NDT456P Leeper el FAIRCHILD SEMICONDUCTOR NDT456P General Description Power SOT P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as notebook computer power management, battery powered circuits, and DC motor control. December 1998 P-Channel Enhancement Mode Field Effect Transistor Features -7.5 A, -30 V. Rogoy, = 0-030 2 @ Vag = -10 V Rosow = 0.045 Q @ V,, = -4.5 V. High density cell design for extremely low Rygiow)- High power and current handling capability in a widely used surface mount package. i | 3 SOT-223 G SOT-223* G Absolute Maximum Ratings 1, = 25C unless otherwise noted (J23z) Symbol | Parameter NDT456P Units Voss Drain-Source Voltage 30 Vv Voss Gate-Source Voltage 420 I, Drain Current - Continuous (Note 1a) 475 A - Pulsed +20 P, Maximum Power Dissipation (Note 1a) 3 Ww (Note tb) 13 {Note 1c} 11 Ty Ter6 Operating and Storage Temperature Range 65 to 150 C THERMAL CHARACTERISTICS Rasa Thermal Resistance, Junction-to-Ambient (note 1a) 42 C Raic Thermal Resistance, Junction-to-Case (Note 1) 12 C 4-308 NDT456P Rev. FElectrical Characteristics (7, = 25C unless otherwise noted) Symbol _| Parameter | Conditions | min | Typ | Max | Units OFF CHARACTERISTICS BV oss Drain-Source Breakdown Vottage Vos = 0 V, |= 250 pA -30 Vv logs Zero Gate Voltage Drain Current Vog = -24-V, Veg= OV -1 LA T,= 55C 10 HA loser Gate - Body Leakage, Forward Veg = 20-V, Vog = OV 100 nA lessa Gate - Body Leakage, Reverse Ves = 20 V, Vpg= OV -100 nA ON CHARACTERISTICS inote 2) Veseny Gate Threshold Voltage Vog = Ves, Ip =- 250 pA 1 A5 3 Vv [T=125 | 05 | 11 | -26 Posicry Static Drain-Source On-Resistance Vos = -10V, |,= -7.5A 0.026} 003 | Q [T,= 125C 0.035 | 0.054 Vog2-4.5V, Lp=-6A 0.041 | 0.045 loon On-State Drain Current Vog= 10 V, Vig =-5V -20 A Vog = 4.5 V, Veg =-5V -10 G, Forward Transconductance Vog =710V, |, =-7.5A 13 $ DYNAMIC CHARACTERISTICS C., Input Capacitance Vos =-15V, Veg= OV, 1440 pF Crs Output Capacitance f=1.0MHz 905 pF C.. Reverse Transfer Capacitance 355 pF SWITCHING CHARACTERISTICS (note 2) toyery Tum - On Delay Time Voo = 15 V,1, =-7A, 10 20 ns t Tum - On Rise Time Veen = 10'V, gay = 12. Q 65 120 ns tov Tum - Off Delay Time 70 130 if Tum - Off Fall Time 70 130 Q, Total Gate Charge Vos = -10 V, 47 67 nc Q,, Gate-Source Charge Ip =-7.5A, Vos=-10V 5 nc Qu Gate-Drain Charge 12 nc 4-309 NDT4S56P Rev. F d9SVLGN ns nso. Electrical Characteristics (1, = 25C untess otherwise noted) LO |Symbol__| Parameter Conditions [ min [ typ | Max | Units p= | DRAINSSOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS 2 l, Maximum Continuous Drain-Source Diode Forward Current 25 Vep Drain-Source Diode Forward Voltage Veg= 0 V, I=-2.5A iNnote2) -0.85 | -1.2 Vv t Reverse Recovery Time Veg = OV, 1. =-2.5 Adi /at = 100 Aus 140 ns jotes: 1 Po) = ee = ee = id x Rosomet, Pax 's the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the saider mounting surface of the drain pins. R,, is guaranteed by design while R,-, iS defined by users. For general reference: Applications on 4.5x5" FA-4 PCB under still air environment, typical R,,,, is found to be: a. 42C when mounted on a 1 in pad of 20z copper. b. 95C when mounted on a 0.066in pad of 20z copper. c. 110C/W when mounted on a 0.00123in pad of 20z copper. 1b 1c Ty Scale 1: 1 on letter size paper 2. Pulse Test: Pulse Width < 300us, Duty Cycle < 2.0%. 4-310 NDT456P Rev. FTypical Electrical Characteristics oO _ o -20 DE Voge tov J ft 7 u Uv < -4.0 o EB 6.0 z gS] 6.0 -3.5 E c an g qe Oo 12 : 3 Ww azz Qo = 0 c cw 2 _ 3.0 o 9 9 8 i ze Zz 5 Z a3 a 4 eg * = 2 a 0 ; 0 1 2 3 0 4 8 12 16 -20 Vig DRAIN-SOURCE VOLTAGE (V) |p, DRAIN CURRENT (A) Figure 1. On-Region Character istics. Figure 2. On-Resistance Variation with Gate Voltage and Drain Current. 15 t 25 1 Ip =-7.5A w Vgg = -10V w Vo =-10V aan ee z 1.25 |--S8 to a 6 99 i am @ ga Ng | SN & isl. ys125C s | 26 EH 1t-- t z z 5 i w 25C 28 | a $2, 55 52 a3 ag 65C fo z 0.75 jo en rc Z os g c | ; | | 05 i i 0 -50 725 oO 25 50 75 100 125 150 0 4 8 -12 16 -20 T, . JUNCTION TEMPERATURE ("C) Ip. DRAIN CURRENT (A) Figure 3. On-Resistance Variation with Figure 4. On-Resistance Variation with Drain Temperature. Current and Temperature. -20 7 T Vig = 10V w | Vos = Ves DS g Ip = 250pA gi ep 5 $ 1 1 @ -12 an nn 29 g 24 | 6 & gos ' z _ PE z 8 Eu mm ine 69 08 |-- -}- i a s \ : 2 4p + 8 | iw o.7 bP i & : A 6 0 06 i 1 0.8 1.6 -2.4 3.2 4 +50 -25 0 25 50 75 100 125 150 Vos , GATE TO SOURCE VOLTAGE (V) af , JUNCTION TEM PERATURE (C) Figure 5. Transfer Characteristics. Figure 6. Gate Threshold Variation with Temperature. 4-311 NDT456P Rev. FNDT456P Typical Electrical Characteristics BV pgg NORMALIZED DRAIN-SOURCE BREAKDOWN VOLTAGE 60 25 9 25 50 75 100 125 150 T, JUNCTION TEMPERATURE (C) Figure 7. Breakdown Voltage Variation with Temperature. Qg 88 y S 6 3S CAPACITANCE (pF) s Qo 400 t=1MHz 300 Veg = OV 200 0.1 0.2 05 1 2 5 10 Vpg ORAIN TO SOURCE VOLTAGE (V) 20 30 Figure 9. Capacitance Characteristics. -Voo < Vout Figure 11. Switching Test Circuit. Gs :0V Ty = 125C -ig, REVERSE DRAIN CURRENT (A) 0.2 0.4 06 08 1 12 Ng BODY DIODE FORWARD VOLTAGE (V) Figure 8. Body Diode Forward Voltage Variation with Current and Temperature . Vag GATE-SOURCE VOLTAGE (V) Q 10 20 30 40 50 60 Qy , GATE CHARGE (nC) Figure 10. Gate Charge Characteristics. INVERTED PULSE WIDTH _ Figure 12. Switching Waveforms. 4-312 NDT456P Rev. FTypical Thermal Characteristics g fe a Ogg TRANSCONDUCTANCE (SIEMENS) wo ro & d & |p. DRAIN CURRENT (A) Figure 13. Transconductance Variation with Drain Current and Temperature. > - o o T i i Ip, STEADY-STATE DRAIN CURRENT (A) ny o 0.2 04 0.6 08 1 20z COPPER MOUNTING PAD AREA (in? } Figure 15. Maximum Steady-State Drain Current versus Copper Mounting Pad Area. rt), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE i t wl 0. t 4.5%5' FR-4 Board Ta = 25C ' I Still Air 05 1 02 o4 06 08 1 202 COPPER MOUNTING PAD AREA (in?) STEADY-STATE POWER DISSIPATION (W) Figure 14. SOT-223 Maximum Steady-State Power Dissipation versus Copper Mounting Pad Area. 40 20 _ 10 < 5 3 lu f c 4 oO Zz Zo. & Of DGS =-tov S_o1| SINGLE PULSE v Rgsa= See Note 1c 0.03 Ta = 25C 0.01 0.1 0.2 0.5 1 2 5 10 - Vpg, DRAIN-SOURCE VOLTAGE () Figure 16. Maximum Safe Operating Area. F gia = * Rous lA = ee Note 1c i 4 Pipk) Tp ty Me ty oe Ty- Ty =P TR ad . Duty Cycle, D =t, / tg ctl ae 1 : 1 10 100 1" TIME (sec) 300 Figure 17. Transient Thermal Response Curve. Note: Thermal characterization performed using the conditions described in note 1c. Transient thermal response will change depending on the circuit board design. NDT456P Rev. F 4-313 d9SPLAaN