0
1
0
1
0
1
0
1
Burst LengthCAS Latency BT0*
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Mode Register (Mx)
Address Bus
9765438210
M1
0
0
1
1
0
0
1
1
M2
0
0
0
0
1
1
1
1
M3
M4
0
1
0
1
0
1
0
1
M5
0
0
1
1
0
0
1
1
M6
0
0
0
0
1
1
1
1
M6-M0
M8 M7
Operating Mode
A10A12 A11BA0BA1
10111214
0*
15
* M15 and M14 (BA1 and BA0)
must be “0, 0” to select the
base mode register (vs. the
extended mode register).
M9M10M12 M11
A13
13
0
0
-
M13
* M14 and M13 (BA0 and BA1) must be “0, 0” to select the
base mode register (vs. the extended mode register).
2GB Module
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 10 ©2005 Micron Technology, Inc.
NOTE:
1. For a burst length of two, A1–Ai select the two-data-
element block; A0 selects the first access within the
block.
2. For a burst length of four, A2–Ai select the four-data-
element block; A0–A1 select the first access within the
block.
3. For a burst length of eight, A3–Ai select the eight-data-
element block; A0–A2 select the first access within the
block.
4. Whenever a boundary of the block is reached within a
given sequence above, the following access wraps
within the block.
5. i = 9 for 256MB, 512MB;
i = 9, 11 for 1GB, 2GB.
Figure 6: CAS Latency Diagram
If a READ command is registered at clock edge n,
and the latency is m clocks, the data will be available
nominally coincident with clock edge n + m. Figure 7,
CAS Latency (CL) Table, indicates the operating fre-
quencies at which each CAS latency setting can be
used.
Reserved states should not be used as unknown
operation or incompatibility with future versions may
result.
Operating Mode
The normal operating mode is selected by issuing a
MODE REGISTER SET command with bits A7–A11
(256MB), A7–A12 (512MB, 1GB), or A7–A13 (2GB) each
set to zero, and bits A0–A6 set to the desired values. A
DLL reset is initiated by issuing a MODE REGISTER
SET command with bits A7 and A9–A11 (256MB), A7
and A9–A12 (512MB, 1GB), or A7 and A9–A13
(2GB)each set to zero, bit A8 set to one, and bits A0–A6
set to the desired values. Although not required by the
Micron device, JEDEC specifications recommend
when a LOAD MODE REGISTER command is issued to
reset the DLL, it should always be followed by a LOAD
MODE REGISTER command to select normal operat-
ing mode.
All other combinations of values for A7–A11
(256MB), A7–A12 (512MB, 1GB), or A7–A13 (2GB) are
reserved for future use and/or test modes. Test modes
Table 6: Burst Definition Table
BURST
LENGTH
STARTING
COLUMN
ADDRESS
ORDER OF ACCESSES WITHIN
A BURST
TYPE =
SEQUENTIAL
TYPE =
INTERLEAVED
2
A0
00-1 0-1
11-0 1-0
4
A1 A0
0 0 0-1-2-3 0-1-2-3
0 1 1-2-3-0 1-0-3-2
1 0 2-3-0-1 2-3-0-1
1 1 3-0-1-2 3-2-1-0
8
A2 A1 A0
0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7
0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6
0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5
0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4
1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3
1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2
1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1
1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0
Table 7: CAS Latency (CL) Table
ALLOWABLE OPERATING
CLOCK FREQUENCY (MHZ)
SPEED CL = 2 CL = 2.5
-335 75 f 133 75 f 167
-262 75 f 133 75 f 133
-26A 75 f 133 75 f 133
-265 75 f 100 75 f 133
CK
CK#
COMMAND
DQ
DQS
CL = 2
READ NOP NOP NOP
READ NOP NOP NOP
Burst Length = 4 in the cases shown
Shown with nominal tAC, tDQSCK, and tDQSQ
CK
CK#
COMMAND
DQ
DQS
CL = 2.5
T0 T1 T2 T2n T3 T3n
T0 T1 T2 T2n T3 T3n
DON’T CARETRANSITIONING DATA
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 11 ©2005 Micron Technology, Inc.
and reserved states should not be used because
unknown operation or incompatibility with future ver-
sions may result.
Extended Mode Register
The extended mode register controls functions
beyond those controlled by the mode register; these
additional functions are DLL enable/disable and out-
put drive strength. These functions are controlled via
the bits shown in Figure 7, Extended Mode Register
Definition Diagram. The extended mode register is
programmed via the LOAD MODE REGISTER com-
mand to the mode register (with BA0 = 1 and BA1 = 0)
and will retain the stored information until it is pro-
grammed again or the device loses power. The
enabling of the DLL should always be followed by a
LOAD MODE REGISTER command to the mode regis-
ter (BA0/BA1 both LOW) to reset the DLL.
The extended mode register must be loaded when
all device banks are idle and no bursts are in progress,
and the controller must wait the specified time before
initiating any subsequent operation. Violating either
of these requirements could result in unspecified oper-
ation.
DLL Enable/Disable
The DLL must be enabled for normal operation.
DLL enable is required during power-up initialization
and upon returning to normal operation after having
disabled the DLL for the purpose of debug or evalua-
tion. (When the device exits self refresh mode, the DLL
is enabled automatically.) Any time the DLL is enabled,
200 clock cycles with CKE HIGH must occur before a
READ command can be issued.
Figure 7: Extended Mode Register
Definition Diagram
NOTE:
1. BA1 and BA0 (E13 and E12 for 256MB, E14 and E13 for
512MB, 1GB, or E15 and E14 for 2GB) must be “0, 1” to
select the Extended Mode Register (vs. the base Mode
Register).
2. QFC# is not supported.
DLL
11
01
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
976543
8210
Operating Mode
A10
A11A12
BA1 BA0
10
11
12
1314
DS
DLL
11
01
A9 A7 A6 A5 A4 A3
A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
976543
8210
Operating Mode
A10
A11
BA1 BA0
10
11
12
13
DS
256MB Module
512MB and 1GB Modules
Operating Mode
Reserved
Reserved
0
0
Valid
0
1
DLL
Enable
Disable
DLL
1
1
0
1
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Extended Mode
Register (Ex)
Address Bus
9765438210
E0
0
Drive Strength
Normal
E1
E2 E0
E1,
Operating Mode
A10A11A12BA1 BA0
1011121415
E3E4
0
0
0
0
0
E6 E5
E7E8E9
0
0
E10E11
0
E12
DS
0
0
E13
A13
13
2GB Module
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 12 ©2005 Micron Technology, Inc.
Commands
Table 8, Commands Truth Table, and Table 9, DM
Operation Truth Table, provide a general reference of
available commands. For a more detailed description
of commands and operations, refer to the 128Mb,
256Mb, 512Mb, or 1Gb DDR SDRAM component data
sheets.
NOTE:
1. DESELECT and NOP are functionally interchangeable.
2. BA0–BA1 provide device bank address and A0–A11 (256MB), A0–A12 (512MB, 1GB), or A0–A13 (2GB) provide row
address.
3. BA0–BA1 provide device bank address; A0–A9 (256MB, 512MB) or A0–A9, A11(1GB, 2GB), provide column address; A10
HIGH enables the auto precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature.
4. Applies only to read bursts with auto precharge disabled; this command is undefined (and should not be used) for READ
bursts with auto precharge enabled and for WRITE bursts.
5. A10 LOW: BA0–BA1 determine which device bank is precharged. A10 HIGH: all device banks are precharged and BA0–
BA1 are “Don’t Care.
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.
8. BA0–BA1 select either the mode register or the extended mode register (BA0 = 0, BA1 = 0 select the mode register; BA0
= 1, BA1 = 0 select extended mode register; other combinations of BA0–BA1 are reserved). A0–A11 (256MB), A0–A12
(512MB, 1GB), or A0–A13 (2GB) provide the op-code to be written to the selected mode register.
Table 8: Commands Truth Table
CKE is HIGH for all commands shown except SELF REFRESH; all states and sequences not shown are illegal or reserved
NAME (FUNCTION) CS# RAS# CAS# WE# ADDR NOTES
DESELECT (NOP) HXXX X 1
NO OPERATION (NOP) LHHH X 1
ACTIVE (Select bank and activate row) L L H H Bank/Row 2
READ (Select bank and column, and start READ burst) L H L H Bank/Col 3
WRITE (Select bank and column, and start WRITE burst) L H L L Bank/Col 3
BURST TERMINATE LHHL X 4
PRECHARGE (Deactivate row in bank or banks) L L H L Code 5
AUTO REFRESH or SELF REFRESH (Enter self refresh mode) LLLH X 6, 7
LOAD MODE REGISTER LLLLOp-Code 8
Table 9: DM Operation Truth Table
Used to mask write data; provided coincident with the corresponding data
NAME (FUNCTION) DM DQS
WRITE Enable LValid
WRITE Inhibit HX
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 13 ©2005 Micron Technology, Inc.
Absolute Maximum Ratings
Stresses greater than those listed may cause perma-
nent damage to the device. This is a stress rating only,
and functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect reliability.
Voltage on VDD Supply
Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on VDDQ Supply
Relative to VSS. . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on VREF and Inputs
Relative to VSS. . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on I/O Pins
Relative to VSS . . . . . . . . . . . . -0.5V to VDDQ +0.5V
Operating Temperature
TA (ambient) . . . . . . . . . . . . . . . . . . . . .. 0°C to +70°C
Storage Temperature (plastic) . . . . . .-55°C to +150°C
Short Circuit Output Current. . . . . . . . . . . . . . . 50mA
Table 10: DC Electrical Characteristics and Operating Conditions
Notes: 1–5, 14, 48; notes appear on pages 20–23; 0°C TA +70°C
PARAMETER/CONDITION
SYMBOL
MIN MAX UNITS NOTES
Supply Voltage VDD 2.3 2.7 V 32, 36
I/O Supply Voltage VDDQ 2.3 2.7 V 32, 36, 39
I/O Reference Voltage VREF
0.49
×
V
DD
Q0.51
×
V
DD
Q
V6, 39
I/O Termination Voltage (system) VTT VREF - 0.04 VREF + 0.04 V 7, 39
Input High (Logic 1) Voltage VIH(DC)VREF + 0.15 VDD + 0.3 V 25
Input Low (Logic 0) Voltage VIL(DC)-0.3VREF - 0.15 V 25
INPUT LEAKAGE CURRENT
Any input 0V VIN VDD, VREF pin 0V VIN
1.35V (All other pins not under test = 0V)
Command/
Address, RAS#,
CAS#, WE#
II
-32 32
µA 47
CKE, S# -16 16
CK0, CK0# -8 8
CK1, CK1#
CK2, CK2#
-12 12
DM -4 4
OUTPUT LEAKAGE CURRENT
(DQs are disabled; 0V VOUT VDDQ)
DQ, DQS IOZ -10 10 µA 47
OUTPUT LEVELS
High Current (V
OUT
= V
DD
Q-0.373V, minimum V
REF
, minimum V
TT
)
Low Current (V
OUT
= 0.373V, maximum V
REF
, maximum V
TT
)
IOH -16.8 mA 33, 34
IOL 16.8 mA
Table 11: AC Input Operating Conditions
Notes: 1–5, 14, 48, 49; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
PARAMETER/CONDITION SYMBOL MIN MAX UNITS NOTES
Input High (Logic 1) Voltage VIH(AC)VREF + 0.310 V 12, 25, 35
Input Low (Logic 0) Voltage VIL(AC)–VREF - 0.310 V 12, 25, 35
I/O Reference Voltage VREF(AC)
0.49
×
V
DD
Q0.51
×
V
DD
Q
V6
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 14 ©2005 Micron Technology, Inc.
Table 12: IDD Specifications and Conditions – 256MB
DDR SDRAM components only
Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
MAX
PARAMETER/CONDITION SYM -335 -262
-26A/
-265 UNITS NOTES
OPERATING CURRENT: One device bank; Active-Precharge;
t
RC =
t
RC
(MIN);
t
CK =
t
CK (MIN); DQ, DM and DQS inputs changing once per clock
cyle; Address and control inputs changing once every two clock cycles
IDD0a1,024 904 864 mA 20, 42
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 2; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
IDD1a1,104 984 984 mA 20, 42
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW)
IDD2Nb48 48 48 mA 21, 28,
44
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK = tCK
MIN; CKE = HIGH; Address and other control inputs changing once
per clock cycle. VIN = VREF for DQ, DQS, and DM
IDD2Fb720 720 640 mA 45
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank active;
Power-down mode; tCK = tCK (MIN); CKE = LOW
IDD3Pb400 400 320 mA 21, 28,
44
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
IDD3Nb800 800 720 mA 40
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One bank
active; Address and control inputs chan-ging once per clock cycle; tCK
= tCK (MIN); IOUT = 0mA
IDD4Ra1,144 1,064 1,024 mA 20, 42
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing twice
per clock cycle
IDD4Wa1,144 1,024 1,024 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5b4,240 3,520 3,520 mA 20, 24,
44
tREFC = 15.625µs IDD5Ab80 80 80 mA
SELF REFRESH CURRENT: CKE 0.2V IDD6b48 48 32 mA 9
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE commands
IDD7a2,864 2,664 2,624 mA 20, 43
NOTE:
a: Value calculated as one module rank in this operating condition, and all other module ranks in I
DD
2p (CKE LOW) mode.
b: Value calculated reflects all module ranks in this operating condition.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 15 ©2005 Micron Technology, Inc.
Table 13: IDD Specifications and Conditions – 512MB
DDR SDRAM Components only
Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
MAX
PARAMETER/CONDITION SYM -335 -262
-26A/
-265 UNITS NOTES
OPERATING CURRENT: One device bank; Active-Precharge;
t
RC =
t
RC (MIN);
t
CK =
t
CK (MIN); DQ, DM and DQS inputs
changing once per clock cyle; Address and control inputs
changing once every two clock cycles
IDD0a1,032 1,032 992 mA 20, 42
OPERATING CURRENT: One device bank; Active -Read
Precharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN);
IOUT = 0mA; Address and control inputs changing once per
clock cycle
IDD1a1,392 1,312 1,192 mA 20, 42
PRECHARGE POWER-DOWN STANDBY CURRENT: All device
banks idle; Power-down mode; tCK = tCK (MIN); CKE =
(LOW)
IDD2Pb64 64 64 mA 21, 28,
44
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle;
tCK = tCK MIN; CKE = HIGH; Address and other control
inputs changing once per clock cycle. VIN = VREF for DQ,
DQS, and DM
IDD2Fb800 720 720 mA 45
ACTIVE POWER-DOWN STANDBY CURRENT: One device
bank active; Power-down mode; tCK = tCK (MIN); CKE =
LOW
IDD3Pb480 400 400 mA 21, 28,
44
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One
device bank; Active-Precharge; tRC = tRAS (MAX);
tCK = tCK (MIN); DQ, DM andDQS inputs changing twice per
clock cycle; Address and other control inputs changing once
per clock cycle
IDD3Nb960 800 800 mA 40
OPERATING CURRENT: Burst = 2; Reads; Continuous burst;
One bank active; Address and control inputs changing once
per clock cycle; tCK = tCK (MIN); IOUT = 0mA
IDD4Ra1,432 1,232 1,232 mA 20, 42
OPERATING CURRENT: Burst = 2; Writes; Continuous burst;
One device bank active; Address and control inputs
changing once per clock cycle; tCK = tCK (MIN); DQ, DM, and
DQS inputs changing twice per clock cycle
IDD4Wa1,432 1,232 1,232 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5b4,080 3,760 3,760 mA 20, 44
tREFC = 7.8125µs IDD5Ab96 96 96 mA 20, 44
SELF REFRESH CURRENT: CKE 0.2V IDD6b64 64 64 mA 9
OPERATING CURRENT: Four device bank interleaving READs
(BL = 4) with auto precharge, tRC = tRC (MIN); tCK = tCK
(MIN); Address and control inputs change only during Active
READ, or WRITE commands
IDD7a3,312 2,832 2,832 mA 20, 43
NOTE:
a: Value calculated as one module rank in this operating condition, and all other module ranks in I
DD
2p (CKE LOW) mode.
b: Value calculated reflects all module ranks in this operating condition.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 16 ©2005 Micron Technology, Inc.
Table 14: IDD Specifications and Conditions – 1GB
DDR SDRAM Components only
Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2VV
MAX
PARAMETER/CONDITION SYM -335 -262
-26A/
-265 UNITS NOTES
OPERATING CURRENT: One device bank; Active-Precharge; tRC =
tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once
per clock cyle; Address and control inputs changing once every two
clock cycles
IDD0a1,080 1,080 960 mA 20, 42
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
IDD1a1,320 1,320 1,200 mA 20, 42
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW)
IDD2Pb80 80 80 mA 21, 28,
44
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK =
tCK MIN; CKE = HIGH; Address and other control inputs changing
once per clock cycle. VIN = VREF for DQ, DQS, and DM
IDD2Fb720 720 640 mA 45
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW
IDD3Pb560 560 480 mA 21, 28,
44
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
IDD3Nb800 800 720 mA 40
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
bank active; Address and control inputs changing once per clock
cycle; tCK = tCK (MIN); IOUT = 0mA
IDD4Ra1,360 1,360 1,200 mA 20, 42
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing
twice per clock cycle
IDD4Wa1,440 1,280 1,120 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5b4,640 4,640 4,480 mA 20, 44
tREFC = 7.8125µs IDD5Ab160 160 160 mA 20, 44
SELF REFRESH CURRENT: CKE 0.2V IDD6b80 80 80 mA 9
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE
commands
IDD7a3,280 3,240 2,840 mA 20, 43
NOTE:
a: Value calculated as one module rank in this operating condition, and all other module ranks in I
DD
2p (CKE LOW) mode.
b: Value calculated reflects all module ranks in this operating condition.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 17 ©2005 Micron Technology, Inc.
Table 15: IDD Specifications and Conditions – 2GB
DDR SDRAM Components only
Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2VV
MAX
PARAMETER/CONDITION SYM -335 -262
-26A/
-265 UNITS NOTES
OPERATING CURRENT: One device bank; Active-Precharge; tRC =
tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once
per clock cyle; Address and control inputs changing once every two
clock cycles
IDD0a1,080 1,080 1,240 mA 20, 42
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
IDD1a1,320 1,320 1,520 mA 20, 42
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW)
IDD2Pb80 80 160 mA 21, 28,
44
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK =
tCK MIN; CKE = HIGH; Address and other control inputs changing
once per clock cycle. VIN = VREF for DQ, DQS, and DM
IDD2Fb720 720 960 mA 45
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW
IDD3Pb560 560 480 mA 21, 28,
44
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
IDD3Nb720 720 720 mA 40
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
bank active; Address and control inputs changing once per clock
cycle; tCK = tCK (MIN); IOUT = 0mA
IDD4Ra1,360 1,360 1,680 mA 20, 42
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing
twice per clock cycle
IDD4Wa1,280 1,280 1,760 mA 20
AUTO REFRESH CURRENT tREFC = tRFC (MIN) IDD5b4,640 4,640 5,280 mA 20, 44
tREFC = 7.8125µs IDD5Ab160 160 160 mA 20, 44
SELF REFRESH CURRENT: CKE 0.2V IDD6b80 80 144 mA 9
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE
commands
IDD7a3,280 3,240 3,960 mA 20, 43
NOTE:
a: Value calculated as one module rank in this operating condition, and all other module ranks in I
DD
2p (CKE LOW) mode.
b: Value calculated reflects all module ranks in this operating condition.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 18 ©2005 Micron Technology, Inc.
Table 16: Capacitance
Note: 11; notes appear on pages 20–23
PARAMETER SYMBOL MIN MAX UNITS
Input/Output Capacitance: DQ, DQS, DM CIO 810 pF
Input Capacitance: Command and Address CI132 48 pF
Input Capacitance: S#, CKE CI116 24 pF
Input Capacitance: CK0, CK0# CI211 15 pF
Input Capacitance: CK1, CK1#; CK2, CK2# CI312 18 pF
Table 17: DDR SDRAM Component Electrical Characteristics and Recommended
AC Operating Conditions
Notes: 1–5, 13-15, 29, 48, 49; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS -335 -262 -26A/-265
UNITS NOTES
PARAMETER
SYMBOL
MIN MAX MIN MAX MIN MAX
Access window of DQs from CK/
CK#
tAC -0.7 +0.7 -0.75 +0.75 -0.75 +0.75 ns
CK high-level width tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK 26
CK low-level width tCL 0.45 0.55 0.45 0.55 0.45 0.55 tCK 26
Clock cycle time CL = 2.5 tCK (2.5) 6 13 7.5 13 7.5 13 ns 41, 46
CL = 2 tCK (2) 7.5 13 7.5/10 13 7.5/10 13 ns 41, 46
DQ and DM input hold time relative to DQS tDH 0.45 0.5 0.5 ns 23, 27
DQ and DM input setup time relative to DQS tDS 0.45 0.5 0.5 ns 23, 27
DQ and DM input pulse width (for each input) tDIPW 1.75 1.75 1.75 ns 27
Access window of DQS from CK/
CK#
tDQSCK -0.60 +0.60 -0.75 +0.75 -0.75 +0.75 ns
DQS input high pulse width tDQSH 0.35 0.35 0.35 tCK
DQS input low pulse width tDQSL 0.35 0.35 0.35 tCK
DQS-DQ skew, DQS to last DQ valid, per group,
per access
tDQSQ 0.45 0.5 0.5 ns 22, 23
Write command to first DQS latching transition tDQSS 0.75 1.25 0.75 1.25 0.75 1.25 tCK
DQS falling edge to CK rising -
setup time
tDSS 0.2 0.2 0.2 tCK
DQS falling edge from CK rising -
hold time
tDSH 0.2 0.2 0.2 tCK
Half clock period tHP tCH,tCL tCH,tCL tCH,tCL ns 31
Data-out high-impedance window from CK/CK# tHZ +0.70 +0.75 +0.75 ns 16, 37
Data-out low-impedance window from CK/CK# tLZ -0.70 -0.75 -0.75 ns 16, 37
Address and control input hold time (fast slew
rate)
tIHF0.75 0.90 .90 ns 12
Address and control input setup time (fast slew
rate)
tISF0.75 0.90 .90 ns 12
Address and control input hold time (slow slew
rate)
tIHS0.80 1 1 ns 12
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 19 ©2005 Micron Technology, Inc.
Address and control input setup time (slow slew
rate)
tISS0.80 1 1 ns 12
Address and Control input pulse width (for
each input)
tIPW 2.2 2.2 2.2 ns
LOAD MODE REGISTER command cycle time tMRD 12 15 15 ns
DQ-DQS hold, DQS to first DQ to go non-valid,
per access
tQH tHP -
tQHS
tHP -
tQHS
tHP -
tQHS
ns 22, 23
Data hold skew factor tQHS 0.55 0.75 0.75 ns
ACTIVE to PRECHARGE command tRAS 42 70,000 40
120,000
40
120,000
ns 31, 49
ACTIVE to READ with Auto precharge
command tRAP 15 15 20 ns
ACTIVE to ACTIVE/AUTO REFRESH command
period
tRC 60 60 65 ns
AUTO REFRESH command period 256MB,
512MB, 1GB tRFC
75 75 75 ns 44
2GB 120 120 120 ns
ACTIVE to READ or WRITE delay tRCD 15 15 20 ns
PRECHARGE command period tRP 15 15 20 ns
DQS read preamble tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 tCK 38
DQS read postamble tRPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK 38
ACTIVE bank a to ACTIVE bank b command tRRD 12 15 15 ns
DQS write preamble tWPRE 0.25 0.25 0.25 tCK
DQS write preamble setup time tWPRES 0 0 0 ns 18, 19
DQS write postamble tWPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK 17
Write recovery time tWR 15 15 15 ns
Internal WRITE to READ command delay tWTR 111
tCK
Data valid output window na tQH -tDQSQ tQH -tDQSQ tQH -tDQSQ ns 22
REFRESH to REFRESH command
interval
256MB
tREFC
140.6 140.6 140.6 µs 21
512MB, 1GB,
2GB
70.370.370.3µs21
Average periodic refresh interval 256MB
tREFI
15.615.615.6µs21
512MB, 1GB,
2GB
7.8 7.8 7.8 µs 21
Terminating voltage delay to VDD tVTD 000ns
Exit SELF REFRESH to non-READ command tXSNR 75 75 75 ns
Exit SELF REFRESH to READ command tXSRD 200 200 200 tCK
Table 17: DDR SDRAM Component Electrical Characteristics and Recommended
AC Operating Conditions (Continued)
Notes: 1–5, 13-15, 29, 48, 49; notes appear on pages 20–23; 0°C TA +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS -335 -262 -26A/-265
UNITS NOTES
PARAMETER
SYMBOL
MIN MAX MIN MAX MIN MAX
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 20 ©2005 Micron Technology, Inc.
Notes
1. All voltages referenced to VSS.
2. Tests for AC timing, IDD, and electrical AC and DC
characteristics may be conducted at nominal ref-
erence/supply voltage levels, but the related spec-
ifications and device operation are guaranteed for
the full voltage range specified.
3. Outputs measured with equivalent load:
4. AC timing and IDD tests may use a VIL-to-VIH
swing of up to 1.5V in the test environment, but
input timing is still referenced to VREF (or to the
crossing point for CK/CK#), and parameter speci-
fications are guaranteed for the specified AC input
levels under normal use conditions. The mini-
mum slew rate for the input signals used to test
the device is 1V/ns in the range between VIL(AC)
and VIH(AC).
5. The AC and DC input level specifications are as
defined in the SSTL_2 Standard (i.e., the receiver
will effectively switch as a result of the signal
crossing the AC input level, and will remain in that
state as long as the signal does not ring back
above [below] the DC input LOW [HIGH] level).
6. VREF is expected to equal VDDQ/2 of the transmit-
ting device and to track variations in the DC level
of the same. Peak-to-peak noise (non-common
mode) on VREF may not exceed ±2 percent of the
DC value. Thus, from VDDQ/2, VREF is allowed
±25mV for DC error and an additional ±25mV for
AC noise. This measurement is to be taken at the
nearest VREF bypass capacitor.
7. VTT is not applied directly to the device. VTT is a
system supply for signal termination resistors, is
expected to be set equal to VREF and must track
variations in the DC level of VREF.
8. IDD is dependent on output loading and cycle
rates. Specified values are obtained with mini-
mum cycle time at CL = 2 for -262, and -26A, CL =
2.5 for -335 and -265 with the outputs open.
9. Enables on-chip refresh and address counters.
10. IDD specifications are tested after the device is
properly initialized, and is averaged at the defined
cycle rate.
11. This parameter is sampled. VDD = +2.5V ±0.2V,
VDDQ = +2.5V ±0.2V, VREF = VSS, f = 100 MHz, TA =
25°C, VOUT (DC) = VDDQ/2, VOUT (peak to peak) =
0.2V. DM input is grouped with I/O pins, reflecting
the fact that they are matched in loading.
12. For slew rates less than 1 V/ns and greater than or
equal to 0.5 V/ns. If slew rate is less than 0.5 V/ns,
timing must be derated: tIS has an additional 50ps
per each 100mV/ns reduction in slew rate from
500mV/ns, while tIH is unaffected. If slew rate
exceeds 4.5V/ns, functionality is uncertain.
13. The CK/CK# input reference level (for timing ref-
erenced to CK/CK#) is the point at which CK and
CK# cross; the input reference level for signals
other than CK/CK# is VREF.
14. Inputs are not recognized as valid until VREF stabi-
lizes. Exception: during the period before VREF
stabilizes, CKE 0.3 x VDDQ is recognized as LOW.
15. The output timing reference level, as measured at
the timing reference point indicated in Note 3, is
VTT.
16. tHZ and tLZ transitions occur in the same access
time windows as valid data transitions. These
parameters are not referenced to a specific voltage
level, but specify when the device output is no
longer driving (HZ) or begins driving (LZ).
17. The intent of the Dont Care state after completion
of the postamble is the DQS-driven signal should
either be high, low, or high-Z and that any signal
transition within the input switching region must
follow valid input requirements. That is, if DQS
transitions high [above VIHDC (MIN)] then it must
not transition low (below VIHDC) prior to
tDQSH(MIN).
18. This is not a device limit. The device will operate
with a negative value, but system performance
could be degraded due to bus turnaround.
19. It is recommended that DQS be valid (HIGH or
LOW) on or before the WRITE command. The
case shown (DQS going from High-Z to logic
LOW) applies when no WRITEs were previously in
progress on the bus. If a previous WRITE was in
progress, DQS could be HIGH during this time,
depending on tDQSS.
20. MIN (tRC or tRFC) for IDD measurements is the
smallest multiple of tCK that meets the minimum
absolute value for the respective parameter. tRAS
(MAX) for IDD measurements is the largest multi-
ple of tCK that meets the maximum absolute
value for tRAS.
21. The refresh period 64ms. This equates to an aver-
age refresh rate of 15.625µs (256MB) or 7.8125µs
(512MB, 1GB, 2GB). However, an AUTO REFRESH
command must be asserted at least once every
Output
(V
OUT
)
Reference
Point
50
V
TT
30pF
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 21 ©2005 Micron Technology, Inc.
140.6µs (256MB) or 70.3µs (512MB, 1GB, 2GB);
burst refreshing or posting by the DRAM control-
ler greater than eight refresh cycles is not allowed.
22. The valid data window is derived by achieving
other specifications: tHP (tCK/2), tDQSQ, and tQH
(tQH = tHP - tQHS). The data valid window derates
directly porportional with the clock duty cycle
and a practical data valid window can be derived.
The clock is allowed a maximum duty cycle varia-
tion of 45/55, beyond which functionality is
uncertain. Figure 8, Derating Data Valid Window
tHP - tQHS, shows derating curves for duty cycles
ranging between 50/50 and 45/55.
23. Each byte lane has a corresponding DQS.
24. This limit is actually a nominal value and does not
result in a fail value. CKE is HIGH during
REFRESH command period (tRFC [MIN]) else
CKE is LOW (i.e., during standby).
25. To maintain a valid level, the transitioning edge of
the input must:
a. Sustain a constant slew rate from the current
AC level through to the target AC level, VIL (AC)
or VIH (AC).
b. Reach at least the target AC level.
c. After the AC target level is reached, continue to
maintain at least the target DC level, VIL (DC)
or VIH (DC).
26. JEDEC specifies CK and CK# input slew rate must
be 1V/ns (2V/ns differentially).
27. DQ and DM input slew rates must not deviate
from DQS by more than 10 percent. If the DQ/
DM/DQS slew rate is less than 0.5V/ns, timing
must be derated: 50ps must be added to tDS and
tDH for each 100mv/ns reduction in slew rate. If
slew rate exceeds 4V/ns, functionality is uncer-
tain.
28. VDD must not vary more than 4 percent if CKE is
not active while any bank is active.
29. The clock is allowed up to ±150ps of jitter. Each
timing parameter is allowed to vary by the same
amount.
30. tHP min is the lesser of tCL minimum and tCH
minimum actually applied to the device CK and
CK# inputs, collectively during bank active.
Figure 8: Derating Data Valid Window
tHP - tQHS
3.750 3.700 3.650 3.600 3.550
3.500 3.450
3.400 3.350 3.300 3.250
2.500 2.463 2.425 2.388 2.350 2.313 2.275 2.238 2.200 2.163 2.125
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
50/50 49.5/50.5 49/51 48.5/52.5 48/52 47.5/53.5 47/53 46.5/54.5 46/54 45.5/55.5 45/55
Clock Duty Cycle
ns
-262/-26A/-265 @
t
CK = 10ns
-262/-26A/-265 @
t
CK = 7.5ns
-335 @
t
CK = 6ns
NA
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 22 ©2005 Micron Technology, Inc.
31. READs and WRITEs with auto precharge are not
allowed to be issued until tRAS (MIN) can be satis-
fied prior to the internal precharge command
being issued.
32. Any positive glitch in the nominal voltage must be
less than 1/3 of the clock and not more than
+400mV or 2.9V, whichever is less. Any negative
glitch must be less than 1/3 of the clock cycle and
not exceed either 300mV or 2.2V, whichever is
more positive. However, the DC average cannot be
below 2.3V minimum.
33. Normal Output Drive Curves:
a. The full variation in driver pull-down current
from minimum to maximum process, temper-
ature and voltage will lie within the outer
bounding lines of the V-I curve of Figure 9,
Pull-Down Characteristics.
b. The variation in driver pull-down current
within nominal limits of voltage and tempera-
ture is expected, but not guaranteed, to lie
within the inner bounding lines of the V-I
curve of Figure 9, Pull-Down Characteristics.
c. The full variation in driver pull-up current
from minimum to maximum process, temper-
ature and voltage will lie within the outer
bounding lines of the V-I curve of Figure 10,
Pull-Up Characteristics.
d. The variation in driver pull-up current within
nominal limits of voltage and temperature is
expected, but not guaranteed, to lie within the
inner bounding lines of the V-I curve of Figure
10, Pull-Up Characteristics.
e. The full variation in the ratio of the maximum
to minimum pull-up and pull-down current
should be between 0.71 and 1.4, for device
drain-to-source voltages from 0.1V to 1.0 Volt,
and at the same voltage and temperature.
f. The full variation in the ratio of the nominal
pull-up to pull-down current should be unity
±10 percent, for device drain-to-source volt-
ages from 0.1V to 1.0V.
34. The voltage levels used are derived from a mini-
mum VDD level and the referenced test load. In
practice, the voltage levels obtained from a prop-
erly terminated bus will provide significantly dif-
ferent voltage values.
35. VIH overshoot: VIH (MAX) = VDDQ + 1.5V for a
pulse width 3ns and the pulse width can not be
greater than 1/3 of the cycle rate. VIL undershoot:
VIL (MIN) = -1.5V for a pulse width 3ns and the
pulse width can not be greater than 1/3 of the
cycle rate.
36. VDD and VDDQ must track each other.
37. tHZ (MAX) takes precedence over tDQSCK (MAX)
+ tRPST (MAX) condition. tLZ (MIN) will prevail
over tDQSCK (MIN) + tRPRE (MAX) condition.
38. tRPST end point and tRPRE begin point are not
referenced to a specific voltage level but specify
when the device output is no longer driving
(tRPST), or begins driving (tRPRE).
39. During initialization, VDDQ, VTT, and VREF must
be equal to or less than VDD + 0.3V. Alternatively,
VTT may be 1.35V maximum during power up,
even if VDD/VDDQ are 0V, provided a minimum of
42 of series resistance is used between the VTT
supply and the input pin.
40. For -335, -262, -26A and -265 speed grades, IDD3N
is specified to be 35mA per DDR SDRAM at 100
MHz.
Figure 9: Pull-Down Characteristics Figure 10: Pull-Up Characteristics
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 23 ©2005 Micron Technology, Inc.
41. The current Micron part operates below the slow-
est JEDEC operating frequency of 83 MHz. As
such, future die may not reflect this option.
42. Random addressing changing and 50 percent of
data changing at every transfer.
43. Random addressing changing and 100 percent of
data changing at every transfer.
44. CKE must be active (high) during the entire time a
refresh command is executed. That is, from the
time the AUTO REFRESH command is registered,
CKE must be active at each rising clock edge, until
tREF later.
45. IDD2N specifies the DQ, DQS, and DM to be
driven to a valid high or low logic level. IDD2Q is
similar to IDD2F except IDD2Q specifies the
address and control inputs to remain stable.
Although IDD2F, IDD2N, and IDD2Q are similar,
IDD2F is “worst case.
46. Whenever the operating frequency is altered, not
including jitter, the DLL is required to be reset.
This is followed by 200 clock cycles.
47. Leakage number reflects the worst case leakage
possible through the module pin, not what each
memory device contributes.
48. When an input signal is HIGH or LOW, it is
defined as a steady state logic HIGH or logic LOW.
49. The -335 speed grade will operate with tRAS (MIN)
= 40ns and tRAS (MAX) = 120,000ns at any slower
frequency.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 24 ©2005 Micron Technology, Inc.
Initialization
To ensure device operation the DRAM must be ini-
tialized as described below:
1. Simultaneously apply power to VDD and VDDQ.
2. Apply VREF and then VTT power.
3. Assert and hold CKE at a LVCMOS logic low.
4. Provide stable CLOCK signals.
5. Wait at least 200µs.
6. Bring CKE high and provide at least one NOP or
DESELECT command. At this point the CKE input
changes from a LVCMOS input to a SSTL2 input
only and will remain a SSTL_2 input unless a
power cycle occurs.
7. Perform a PRECHARGE ALL command.
8. Wait at least tRP time, during this time NOPs or
DESELECT commands must be given.
9. Using the LMR command program the Extended
Mode Register (E0 = 0 to enable the DLL and E1 =
0 for normal drive or E1 = 1 for reduced drive, E2
through En must be set to 0; where n = most sig-
nificant bit).
10. Wait at least tMRD time, only NOPs or DESELECT
commands are allowed.
11. Using the LMR command program the Mode Reg-
ister to set operating parameters and to reset the
DLL. Note at least 200 clock cycles are required
between a DLL reset and any READ command.
12. Wait at least tMRD time, only NOPs or DESELECT
commands are allowed.
13. Issue a PRECHARGE ALL command.
14. Wait at least tRP time, only NOPs or DESELECT
commands are allowed.
15. Issue an AUTO REFRESH command (Note this
may be moved prior to step 13).
16. Wait at least tRFC time, only NOPs or DESELECT
commands are allowed.
17. Issue an AUTO REFRESH command (Note this
may be moved prior to step 13).
18. Wait at least tRFC time, only NOPs or DESELECT
commands are allowed.
19. Although not required by the Micron device,
JEDEC requires a LMR command to clear the DLL
bit (set M8 = 0). If a LMR command is issued the
same operating parameters should be utilized as
in step 11.
20. Wait at least tMRD time, only NOPs or DESELECT
commands are allowed.
21. At this point the DRAM is ready for any valid com-
mand. Note 200 clock cycles are required between
step 11 (DLL Reset) and any READ command.
Figure 11: Initialization Flow Diagram
V
DD
and V
DD
Q Ramp
Apply V
REF
and V
TT
CKE must be LVCMOS Low
Apply stable CLOCKs
Bring CKE High with a NOP command
Wait at least 200us
PRECHARGE ALL
Assert NOP or DESELECT for tRP time
Configure Extended Mode Register
Configure Load Mode Register and reset DLL
Assert NOP or DESELECT for tMRD time
Assert NOP or DESELECT for tMRD time
PRECHARGE ALL
Issue AUTO REFRESH command
Assert NOP or DESELECT for tRFC time
Optional LMR command to clear DLL bit
Assert NOP or DESELECT for tMRD time
DRAM is ready for any valid command
Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Assert NOP or DESELECT commands for tRFC
Issue AUTO REFRESH command
Assert NOP or DESELECT for tRP time
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 25 ©2005 Micron Technology, Inc.
Figure 12: Component Case Temperature vs. Air Flow
NOTE:
1. Micron Technology, Inc. recommends a minimum air flow of 1 meter/second (~197 LFM) across the module.
2. The component case temperature measurements shown above were obtained experimentally. The typical system to be
used for experimental purposes is a dual-processor 600 MHz work station, fully loaded, with four comparable registered
memory modules. Case temperatures charted represent worst-case component locations on modules installed in the
internal slots of the system.
3. Temperature versus air speed data is obtained by performing experiments with the system motherboard removed from
its case and mounted in a Eiffel-type low air speed wind tunnel. Peripheral devices installed on the system motherboard
for testing are the processor(s) and video card, all other peripheral devices are mounted outside of the wind tunnel test
chamber.
4. The memory diagnostic software used for determining worst-case component temperatures is a memory diagnostic soft-
ware application developed for internal use by Micron Technology, Inc.
20
30
40
50
60
70
80
90
100
0.0
0.5
1.0
2.0
Air Flow (meters/sec)
Degrees Celsius
Ambient Temperature = 25º C
Tmax
- memory stress software
Tave
- 3D gaming software
Tave
- memory stress software
Minimum Air Flow
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 26 ©2005 Micron Technology, Inc.
SPD Clock and Data Conventions
Data states on the SDA line can change only during
SCL LOW. SDA state changes during SCL HIGH are
reserved for indicating start and stop conditions (as
shown in Figure 13, Data Validity, and Figure 14, Defi-
nition of Start and Stop).
SPD Start Condition
All commands are preceded by the start condition,
which is a HIGH-to-LOW transition of SDA when SCL
is HIGH. The SPD device continuously monitors the
SDA and SCL lines for the start condition and will not
respond to any command until this condition has been
met.
SPD Stop Condition
All communications are terminated by a stop condi-
tion, which is a LOW-to-HIGH transition of SDA when
SCL is HIGH. The stop condition is also used to place
the SPD device into standby power mode.
SPD Acknowledge
Acknowledge is a software convention used to indi-
cate successful data transfers. The transmitting device,
either master or slave, will release the bus after trans-
mitting eight bits. During the ninth clock cycle, the
receiver will pull the SDA line LOW to acknowledge
that it received the eight bits of data (as shown in Fig-
ure 15, Acknowledge Response From Receiver).
The SPD device will always respond with an
acknowledge after recognition of a start condition and
its slave address. If both the device and a WRITE oper-
ation have been selected, the SPD device will respond
with an acknowledge after the receipt of each subse-
quent eight-bit word. In the read mode the SPD device
will transmit eight bits of data, release the SDA line and
monitor the line for an acknowledge. If an acknowl-
edge is detected and no stop condition is generated by
the master, the slave will continue to transmit data. If
an acknowledge is not detected, the slave will termi-
nate further data transmissions and await the stop
condition to return to standby power mode.
Figure 13: Data Validity Figure 14: Definition of Start and Stop
Figure 15: Acknowledge Response From Receiver
SCL
SDA
DATA STABLE DATA STABLEDATA
CHANGE
SCL
SDA
START
BIT
STOP
BIT
SCL from Master
Data Output
from Transmitter
Data Output
from Receiver
98
Acknowledge
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 27 ©2005 Micron Technology, Inc.
Figure 16: SPD EEPROM Timing Diagram
Table 18: EEPROM Device Select Code
The most significant bit (b7) is sent first
SELECT CODE DEVICE TYPE IDENTIFIER CHIP ENABLE RW
b7 b6 b5 b4 b3 b2 b1 b0
Memory Area Select Code (two arrays) 1010SA2SA1SA0RW
Protection Register Select Code 0110SA2SA1SA0RW
Table 19: EEPROM Operating Modes
MODE RW BIT WC BYTES INITIAL SEQUENCE
Current Address Read 1V
IH or VIL 1START, Device Select, RW = ‘1’
Random Address Read 0V
IH or VIL 1START, Device Select, RW = ‘0’, Address
1V
IH or VIL 1reSTART, Device Select, RW = ‘1’
Sequential Read 1V
IH or VIL 1 Similar to Current or Random Address Read
Byte Write 0V
IL 1START, Device Select, RW = ‘0’
Page Write 0V
IL 16 START, Device Select, RW = ‘0’
SCL
SDA IN
SDA OUT
tLOW
tSU:STA tHD:STA
tFtHIGH tR
tBUF
tDH
tAA
tSU:STO
tSU:DAT
tHD:DAT
UNDEFINED
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 28 ©2005 Micron Technology, Inc.
NOTE:
1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1 and the falling or rising
edge of SDA.
2. This parameter is sampled.
3. For a reSTART condition, or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of
the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA
remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
Table 20: Serial Presence-Detect EEPROM DC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
PARAMETER/CONDITION SYMBOL MIN MAX UNITS
SUPPLY VOLTAGE VDDSPD 2.3 3.6 V
INPUT HIGH VOLTAGE: Logic 1; All inputs VIH VDD × 0.7 VDD + 0.5 V
INPUT LOW VOLTAGE: Logic 0; All inputs VIL -1 VDD +0.3 V
OUTPUT LOW VOLTAGE: IOUT = 3mA VOL –0.4V
INPUT LEAKAGE CURRENT: VIN = GND to VDD ILI –10µA
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD ILO –10µA
STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other inputs = VSS or VDD ISB –30µA
POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz ICC –2mA
Table 21: Serial Presence-Detect EEPROM AC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
PARAMETER/CONDITION SYMBOL MIN MAX UNITS NOTES
SCL LOW to SDA data-out valid tAA 0.2 0.9 µs 1
Time the bus must be free before a new transition can start tBUF 1.3 µs
Data-out hold time tDH 200 ns
SDA and SCL fall time tF 300 ns 2
Data-in hold time tHD:DAT 0 µs
Start condition hold time tHD:STA 0.6 µs
Clock HIGH period tHIGH 0.6 µs
Noise suppression time constant at SCL, SDA inputs tI50ns
Clock LOW period tLOW 1.3 µs
SDA and SCL rise time tR0.3µs2
SCL clock frequency fSCL 400 KHz
Data-in setup time tSU:DAT 100 ns
Start condition setup time tSU:STA 0.6 µs 3
Stop condition setup time tSU:STO 0.6 µs
WRITE cycle time tWRC 10 ms 4
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 29 ©2005 Micron Technology, Inc.
Table 22: Serial Presence-Detect Matrix (256MB, 512MB, and 1GB)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE DESCRIPTION ENTRY (VERSION)
MT16VDDT3264A MT16VDDT6464A MT16VDDT12864A
0Number of SPD Bytes Used by Micron 128 80 80 80
1Total Number of Bytes in SPD Device 256 08 08 08
2Fundamental Memory Type SDRAM DDR 07 07 07
3Number of Row Addresses on
Assembly
12, 13 0C 0D 0D
4Number of Column Addresses on
Assembly
10, 11 0A 0A 0B
5Number of Physical Ranks on DIMM 20222
6Module Data Width 64 40 40 40
7Module Data Width (Continued) 0000000
8Module Voltage Interface Levels SSTL 2.5V 04 04 04
9SDRAM Cycle Time, tCK, (CAS Latency
= 2.5) (See note 1)
6ns (-335)
7ns (-262/-26A)
7.5ns (-265)
60
70
75
60
70
75
60
70
75
10 SDRAM Access From Clock, tAC
(CAS Latency = 2.5)
0.7ns (-335)
0.75ns (-262/-26A/-265)
70
75
70
75
70
75
11 Module Configuration Type None 00 00 00
12 Refresh Rate/Type 15.62µs, 7.8µs/SELF 80 82 82
13 SDRAM Device Width (Primary DDR
SDRAM)
8080808
14
Error-Checking DDR SDRAM Data Width
None 00 00 00
15 Minimum Clock Delay, Back-to-Back
Random Column Access
1 clock 01 01 01
16 Burst Lengths Supported 2, 4, 8 0E 0E 0E
17
Number of Banks on DDR SDRAM Device
4040404
18 CAS Latencies Supported 2, 2.5 0C 0C 0C
19 CS Latency 0010101
20 WE Latency 1020202
21 SDRAM Module Attributes Unbuffered/Diff.
Clock
20 20 20
22 SDRAM Device Attributes: General Fast/Concurrent AP C0 C0 C0
23 SDRAM Cycle Time, tCK
(CAS Latency = 2)
7.5ns (-335/-262/-26A)
10ns (-265
75
A0
75
A0
75
A0
24 SDRAM Access From CK, tAC
(CAS Latency = 2)
0.7ns (-335)
0.75ns (-262/-26A/-265)
70
75
70
75
70
75
25 SDRAM Cycle Time, tCK
(CAS Latency = 1.5)
N/A 00 00 00
26 SDRAM Access From CK, tAC
(CAS Latency = 1.5)
N/A 00 00 00
27 Minimum Row Precharge Time, tRP
(see note 4)
18ns (-335)
15ns (-262)
20ns (-26A/-265)
48
3C
50
48
3C
50
48
3C
50
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 30 ©2005 Micron Technology, Inc.
28 Minimum Row Active to Row Active,
tRRD
12ns (-335)
15ns (-262/-26A/-265)
30
3C
30
3C
30
3C
29 Minimum Ras# to CAS# Delay, tRCD
(see note 4)
18ns (-335)
15ns (-262)
20ns (-26A/-265)
48
3C
50
48
3C
50
48
3C
50
30 Minimum RAS# Pulse Width, tRAS,
(see note 2)
42ns (-335)
45ns (-262/-26A/-265)
2A
2D
2A
2D
2A
2D
31 Module Rank Density 128MB, 256MB,
512MB
20 40 80
32 Address and Command Setup Time,
tIS, (see note 3)
0.8ns (-335)
1.0ns (-262-26A/-265)
80
A0
80
A0
80
A0
33 Address and Command Hold Time,
tIH, (see note 3)
0.8ns (-335)
1.0ns (-262/-26A/-265)
80
A0
80
A0
80
A0
34 Data/Data Mask Input Setup Time,
tDS
0.45ns (-335)
0.5ns (-262/-26A/-265)
45
50
45
50
45
50
35 Data/Data Mask Input
Hold Time, tDH
0.45ns (-335)
0.5ns (-262/-26A/-265)
45
50
45
50
45
50
36-40 Reserved 00 00 00
41 Min Active Auto Refresh Time, tRC 60ns (-335/-262)
65ns (-26A/-265)
3C
41
3C
41
3C
41
42 Minimum Auto Refresh to Active/
Auto Refresh Command Period, tRFC
72ns (-335)
75ns (-262/-26A/-265)
48
4B
48
4B
48
4B
43 SDRAM Device Max Cycle Time,
tCKMAX
12ns (-335)
13ns (-262/-26A/-265)
30
34
30
34
30
34
44 SDRAM Device Max DQS-DQ Skew
Time, tDQSQ
0.45ns (-335)
0.5ns (-262/-26A/-265)
2D
32
2D
32
2D
32
45 SDRAM Device Max Read Data Hold
Skew Factor, tQHS
0.55ns (-335)
0.75ns (-262/-26A/-265)
55
75
55
75
55
75
46-61 Reserved 00 00 00
47 DIMM Height Standard/Low-Profile 01/11 01/11 01/11
46-61 Reserved 00 00 00
62 SPD Revision Release 1.0 10 10 10
63 Checksum For Bytes 0-62 -335
-262
-26A
-265
05/15
98/A8
C5/D5
F5/05
28/38
BB/CB
E8/F8
18/28
69/79
FC/0C
29/39
59/69
64 Manufacturer’s JEDEC ID Code MICRON 2C 2C 2C
65-71 Manufacturer’s JEDEC ID Code (Continued) FF FF FF
72 Manufacturing Location 01–12 01–0C 01–0C 01–0C
73-90 Module Part Number (ASCII) Variable Data Variable Data Variable Data
91 PCB Identification Code Variable Data Variable Data Variable Data
92 Identification Code (Continued) 0000000
93 Year of Manufacture in BCD Variable Data Variable Data Variable Data
Table 22: Serial Presence-Detect Matrix (256MB, 512MB, and 1GB) (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE DESCRIPTION ENTRY (VERSION)
MT16VDDT3264A MT16VDDT6464A MT16VDDT12864A
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 31 ©2005 Micron Technology, Inc.
NOTE:
1. Value for -26A tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device spec. value is 7.5ns.
2. The value of tRAS used for -26A/-265 modules is calculated from tRC - tRP. Actual device spec. value is 40 ns.
3. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is
represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster mini-
mum slew rate is met.
4. The value of tRP, tRCD and tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR
SDRAM device specification is 15ns.
94 Week of Manufacture in BCD Variable Data Variable Data Variable Data
95-98 Module Serial Number Variable Data Variable Data Variable Data
99-127 Manufacturer-Specific Data (RSVD) ––
Table 22: Serial Presence-Detect Matrix (256MB, 512MB, and 1GB) (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE DESCRIPTION ENTRY (VERSION)
MT16VDDT3264A MT16VDDT6464A MT16VDDT12864A
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 32 ©2005 Micron Technology, Inc.
Table 23: Serial Presence-Detect Matrix (2GB)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE DESCRIPTION ENTRY (VERSION)
MT16VDDT25664A
0Number of SPD Bytes Used by Micron 128 80
1Total Number of Bytes in SPD Device 256 08
2Fundamental Memory Type SDRAM DDR 07
3Number of Row Addresses on Assembly 14 0E
4Number of Column Addresses on Assembly 11 0B
5Number of Physical Ranks on DIMM 202
6Module Data Width 64 40
7Module Data Width (Continued) 000
8Module Voltage Interface Levels SSTL 2.5V 04
9SDRAM Cycle Time, tCK, (CAS Latency = 2.5) (See note
1)
6ns (-335)
7ns (-262/-26A)
7.5ns (-265)
60
70
75
10 SDRAM Access From Clock, tAC, (CAS Latency = 2.5) 0.7ns (-335)
0.75ns (-262/-26A/-265)
70
75
11 Module Configuration Type None 00
12 Refresh Rate/Type 15.62µs, 7.8µs/SELF 82
13 SDRAM Device Width (Primary DDR SDRAM) 808
14 Error-Checking DDR SDRAM Data Width None 00
15 Minimum Clock Delay, Back-to-Back Random Column
Access
1 clock 01
16 Burst Lengths Supported 2, 4, 8 0E
17
Number of Banks on DDR SDRAM Device
404
18 CAS Latencies Supported 2, 2.5 0C
19 CS Latency 001
20 WE Latency 102
21 SDRAM Module Attributes Unbuffered/Diff. Clock 20
22 SDRAM Device Attributes: General Fast/Concurrent AP C0
23 SDRAM Cycle Time, tCK, (CAS Latency = 2)
7.5ns (-335/-262/-26A)
10ns (-265)
75
A0
24 SDRAM Access From CK, tAC, (CAS Latency = 2) 0.7ns (-335)
0.75ns (-262/-26A/-265)
70
75
25 SDRAM Cycle Time, tCK, (CAS Latency = 1.5) N/A 00
26 SDRAM Access From CK, tAC, (CAS Latency = 1.5) N/A 00
27 Minimum Row Precharge Time, tRP (see note 4) 18ns (-335)
15ns (-262)
20ns (-26A/-265)
48
3C
50
28 Minimum Row Active to Row Active, tRRD 12ns (-335)
15ns (-262/-26A/-265)
30
3C
29 Minimum Ras# to CAS# Delay, tRCD (see note 4) 18ns (-335)
15ns (-262)
20ns (-26A/-265)
48
3C
50
30 Minimum RAS# Pulse Width, tRAS, (see note 2) 42ns (-335)
45ns (-262/-26A/-265)
2A
2D
31 Module Rank Density 1GB 01
32 Address and Command Setup Time, tIS, (see note 3) 0.8ns (-335)
1.0ns (-262-26A/-265)
80
A0
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 33 ©2005 Micron Technology, Inc.
NOTE:
1. Value for -26A tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device spec. value is 7.5ns.
2. The value of tRAS used for -26A/-265 modules is calculated from tRC - tRP. Actual device spec. value is 40 ns.
3. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is
represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster mini-
mum slew rate is met.
4. The value of tRP, tRCD and tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR
SDRAM device specification is 15ns.
33 Address and Command Hold Time, tIH, (See note 2) 0.8ns (-335)
1.0ns (-262/-26A/-265)
80
A0
34 Data/Data Mask Input Setup Time, tDS 0.45ns (-335)
0.5ns (-262/-26A/-265)
45
50
35 Data/Data Mask Input Hold Time, tDH 0.45ns (-335)
0.5ns (-262/-26A/-265)
45
50
36-40 Reserved 00
41 Min Active Auto Refresh Time tRC 60ns (-335/-262)
65ns (-26A/-265)
3C
41
42 Minimum Auto Refresh to Active/ Auto Refresh
Command Period, tRFC
120ns (all speed grades) 78
43 SDRAM Device Max Cycle Time tCKMAX 12ns (-335)
13ns (-262/-26A/-265)
30
34
44 SDRAM Device Max DQS-DQ Skew Time tDQSQ 0.45ns (-335)
0.5ns (-262/-26A/-265)
2D
32
45 SDRAM Device Max Read Data Hold Skew Factor
tQHS
0.55ns (-335)
0.75ns (-262/-26A/-265)
55
75
46-61 Reserved 00
47 DIMM Height Standard/Low-Profile 01/11
46-61 Reserved 00
62 SPD Revision Release 1.0 10
63 Checksum For Bytes 0-62 -335
-262
-26A
-265
1B/2B
AB/BB
D8/E8
1C/2C
64 Manufacturer’s JEDEC ID Code MICRON 2C
65-71 Manufacturer’s JEDEC ID Code (Continued) FF
72 Manufacturing Location 01–12 01–0C
73-90 Module Part Number (ASCII) Variable Data
91 PCB Identification Code Variable Data
92 Identification Code (Continued) 000
93 Year of Manufacture in BCD Variable Data
94 Week of Manufacture in BCD Variable Data
95-98 Module Serial Number Variable Data
99-127 Manufacturer-specific Data (RSVD)
Table 23: Serial Presence-Detect Matrix (2GB) (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE DESCRIPTION ENTRY (VERSION)
MT16VDDT25664A
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 34 ©2005 Micron Technology, Inc.
Figure 17: 184-PIN DDR DIMM Dimensions – Standard PCB
NOTE:
All dimensions are in inches (millimeters); or typical where noted.
1.256 (31.9)
1.244 (31.6)
PIN 1
0.700 (17.78)
TYP.
0.098 (2.50) D
(2X)
0.091 (2.30) TYP.
0.250 (6.35) TYP.
4.750 (120.65)
0.050 (1.27)
TYP.
0.091 (2.30)
TYP.
0.040 (1.02)
TYP.
0.079 (2.00) R
(4X)
PIN 92
FRONT VIEW
BACK VIEW
0.054 (1.37)
0.046 (1.17)
5.256 (133.50)
5.244 (133.20)
2.55 (64.77)
1.95 (49.53)
PIN 184 PIN 93
0.150 (3.80) 0.150 (3.80)
TYP.
0.394 (10.00)
TYP.
0.157 (4.00)
MAX
0.035 (0.90) R
U10 U11 U12 U13 U15 U16 U17 U18
U1 U2 U3 U4 U6 U7 U8 U9
U19
MAX
MIN
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
pdf: 09005aef80739fa5, source: 09005aef807397e5 Micron Technology, Inc., reserves the right to change products or specifications without notice..
DD16C32_64_128_256x64AG.fm - Rev. C 2/05 EN 35 ©2005 Micron Technology, Inc
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
Figure 18: 184-PIN DDR DIMM Dimensions – Low-Profile PCB
NOTE:
All dimensions arein inches (millimeters); or typical where noted.
Data Sheet Designation
Advance: This datasheet contains initial descrip-
tions of products still under development. The
Advance designation applies to MT16VDDT25664A
only.
Released (No Mark): This data sheet contains mini-
mum and maximum limits specified over the complete
power supply and temperature range for production
devices. Although considered final, these specifica-
tions are subject to change, as further product devel-
opment and data characterization sometimes occur.
The Released designation applies to MT16VDDT3264A,
MT16VDDT6464A, and MT16VDDT12864A only.
U1 U2 U3 U4 U6 U7 U8 U9
U10
PIN 1
0.700 (17.78)
TYP.
0.098 (2.50) D
(2X)
0.091 (2.30) TYP.
0.250 (6.35) TYP.
4.750 (120.65) TYP.
0.050 (1.27)
TYP.
0.091 (2.30)
TYP.
0.040 (1.02)
TYP.
0.079 (2.00) R
(4X)
0.035 (0.90) R
PIN 92
FRONT VIEW
BACK VIEW
5.256 (133.50)
5.244 (133.20)
2.55 (64.77)
TYP.
1.95 (49.53)
TYP.
PIN 184 PIN 93 0.150 (3.80)
TYP.
0.394 (10.00)
TYP.
1.156 (29.36)
1.144 (29.06)
0.054 (1.37)
0.046 (1.17)
0.125 (3.18)
MAX
U19 U18 U17 U16 U14 U13 U12 U11
MAX
MIN