IgaR IRF Series Devices IRF Series Data Sheet The IRF Data Sheet describes 32 devices, 28 N-Channel and 4 P-Channel, all contained in the TO-204AA or TO-204AE package. This data sheet is arranged to show common tabular and graphical information between devices. Absolute maximum ratings and parametric data are presented in tabular format with devices grouped according to generically shared parameters. For each parametric rating, devices are categorized by N and P channel and listed in alpha-numeric order. The conditions specified for a given parametric test are provided in the right hand column of each table. Graphical information is grouped by devices in alpha-numeric order. Where the information is device specific, we have assigned a numeric character for the graph and an alpha character to a given device. (See Table A below). Where graphs are polarity specific as in figures 10, 12, 14 and 15, we have indicated N-Channel! or P-Channel. The Thermal Impedance Graph (Fig. 11) is the only exception where a graph is common to both N- Channel and P-Channel devices since the thermal impedance is only dependent on the die size and package. In Table A below, a legend is provided cross referencing the part number to its assigned alpha code. A given device will retain this alpha code for each device specific graph. Table A ALPHA ALPHA DEVICE DESIGNATION DEVICE DESIGNATION IRFO34 a IRF460 q IRF044 b IRFAC30 r IRFO54 c IRFAC40 s IRF130 d IRFAE30 t IRF140 e IRFAE40 u IRF150 f IRFAE50 v IRF230 9g IRFAF30 w IRF240 h IRFAF40 X IRF250 i IRFAF50 y IRF330 j IRFAG30 z IRF340 k IRFAG40 aa IRF350 1 IRFAG540 bb IRF360 m IRF9130 cc IRF430 n IRF9140 dd IRF440 0 IRF9230 ee IRF450 p IRF9240 ffIRFF Series Devices HEXFET, Mil-Qualified IaR TO3/HEXFET/N-Channel Part Numbers Current Hexfet Cross Te = 26C JEDEC JANTX JANTXV Reference |Voltage| (A) _| MIL-S-19500| Qualification Case Style 2N6756 | JANTX2N6756 | JANTXV2NG756 | IRF130 | 100V 14.0 1542 19500-488-81 | 19.204AA 2N6758. | JANTX2N6758 | JANTXV2N6758 | IRF230 | 200V 9.0 /542 | 19500-488-81 | 79.3 2N6760. | JANTX2N6760 | JANTXV2NE760 | IRF330 | 400V 55 1542 19500-488-81 2N6762__ | JANTX2N6762 | JANTXV2N6762 | IRF430 | 500V 45 1542 19500-489-81 2N6764 | JANTX2N6764 | JANTXV2N6764 | {'RF150 | 100V 38.0 1543 19500-490-81 2N6766 | JANTX2N6766 | JANTXV2NG766 | IRF250 | 200V | 30.0 1543 +9500-490-81 2N6768. | JANTX2N6768 | JANTXV2N6768 | IRF350 | 400V 14.0 (543 19500-960-82 2N6770 | JANTX2N6770 | JANTXV2N6770 | IRF450 | S00V 12.0 1543 19500-960-82 T03/HEXFET/P-Channel 2N6804 | JANTX2N6804 | JANTXV2N6804 | IRFQ130 | -100V| -12.0 1562 | 19500-811-86 2N6806 | JANTX2N6806 | JANTXV2NG808 | IRF9230 | -200V| -6.5 1562 | 19500-811-86 FOR OTHER GOVERNMENT/SPACE QUALIFIED PRODUCTS REFER TO SECTION E. RADIATION HARDENED For Radiation Hardened HEXFETs contained in the TO-204AA/TO-204AE package outline, refer to the RAD HARD SECTION Pages H-1 to H-74. 20,32 (0.800) 20.32 (0.800) 18.80 (0.740) 18.80 (0,740) we 7.87 (0,310) ~ 87 (0.3 2.73 (00700) _ { 699(0.275) 1.78 (0.070) t mars 1.52 (0.060 1.52 (0.060) 0,97 (0.038) (2 PLCS.) 4.08 (0.161) 3.84 (0.151) {2 PLCS.) 10.67 (0.420) 11.17 (0.440) 26.67 (1,050) MAX, [7 yy | 5.71 (0.225)" 5.21 (0.205) my TTL _ SEATING PLANE 1.07 (0.042) lL ~~ 11,30 (0.445) DIA. (2 PLES.) 11,68 (0.460) 17.14 (0.675)* 39.95 (1.573) 16.64 (0,655) MAX. 30.40 (1.197) 30,44 (1,187) *MEASURED AT SEATING PLANE Conforms to JEDEC Outline TO-204AA (Modified TO-3) Dimensions in Millimeters and (Inches) TT 1.57 (0. an 11,30 (0.445) 570.08) pia, (2 PLCS.) 1.47 (0,058) (2 PLCS.) 4,08 (0.161) 3.84 (0,151) (2 PLCS.) ORAIN (CASE) SOURCE GATE 11.17 (0.440)* 10.87 (0.420) _ hoe ]{ SEATING PLANE 12.07 (0.475) 26.67 (1.050) MAX. 30,40 (1.197) 30 44 (1 187) 17.14 {0.675)* 39.95 (1.573) 16.64 (0.655) MAX, 5.21 (0.205) *MEASURED AT SEATING PLANE Conforms to JEDEC Outline TO-204AE (Modified TO-3) Dimensions in Millimeters and (Inches)INTERNATIONAL RECTIFIER PD-9.825 Data Sheet I6aR REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS IRF SERIES IRFO34 THRU IRFAGS5O IRF9130 THRU IRF9240 P-CHANNEL D G N-GHANNEL $ Description Product Summary N-Channel The HEXFET technology is the key to International i Rectifier's advanced line of power MOSFET transistors. Characteristic | IRF034 thru IRFAGSO | Units The efficient geometry and unique processing of this latest State of the Art design achieves: very low on-state BVDSS G0 to 1000 V resistance combined with high transconductance; superior reverse energy and diode recovery dvidt capability. RDS(on) 0.022 to 6.5 a The HEXFET transistors also feature all of the well Ip 15 to 45 A established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters. Product Summary P-Channel They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio Characteristic | IRF9130 and IRF9240 | Units amplifiers and high energy pulse circuits. BVpss -100 and -200 Vv Features * Repetitive Avalanche Ratings RDS(on) 0.20 and 0.80 2 Dynamic dv/dt Rating * Hermetically Sealed ID -65 and -18 A Simple Drive Requirements Ease of Paralleling CASE STYLE AND DIMENSIONS zosz son 1.78 (0,070) ~| C a ar 1.52 (0,060) tT | SEATING PLANE [12.07 0.475) _ a 39.95 (1.573) epics) MAX, 26.67 (1,050), * } 4,08 (0.161) MAX. 9.84 (0.151) . y (2 PLCS.) L~ 17.14 (0.675) * 39.95 (1.573) onal { \ 16.64 0.888) 0 1.197) MAX, 4 { wearer 26.67 (1.050) SOURCE &, MAX. GATE L571 (0,225) * 7.87 (0,310) 1127 (o4eoy* x 5.2 {0.205} 6.99 (0.275) 10.67 (0.420) * MEASURED AT SEATING PLANE Conforms to JEDEC Outline TO-204AA & TO-204AE (TO-3) Dimensions in Millimeters and (Inches) HSIRF Series Devices IaR N-Channel Absolute Maximum Ratings P f Part Number Units arameter IRFO34 IRFO44 IRFO54 IRF130 Ip @ Vag = OV, Continuous Drain Current 25 44 45* 14 To = 26C Ip @ Veg = OV, Continuous Drain Current 16 27 34 9.0 A To = 100C lpm Pulsed Drain Current 100 176 220 56 Pp @ To = 25C Max. Power Dissipation 75 125 150 75 Ww Linear Derating Factor 0.60 1.0 1.2 0.60 WK Ves Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche 19 340 480 75 mJ Energy @ (See Fig. 12) lAR Avalanche Current _ - _ 14 A (See Ear) Ear Repetitive Avalanche _ - _ 7.5 md Energy (See Fig. 15) dv/dt Peak Diode Recovery dv/dt 45 45 4.5 5.5 Vins (See Fig. 15) Ty Operating Junction and ~55 to 150 TstG Storage Temperature Range c Lead Temperature 300 (0.63 in. (1.6 mm) from case for 10s) Weight 11.5 (typical) g * Current limited by pin diameter N-Channel -- Absolute Maximum Ratings (continued) p t Part Number Units arameler IRF140 IRF150 IRF230 IRF240 Ip @ Veg = OV, Continuous Drain Current 28 38 9.0 18 To = 26C Ip @ Vag = OV, Continuous Drain Current 20 24 6.0 1 A Tg = 100C IDM Pulsed Drain Current 112 152 36 72 Pp @ Tc = 25C Max. Power Dissipation 125 150 75 125 Ww Linear Derating Factor 1.0 1.2 0.6 1.0 WIK Ves Gate-to-Source Voltage +20 V Eas Single Pulse Avalanche 250 150 54 450 mJ Energy @ (See Fig. 12) laR Avalanche Current 28 38 9.0 18 A (See Ear) Ear Repetitive Avalanche 12.5 15 7.5 12.5 mJ Energy (See Fig. 15) dv/dt Peak Diode Recovery dv/dt @ 5.5 5.5 5.0 5.0 Vins (See Fig. 15) Ty Operating Junction and -55 to 150 TsTg Storage Temperature Range C Lead Temperature 300 (0.63 in. (1.6 mm) from case for 10s) Weight 11.5 (typical) g Notes ~ See page I-34.IgaR IRF Series Devices N-Channel Absolute Maximum Ratings (continued) p t Part Number Units arameter IRF250 IRF330 IRF340 IRF350 Ip @ Veg = OV, Continuous Drain Current 30 5.5 10 14 To = 25C Ip @ Veg = OV, Continuous Drain Current 19 3.5 6.0 9.0 A To = 100C IDM Pulsed Drain Current 120 22 40 56 Pp @ Tc = 25C Max. Power Dissipation 150 75 125 150 WwW Linear Derating Factor 1.2 0.6 1.0 1.2 wik Ves Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche 200 1.7 5.7 11.3 mJ Energy (See Fig. 12) lAR Avalanche Current 30 5.5 10 14 A (See EAR) Ear Repetitive Avalanche 15 _ _ 15 mJ Energy (See Fig. 15) dv/dt Peak Diode Recovery dv/dt @ 5.0 4.0 4.0 4.0 Vins (See Fig. 15) Ty Operating Junction and ~55 to 150 TsTG Storage Temperature Range c Lead Temperature 300 (0.63 in. (1.6 mm) from case for 10s) Weight 11.5 (typical) g N-Channel Absolute Maximum Ratings (continued) P t Part Number Units arameler IRF360 IRF430 IRF440 IRF450 Ip @ Vag = OV, Continuous Drain Current 25 4.5 8.0 12 To = 25C Ip @ Vag = OV, Continuous Drain Current 16 3.0 5.0 7.75 A Te = 100C lpm Pulsed Drain Current 100 18 32 48 Pp @ To = 25C Max. Power Dissipation 300 75 125 150 Ww Linear Derating Factor 2.4 0.6 1.0 1.2 WIK Vas Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche 980 1.1 3.6 8.0 mJ Energy @ (See Fig. 12) laR Avalanche Current 25 45 8.0 12 A (See Ear) Ear Repetitive Avalanche 30 - _ mJ Energy (See Fig. 15) dv/dt Peak Diode Recovery dv/dt @ 4.0 3.5 3.5 3.5 Vins (See Fig. 15) Ty Operating Junction and -55 to 150 TstG Storage Temperature Range C Lead Temperature 300 (0.63 in. (1.6 mm) from case for 10s) Weight 11.5 (typical) 9 Notes See page I-34.IRF Series Devices N-Channel Absolute Maximum Ratings (continued) IaR p Ct Part Number Units arameter IRF460__|_IRFAC30 | IRFAC4O | IRFAE3O Ip @ Vag = OV, Continuous Drain Current 21 3.6 6.2 3.1 To = 25C Ip @ Vag = OV, Continuous Drain Current 14 2.3 3.9 2.0 A To = 100C lom Pulsed Drain Current 84 14 25 12 Pp @ Tc = 25C Max. Power Dissipation 300 75 125 75 WwW Linear Derating Factor 2.4 0.6 1.0 0.6 WiK Ves Gate-to-Source Voltage +20 v Eas Single Pulse Avalanche 1200 180 570 100 mJ Energy @ (See Fig. 12) lan Avalanche Current 21 3.6 6.2 3.1 A (See EAR) Earn Repetitive Avalanche 30 7.5 12.5 7.5 mJ Energy (See Fig. 15) dv/dt Peak Diode Recovery dv/dt @ 3.5 3.0 3.0 2.0 Vins (See Fig. 15) Ty Operating Junction and -55 to 150 TsTa Storage Temperature Range C Lead Temperature 300 (0.63 in. (1.6 mm) from case for 10s) Weight 11.5 (typical) g N-Channel Absolute Maximum Ratings (continued) p t Part Number Units arameter IRFAE4O | IRFAESO | IRFAF30 | IRFAF40 Ip @ Veg = OV, Continuous Drain Current 48 7.1 2.0 4.3 To = 25C Ip @ Vag = OV, Continuous Drain Current 3.0 4.5 1.7 2.7 A To = 100C lpm Pulsed Drain Current 19 28 8.0 17 Pp @ Tc = 25C + Max. Power Dissipation 125 150 75 125 Ww Linear Derating Factor 1.0 1.2 0.6 1.0 WiK Ves Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche 550 830 100 530 mJ Energy @ (See Fig. 12) lAR Avalanche Current 48 71 2.0 4.3 A (See Ear) Ear Repetitive Avalanche 12.5 15 75 12.5 mJ Energy (See Fig. 15) dv/dt Peak Diode Recovery dv/dt @ 2.0 2.0 1.5 1.5 Vins (See Fig. 15) Ty Operating Junction and -55 to 150 Tsta Storage Temperature Range c Lead Temperature 300 (0.63 in. (1.6 mm) from case for 10s) Weight 11.5 (typical) g Notes See page I-34.IaR IRF Series Devices N-Channel Absolute Maximum Ratings (continued) p Part Number Units arameter IRFAF50_| IRFAG30 | IRFAG4O | IRFAGSO Ip @ Veg = OV, Continuous Drain Current 6.2 2.3 3.9 5.6 To = 25C Ip @ Vag = OV, Continuous Drain Current 4.0 1.5 2.5 3.5 A Te = 100C IDM Pulsed Drain Current 25 9.2 16 22 Pp @ To = 25C Max. Power Dissipation 150 75 125 150 Ww Linear Derating Factor 1.2 0.6 1.0 1.2 WiK Ves Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche 870 110 530 860 mJ Energy @ (See Fig. 12) laR Avalanche Current 6.2 2.3 3.9 5.6 A (See Ear) EAR Repetitive Avalanche 15 7.5 12.5 15 mJ Energy (See Fig. 15) dv/dt Peak Diode Recovery dv/dt @ 1.6 1.0 1.0 1.0 Vins (See Fig. 15) Ty Operating Junction and ~65 to 150 Tsta@ Storage Temperature Range C Lead Temperature 300 (0.63 in. (1.6 mm) from case for 10s) Weight 11.5 (typical) g P-Channel Absolute Maximum Ratings Paramet Part Number Units arameter IRF9130_| IRF9140 | IRF9230 | JIAF9240 m Ip @ Veg = OV, Continuous Drain Current -11 -18 -6.5 -11 To = 25C Ip @ Vag = OV, Continuous Drain Current -7.0 ~11 -4.0 -7.0 A To = 100C IDM Pulsed Drain Current -50 -72 -28 44 Pp @ Tc = 25C Max. Power Dissipation 75 125 75 125 Ww Linear Derating Factor 0.6 1.0 0.6 1.0 WIK Ves Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche 81 500 66 500 mJ Energy @ (See Fig. 12) lan Avalanche Current ~11 -18 -6.5 11 A (See Ear) Ear Repetitive Avalanche 75 12.5 7.5 12.5 mJ Energy (See Fig. 15) dv/dt Peak Diode Recovery dv/dt @ -5.5 -5.5 -5.0 ~-5.0 Vins (See Fig. 15) Ty Operating Junction and -55 to 150 Tste Storage Temperature Range C Lead Temperature 300 (0.63 in. (1.6 mm) from case for 10s) Weight 11.5 (typical) g Notes See page 1-34.IRF Series Devices I0aR Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number] Min. | Typ. | Max. | Units Test Conditions BVpss Drain-to-Source IRFO34 so}; ~ | Breakdown Voltage IRF044 60; ~-| IRFO54 6; ~-|- IRF130 100} ~ | IRF140 100; - } IRF150 100 | ~ ad IRF230 200; | IRF240 200 | _ IRF250 200 | - IRF330 400; | IRF340 400} _ IRF350 400; _~ IRF360 400; _ N-Channet|_'RF430 | 500 | | | y Vas = OV, ip = 1.0mA IRF440 500 | _ IRF450 500 | - IRF460 500 |} IRFAC30 | 600 | _- IRFAC40 | 600} - IRFAE30 | 800 | IRFAE40 | 800 | - IRFAE50 | 800) _ IRFAF30 | 900 | IRFAF40 | 900 | _ IRFAF50 | 900 | IRFAG3O0 | 1000} _ IRFAG40 |1000) ad IRFAGSO |1000] _ IRF9130 |-100)| P.Channei|_"F9140_|-100| | Vas = OV, Ip = -1.0 mA IRF9230 |-200) _ IRF9240 |-200| ~ Notes See page 1-34. 1-10IaR IRF Series Devices Electrical Characteristics @ Tc = 25C (Uniess Otherwise Specified) continued Parameter Part Number] Min. | Typ. | Max. | Units Test Conditions ABVpss/ATy Temperature IRFO34 | 068 | Coefficient of Breakdown IRF044 | 068 |; Voltage IRFO54 | 068 | IRF130 | 01413 1 IRF140 {}013 7 IRF150 |013 | IRF230 | 0.29) IRF240 | 029) IRF250 | 0.29) IRF330 | 046) IRF340 | 046) IRF350 | 046) IRF360 | 046 | N-Channel |_'RF430 | %78 | | wee | Reterence to 26C, Ip = 1.0 mA IRF440 | 0.78; IRF450 | 0.78 | IRF460 | 0.78 ; IRFAC30 | 0.70 | IRFAC40 | 0.70 | IRFAE30 |} 098 | IRFAE40 | 098 | IRFAES5O | 098 | IRFAF30 _ 1.2 ad IRFAF40 _ 1.2 _ IRFAF50 _ 1.2 _ IRFAG30 - 1.4 - IRFAG40 1.4 _ IRFAGSO _ 1.4 _ IRF9130 |-0.087; P-Channei|_'RF8t40_ | |-0.087| Reference to 25C, Ip = -1.0 mA IRF9230 |}-0.20) IRF9240 |-0.20;) Notes See page 1-34. I-14IRF Serles Devices IaR Electrical Characteristics @ To = 25C (Unless Otherwise Specified) continued Parameter Part Number | Min. | Typ. | Max. | Units Test Conditions Rpsvon) Static Drain-to- IRFO34 _ _ 0.050 Ip = 16A Source On-State - 0.058 D = 25A Resistance @ IRF044 _ __| 0.028 D = 27A _ __| 0,032 Dp = 44A IRF054 _ __| 0.022 Ip = 31A = __| 0.025 Ip = .45A IRF130 - _ 0.18 Ip = 9.0A _ - 0.21 Ip = 144 IRF140 = __| 0.077 Ip = 20A = __| 0.089 Ip = 28A IRF150 _ _ 0.055 Ip = 24A = _| 0.065 Ip = 38A IRF230 = - 0.40 Ip = 6.0A = - 0.49 Ip = 9.0A IRF240 _ = 0.18 Ip = 11A ~ 0.21 Ip _= 18A IRF250 - - 0.085 Ip = 19A = __| 0.090 Ip = 30A IRF330 ~ _ 1.00 Ip = 3.5A _ = 1.22 Ip = 5.5A IRF340 _ _ 0.55 Ip = 6.0A =- 0.63 Ip = 10A IRF350 _ _ 0.300 Ip = 9.0A N-Channel _ _ 0.400 Q Ip = 144 Ves = 10V IRF360 - - 0.20 Ip = 16A _ _ 0.23 Ip = 25A IRF430 _ _- 1.50 Ip = 3.0A _ - 1.80 Ip = 4.5A IRF440 _ _ 0.85 Ip = 5.0A _ _ 0.98 ID = 8.0A IRF450 _ _ 0.400 Ip = _7.75A _ - 0.500 Ip = 12A IRF460 _ = 0.27 Ip = 14A _ _ 0.31 Ip = 21A IRFAC30 _ _ 2.2 Ip = 2.3A - - 2.5 Ip = 3.6A IRFAC40 = _ 1.2 Ip = 3.9A _ - 1.4 Ip = 6.2A IRFAE30 _ _ 3.2 Ip = 2.0A _ = 3.7 Ip = 3.1A IRFAE40 - - 2.0 Ip = 3.0A - - 2.3 Ip = 4.8A IRFAES5O _ _ 1.2 Ip = 4.5A _ _ 1.4 Ip = 7.1A IRFAF30 - - 4.0 Ip = 1.7A _ _ 46 Ip = 2.0A IRFAF40 _ _ 25 Ip = 2.7A =- = 29 Ip = 43A IRFAF50 - - 1.6 Ip = 4.0A _ ad 1.85 Ip = 6.2A IRFAG30 - - 5.6 Ip = 1.5A _ _- 6.5 Ip = 2.3A IRFAG40 _ _ 3.6 Ip = 2.5A _ _- 4.0 Ip = 3.9A IRFAG50 - _- 2.0 Ip = 3.5A = _ 2.3 Ip = 5.6A IRF9130 _ - 0.3 Ip = -7.0A _ - 0.35 Ip = -11A P-Channet| !RF9140 = = 0.2 Ip = -11A Vag = -10V _ _ 0.23 Ip = -18A IRF9230 = _ 0.80 Ip = -4.0A _ - 0.92 Ip = -6.5A IRF9240 _ _ 0.5 Ip = -7.0A | 0.58 Ip = -11A Notes See page 1-34. I-12IaR IRF Series Devices Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number] Min. | Typ. | Max. | Units Test Conditions VGSith) Gate Threshold N-Channel ALL 2.0 _ 4.0 Vv Vps = Vas. |p = 250 mA Voltage P-Channel| ALL | -2.0 | | -4.0 Vps_= Vas. Ip = -250 mA Ofs Forward IRF034 9.3 - _ Ips = 16A Transconductance IRFO44 17 _ _ Ips = 27A IRFO54 20 _ _ IDs = 31A IRF130 4.6 - _ Ips = 9.0A (RF140 | 94 | | Ipg = 20A iRF150 go} | Ips = 24A IRF230 3.0 _ _ Ips = 6.0A IRF240 | 61 | | Ips = 114A IRF250 90} Ipg = 19A IRF330 29 _~ _ Ips = 3.5A IRF340 49} | Ipg = 6.0A IRF350 | 6.0 | | Ipg = 9.04 IRF360 14 _ _ Ips = 16A N-Channel |_!RF430 27 | _|}s @ |'Ds = 3.04 Vpg = 15V IRF440 | 47 | | Ips = 5.04 IRF450 55 | | Ipg = 7.75A IRF460 3) - | Ipg = 14A IRFAC30 2.4 _ _ Ips = 2.3A IRFAC40 47 - Ips = 3.9A IRFAE3O | 25 | | Ips = 2.0A IRFAE40 3.9 - _ Ips = 3.0A IRFAESO | 59 | | Ipg = 4.54 IRFAF30 | 23 | | Ipg = 1.7A IRFAF40 3.6 _ _ Ips = 2.7A IRFAF50 | 49; | Ipg = 4.0A IRFAG30 2.1 Ips = 1.5A IRFAG4O | 33 | | ips = 2.54 IRFAGSO | 52] | Ipg = 3.5A IRF9130 3.0 _ - Ips = -7.0A @ P-Channel IRF9140 6.2 - - Ips = -11A Vps = -15V IRF9230 | 20 | | Ipg = -4.0A IRF9240 4.0 _ _ IDS = -7.0A Ipss Zero Gate Voltage | N-Channel ALL _ _ 25 Vps = 0.8 x Max. Rating Drain Current P-Channel ALL _ 25 A Ves = OV Ipss Zero Gate Voltage | N-Channel ALL _ _ 250 . Vps = 0.8 x Max. Rating . Drain Current P-Channel ALL _ 1-250 Vas = OV, Ty = 125C lass Gate-to-Source N-Channel ALL - - 100 Vas = 20V Leakage Forward |B Channel| ALL | [100] , [Vas = -20v lass Gate-to-Source N-Channel ALL - | -100 Vas = -20V Leakage Reverse [PB channel| ALL | | 100 Vas = 20V Notes See page I-34. 1-13IRF Series Devices Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued IaR Parameter Part Number] Min. | Typ. |Max. | Units Test Conditions Qg Total Gate IRFO34 21 | 47 ID = 25A Charge IRFO44 39 | | 88 Ip = 44A IRFO54 80 | | 180 ID = 45A IRF130 12 | | 35 Ip = 14A IRF140 30 |} | 59 ID = 28A IRF150 50 | | 125 Ip = 38A IRF230 16) | 39 Ip = 9.0A IRF240 32 | | 60 ID = 18A IRF250 55 |} | 115 Ip = 30A IRF330 17 | | 39 ID = 5.5A IRF340 32 | | 65 ID = 10A IRF350 2 | | 110 ID = 144A IRF360 96 } | 210 Ip = 25A Vas = 10V N-Channei|_'RF480_ | 16 | | 40 | ae ['D = 458 Vps = 0.5 x Max. Rating IRF440 27.3) |68.5 Ip = 8.0A See Fig. 6 and 14 IRF450 55 | | 120 Ip = 12A IRF460 84 | 190 Ip = 21A IRFAC30 16) | 38 Ip = 3.6A IRFAC4O 26 | | 60 Ip = 6.2A IRFAE30 30 | | 69 Ip = 3.1A IRFAE40 48 | | 110 ip = 4.8A IRFAE50 84 | | 190 Ip = 7.1A IRFAF30 29 | | 66 ID = 2.0A IRFAF40 53 | | 120 Ip = 4.3A (RFAFSO 80 | | 180 Ip = 6.2A IRFAG30 | 30 | | 68 Ip = 2.3A IRFAG40 | 53 | | 120 ID = 3.9A IRFAG5O | 88 | | 200 ip = 5.6A IRF9130 15 | | 29 ID = -11A P-Channel! (RF9140 | 31 | | 60 Ip = -18A Vag = -10V IRF9230 | 8 | | 31 Ip = -6.54 YDS = 0.5 x Max Rating IRF9240 28 _ 60 Ip = -11A Notes See page I-34. 1-14IaR IRF Series Devices Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number] Min. | Typ. | Max. | Units Test Conditions Qgs Gate-to-Source IRFO34 44] | 10 ID = 25A Charge IRFO44 | 6.7 | | 15 Ip = 444 IRFO54 =| 20 | | 45 Ip = 45A IRF130 | 2.5 | | 10 Ip = 14A IRF140 | 2.4) | 12 ID = 28A IRF150 8 | } 22 ip = 38A IRF230 | 3.0] | 5.7 Ip = 9.0A IRF240 | 2.2 | | 10.6 ip = 18A IRF250 8 | | 22 Ip = 30A IRF330 | 2.0 | | 6.0 Ip = 5.54 IRF340 | 2.2 | | 10 Ip = 10A IRF350 | 5.0) | 18 Ip = 14A IRF360 | 11 | | 28 Ip = 25A N-Channe!__ (F430 | 20] | 60} . |ID = 458 ve : bee Max. Rating IRF440 | 2.0 | | 12.5 Ip = 8.0A See Fig. 6 and 14 IRF450 | 5.0 | | 19 Ip = 12A IRF460 | 12 | | 27 Ip = 21A IRFAC3O | 2.0 | | 4.6 ip = 3.6A IRFAC4O | 3.6] | 8.3 Ip = 6.24 IRFAE30 | 3.1 | | 7.1 Ip = 3.1A IRFAE4O | 5.3 | | 12 Ip = 4.8A IRFAESO | 6.6 | | 15 Ip = 7.1A IRFAF30 | 3.2) | 7.2 Ip = 2.0A IRFAF40 | 4.8 | | 11 Ip = 4.3A IRFAF50 | 7.5) | 17 ID = 6.2A IRFAG3O | 2.5 | | 63 ID = 2.3A IRFAG4O | 5.3] | 12 ID = 3.9A IRFAGSO | 8.8 | | 20 Ip = 5.6A IRF9130 | 1.0 | | 7.1 Ip = -11A P-Channel|_RF9140 | 37 | | 13 Ip = -18A V@g = -10V IRFe230 | os | | 7.0 Ip = -65A DS = 0.5 x Max. Rating IRF9240 | 3.0] | 15 ip = -11A Notes See page I-34. I-15IRF Series Devices IaR Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number| Min. | Typ. | Max. | Units Test Conditions Qga Gate-to-Drain IRFO34 9.7 | | 22 Ip = 25A (Miller) Charge IRF044 18] | 52 Ip = 44A IRFO54 34] | 105 Ip = 45A IRF130 5.0] | 15 Ip = 144A IRF140 12 | |30.7 ID = 28A IRF150 25 | | 65 ID = 38A IRF230 8.0 |] | 20 ID = 9.0A IRF240 14] | 38 Ip = 18A IRF250 30 | | 60 Ip = 30A IRF330 | 8.0 | | 20 ID = 5.5A IRF340 14) | 41 Ip = 10A IRF350 25 | | 65 ID = 14A IRF360 53 | | 120 Ip = 25A Vas = 10V N-Channel|_'RF490_ | 8.0 | | 20 | (6 [ID =45A Ving = 05 x Max. Rating IRF440 11 | 42 Ip = 8.0A See Fig. 6 and 14 IRF450 27 | | 70 Ip = 12A IRF460 | 60 | | 135 Ip = 21A IRFAC3O0 | 7.5 | | 17 ID = 3.6A IRFAC40 13 | | 30 Ip = 6.2A IRFAE3O 17 | | 40 Ip = 3.1A IRFAE40 30 | | 68 ID = 4.8A IRFAES5O 48 | | 110 Ip = 7.1A IRFAF30 16 | | 37 Ip = 2.0A IRFAF40 30 | | 68 Ip = 4.3A IRFAF50 48 | | 110 Ip = 6.2A IRFAG30 16 | | 36 Ip = 2.3A IRFAG40 | 29 | | 66 Ip = 3.9A IRFAGS5O | 48 | | 110 ip = 5.6A IRF9130 | 2.0] | 21 Ip = -11A Channel| 'RF9140 | 7.0 | | 36.2 Ip = -18A Vgg = -10V inF9230 | 5.0 | | 17 Ip = -6.54 YDS = 0.5 x Max. Rating IRF9240 45) | 38 Ip = -11A Notes See page I-34.IaR IRF Series Devices Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number | Min. | Typ. | Max. | Units Test Conditions ta(on) Toon Delay IRFO34 _ _ 21 Vop = 30V, Ip = 25A, Rg = 7.50 See Fig. 10 IRFO44 | - | 2 Vpp = 30V, Ip = 444, Ag = 9.10 IRFO54 | |] 33 Vop = 30V, Ip = 454, Rg = 2.350 IRF130 ~ | | 35 Vop = 50V, !p = 144, Ag = 7.52 IRF140 | | 21 Vop = 50V, Ip = 284, Rg = 9.12 IRF150 - _ 35 VoD = 50V, Ip = 38A, Re = 2.350 IRF230 | | 35 Vpp = 100V, Ip = 9.0A, Rg = 7.50 IRF240 | | 2 VpD = 100V, Ip = 18A, Ag = 9.10 IRF250 | | 35 Vop = 100V, Ip = 30A, Ag = 2.350 IRF330 | | 30 Vpp = 200V, Ip = 5.5A, Rg = 7.50 IRF340 | | 2 Vpp = 200V, Ip = 10A, Rg = 9.10 IRF350 | | 35 Vpp = 200V, Ip = 144, Rg = 2.950 IRF360 | - | 33 Vop = 200V, ip = 254, Rg = 2.350 N-Channe! |__'F430 | = | % |] ,, | Yoo = 250V, Ip = 4.58, Rg = 7.50 IRF440 - - 21 Vpp = 250V, Ip = 8.0A, Re = 9.10 IRF450 ~ | - | 35 Vop = 250V, Ip = 12A, Rg = 2.350 IRF460 | | 35 Vpp = 250V, Ip = 21A, Rg = 2.350 IRFAC30 ~ | - | 17 VDD = 300V, Ip = 3.6A, Rg = 7.50 IRFAC40 | | 2 Vpp = 300V, Ip = 6.2A, Rg = 9.10 IRFAE3O | - | 23 Vpp = 400V, Ip = 3.1A, Ag = 7.50 IRFAE4O | | 24 Vpp = 400V, Ip = 4.8A, Ag = 9.10 IRFAESO ~ | | 22 Vop = 400V, Ip = 7.1A, Ag = 2.350 IRFAF30 ~| | a Vpp = 400V", Ip = 2.0A, Rg = 7.50 IRFAF40 ~ | | 2 Vpp = 400V", Ip = 4.3A, Ag = 9.10 IRFAF50 ~ | | 33 Vpp = 400V", Ip = 6.2A, Rg = 2.350 (RFAG3O ~ | | 23 Vpp = 400V", Ip = 2.3A, Rg = 7.52 IRFAG4O ~ | | 30 Vpp = 400V", Ip = 3.9A, Rg = 9.10 IRFAGSO ~ | | 30 Vpp = 400V*, Ip = 5.6A, Rg = 2.359 IRF9130 | | 60 Vop = -50V, Ip = -11A, Rg = 7.50 P-Channel IRF9140 _ _ 35 Vpp = -50V, Ip = -18A, Ag = 9.10 IRF9230 | | 50 Vpp = -100V, Ip = -6.5A, Ag = 7.50 IRF9240 ~ | | 35 Vop = -100V, Ip = -114, Rg = 9.19 *Equipment Limitation Notes ~ See page |-34. \-17IRF Series Devices IaR Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number | Min. | Typ. | Max. | Units Test Conditions ty Rise Time (RFO34 | | 10 Vop = 30V, Ip = 25A, Re = 7.58 See Fig. 10 IRFO44 | | 130 Vpp = 30V, Ip = 444, Ag = 9.10 IRFO54 | | 180 Vop = 30V, Ip = 45A, Ag = 2.350 IRF130 | | 80 Vpp = SOV, Ip = 14A, Rg = 7.50 IRF140 | | 145 Vpp = 50V, Ip = 28A, Ag = 9.10 IRF150 | | 190 Vpp = SOV, Ip = 38A, Ag = 2.350 IRF230 | | 80 Vpp = 100V, Ip = 9.0A, Rg = 7.50 IRF240 _ | 152 Vpop = 100V, ip = 184, Rg = 9.12 IRF250 | | 190 Vop = 100V, Ip = 30A, Ag = 2.358 IRF330 ~ | | 4 Vop = 200V, Ip = 5.5A, Ag = 7.52 IRF340 - - 92 Vop = 200V, Ip = 10A, Rg = 9.12 IRF350 | | 190 Vpp = 200V, Ip = 144, Rg = 2.350 IRF360 | | 140 Vpp = 200V, ip = 254, Rg = 2.360 N-Channel IRF430 ~ | | 40 ng | VDD = 250V, Ip = 4.58, Ag = 7.50 IRF440 _- - 73 Vpb = 250V, Ip = 8.0A, Rg = 9.12 IRF450 | | 190 Vop = 250V, Ip = 12A, Ra = 2.350 IRF460 | | 12 Vpp = 250V, Ip = 21A, Rg = 2.359 IRFAC30 _ - 20 Vop = 300V, Ip = 3.64, Ra = 7.50 IRFAC4O -|-|27 Vop = 300V, Ip = 6.24, Rg = 9.10 IRFAESO | - | 2 Vpp = 400V, Ip = 3.1A, Rg = 7.50 IRFAE40 -|| 4 Vpp = 400V, Ip = 4.84, Rg = 9.19 IRFAESO | | 6 Vpp = 400V, Ip = 7.1A, Rg = 2.350 IRFAF30 | | 30 Vop = 400V*, Ip = 2.0A, Ag = 7.52 IRFAF40 | | 39 Vpp = 400V", Ip = 4.3A, Rg = 9.10 IRFAFSO | | 6 Vpp = 400V", Ip = 6.2A, Rg = 2.350 IRFAG30 - - 42 Vop = 400V*, Ip = 2.3A, Rg = 7.52 IRFAG4O | | 50 Vpop = 400V*, Ip = 3.9A, Ag = 9.19 IRFAGSO | | 44 Vpp = 400V", Ip = 5.64, Rg = 2.350 IRF9130 | | 140 Vpp = -S0V, Ip = -11A, Ag = 7.50 P-Channel IRF9140 - - 85 Vpob = ~50V, Ip = -18A, Rg = 9.10 IRF9230 - - 100 Vpp = -100V, Ip = -6.5A, Rg = 7.52 IRF9240 | | 85 Vop = -100V, Ip = -11A, Rg = 9.19 Equipment Limitation Notes See page I-34. 1-18IaR IRF Series Devices Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number | Min. | Typ. | Max. | Units Test Conditions td(off) Turn-OFf Delay IRFO34 - _ 53 Vpp = 30V, Ip = 25A, Rg = 7.52 See Fig. 10 IRF044 - - 81 Vop = 30V, Ip = 44A, Re = 9.12 IRFOS4 _ _ 100 Vop = 30V, Ip = 45A, Rg = 2.350 IRF130 - - 60 Vop = 50V, Ip = 14A, Ag = 7.50 IRF140 - _ 21 Vop = SOV, Ip = 28A, Rg = 9.12 IRF150 - - 170 Vop = 50V, ip = 38A, Ag = 2.352 IRF230 - - 60 Vop = 100V, Ip = 9.0A, Ag = 7.50 IRF240 - - 58 Vpp = 100V, ip = 18A, Rq = 9.12 IRF250 - 170 Vpp = 100V, Ip = 30A, R@ = 2.359 IRF330 - _ 80 Vpop = 200V, Ip = 5.54, Rg = 7.50 IRF340 _ _ 79 Vpp = 200V, Ip = 10A, Rg = 9.19 IRF350 | | 170 Vpop = 200V, Ip = 14A, Rg = 2.350 IRF360 - - 120 Vpp = 200V, ip = 25A, Rg = 2.350 N-Channel IRF430 _ _ 80 ns Vop = 250V, Ip = 4.5A, Rg = 7.52 IRF440 72 Vpp = 250V, ID = 8.0A, Rg = 9.10 IRF450 - - 170 Vpp = 250V, Ip = 12A, Rg = 2.350 IRF460 - - 130 Vop = 250V, Ip = 21A, Rg = 2.358 IRFAC30 | | 53 Vpp = 300V, Ip = 3.6A, Rg = 7.50 IRFAC40 - _ 83 Vop = 300V, Ip = 6.2A, Ag = 9.12 iRFAE3O | | 120 Vop = 400V, Ip = 3.14, Rg = 7.50 IRFAE40 _ _ 170 Vpp = 400V, Ip = 4.8A, Rg = 9.10 IRFAE5O _ - 78 Vpp = 400V, Ip = 7.1A, Rg = 2.350 IRFAF30 140 Vpp = 400V, Ip = 2.0A, Ra = 7.52 IRFAF40 _ _ 170 Vop = 400V*, Ip = 4.3A, Rg = 9.10 IRFAF50 - _ 200 Vop = 400V*, ID = 6.2A, Rg = 2.350 IRFAG30 _ - 210 Vpp = 400V*, Ip = 2.3A, Rg = 7.52 IRFAG40 _ _ 170 Vpop = 400V*, Ip = 3.9A, Rg = 9.10 IRFAGS5O - 210 Vop = 400V*, Ip = 5.6A, Rq = 2.350 IRF9130 | | 140 Vpp = -50V, Ip = -114, Rg = 7.52 P-Channe! |__(RFS140 | | 85 Vpp = -50V, Ip = -18A, Rg = 9.12 IRF9230 - - 100 Vpp = -100V, Ip = -6.5A, Ag = 7.52 IRF9240 _ _ 85 Vpp = -100V, Ip = -11A, Re = 9.10 Equipment Limitation Notes See page I-34. I-19IRF Series Devices I6aR Electrical Characteristics @ Tg = 25C (Unless Otherwise Specified) continued Parameter Part Number | Min. | Typ. | Max. | Units Test Conditions tt Fall Time IRFO34 - - 80 Vpp = 30V, Ip = 25A, Ag = 7.50 See Fig. 10 IRFO44 | | 79 Vpp = 30V, Ip = 44A, Ag = 9.10 IRFOS4 | 100 Vpp = 30V, ip = 45A, Rg = 2.350 IRF130 }- | 4 Vpp = S50V, Ip = 144, Rg = 7.50 IRF140 | | 105 Vop = 50V, Ip = 28A, Rg = 9.10 IRF150 | | 130 Vpp = 50V, Ip = 384, Raq = 2.360 IRF230 - -_ 40 Vpp = 100V, Ip = 9.0A, Ag = 7.50 IRF240 | | 67 Vpp = 100V, Ip = 184, Rg = 9.10 IRF250 _ - 130 Vop = 100V, Ip = 30A, Rg = 2.352 IRF330 | | 3 Vpp = 200V, Ip = 5.5A, Rg = 7.50 IRF340 | | 88 Vpp = 200V, Ip = 10A, Rg = 9.19 IRF350 | | 130 Vpp = 200V, Ip = 144, Ag = 2.350 IRF360 | | 99 Vpp = 200V, Ip = 25A, Rg = 2.350 N-Channel IRF430 | | 30 ng | VDD = 250, ID = 4.5A, Re = 7.50 IRF440 | - 1] 51 Vpp = 250V, Ip = 8.0A, Rg = 9.19 IRF450 | | 130 Vop = 250V, Ip = 124, Rg = 2.350 IRF460 | |] 98 Vop = 250V, Ip = 21, Rg = 2.350 (RFAC30 | | at Vpp = 300V, Ip = 3.64, Ag = 7.50 IRFAC4O ~ | | 30 Vpp = 300V, Ip = 6.2A, Ag = 9.10 IRFAE3O | - | 44 Vpp = 400V, Ip = 3.1A, Ag = 7.50 IRFAE40 -|- | 4 Vpp = 400V, Ip = 4.8A,Ag = 9.10 IRFAESO ~ | | 24 Vpop = 400V, Ip = 7.1A, Ag = 2.350 IRFAF30 -~ |-|4 Vop = 400V", Ip = 2.0A, Rg = 7.50 IRFAF40 - - 44 Vpp = 400V*, Ip = 4.3A, Rg = 9.10 IRFAFSO -||9s7 Vpp = 400V*, Ip = 6.24, Rg = 2.350 IRFAG30 _ - 60 Vop = 400V*, Ip = 2.3A, Rg = 7.50 IRFAGO | | 50 Vpp = 400V", Ip = 3.94, Rg = 9.19 IRFAGS5O - - 60 Vop = 400V, Ip = 5.64, Rg = 2.960 IRF9130 | | 140 Vop = -80V, Ip = -11A, Rg = 7.50 P-Channe| |_(RF9140 | | 6 Vpp = -S0V, Ip = -18A, Rg = 9.19 IRF9230 | | 80 Vpp = -100V, Ip = -6.5A, Rg = 7.52 IRF9240 | | 6 Vpp = -100V, Ip = -11A, Rg = 9.19 Equipment Limitation Notes See page I-34. 1-20I6aR IRF Serles Devices Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number| Min. | Typ. |Max. | Units Test Conditions Lp Internal Drain |650) Measured from the Modified MOSFET Inductance drain lead, 6 mm symbol showing the (0.15 in.) from package | internal inductances. N-Channel All nH to center of die. D Lg Internal Source |} 13] Measured from the Inductance source lead, 6 mm G (0.25 in.) from package to source bonding pad. $ Lp Internal Drain | 50] Measured from the Modified MOSFET Inductance drain lead, 6 mm symbol! showing the (0.15 in.) from package | internal inductances. P-Channel All nH_ | to center of die. D Lg Internal Source | 138] Measured from the Inductance source lead, 6 mm G (0.25 in.) from package to source bonding pad. Cigg Input IRFO34 |1300) Capacitance IRFoaa | |2400| IRFO54 |4600; {RF130 | 650] IRF140 |1660) IRF150 |3700) IRF230 | 600} IRF240 |1300; IRF250 {3500; IRF330 | 620) IRF340 {1400}; IRF350 |2600; IRF360 [4200] N-Channel|_!RF430_ | | 619] | pF | vgs = ov, Vpg = 25V IRF440 41300] f = 1.0 MHz inF4s0 | |2700/ See Fig. 5 IRF460 |4300); IRFAC30 | 630) IRFAC40 |1300) IRFAE3O0 | | 950) IRFAE40 | |1700) IRFAE5O | |2800] IRFAF30 | |1000| IRFAF40 (1500) IRFAF50 | {2700} IRFAG3O0 | | 980} IRFAG40 (1700) IRFAGSO | |2400| IRF9130 | 860] P-Channel|_'RF9140 | |1400] Ves = OV, Vos = -25V IRnF9230 | | 700] f= 1.0 MHz See Fig. 5 IRF9240 |1200); Notes See page i-34. 1-21IRF Series Devices IaR Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number | Min. | Typ. | Max. | Units Test Conditions Coss Output IRFO34 _ 650 _ Capacitance IRFO44 _ 1100 _ IRFO54 _ 2000 _ {RF130 _- 250 _ IRF140 _ 550 IRF150 1100 _ IRF230 _ 250 _ IRF240 _ 400 _ IRF250 _ 700 _ IRF330 _ 200 _ IRF340 - 350 _ IRF350 _ 680 =_ IRF360 _ 900 _ N-Channel IRF430 _ 138 ~ pF Vas = OV, Vps = 25V IRF440 _ 310 _ f = 1.0 MHz IRF450 | eo | See Fig. IRF460 _ 1000 _ IRFAC30 - 80 _ {RFAC40 160 _ IRFAE30 _ 170 _ IRFAE40 _ 230 IRFAESO _ 400 _ IRFAF30 _ 200 _ IRFAF40 _ 190 _ IRFAF50 _ 500 _ IRFAG3O _ 140 _ IRFAG40 _ 250 _ IRFAGSO _ 240 = IRF9130 _ 350 _ P-Channel IRF9140 600 Vas = OV, Vps = -25V IRF9230 | 20) owe tos IRF9240 _ 570 _ Notes ~ See page I-34. 1-22IaR IRF Series Devices Electrical Characteristics @ Tc = 25C (Uniess Otherwise Specified) continued Parameter Part Number | Min. Typ. | Max. Units Test Conditions Crgg Reverse IRFO34 _ 100 _ Transfer Capacitance IRFO44 _ 230 _ IRFO54 _ 340 IRF130 _ 44 IRF140 _ 120 IRF 150 -_ 200 - IRF230 _ 80 _ IRF240 _ 130 _ IRF250 - 110 _ IRF330 - 75 _ IRF340 _ 230 _ IRF350 | 20 | | IRF360 - 400 _ | N-Channel IRF430 ~ 6 ~ pF Vas = OV, Vps = 25V IRF440 _ 120 _ f = 1.0 MHz | IRF450 | 240} See Fig. 5 | IRF460 250 _ | IRFAC30 _ 15 _ inFacao | | 45 | IRFAE3O _ 80 IRFAE4O 96 _ IRFAE50 _ 200 _ IRFAF30 _ 98 _ IRFAF40 _ 72 _ IRFAF50 _ 200 _ IRFAG30 50 _ IRFAG40 _- 100 _ IRFAG5O _ 80 _ IRF9130 - 125 _ P-Channel IRF9140 200 es = ev. Vos = -25V IRF9230 _ 40 _ See Fig. 5 IRF9240 _ 81 _ Notes See page I-34. \-23IRF Series Devices Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) continued Parameter Part Number Min. Typ. Max. Units Test Conditions Cpc _ODrain-to-Case Capacitance N-Channel ALL 12 pF Vas = OV, Vos = 25V f = 1.0 MHz See Fig. 5 P-Channel ALL Vas = 0V, Vps = -25V f = 1.0 MHz See Fig. 5 Notes See page 1-34. |-24TeaR IRF Series Devices Source-Drain Diode Ratings and Characteristics Parameter Part Number! Min. | Typ. | Max. | Units Test Conditions Is Continuous IRFO34 | | 26 Source Current (Body Diode) IRF044 ||4 IRFO54 _ | 45 IRF130 - _ 14 IRF140 _ - 28 IRF150 |]- | 38 IRF230 - | 90 IRF240 - - 18 IRF250 | | 30 IRF330 _ | 55 IRF340 - - 10 IRF350 _ _ 14 IRF360 _ | 25 N-Channel|_'RF430_ | | | 451 A | modified MOSFET symbol showing the IRF440 _- | 80 integral reverse p-n junction rectifier. IRF450 - _ 12 b IRF460 -_ {| 21 IRFAC30 | 36 5 5 IRFAC40 _ | 62 IRFAE30O _ | 31 IRFAE4O | | | 48 IRFAESO _ -- | 7.1 IRFAF30 _ | 28 IRFAF40 _ | 43 IRFAF50 _ | 62 IRFAG3O | | | 23 IRFAG40 - | 39 IRFAG5O - | 56 IRF9130 _ |-11 P-Channel|_'RF9140 | | | -18 \ IRF9230 _ | -6.5 5 , IRF9240 _ | -11 Ig current limited by pin diameter Notes See page I-34. 1-25IRF Series Devices IaR Source-Drain Diode Ratings and Characteristics (continued) Parameter Part Number| Min. | Typ. | Max. | Units Test Conditions Ism Pulse Source IRF034 _ | 100 Current (Body Diode) IRF044 | | 176 IRFO54 _ | 220 IRF130 _ _ 56 IRF140 _ | 112 IRF150 _- | 182 IRF230 _ | 3% IRF240 _ _ 72 IRF250 _ | 120 IRF330 _ _ 22 IRF340 40 IRF350 _ _ 56 IRF360 | 100 N-Channel|_'7F490_ | ~ | | 18 | a | Modified MOSFET symbol showing the IRF440 32 integral reverse p-n junction rectifier. IRF450 | | 48 IRF460 _ _- 84 6 IRFAC30 _ _ 14 5 IRFAC40 _ _ 25 IRFAE30 _ _ 12 IRFAE40 _ 19 IRFAE50 _ _ 28 IRFAF30 _ | 80 IRFAF40 _ _ 7 IRFAF50 _ _ 25 IRFAG30 _ | 92 IRFAG40 _ _ 16 IRFAG50 _ - 22 IRF9130 _ | -50 P-Channel IRF9140 _ | -72 \ IRF9230 _ | -28 5 , IRF9240 _ | -44 Notes See page I-34. 1-26IaR Source-Drain Diode Ratings and Characteristics (continued) IRF Series Devices Parameter Part Number] Min. | Typ. | Max. | Units Test Conditions Vsp Diode Forward IRFO34 | |] 18 Ig = 25A Voltage IAFO44 =| | | 25 Ig = 44A IRFOS4 - | 25 Ig = 454 IRFI30 | | | 15 Ig = 14A IRF140 _ | 15 Ig = 2BA IRFiI50 | | | 1.8 Ig = 3BA iAF230 | | | 14 Ig = 9.0A IRF240 - 1/15 Ig = 18A tRF250 /19 Ig = 30A IRFS80 | | | 1.4 Ig = 5.5A IRF340 _ _ 1.5 Is 10A IRF250 | | | 147 Ig = 14A IRFI60 | | | 18 Ig = 25A N-Channel 'AF480 | | | 14] y |[!S=45A +). occ, vag = ov @ IRF4A40 | | | 1.5 Is = 8.0A IRF450 ~ | 17 Ig = 12A IRF460 ||18 Ig = 21A IRFAC3O _ ~ | 1.6 Ig = 3.6A IRFAC4GO | | | 1.1 Ig = 6.2A IRFAE30 _ _ 1.8 Ig = 3.1A IRFAE40 _ | 18 Ig = 4.8A IRFAESO | | | 1.8 Ig = 7.1A IRFAF30 _ | 18 Ig = 2.0A IRFAF40 _ | 18 Ig = 4.3A IRFAF50 _ _ 1.8 Ig = 6.2A IRFAG30 _ 118 Ig = 2.3A IRFAG40 _ | 18 Ig = 3.9A IRFAG50 _ _ 1.8 ig = 5.6A IRF9130 _ |-4.7 Ig = -11A P-Channel IRF9140 _ | -4.2 Ig = -18A IRF9230 _ |-6.0 Ig = -6.5A (RF9240 | | |-4.6 ig = -11A Notes See page 1-34. 1-27IRF Series Devices IaR Source-Drain Diode Ratings and Characteristics (continued) Parameter Part Number! Min. | Typ. | Max. | Units Test Conditions ter Reverse IRFO34 - | 220 IF = 25A Recovery Time IRFO44 _ | 220 Ip = 44A IRFO54 _ | 280 IF = 45A {RF130 - | 300 IF 14A {RF140 _ | 400 Ip = 28A IRF150 | | 500 ip = 38A IRF230 _ | 500 IF = 9.0A IRF240 _ | 500 IF 18A IRF250 _ | 950 IF = 30A IRF330 _ | 700 IF = 5.5A IRF340 _ | 600 Ip = 10A IRF350 _ | 1200 IF 14A (RF360 _ | 1000 Ip = 25A N-channel|__'RF430_ | | | 900) 4, [IF = 454 7) _ a59, dildt < 100 Alus IRF440 | | 700 IF = 8.0A Vpp < 50V IRF450 _ | 1600 IF 12A IRF460 - | 580 IF 21A IRFAC30 _ | 810 IF = 3.6A IRFAC40 | | | 940 Ip = 6.2A IRFAE30 | 800 lp = 3.1A IRFAE40 _ | 1300 Ip = 4.8A IRFAESO _ | 1600 IF = 7.1A IRFAF30 > | 730 IF = 2.0A IRFAF40 _ |1100 IF = 4.3A IRFAF50 _ | 1500 IF = 6.2A IRFAG30 _ | 470 IF = 2.3A IRFAG40 _ | 1000 IF = 3.9A IRFAG50 _ | 1200 IF = 5.6A IRF9130 _ | 250 IF = -11A P-Channel IRF9140 _ 170 | 280 IF = -18A Ty = 25C, di/dt < -100 A/us iRF9230 | | | 400 IF = -6.5A Vpp = -50V IRF9240 | 270 | 440 IF = -11A Notes See page I-34. 1-28TfeaR IRF Series Devices Source-Drain Diode Ratings and Characteristics (continued) Parameter Part Number | Min. | Typ. | Max. | Units Test Conditions QRR_ Reverse IRFO34 _ | 96 IF = 25A Recovery Charge IRF044 1.6 IF = 44A IRFO54 _ _ 2.2 Ip = 45A IRF 130 | | 3.0 Ip = 14A IRF140 _ | 29 Ip = 2BA IRF150 _ | 29 IF = 38A IRF230 | | 60 IF = 9.0A IRF240 _ | 53 IF = 18A IRF250 | | 9.0 IF = 30A IRF330 | | 62 IF = 5.5A IRF340 _ _ 5.6 Ip = 10A IRF350 _ _ 11 Ip = 14A IRF360 | | 16 IF = 25A N-Channel|_!RF4800 | | | 70 | io [IF = 45A 7) _ 2506, disdt < 100 Aus @ IRF440 |- |89 IF = 8.0A Vpp = 50V IRF450 _ 14 IF = 12A IRF460 8.1 Ip = 21A IRFAC30 _ | 42 ip = 3.64 IRFAC40 | | 80 IF = 6.2A IRFAE3O _ ~ 3.6 IF = 3.1A IRFAE40 | | 85 IF = 4.8A IRFAES50 | | 13 IF = 7.1A IRFAF30 _ _ 3.0 IF = 2.0A IRFAF40 _ | 67 ip = 4.3A IRFAF50 | | 11 IF = 6.2A IRFAG30 _ 1.7 IF = 2.3A IRFAG40 _ | 66 IF = 3.9A IRFAGS5O |; | &4 IF = 5.6A IRF9130 | | 30 IF = -11A Ty = 25C, difdt = -100 A/us P.Channet|_'RF9140 | | | 36 Ip = -18A Vpp < -50V IRF9230 _ | 4.0 IF = -6.5A IRF9240 _ _ 7.2 Ip = -11A ton Forward ALL Intrinsic turn-on time is negligible. Turn-On Turn-on speed is substantially controlled by Lg + Lp Time Notes See page I-34. 1-29IRF Series Devices Thermal Resistance and Case Style I6aR Parameter Part Number | Min. | Typ. | Max. | Units Test Conditions Rthuc Junction-to- IRFO34 _ _ 1.67 Case IRF044 _ _ 1.0 IRFO54 _ _ 0.83 IRF130 - 1.67 IRF 140 _ _ 1.0 IRF150 } 0.83 tRF230 _ _ 1.67 IRF240 _ _- 1.0 IRF250 _ 0.83 IRF330 _ 1.67 IRF340 - 1.0 IRF350 _ _ 0.83 IRF360 _ | 0.42 N-Channel IRF430 1.67 KIW IRF440 1.0 IRF450 _ - 0.83 IRF460 0.42 IRFAC30 _ _ 1.67 IRFAC40 1.0 {RFAESO _ _ 1.67 IRFAE40 _~ _ 1.0 IRFAE50 _ | 0.83 IRFAF30 1.67 IRFAF40 _ 1.0 IRFAF50 _ - 0.83 IRFAG30 _- _ 1.67 IRFAG40 _ _ 1.0 IRFAGSO _ | 0.83 IRF9130 _ 1.67 P-Channel IRF9140 _ _ 1.0 IRF9230 _ 1.67 IRF9240 _ _ 1.0 Notes See page I-34. 1-30IaR Thermal Resistance and Case Style (continued) IRF Series Devices Parameter Part Number | Min. | Typ. | Max. | Units Test Conditions Rthcs Case-to-Sink IRFO34 |o12] IRFO44 _ 0.12 _ |RFOS4 ~ 0.12 - tRF130 _ 0.12 _ IRF140 _ 0.12 IRF150 _ 0.12 IRF230 _ 0.12 _ IRF240 0.12 _ IRF250 _ 0.12 _ IRF330 | 012 _ IRF340 |}012] IRF350 _ 0.12 _ IRF360 _ 0.12 _ N-Channel IRF430 = 0.12 _| KAW | Mounting surface flat, smooth, IRF440 _ 0.12 - and greased. IRF450 - 0.12 IRF460 _ 0.12 _ IRFAC3O _ 0.12 IRFAC40 1/012) IRFAE30 _ 0.12 ~ IRFAE40 _ 0.12 IRFAESO | 012) IRFAF30 ~ 0.12 _ IRFAF40 |}012) IRFAF50 _ 0.12 _ IRFAG30 _ 0.12 IRFAG40 0.12 ~ IRFAGSO _ 0.12 _ IRF9130 _- 0.12 _ P-Channel IRF9140 _ 0.12 _ IRF9230 _ 0.12 - IRF9240 - 0.12 _ Notes See page I-34. 1-31IRF Series Devices Thermal Resistance and Case Style (continued) IaR Parameter Part Number | Min. | Typ. | Max Units Test Conditions RthuA Junction-to- IRFO34 _ _ 30 Ambient IRFO44 _ _ 30 IRFO54 _ 30 IRF130 _ _ 30 IRF 140 _ _ 30 IRF150 _ _ 30 IRF230 _ _ 30 IRF240 _ ~~ 30 (RF250 _ _ 30 IRF330 _ _ 30 IRF340 _ _ 30 IRF350 _ _ 30 IRF360 _ _ 30 N-Channel IRF430 30 i kw Typicat socket mount IRF440 _ _ 30 IRF450 - _- 30 IRF460 - _ 30 IRFAC30 30 IRFAC40 _ _ 30 IRFAE3O _ _ 30 IRFAE40 _ ~ 30 IRFAE50 _ - 30 IRFAF30 _ _ 30 IRFAF40 _ ~ 30 IRFAF50 _ _ 30 IRFAG30 _ _ 30 {RFAG40 _ _ 30 IRFAG50 _ _ 30 IRF9130 _ _ 30 P-Channel |_'RF9140 = = 30 IRF9230 _ _ 30 IRFO240 | | 30 Notes See page I-34. 1-32Thermal Resistance and Case Style (continued) IRF Series Devices Part Number TO-204AA TO-204AE Case Style N-Channel IRF034 IRF044 IRF054 (RF130 IRF140 IRF 150 IRF230 IRF240 IRF250 IRF330 IRF340 IRF350 IRF360 IRF430 IRF440 IRF450 IRF460 IRFAC30 IRFAC40 IRFAE30 IRFAE40 IRFAESO IRFAF30 IRFAF40 IRFAF50 IRFAG30 IRFAG4O IRFAGSO IRF9130 P-Channel IRF9140 IRF9230 IRF9240 ~ | OK | OK] KL KP KL OK | OK] OK PK LK | OK | KL OK | x Notes See page 1-34. 1-33IRF Series Devices Notes: IaR @ Repetitive rating: pulse width limited by max. junction temperature (See Figure 11) @ See Tabie 1 for individual devices conditions @ See Table 1 for individual devices conditions @ Pulse width <300 ys; duty ycle <2% KIW = C/W WIK = WIC Table 1 Notes and for IRF034 to IRFAG50 N-Channel IRF9130 to IRF9240 P-Channel Device Note @ Note @ IRFO34 @ Vpp = 25V, Starting Ty = 25C, Isp = 25A, di/dt < 200 Alus, L = 35 nH, RG = 252, Vop < BYpss. Ty = 150C Peak IL = 25A Suggested Rg = 7.50 IRFO44 @ Vop = 25V, Starting Ty = 25C, Isp =< 44A, difdt < 250 Alus, L = 200 nH, Rg = 262, Voo <= BYpss,. Ty = 150C Peak I, = 44A Suggested Rg = 9.10 IRFOS4 @ Vpp = 25V, Starting Ty = 25C, Isp < 45A, di/dt < 200 Alus, L = 280 wH, Re = 259, Vop = BYVpss. Ty = 150C Peak IL = 45A Suggested Rg = 2.352 IRF130 @ Vpp = 50V, Starting Ty = 25C, Isp < 14A, di/dt < 140 Alus, L = 570 nH, Rg = 250, Vob < BYpss. Ty < 150C Peak lL = 14A Suggested Rg = 7.52 IRF140 @ Vpp = 25V, Starting Ty = 25C, Isp < 28A, di/dt < 170 Alus, L = 480 wH, Rg = 250, Vpp <= BYpss,. Ty < 150C Peak IL = 28A Suggested RG = 9.12 IRF150 @ Vpp = 50V, Starting Ty = 25C, Isp < 38A, di/dt < 300 Alus, L = 160 pH, Ag = 259, Vob = BYpss. Ty = 150C Peak ) = 38A Suggested Rg = 2.352 IRF230 @ Vpop = 50V, Starting Ty = 25C, Isp = 9.0A, di/dt < 120 A/ys, L = 1.0 mH, Re = 259, Vpp = BYVpss,. Ty <= 150C Peak IL = 9.0A Suggested Rg = 7.50 IRF240 @ Vpp = 50V, Starting Ty = 25C, Isp < 18A, di/dt <= 160 A/ps, L = 2.1 mH, Re = 252, Vpb = BVpss. Ty = 150C Peak IL = 18A Suggested Rg = 9.1 IRF250 @ Vpp = 50V, Starting Ty = 25C, Isp < 30A, di/dt < 190 Alus, L > 330 pH, Re = 259, VoD <= BVpss, Ty <= 150C Peak = 30A Suggested Rg = 2.352 IRF330 @ VoD = 50V, Starting Ty = 25C, Isp s 5.5A, di/dt =< 90 Alus, L 2 100 nH, Rg = 252, Vpp < BVpss; Ty = 150C Peak IL = 5.5A Suggested Rg = 7.52 IRF340 @ Vpp = 50V, Starting Ty = 25C, Isp = 10A, difdt < 120 Alps, L = 100 wH, Re = 259, Vop =< BVpss, Ty = 150C Peak IL = 10A Suggested RG = 9.12 IRF350 @ Vpp = S0V, Starting Ty = 25C, Isp x 14A, di/dt < 145 A/us, L = 100 pH, Rg = 252, VoD < BYpss, Ty = 150C Peak IL = 14A Suggested RG = 2.352 IRF360 @ Vpp = 50V, Starting Ty = 25C, Isp =< 25A, di/dt < 170 Alus, L = 2.8 mH, Re = 252, Vpp < BYpss; Ty = 150C Peak IL = 25A Suggested RG = 2.352 1-34Table 1 (continued) IRF Series Devices Device Note @ Note (RF430 @ VoD = 50V, Starting Ty = 25C, Isp < 485A, di/dt < 75 Alus, L = 100 nH, Rg = 250, Vpp = BVpss, Ty = 150C Peak Ir = 4.5A Suggested Rg = 7.52 IRF440 @ Vpp = 50V, Starting Ty = 25C, Isp = 8.0A, di/dt < 100 A/us, L = 100 wH, Rq = 250, Vob < BYVpss, Ty = 150C Peak Ir = 8.0A Suggested Rg = 9.12 IRF450 @ Vpp = 50V, Starting Ty = 25C, Isp <= 12A, di/dt = 130 Alps, L 2 100 nH, Ra = 250, Vop = BYpss, Ty = 150C Peak IL = 12A Suggested Rg = 2.350 IRF460 @ Vpp = 50V, Starting Ty = 25C, Isp < 21A, di/dt < 160 Alps, L = 4.9 mH, Re = 252, Vpp <= BVpss, Ty = 150C Peak IL = 21A Suggested Rg = 2.350 IRFAC30 @ Vpp = 50V, Starting Ty = 25C, Isp = 3.6A, di/dt = 60 A/us, L = 25 mH, Rg = 250, Vpb = BYpss. Ty = 150C Peak IL = 3.6A Suggested Rg = 7.50 IRFAC40 @ VDD = 50V, Starting Ty = 25C, Isp = 6.2A, di/dt <= 80 A/us, L = 27 mH, Rg = 250, Vpp < BYVpss, Ty < 150C Peak IL = 6.2A Suggested RG = 9.12 IRFAE30 @ Vpp = 50V, Starting Ty = 25C, Igp < 3.1A, di/dt < 100 A/us, L = 20 mH, Rg = 252, Vpp < 8Vpss, Ty < 150C Peak tL = 3.1A Suggested Rg = 7.52 IRFAE40 @ VDD = 50V, Starting Ty = 25C, Isp < 4.8A, di/dt < 120 Alus, L = 45 mH, Re = 250, Vpp =< BVpss. Ty = 150C Peak IL = 4.8A Suggested AG = 9.12 IRFAF30 @ VoD = 50V, Starting Ty = 25C, Isp =< 2.0A, di/dt < 90 Alps, L = 47 mH, Rg = 250, Vpp < BYpss. Ty = 150C Peak IL = 2.0A Suggested Rg = 7.52 IRFAF40 @ Vop = 50V, Starting Ty = 25C, Isp < 4.3A, di/dt < 110 A/us, L = 54 mH, Rg = 250, Vpp = BYpss. Ty = 150C Peak IL = 4.3A Suggested RG = 9.10 IRFAF50 @ Vpp = 50V, Starting Ty = 25C, Isp <= 6.2A, di/dt < 130 A/us, L = 43 mH, Re = 259, Vpb = BYpss,. Ty = 150C Peak IL = 6.2A Suggested Rg = 2.352 IRFAG30 @ VoD = 50V, Starting Ty = 25C, Isp < 2.3A, di/dt < 80 A/us, L = 40 mH, Re = 2509, Peak IL = 2.3A Vpop <= BYpss, Ty = 150C Suggested Rg = 7.52 1-35IRFF Series Devices Table 1 (continued) IaR Device Note @ Note @ IRFAG40 @ Vop = 50V, Starting Ty = 25C, Isp = 3.9A, di/dt < 100 A/us, L = 66 mH, Rg = 252, Vpp < BVpss; Ty = 150C Peak IL = 3.9A Suggested Rg = 9.12 IRFAG50 @ Vop = 50V, Starting Ty = 25C, Isp <= 5.6A, di/dt < 120 Alus, L = 52 mH, Re = 252, Vpp < BVpss, Ty = 150C Peak IL = 5.6A Suggested RG = 2.352 IRF9130 @ VoD = 25V, Starting Ty = 25C, Isp <= -11A, di/dt = -140 A/us, L = 1.0 mH, Re = 250, Vpp = BVpss; Ty = 150C Peak IL = -11A Suggested Rg = 7.52 IRF9140 @ Vpp = -25V, Starting Ty = 25C, Isp < -18A, di/dt < -100 Alus, L = 2.3 mH, Re = 250, Vpop < BYVpss. Ty = 150C Peak IL = -18A Suggested Rg = 9.10 IRF9230 @ Vpp = -5OV, Starting Ty = 25C, Isp < -6.5A, di/dt < -120 A/us, L = 2.3 mH, RG = 250, Vpp <= BVpss, Ty = 150C Peak IL = -6.5A Suggested RG = 7.52 IRF9240 @ Vpp = 50V, Starting Ty = 25C, Isp < -11A, di/dt < -150 A/us L = 6.2 mH, Rg = 250, Vpp = BVpss; Ty = 150C Peak IL = -11A Suggested RG = 9.19 1-36IgaR @ Ww 2 E a rs) ao a <3 10! z He & a S 20us PULSE WIDTH Te = asec 100 40-1 100 101 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1a - Typical Output Characteristics, To. = 25C Fig. Fig. IRFO34 4.5V Ip, DRAIN CURRENT (AMPERES) HII 20us PULSE WIDTH To = 25C 4071 109 101 Vpg. DAAIN-TO-SOURCE VOLTAGE (VOLTS) 1c ~ Typical Output Characteristics, Te = 25C IRFO54 2. ie a 4.5 Ip, DRAIN CURRENT (AMPERES) 20us PULSE WIDTH To = 25C 404 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) te - Typical Output Characteristics, Te = 25C IRF140 1-37 IRF Series Devices Ip, DRAIN CURRENT (AMPERES) cng 20us PULSE WIDTH Te = 25C 107 Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1b - Typical Output Characteristics, T, = 25C IRF044 2. Ip, DRAIN CURRENT (AMPERES) 20us PULSE WIDTH To = 250 109 104 DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1d ~ Typical Output Characteristics, Tc = 25C IRF130 101 4 ov Ip, DRAIN CURRENT (AMPERES) 100 20us PULSE WIDTR Te = 25C 107 10 10! Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1f - Typicat Output Characteristics, Tp = 25C IRF150IRF Series Devices Fig. Fig. Fig. 3 2. oO 4.5V Ip, DRAIN CURRENT (AMPERES 20us PULSE WIDTH Te = 259C 1071 Vps, DRAIN-TO-SQURCE VOLTAGE (VOLTS) 1g - Typical Output Characteristics, T; = 25C IRF230 3 3. re ~ Ip, GRAIN CURRENT (AMPERES 3 oO 4.5 20us WIOTH Te = a5c 1071 101 \ Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) 1i - Typical Output Characteristics, T, = 25C IRF250 2 Ip, DRAIN CURRENT (AMPERES 4.5V 20us PULSE WIDTH Te = 25C Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS 1k - Typical Output Characteristics, Tc = 25C IRF340 1-38 IaR 101 4.5V Ip, DRAIN CURRENT (AMPERES: 20us Te = 25C so! 107 Vpg DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. th - Typical Output Characteristics, T; = 25C IRF240 Ss Tp. ORAIN CURRENT (AMPERES: 4.5V 20us PULSE WIDTH To = 25C 4 " to7! 109 tof Vgpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS, Fig. 1j - Typical Output Characteristics, To = 25C IRF330 101 Ip, ORAIN CURRENT (AMPERES 20us PULSE WIDTH Te = 25C 0 1000 7 10 Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 11 - Typical Output Characteristics, To = 25C IRF350I6aR 4.5 I 20us PULSE WIDTH Te = 25C Ip, ORAIN CURRENT (AMPERES) 100 Vps. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1m - Typical Output Characteristics, Tc = 25C I RF360 Ip, ORAIN CURRENT (AMPERES) 4.5V 20us PULSE WIDTH To = 25C 100 10! Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 - Typical Output Characteristics, Tc = 25C IRF440 104 Ip, DRAIN CURRENT (AMPERES) 20us PULSE WIDTH Te = 25C 10 10 10! Vog. ORAIN-TO-SOQURCE VOLTAGE (VOLTS) Fig. 1q - Typical Output Characteristics, Tc = 25C IRF460 Ip, DRAIN CURRENT (AMPERES) tov! Ip. DRAIN CURRENT (AMPERES) IRF Series Devices to! 100 20us PULSE WIDTH To = 25C Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. in - Typical Output Characteristics, Tc = 25C tRF430 3S 4.5 3 20us PULSE WIDTH To = 259C Vos ORAIN-TO-SOURCE VOLTAGE (VOLTS) . 1p - Typical Output Characteristics, To = 25C Ig, DRAIN CURRENT (AMPERES) IRF450 4.5V 20us PULSE WIDTH Tc = 25C 102 Vpg. DRAIN-TO-SQURCE VOLTAGE (VOLTS Fig. 1r - Typical Output Characteristics, Tc = 25C IRFAC30IRF Series Devices IaR 10 Ip, ORAIN CURRENT (AMPERES) Tp. DRAIN CURRENT (AMPERES) 4.5V 20us PULSE WIDTH 20us PULSE WIDTH To = 25C Tce = 25c to"! 1o7! 101 104 102 Vos. DRAIN-TO-SOQURCE VOLTAGE (VOLTS) Vos, DRAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 1s - Typical Output Characteristics, Tc = 25C Fig. 1t - Typical Output Characteristics, Te = 25C IRFAC40 IRFAE30 Ip, DRAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES) 4.v Ht 20us PULSE WID Te =.259c 4. 20us PULSE WIDTH To = 25C 102 10 10! 102 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg, DRAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 1u - Typical Output Characteristics, Tc = 25C Fig. tv - Typical Output Characteristics, Tc = 25C IRFAE4O IRFAESO a a ce oo 3 3 = = 4 5 4 a <= & sy & a oD 4, 20us PULSE WIOTH 20us PULSE Te = 250 To = 28C s02 102 Vs. DRAIN-TO-SQURCE VOLTAGE (VOLTS) Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1w Typical Output Characteristics, Tc = 25C Fig. 1x - Typical Output Characteristics, Tc = 25C IRFAF30 IRFAF40IaR Ip, DRAIN CURRENT (AMPERES) 45y 20us PULSE WIDT Te = 25C 40! 192 Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. ly - Typical Output Characteristics, T = 25C IRFAF50 4.5V Ip, ORAIN CURRENT (AMPERES, 20us PULSE WIDTH To = astc to! 10 Vgg. DRAIN-TO-SQURCE VOLTAGE (VOLTS. Fig. 1aa - Typical Output Characteristics, Tc = 25C IRFAG40 101 20us PULSE WIDTH Te = 259C NEGATIVE Ip, DAAIN CURRENT (AMPERES, 100 so! NEGATIVE Voc, ORAIN-TO-SQUACE VOLTAGE (VOLTS, Fig. icc - Typical Output Characteristics, Tc = 25C IRF9130 I-41 IRF Series Devices 401 Tp. DAAIN CURRENT {AMPERES) 20us PULSE WIDTH To = 25C 102 Vog, DRAIN-TO-SQUACE VOLTAGE (VOLTS, Fig. 12 - Typical Output Characteristics, Tc = 25C IRFAG30 3 Ip, DRAIN CURRENT (AMPERES. 20us PULSE WIDTH To = 25C 100 rot 102 Vos: DRAIN-TO-SOURCE VOL7AGE (VCLTS Fig. 1bb - Typical Output Characteristics, Tc = 25C IRFAG5O Ss -4.5V | 20us PULSE WIDTH Te = 25C NEGATIVE Ip, ORAIN CURRENT (AMPERES} 104 NEGATIVE Vpg, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1dd - Typical Output Characteristics, Tc = 25C IRF9140IRF Series Devices I 20us PULSE WIDTH 20us PULSE WIOTH Te = 150C Te = 150C 10 40 to! 100 104 Vpg, DRAIN-TC-SQURCE VOLTAGE (VOLTS) og. ORAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 2k - Typical Output Characteristics, Tc = 150C Fig. 21 - Typical Output Characteristics, Tc = 150C IRF340 IRF350 101 100 Ip, DRAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES) 20us PULSE WIDTH 20us PULSE WIOTH To = 150C Tc = 150C ol 10"! Vog, DAAIN-7O-SQURCE VOLTAGE (VOLTS) Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 2m - Typical Output Characteristics, Tc = 150C Fig. 2n Typical Output Characteristics, Tg = 150C IRF360 IRF430 oS Ip, DRAIN CURRENT (AMPERES) Ip. DRAIN CURRENT (AMPERES) 10 20us PULSE WIDTH 20us PULSE WIDTH To = 150C Te = 150C tof 400 10! Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 20 - Typical Output Characteristics, Tc = 1500C Fig. 2p ~ Typical Output Characteristics, Tc = 150C IRF440 IRF450 1-44aR IRF Series Devices a n ly ld a oe fy ut Qa a = = a = B10 5 us wa ce & = qo oO za Zz me tH & oO a a 5 Ww iT 20us PULSE 20us PULSE WIDTH To = 150C Te = 150C 109 101 10 40 Vog. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS Fig. 2q - Typical Output Characteristics, Tc = 150C Fig. 2r - Typical Output Characteristics, Tc = 150C IRF460 IRFAC30 10! 5 109 Ip. DRAIN CURRENT (AMPERES) Ip, ORAIN CURRENT (AMPERES) 20us PULSE WIDTH 20us PULSE WIDTH Tg = 150C Te = 150C 1074 104 wo 10 40? Vpg. DRAIN-TO-SOURCE VOLTAGE [VOLTS) Vp ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 2s - Typical Output Characteristics, Tc = 150C Fig. 2t - Typical Output Characteristics, Tc = 150C IRFAC40 IRFAE30 Ss Tp, DRAIN CURRENT (AMPERES) Tp. DRAIN CURRENT (AMPERES) cl 20us PULSE To = 150C 20us PULSE WIDTH Te = 150C 402 192 10? to! 17 108 tot Vog. DRAIN-TO-SOQURCE VOLTAGE (VOLTS) Vpg. DRAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 2u - Typical Output Characteristics, Te = 150C Fig. 2v - Typical Output Characteristics, Tc = 150C IRFAE40 IRFAE50 1-45IRF Series Devices so! Tp. DRAIN CURRENT (AMPERES) 20us PULSE WIDTH To = 150C 10 Vps, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 2w - Typical Output Characteristics, Tc = 150C IRFAF30 2 i Li 20us PULSE WICTH Te = 1509C Ip. DRAIN CURRENT (AMPERES, 1c! 19 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 2y - Typical Output Characteristics, Tc = 150C IRFAFSO 10! Tp, DRAIN CURRENT (AMPERES 20us PULSE WIDTH Te = 150C 101 10 Vp5, ORAIN-TO-SOURCE VOLTAGE (VOLTS, Fig. 2aa ~- Typical Output Characteristics, Tc = 150C IRFAG40 1-46 Fig. Fig. Fig. 104 wn uJ a it = = E = dad a 5 a s <= & so7! a e2Qus PULSE Te = 150C io7! 10 10! 104 Vos: DRAIN-TO-SOURCE VOLTAGE (VOLTS 2x - Typical Output Characteristics, Tc = 150C IRFAF40 sot Ip. DRAIN CURRENT (AMPERES, 20us PULSE WIDTH To = 150C 102 Vpg. ORAIN-TO-SOURCE VOLTAGE (VOLTS) 2z - Typical Output Characteristics, Tc = 150C IRFAG3O 103 Tp. DRAIN CURRENT (AMPERES 20us PULSE WIDTH Te = 150C 100 102 103 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS. 2bb - Typical Output Characteristics, Tc = 150C IRFAGSOIaR IRF Series Devices 10 wn a lid Lu Cc a Lu Ww a a = = = a4 eK - = Zz dd ud x a 5 10! 5 Oo Oo Zz Zz = re a a a i & 2108 w Lu c 5 -4,5V a 20u3 PULSE wIOTA4 3s 20us PULSE WIDTH 2 Ta = 1509S 2 Te = 1509C Moa 109 tot 11 NEGATIVE Vs, OAAIN-TO-SOURCE VOLTAGE {VOLTS} NEGATIVE Vos, CAAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 2cc - Typical Output Characteristics, Tc = 150C Fig. 2dd - Typical Output Characteristics, Tc = 150C IRF9130 IRF9140 101 -45V 20us PULSE WIDTH 20u8 PULSE WIDTH NEGATIVE Ip, DRAIN CURRENT (AMPERES) NEGATIVE Ip, DRAIN CURRENT (AMPERES) Te = 150C Te = 150C to-} 490 107! 10 10! 109 ie! NEGATIVE Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) NEGATIVE Vgco, DRAIN-TO-SOURCE VOLTAGE {VOLTS} Fig. 2ee - Typical Output Characteristics, Tc = 150C Fig. 2ff - Typical Output Characteristics, Tc = 150C IRF9230 IRF9240 Ip, DRAIN CURRENT (AMPERES) Ip, ORAIN CURRENT (AMPERES) Vps = 25V 20us PULSE WIDTH Veg = 25V 20us PULSE WIDTH 10 4 8 g 4 6 3 Vgg, GATE-TO-SOURCE VOLTAGE (VOLTS) Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3a ~ Typical Transfer Characteristics Fig. 3b - Typical Transfer Characteristics IRFO34 IRFo44 \-47IRF Series Devices % Tp, DRAIN CURRENT (AMPERES) a o Vps = 25V 20us PULSE WIDTH 10 Vgg GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3c - Typical Transfer Characteristics IRF054 Ip, DRAIN CURRENT (AMPERES) Vog = 50V 20us_ PULSE_WIDTH Veg, GATE-TO-SQUACE VOLTAGE (VOLTS) Fig. 3e - Typical Transfer Characteristics iRF140 to! Ip, DRAIN CURRENT (AMPERES) son! Vos = Sov 20us PULSE WIDTH Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3g - Typical Transfer Characteristics IRF230 I6aR 2 Ip, DRAIN CURRENT [AMPERES) Vpg = SOV 20us_ PULSE WIDTH 4 5 6 8 9 10 Veg GATE-TO-SQURCE VOLTAGE (VOLTS) Fig. 3d - Typical Transfer Characteristics IRF130 DRAIN CURRENT (AMPERES) Ip, Vog = 50V 20us PULSE WIOTH Vgg. GATE-TO-SOQURCE VOLTAGE (VOLTS) Fig. 3f - Typical Transfer Characteristics IRF150 so! 1074 Ip, DRAIN CURRENT (AMPERES) Vog = SOV 20us PULSE WIDTH Vgs. GATE-TO-SQURCE VOLTAGE (VOLTS) Fig. 3h ~ Typical Transfer Characteristics iRF240IaR Tp, DAAIN CURRENT (AMPERES) Vos = SOV 20us PULSE WIDTH Vgg. GATE-TO-SQURCE VOLTAGE (VOLTS) Fig. 31 - Typical Transfer Characteristics IARF250 Ss. Ip, DRAIN CURRENT {AMPERES) Vps = SOV 20us PULSE WIOTH Ves. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3k - Typical Transfer Characteristics IRF340 Tp. DRAIN CURRENT (AMPERES) Vos = SOV 20us PULSE WIDTH Ves, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3m ~ Typical Transfer Characteristics IRF360 1-49 Ip, DRAIN CURRENT (AMPERES) DRAIN CURRENT (AMPERES) Ip. Tp, DRAIN CURRENT (AMPERES) IRF Series Devices 1o-1 Vos = 50V 20us PULSE WIDTH 4 Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3] - Typical Transfer Characteristics IRF330 ra o SS Vog = SOV 20us PULSE WIDTH rs 3. o Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 31 - Typical Transfer Characteristics IRF350 19-1 Vos = SOV 20us PULSE WIDTH Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3n - Typical Transfer Characteristics IRF430IRF Series Devices Tp, ORAIN CURRENT (AMPERES) Vos = 50V 20us_PULSE_WIDTH 4 Vgg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 30 - Typical Transfer Characteristics IRF440 Ip. DRAIN CURRENT (AMPERES) Vpg = SOV 20us PULSE WIDTH 10 Veg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3q - Typical Transfer Characteristics IRF460 10! 10 Ip, DRAIN CURRENT (AMPERES) Vpg = 25V 20us_ PULSE WIDTH 4 10 Vgg, GATE-TO-SOURCE VOLTAGE (VOLTS Fig. 3s - Typical Transfer Characteristics IRFAC40 1-50 IaR Ip, DRAIN CURRENT (AMPERES) Vos = SOV 20us PULSE WIDTH 4 Veg GATE-TO-SOURCE VOLTAGE (VOLTS Fig. 3p - Typical Transfer Characteristics IRF450 Ip, ORAIN CURRENT (AMPERES) Vpg = 100V 20us PULSE WIDTH Veg, GATE-TO-SQUACE VOLTAGE (VOLTS) Fig. 3r - Typical Transfer Characteristics IRFAC30 Ip. DRAIN CURRENT (AMPERES) Vpg = 100V 20us PULSE WIDTH 4 Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS Fig. 3t - Typical Transfer Characteristics (RFAE30aR Tp. ORAIN CURRENT (AMPERES) Vog = 100 20us_ PULSE WIDTH 4 3 10 Veg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3u - Typical Transfer Characteristics IRFAE40 o Q x Ip, DRAIN CURRENT (AMPERES) % Vpg = 100V 20us PULSE WIDTH 10 Veg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3w Typical Transfer Characteristics IRFAF30 3 Ip, DRAIN CURRENT (AMPERES) Vos = 100Vv 20us PULSE WIDTH 4 8 40 Veg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3y - Typical Transfer Characteristics IRFAF50 I-51 IRF Series Devices 2 Ip, DRAIN CURRENT (AMPERES) Vag = 100V 20us_PULSE_ WIDTH 6 8 10 Veg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3v - Typical Transfer Characteristics IRFAE50 Tp, DRAIN CURRENT (AMPERES) Vps = 100V 20us_PULSE_WIDTH 8 9 10 Veg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3x Typical Transfer Characteristics IRFAF40 a tu ac e = E = lu E oOo = Ho << a a a H Vos = 100V to-t 20us PULSE WIDTH Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3z - Typical Transfer Characteristics IRFAG30IRF Series Devices 401 Ip, DRAIN CURRENT (AMPERES) Vpg = 100V tot 20us PULSE WIDTH 4 10 Vgg. GATE-TO-SQURCE VOLTAGE (VOLTS) Fig. 3aa - Typical Transfer Characteristics IRFAG40 Vos = -50v 20us PULSE WIDTH 4 6 8 40 NEGATIVE Veco, GATE-TO-SOURCE VOLTAGE (VOLTS) NEGATIVE Ip, DRAIN CURRENT (AMPERES) Fig. 3cc ~ Typical Transfer Characteristics IRF9130 Vag = -SOV 20us PULSE WIDTH NEGATIVE Tp, ORAIN CURRENT (AMPERES) 4 5 6 a 40 NEGATIVE Vgc, GATE-TO-SQURCE VOLTAGE (VOLTS) Fig. 3ee - Typical Transfer Characteristics IRF9230 1-52 IaR Ip, DRAIN CURRENT (AMPERES) Vos = 100V 20us PULSE WIOTH 4 Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3bb - Typical Transfer Characteristics IRFAGSO Vos = ~5OV 20us PULSE WIDTH NEGATIVE Ip, DRAIN CURRENT (AMPERES) NEGATIVE Vgc, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3dd Typical Transfer Characteristics IRF9140 Vpg = -SOV 20us_ PULSE WIDTH NEGATIVE Ip, DRAIN CURRENT (AMPERES) 4 5 a 10 NEGATIVE Veg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3ff - Typical Transfer Characteristics IRF9240IaR IRF Series Devices 2.0 a a 8 wi N q 4 405 = = = = z z S Ss z z DRAIN-TO-SOURCE ON RESISTANCE a Ros (on): ORAIN-TO-SOURCE ON RESISTANCE Fos (on): Vog = 10V Yes = 1 7 20 40 60 BO 100 120 140 160 180 -40 ~20 0 60 80 1 140 Ty. YUNCTION TEMPERATURE ( 9) Ty: JUNCTION TEMPERATURE ( C) Fig. 4a - Normalized On-Resistance Vs. Temperature Fig. 4b - Normalized On-Resistance Vs. Temperature IRFO34 IRFO44 2.5 iy o (NORMALIZED) ms a (NORMALIZED) DRAIN-TO-SOURCE ON RESISTANCE an Rog (on): ORAIN-TO SOURCE ON RESISTANCE 3 0.5 wo a a Ygs = 10V VGS = 10V 0.0 0.0 0 20 40 60 1 120 140 160 -B0 -40 -20 0 20 40 60 680 100 120 140 160 Ty, JUNCTION TEMPERATURE ( C) Ty, JUNCTION TEMPERATURE ( C} Fig. 4c - Normalized On-Resistance Vs. Temperature Fig. 4d - Normalized On-Resistance Vs. Temperature IRFO54 IRF130 3.0 3.0 2.5 ny a nm o ut w oO oO Zz Zz zt a ime & on w 8 a n no Wu Ww or rc Zz Z 2.0 86 94 z 9 &q an an Bis Bmis zt << 2: ra oS Qg Ze Zz B10 az 710 a a a oa 5 05 5 os wo no oO oOo 7 VGS = 10V a ves = 10V 0 0.0 -60 -40 -20 0 20 40 60 BO 100 120 140 160 -60 -40 -20 0 20 40 60 80 100 120 140 160 TY. JUNCTION TEMPERATURE (C) Ty JUNCTION TEMPERATURE ( CC ) Fig. 4e - Normalized On-Resistance Vs. Temperature Fig. 4f Normalized On-Resistance Vs. Temperature IRF140 1RF150 1-63IRF Series Devices 2.5 ny oO (NORMAL IZED) w Ros fon): DAAIN-TO-SQURCE ON RESISTANCE Veg = 1 0.0 -60 - 0 40 60 100 120 4 Ty JUNCTION TEMPERATURE ( C) 160 Fig. 4g - Normalized On-Resistance Vs. Temperature IRF230 nO (NORMALIZED) ORAIN-TO-SOURCE ON RESISTANCE a 0.5 Fos (on): 3 Veg = 1 "60-40 -20 0 20 40 60 80 190 120 140 160 Ty, JUNCTION TEMPERATURE { C) 0 Fig. 4i - Normalized On-Resistance Vs. Temperature IRF250 2.5 ro (NORMALIZED) a ro oO O.5 Ros (on): DRAIN-TO-SOURCE ON RESISTANCE Veg = 10V -20 0 40 60 100 120 140 160 Ty, JUNCTION TEMPERATURE ( C) Fig. 4k - Normalized On-Resistance Vs. Temperature IRF340 1-54 IaR ny nO a a (NORMALIZED) a a Ag (on) ORAIN-TO-SOURCE ON RESISTANCE - Veg = 1 ~20 1 i +40 160 Ty, JUNCTION TEMPERATURE ( c) Fig. 4h - Normalized On-Resistance Vs. Temperature IRF240 nh nm o o (NORMAL IZED) e mn DRAIN-TO-SOURCE ON RESISTANCE e o a Abs (on) - Yes = -40 -20 1 1 Ty, JUNCTION TEMPERATURE ( C) 0.9 Fig. 4j - Normalized On-Resistance Vs. Temperature IRF330 no oO ana uo ORAIN-TO-SOURCE ON RESISTANCE (NORMAL IZED) Q Ros (on): Vgg = 10v 9-965 -40 -20 0 20 40 4 140 1 Ty. JUNCTION TEMPERATURE ( C) Fig. 41 - Normalized On-Resistance Vs. Temperature IRF350IaR IRF Series Devices 3.0 2.5 2.0 " o (NORMAL 1ZED) (NORMALIZED) a ORATN-TO-SOURCE ON RESISTANCE Fos (on) * DRAIN-TO SQUACE ON RESISTANCE 0.5 s 0.5 wn a Ves = 10V c Veg = 10V 0.0 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 ~ -20 0 20 BO 100 4 140 160 Ty, JUNCTION TEMPERATURE ( C ) Ty, JUNCTION TEMPERATURE ( C} Fig. 4m Normalized On-Resistance Vs. Temperature Fig. 4n - Normalized On-Resistance Vs. Temperature IRF360 IRF430 3.0 3.0 3 8 3 Zz = = oe 2.5 & 2.5 a 3 a a a 5 2.0 & 2.0 wo wo eo ea 3 N DN mH 31.5 B1.5 Lo 1 =< oz oz Fe - 1 co 1a zz zz =z 1.0 a 1.0 5 5 5 0.5 05 8 8 c 5 Ves = 10V ae Veg = 10V . -49 -20 0 20 40 60 80 100 120 140 1 o.05 -40 -20 0 20 40 60 BO 100 120 140 160 Ty JUNCTION TEMPERATURE ( 8) Ty JUNCTION TEMPERATURE (8c) Fig. 40 - Normalized On-Resistance Vs. Temperature Fig. 4p - Normalized On-Resistance Vs. Temperature IRF440 IRF450 3.5 3.5 wi Ww Q oO z Zz = 3.0 = 3.0 wo n a 8 wo wn du Ww e 2.5 x 2.5 z Zz oO oO & S2.0 S B2.0 oe. oe. Sy 5S 8 Ow DO ow nA 2 nm egts e 15 zz z2 << < r 1.0 x 1.0 < < S65 S 06 wa wn a Oo = vos = 10V & V6S = 10V 9 0.0 -60 -40 -20 0 20 40 60 80 100 420 140 760 -B0 -40 -20 0 20 40 60 80 100 120 140 160 Ty, JUNCTION TEMPERATURE [ C) Ty, JUNCTION TEMPERATURE [ C ) Fig. 4q - Normalized On-Resistance Vs. Temperature Fig. 4r - Normalized On-Resistance Vs. Temperature IRF460 IRFAC30 I-55IRF Series Devices Tear 3.0 3.5 uu WwW 3.0 mB 2.5 5 a @ 5 2.0 og ea a Q2.0 $8 Su Oo eis Ow a z a 2 e z 2 z15 zz, Z2 4 . = g =z 1.0 5 5 5 05 3 a * Ves = 10V Ves = 10V 0.0 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 -60 -40 -20 0 20 40 60 BO 100 120 140 160 Ty JUNCTION TEMPERATURE ( %) Ty. JUNCTION TEMPERATURE ( c) Fig. 4s - Normalized On-Resistance Vs. Temperature Fig. 4t - Normalized On-Resistance Vs. Temperature IRFAC40 IRFAE30 3.5 3.5 da la Z zZ = 3.0 = 3.0 wn un e al a w a 25 rc 2.5 & 8 2.0 @ 82.0 . Oe2. 58 Be o 3 ay = e zie e zi5 So az Zz =a < > Ww g 3 = a 8 3 P a e . pra : : 8 in + wn > >? 160 .@, TOTAL GATE CHARGE (nC) Qg, TOTAL GATE CHARGE (nC) Fig. 6q Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6r - Typical Gate Charge Vs. Gate-to-Source Voltage IRF460 IRFAC30 20 im ie nN a @ GATE-TO-SOURCE VOLTAGE (VOLTS) GATE-TO-SOURCE VOLTAGE {VOLTS) Bb 8 a - * TEST 20 BO Qg, TOTAL GATE CHARGE (nc} Qg, TOTAL GATE CHARGE (nC) Fig. 6s - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6t - Typical Gate Charge Vs. Gate-to-Source Voltage IRFAC40 IRFAE30 1-66TaR IRF Series Devices 20 20 Vos = 400V Vog = 160V Ving = 80V a n a to i @ GATE-TO-SOUACE VOLTAGE (VOLTS) tm h Vgg SATE-TO-SQUACE VOLTAGE (VOLTS) B an o FOR TEST CIRCUIT * FOR TEST CIRCUIT 1 9 120 160 200 Gg, TOTAL GATE CHAAGE (nC)- Gg, TOTAL GATE CHARGE (nC) Fig. 6u - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6v - Typical Gate Charge Vs. Gate-to-Source Voltage IRFAE40 IRFAESO 20 20 a a a ro fo a GATE-TO-SOUACE VOLTAGE (VOLTS) @o GATE-TO-SOURCE VOLTAGE (VOLTS) S Ves: Ves: FOR TEST CIRCUIT FOR TEST 60 1 120 Qg, TOTAL GATE CHARGE (nC) Gg, TOTAL GATE CHARGE (nC) Fig. 6w - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6x Typical Gate Charge Vs. Gate-to-Source Voltage IRFAF30 IRFAF40 20 20 e a a ra oy e fo o GATE-TO-SOURCE VOLTAGE (VOLTS) o a Ves: GATE-TO-SOURCE VOLTAGE (VOLTS) a 8 > FOR TEST CIRCUIT 8 160 200 9 40 60 80 Qg. TOTAL GATE CHARGE [nC) Qg, TOTAL GATE CHARGE (nC) Fig. 6y - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6z - Typical Gate Charge Vs. Gate-to-Source Voltage IRFAF50 IRFAG30 1-67IRF Series Devices IaR 20 20 Vog = 400V Vog = 200V Vong = 100V be a i on nD fu o a GATE-TO-SOURCE VOLTAGE (VOLTS) GATE-TO-SOURCE VOLTAGE (VOLTS) Ves" b Yes: tt FOR TEST CIRCUIT TEST Qg, TOTAL GATE CHARGE (nC) Gg, TOTAL GATE CHARGE (nC) Fig. Gaa - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6bb - Typical Gate Charge Vs. Gate-to-Source Voltage IRFAG4O IRFAGSO 20 ry 3 ae o nn an rh uO oo o bh xB FOR TEST CIRCUIT CIRCUIT NEGATIVE Veg GATE-TO-SOURCE VOLTAGE (VOLTS} NEGATIVE Vag. GATE-TO-SOUACE VOLTAGE [VOLTS} a TOTAL GATE CHARGE (nC) 3 Qg, TOTAL GATE CHARGE inc) Fig. 6cc - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6dd - Typical Gate Charge Vs. Gate-to-Source Voltage IRF9130 IRF9140 ho Lie] a nD ia nD fe a GATE-TO-SOURCE VOLTAGE (VOLTS) oo NEGATIVE Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) a oe lu 4 4 2 & FOR FOR TEST CIRCUIT Zz 9 0 SEE FIGURE 14 & d 10 15 20 25 30 Oo 4 Gg, TOTAL GATE CHAAGE (nc) Qg TOTAL GATE CHAAGE (nC) Fig. Gee - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6ff ~ Typical Gate Charge Vs. Gate-to-Source Voltage IRF9230 IRF9240 '-68IR IRF Series Devices 3 To 2 Ign, REVERSE DRAIN CURRENT (AMPERES) Igg, REVERSE DRAIN CURRENT (AMPERES) Vgs = OV Vgg = OV 2.0 0.4 0.8 1.2 1.6 9. . : . 0 Vgp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Ven, SOURCE~TO-DRAIN VOLTAGE (VOLTS) Fig. 7a - Typical Source-Drain Diode Forward Voltage Fig. 7b - Typical Source-Drain Diode Forward Voltage IRFO34 IRFO44 S. 7 Ss Isp. REVERSE DRAIN CURRENT (AMPERES) Tgp, REVERSE DRAIN CURRENT (AMPERES) Veg = OV Vog = OV 10)" : 4. 0 0.4 0.9 1.4 1.8 2. 2.8 Vgp, SQURCE-TO-DRAIN VOLTAGE (VOLTS) Yop, SQURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7c - Typical Source-Drain Diode Forward Voltage Fig. 7d - Typical Source-Drain Diode Forward Voltage IRFO54 IRF130 a re s So Isp. REVERSE DRAIN CURRENT (AMPERES) Tgp. REVERSE DRAIN CURRENT (AMPERES) Veg = OV Veg = OV 0.4 : 0 1.0 1.2 1.4 1.6 a. 1.0 1. . Vep. SOURCE-TO-DRAIN VOLTAGE {VOi7S) Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7e - Typical Source-Drain Diode Forward Voltage Fig. 7f - Typical Source-Drain Diode Forward Voltage IRF140 IRF150 1-69IRF Series Devices Fig. Fig. Fig. Ss Teg, REVERSE DRAIN CURRENT (AMPERES) Veg = OV 0. 0 : 1. : 1.5 Veg. SOURCE-TO-ORAIN VOLTAGE (VOLTS) 7g - Typical Source-Drain Diode Forward Voltage IRF230 2 Te Isp. REVERSE DRAIN CURRENT (AMPERES) Vgg = OV 9 1 1 5 Vcp. SQURCE-TO-DRAIN VOLTAGE {(VOLTS) 7i - Typical Source-Drain Diode Forward Voltage IRF250 101 10 Igp. REVERSE DRAIN CURRENT (AMPERES) Veg = OV to-! 0.4 . 1.6 Vep. SQURCE-TO-DRAIN VOLTAGE {VOLTS} 7k - Typical Source-Drain Diode Forward Voltage IRF340 1-70 IR 101 10 Igp, REVERSE DRAIN CURRENT (AMPERES) Vgg = OV 9. . : i . : 6 Vgp. SOURCE-TO-ORAIN VOLTAGE (VOLTS) Fig. 7h - Typical Source-Drain Diode Forward Voltage IRF240 Igp, REVERSE DRAIN CURRENT (AMPERES) Vgg = OV 0.6 0 : 0.9 1 : 2 Vep, SOLRCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7j - Typical Source-Drain Diode Forward Voltage IRF330 10! Igp. REVERSE DRAIN CURRENT (AMPERES) Vgg = OV 0.4 0.6 0.8 . 1 4. 6 Vp. SOUACE-TO-DRAIN VOLTAGE (VOLTS) Fig. 71 - Typical Source-Drain Diode Forward Voltage IRF350IesR IRF Series Devices 3. oS Igp, REVERSE DRAIN CURRENT (AMPERES) Isp, REVERSE DRAIN CURRENT (AMPERES) Vgg = OV Veg = OV oO. : 4. . 5 0.4 . . 1. 2 Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Vgp, SOQURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7m - Typical Source-Drain Diode Forward Voltage Fig. 7n - Typical Source-Drain Diode Forward Voltage IRF360 IRF430 2 2 3 a Icep, REVERSE DRAIN CURRENT (AMPERES) Igy, REVERSE DRAIN CURRENT (AMPERES) Veg = OV Veg = OV 10-4) . : : 2 ON : . . 2 Vep. SQURCE-TO-DRAIN VOLTAGE (VOLTS) Vgp. SQURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 70 - Typical Source-Drain Diode Forward Voltage Fig. 7p - Typical Source-Drain Diode Forward Voltage IRF440 IRF450 3 ity 10 Tsp. REVERSE DRAIN CURRENT (AMPERES) Isp. REVERSE DRAIN CURRENT (AMPERES) Vgg = OV Veg = OV tot 4074 0 : : 1.2 14 1. 1. 2.0 0. : 2 Yop, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Vep. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7q Typical Source-Drain Diode Forward Voltage Fig. 7r ~ Typical Source-Drain Diode Forward Voltage IRF460 IRFAC30 \-71IRF Series Devices IgaR % Tg, REVERSE DRAIN CURRENT (AMPERES) Top, REVERSE DRAIN CURRENT (AMPERES) Veg = OV 4 Veg = OV 0.4 0.6 0.8 1.0 1.2 1.4 10 0.4 0.5 . 4. . 4 Vep, SQURCE-TO-DRAIN VOLTAGE (VOLTS) Vep. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7s - Typical Source-Drain Diode Forward Voltage Fig. 7t - Typical Source-Drain Diode Forward Voltage IRFAC40 IRFAE30 Q Igp, REVERSE DRAIN CURRENT (AMPERES) Ign, REVERSE DRAIN CURRENT (AMPERES) Veg = OV Vgg = OV 0.4 : : 4. 4 . 6 0.0 4 . 0 Ven, SQURCE-TO-DAAIN VOLTAGE TS) Vgp, SQURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7u - Typical Source-Drain Diode Forward Voltage Fig. 7v - Typical Source-Drain Diode Forward Voltage IRFAE4O IRFAESO 101 Igg, REVERSE DRAIN CURRENT (AMPERES) Igp, REVERSE DRAIN CURRENT (AMPERES) Ves = OV Veg = Ov 107! 107 0.4 0.5 Q. . . 1.0 0.4 a. 0. 1. 2 Vep. SQUACE-TO-DRAIN VOLTAGE (VOLTS) Vep, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7w - Typical Source-Drain Diode Forward Voltage Fig. 7x - Typical Source-Drain Diode Forward Voltage IRFAF30 IRFAF40 I-72IOR 101 10 Tgp, REVERSE DRAIN CURRENT (AMPERES) Veg = OV ot OT . C.38 4.1 1. 1.5 Vp. SQURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7y - Typical Source-Drain Diode Forward Voltge IRFAF50 Top, REVERSE DRAIN CURRENT (AMPERES) Veg = OV a4 0 0.4 - 0.8 1.0 te Vep, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7aa - Typical Source-Drain Diode Forward Voltage IRFAG40 104 Vgg = OV -4 0 1.0 : 3.0 4.0 5.0 5.0 NEGATIVE Vop, SOURCE-TO-DAAIN VOLTAGE (VOLTS) NEGATIVE Isp, REVERSE DRAIN CURRENT (AMPERES) Fig. 7cc - Typical Source-Drain Diode Forward Voltage IRF9130 I-73 IRF Series Devices 3 Igp, REVERSE DRAIN CURRENT (AMPERES) Vgg = OV 0 105, : . : : : : 14 Vsp, SQURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7z - Typical Source-Drain Diode Forward Voltage IRFAG3O 3 100 Isp, REVERSE ORAIN CURRENT (AMPERES) Vgg = OV 3 oe . 1. . i) Ven. SOURCE-TO~ORAIN VOLTAGE (VOLTS) Fig. 7bb - Typical Source-Drain Diode Forward Voltage IRFAGS5O i Ss Tgp, REVERSE DRAIN CURRENT (AMPERES) Veg = OV . 1.0 2.0 3.0 4.0 Vep, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7dd - Typical Source-Drain Diode Forward Voltage IRF9140IRF Series Devices 101 Veg = OV wos 1.5 2.5 3.5 4.5 NEGATIVE Vcp, SQURCE-TO-DRAIN VOLTAGE (VOLTS) NEGATIVE Igp, REVERSE DRAIN CURRENT (AMPERES) Fig. 7ee - Typical Source-Drain Diode Forward Voltage IRF9230 OPERATION IN THIS AREA LIMITEO BY Fos (ON Ip, DRAIN CURRENT (AMPERES. Tor Tg=150C SINGLE PUL O11 2 s 4 2 5 10 2 5 102 2 5 107 Vos. DAAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 8a - Maximum Sate Operating Area IRFo3S4 OPERATION IN THIS AREA LIMITED bs (On) Ip, DRAIN CUARENT (AMPERES) Tp=2sC Ty=150C SINGLE 01? 5 4 2 5 40 2 5 4022 8 109 Vps. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 8c - Maximum Safe Operating Area IRFO54 IaR 3 3 & Veg = OV 10 on uy xr i) Qa = = e = du x a oO Zz I <= a a ug wy) o Ww > yd a oO a a WwW > a KE B Ww WwW cz x Ww w a a =z = < = -E bE z z wW Ww c a c cg 2 2 o 10 oO z z z Zz o oO Zz Zz 4 Z << << & 5 2.0 a a 0.0 25 50 75 100 126 150 ag 50 75 100 125 150 Te, CASE TEMPERATURE ( 9C) Tc, CASE TEMPERATURE ( C) Fig. Su - Maximum Drain Current Vs. Case Temperature Fig. 9v - Maximum Drain Current Vs. Case Temperature IRFAE40 IRFAESO B a ve} uw a ca WwW w Q a = = s s be nt z = Ww w a c xc c 7 2 oO uo z z al H << 4 fea c a a a a f 25 50 75 100 125 150 : 25 50 75 100 125 150 Tc, CASE TEMPERATURE ( C) Tc, CASE TEMPERATURE ( 9C) Fig. Sw - Maximum Drain Current Vs. Case Temperature Fig. 9x - Maximum Drain Current Vs. Case Temperature IRFAF30 IRFAF40 a a = 2 ad bk a a a cig s 5 oO Oo Zz = Z Zz 4 7~--_ Vary tp to obtain required peak |, L Loste -10vL ty Fig. 12c ~ Unclamped tnductive Test Circuit P-Channel Fig. 12b - Unclamped Inductive Waveforms N-Channel BVogss Fig. 12d - Unclamped Inductive Waveforms P-Channel 1-87IRF Series Devices PEAK IL = 265A Vpp = 25V 2 s Eas, SINGLE PULSE ENERGY (J) 100 125 STARTING T, JUNCTION TEMPERATURE (C) Fig. 13a - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF034 0.500 PEAK IL = 45A Vpo = 25V #8 Eqs. SINGLE PULSE ENERGY (J) a STARTING Ty, JUNCTION TEMPERATURE (9c) Fig. 13c - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF054 PEAK IL = 284 Vpp = 50V Eas. SINGLE PULSE ENERGY (J) STARTING Ty, JUNCTION TEMPERATURE (c) Fig. 13e - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF140 1-88 IGR PEAK TL = Ada Vop = 25V Eas, SINGLE PULSE ENERGY (J) STARTING T, JUNCTION TEMPERATURE (C) Fig. 13b - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF044 PEAK IL = 148 Vpp = 25v Eqs, SINGLE PULSE ENERGY (J) 50 75 100 STARTING Ty, JUNCTION TEMPERATURE (C) Fig. 13d - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF130 0.150 PEAK TL = 38A Von = 25V 2 z 8 Eas, SINGLE PULSE ENERGY (J) STARTING Ty, JUNCTION TEMPERATURE (c) Fig. 13f - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF150IAR PEAK IL = 9.0A Vpp = 50V Eas, SINGLE PULSE ENERGY (u) STARTING T, JUNCTION TEMPERATURE (C) Fig. 13g - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF230 0.500 PEAK IL = 27.4A Von = SOV Eqs, SINGLE PULSE ENERGY (J) STARTING T, JUNCTION TEMPERATURE (8c) Fig. 131 - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF250 PEAK I, = 104 Vpp = 50V a i i Eas, SINGLE PULSE ENERGY (mJ) 400 125 150 STARTING Ty, JUNCTION TEMPERATURE (C) Fig. 13k - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF340 1-89 IRF Series Devices PEAK IL = 418A Vpp = SOV Eas. SINGLE PULSE ENERGY (U) STARTING Ty, JUNCTION TEMPERATURE (C) Fig. 13h - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF240 2.00 PEAK IL = 5.54 Vpp = SOV e ne a o Eas, SINGLE PULSE ENERGY (mJ) 50 400 STAATING Tj, JUNCTION TEMPERATURE (c) Fig. 13} - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF330 12.00 PEAK IL = 14A Vop = SOV So 2 3 2 s = 3 Eas, SINGLE PULSE ENERGY (mJ) 8 8 9. 5 50 75 100 125 150 STARTING Ty, JUNCTION TEMPERATURE (C) Fig. 131 - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF350IRF Series Devices aR PEAK I, = 254 Vpp = 50v PEAK I, = 4.54 Vop = 50V 1.00 0.40 Egg. SINGLE PULSE ENERGY (J) 0.20 Eas SINGLE PULSE ENERGY (mu) 9.00, 25 50 75 STARTING T, JUNCTION TEMPERATURE (C) STARTING T,, JUNCTION TEMPERATURE (C) Fig. 13m - Maximum Avalanche Energy Vs. Starting Fig. 13n - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF360 Junction Temperature, IRF430 8.00 PEAK I, = 8.0A Vop = SOV PEAK TL = 124 Vpp = SOV Eqs, SINGLE PULSE ENERGY (mJ) Exc, SINGLE PULSE ENERGY (md 50 100 125 150 100 STARTING Ty, JUNCTION TEMPERATURE (C) STARTING Ty JUNCTION TEMPERATURE (C) Fig. 130 - Maximum Avalanche Energy Vs. Starting Fig. 13p ~ Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF440 Junction Temperature, IRF450 PEAK IL = 238 PEAK I, = 3.64 Voo = Sov v Vpp = 80 Eas. SINGLE PULSE ENERGY (J Eqs, SINGLE PULSE ENERGY (J 50 73 100 125 150 100 STARTING T, JUNCTION TEMPERATURE (C) STARTING T,, JUNCTION TEMPERATURE (C) Fig. 13q - Maximum Avalanche Energy Vs. Starting Fig. 13r - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF460 Junction Temperature, IRFAC30 1-90Fig. Fig. Fig. PEAK IL = 6.24 Vpp = SOV Eas) SINGLE PULSE ENERGY (u) 125 150 STARTING Ty, JUNCTION TEMPERATURE (C) 13s - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRFAC40 PEAK IL = 4.84 Vo0 = 50V Eas, SINGLE PULSE ENERGY (u) 100 125 150 STARTING Ty, JUNCTION TEMPERATURE (C) 13u ~ Maximum Avalanche Energy Vs. Starting Junction Temperature, IRFAE40 PEAK IL = 2.0A Vop = 50V = Eas, SINGLE PULSE ENERGY (u) o 100 125 STARTING Ty, JUNCTION TEMPERATURE (C) 13w - Maximum Avalanche Energy Vs. Starting Junction Temperature, iIRFAF30 1-91 IRF Series Devices PEAK Ty = 3.1A Vpp = 50V & Eas. SINGLE PULSE ENERGY (J) 450 STARTING T, JUNCTION TEMPERATURE (C) Fig. 13t - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRFAE30 Egg. SINGLE PULSE ENERGY (J) B 100 125 150 STARTING Tj, JUNCTION TEMPERATURE (C) Fig. 13v - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRFAE50 PEAK IL = 4.38 Vpp = 50V o > 3 Eas, SINGLE PULSE ENERGY (J) 100 STARTING T, JUNCTION TEMPERATURE (C) Fig. 13x - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRFAF40IRF Series Devices IaR PEAK IL = 6.2A PEAK IL = 2.34 5 Vop = SOV So Vop = 50V 2, a 0. > > Fd 2 Wo. 0. a a a 2 2 Wo. Lut 3 Zo, et te wo on 0. 150 a STARTING T, JUNCTION TEMPERATURE (c) STARTING Ty, JUNCTION TEMPERATURE (C) Fig. 13y - Maximum Avalanche Energy Vs. Starting Fig. 13z - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRFAF50 Junction Temperature, IRFAG30 0.600 1. PEAK I) = 3.94 PEAK IL = 5.6A 30 Yop = 50v 5 Vpp = 50V oO. > y 0.400 y w o WwW Ww 0. 2 0.300 FI WwW io, 3 0,200 3 a a Bo.100 2 0. 0. STARTING 7), JUNCTION TEMPERATURE (C) STARTING T,, JUNCTION TEMPERATURE (C) Fig. 13aa - Maximum Avalanche Energy Vs. Starting Fig. 13bb - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRFAG40 Junction Temperture, IRFAGSO Q. 0. PEAK I, = ~14A PEAK IL = -184 5 = -D5V Ss Vop = ~25V 0. o. > P Fay a Qo. 0.300 a a 2 2 Wo. Wo. go a Z on wo wo. wo. <= << uJ Lu 0. 750 0. STARTING Ty, JUNCTION TEMPERATURE (C) STARTING Tj, JUNCTION TEMPERATURE (C) Fig. 13cc ~ Maximum Avalanche Energy Vs. Starting Fig. 18dd ~ Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF9130 Junction Temperature, IRF9140 1-92IaR IRF Series Devices PEAK I, = -6.54 Vop = ~S0V PEAK IL = -44A Vop = -Sov o 2 0.200 0.020 0.100 Eas, SINGLE PULSE ENERGY (J) Eas. SINGLE PULSE ENERGY (J) 0.010 STARTING Ty, JUNCTION TEMPERATURE (C) STARTING T,, JUNCTION TEMPERATURE (C) Fig. 13ee - Maximum Avalanche Energy Vs. Starting Fig. 13ff - Maximum Avalanche Energy Vs. Starting Junction Temperature, IRF9230 Junction Temperature, IRF9240 Current Regulator Same Types | | as DUT | ty | | vl KQ * | have 202 $< SIU | | u + 0.3 uF | SEE * + 7. Vos \ N D.U.T. T- 10V 14 Ves 3mAl_ [1 Vo AAA AAA lg * to Charge Current Sampling Resistors Fig. 14a - Basic Gate Charge Waveform Fig. 14b - Basic Gate Charge Waveform N-Channel N-Channel __ Current Regulator __ Same Type | | as D.U.T. I | 50 | | lo2s.k2 | ) Have Toe S NST | | T = O.3pF | Se tt - T, os A DUT. [+ p Ves -3mMAF LE 3 oF Charge Current Sampling Resistors Fig. 14c - Gate Charge Test Circuit Fig. 14d - Basic Gate Charge Waveform P-Channel P-Channel 1-93IRF Series Devices IaR Driver Gate Drive D.U.T, c+ Circuit Layout Considerations PW Feriod - + Low Stray Inductance Part &) @ *Ground Plane : * Low Leakage Inductance Ege Current Transformer t<- @ D.U.T. Igp Waveform + Reverse Recovery| \ Current @ D.U.T. Vpg Waveform + dv/dt controlled by Rc Re-Applied + Driver same type as D.U.T. ls 6 apeter ~~ 4 Voltage * tgp controied by Duty Factor D" Yoo @ Inductor Current * D.U.T. Device Under Test onan Ripple < 5% Ves = 5V for Logic Level Devices Fig. 15a - Peak Diode Recovery dv/dt Test Circuit N-Channel @ Driver Gate Drive = Period + Circuit Layout Considerations Pw + Low Stray Inductance 7 @ *Ground Plane : * Low Leakage Inductance . L__f, put b4 Current Transtormer D.U.T. Isp Waveform vide ~ . 5 Body Diode Forward. Reverse ~ Current + Recovery ee @ Current : : - . + @ D.U.T. Vpg Waveform I | aml __ Re-Applied ' Voltage @ Driver /| -4 R %) + dv/dt controlled by R G * Isp controlled by Duty Factor D" [+ @ Inductor Current dv/dt + Driver compliment of D.U.T. > Yop (N-Channel) eae r *D.U.T. Device Under Test wy Ripple s 5% Ves = 5V for Logic Level Devices Fig. 15b - Peak Diode Recovery dv/dt Test Circuit P-Channel 1-94