LM8327
LM8327 Mobile I/O Companion Supporting Keyscan, I/O Expansion, PWM, and
ACCESS.bus Host Interface
Literature Number: SNLS329
LM8327
September 14, 2011
Mobile I/O Companion Supporting Keyscan, I/O Expansion,
PWM, and ACCESS.bus Host Interface
1.0 General Description
The LM8327 GenI/O-Expander and Keypad Controller is a
dedicated device to unburden a host processor from scanning
a matrix-addressed keypad and to provide flexible and gen-
eral purpose, host-programmable input/output functions.
Three independent PWM timer outputs are provided for dy-
namic LED brightness modulation.
It communicates with a host processor through an I2C-com-
patible ACCESS.bus serial interface. It can communicate in
Standard (100 kHz) and Fast-Mode (400 kHz) in slave Mode
only.
All available input/output pins can alternately be used as a
direct key input connection, an input or an output in a keypad
matrix, or as a host-programmable general purpose input or
output.
Any pin programmed as an input can also sense hardware
interrupts. The interrupt polarity (“high-to-low” or “low-to-high”
transition) is thereby programmable.
The LM8327 follows a predefined register based set of com-
mands. Upon startup (power on) a configuration file must be
sent from the host to setup the hardware of the device.
2.0 Applications:
Cordless Phones
Smart Handheld Devices
Keyboard Applications
3.0 LM8327 Function Blocks
30124201
© 2011 National Semiconductor Corporation 301242 www.national.com
LM8327 Mobile I/O Companion Supporting Keyscan, I/O Expansion, PWM, and ACCESS.bus
Host Interface
4.0 Features
4.1 KEY FEATURES
Internal RC oscillator, no external clock required
Internal PWM clock generation, no external clock required
Programmable I2C-compatible ACCESS.bus address
(Default 0x8A)
Support for Keypad matrices of up to of 8 x 12 keys, plus
8 special function (SF) keys, for a full 104 key support
Support for up to 26 direct connect keys
I2C-compatible ACCESS.bus slave interface at 100 kHz
(Standard-Mode) and 400 kHz (Fast-Mode)
Three host-programmable PWM outputs for smooth LED
brightness modulation
Supports general-purpose I/O expansion on pins not
otherwise used for keypad or PWM output
15-byte Key event buffer
Multiple Key event storage
Key events, errors, and dedicated hardware interrupts
request host service by asserting an IRQ output
Automatic HALT Mode for low power operation
Wake-up from HALT mode on any interface (rising edge,
falling edge or pulse)
Three PWM outputs with dedicated script buffer for up to
32 commands
Register-based command interpreter with auto-increment
address
4.2 HOST-CONTROLLED FEATURES
PWM scripting for three PWM outputs
Period of inactivity that triggers entry into HALT mode
Debounce time for reliable key event polling
Configuration of general purpose I/O ports
Various initialization options (keypad size, etc.)
4.3 KEY DEVICE FEATURES
1.8V ± 10% single-supply operation
On-chip power-on reset (POR)
ESD glitch filter on RESETN pin
Watchdog timer
Dedicated slow clock input for 32 kHz up to 8MHz
−40°C to +85°C temperature range
36-pin MICRO ARRAY package
www.national.com 2
LM8327
5.0 Pin Assignments
30124202
FIGURE 1. LM8327 Pinout - Top View
3 www.national.com
LM8327
Table of Contents
1.0 General Description ......................................................................................................................... 1
2.0 Applications: ................................................................................................................................... 1
3.0 LM8327 Function Blocks .................................................................................................................. 1
4.0 Features ........................................................................................................................................ 2
4.1 KEY FEATURES ...................................................................................................................... 2
4.2 HOST-CONTROLLED FEATURES ............................................................................................. 2
4.3 KEY DEVICE FEATURES ......................................................................................................... 2
5.0 Pin Assignments ............................................................................................................................. 3
6.0 Ordering Information ........................................................................................................................ 7
7.0 Signal Descriptions .......................................................................................................................... 7
7.1 DEVICE PIN FUNCTIONS ........................................................................................................ 7
7.2 PIN CONFIGURATION AFTER RESET ...................................................................................... 9
8.0 Typical Application Setup ............................................................................................................... 10
8.1 FEATURES ........................................................................................................................... 10
8.1.1 Hardware .................................................................................................................... 10
8.1.2 Communication Layer ................................................................................................... 10
9.0 Halt Mode .................................................................................................................................... 11
9.1 HALT MODE DESCRIPTION ................................................................................................... 11
9.2 ACCESS.BUS ACTIVITY ........................................................................................................ 11
10.0 LM8327 Programming Interface ..................................................................................................... 12
10.1 ACCESS.BUS COMMUNICATION ......................................................................................... 12
10.1.1 Starting a Communication Cycle ................................................................................... 12
10.1.2 Communication Initialized from Host (Restart from Sleep Mode) ....................................... 13
10.1.3 ACCESS.Bus Communication Flow .............................................................................. 13
10.1.4 Auto Increment ........................................................................................................... 13
10.1.5 Reserved Registers and Bits ........................................................................................ 13
10.1.6 Global Call Reset ........................................................................................................ 13
11.0 Keyscan Operation ...................................................................................................................... 15
11.1 KEYSCAN INITIALIZATION ................................................................................................... 15
11.2 KEYSCAN INITIALIZATION EXAMPLE ................................................................................... 16
11.3 KEYSCAN PROCESS ........................................................................................................... 17
11.4 READING KEYSCAN STATUS BY THE HOST ........................................................................ 18
11.5 MULTIPLE KEY PRESSES ................................................................................................... 19
12.0 Direct Key Operation .................................................................................................................... 20
12.1 DIRECT KEY INITIALIZATION ............................................................................................... 20
12.2 DIRECT KEY INITIALIZATION EXAMPLE ............................................................................... 21
13.0 PWM Timer ................................................................................................................................ 22
13.1 OVERVIEW OF PWM FEATURES ......................................................................................... 22
13.2 OVERVIEW ON PWM SCRIPT COMMANDS ........................................................................... 22
13.2.1 RAMP COMMAND ..................................................................................................... 22
13.2.2 SET_PWM COMMAND ............................................................................................... 22
13.2.3 GO_TO_START COMMAND ....................................................................................... 23
13.2.4 BRANCH COMMAND ................................................................................................. 23
13.2.5 TRIGGER COMMAND ................................................................................................ 23
13.2.6 END COMMAND ........................................................................................................ 23
14.0 LM8327 Register Set ................................................................................................................... 25
14.1 KEYBOARD REGISTERS AND KEYBOARD CONTROL ........................................................... 25
14.1.1 KBDSETTLE - Keypad Settle Time Register ................................................................... 25
14.1.2 KBDBOUNCE - Debounce Time Register ...................................................................... 25
14.1.3 KBDSIZE - Set Keypad Size Register ............................................................................ 25
14.1.4 KBDDEDCFG - Dedicated Key Register ........................................................................ 26
14.1.5 KBDRIS - Keyboard Raw Interrupt Status Register .......................................................... 26
14.1.6 KBDMIS - Keypad Masked Interrupt Status Register ....................................................... 27
14.1.7 KBDIC - Keypad Interrupt Clear Register ....................................................................... 27
14.1.8 KBDMSK - Keypad Interrupt Mask Register .................................................................... 28
14.1.9 KBDCODE0 - Keyboard Code Register 0 ....................................................................... 28
14.1.10 KBDCODE1 - Keyboard Code Register 1 ..................................................................... 28
14.1.11 KBDCODE2 - Keyboard Code Register 2 ..................................................................... 29
14.1.12 KBDCODE3 - Keyboard Code Register 3 ..................................................................... 29
14.1.13 EVTCODE - Key Event Code Register ......................................................................... 29
14.2 PWM TIMER CONTROL REGISTERS .................................................................................... 29
14.2.1 TIMCFGx - PWM Timer 0, 1 and 2 Configuration Registers .............................................. 29
14.2.2 PWMCFGx - PWM Timer 0, 1 and 2 Configuration Control Registers ................................. 30
14.2.3 TIMSCALx - PWM Timer 0, 1 and 2 Prescale Registers ................................................... 30
www.national.com 4
LM8327
14.2.4 TIMSWRES - PWM Timer Software Reset Registers ....................................................... 31
14.2.5 TIMRIS - PWM Timer Interrupt Status Register ............................................................... 31
14.2.6 TIMMIS - PWM Timer Masked Interrupt Status Register .................................................. 32
14.2.7 TIMIC - PWM Timer Interrupt Clear Register .................................................................. 33
14.2.8 PWMWP - PWM Timer Pattern Pointer Register ............................................................. 33
14.2.9 PWMCFG - PWM Script Register (Two Byte) ................................................................. 34
14.3 INTERFACE CONTROL REGISTERS ..................................................................................... 35
14.3.1 I2CSA - I2C-Compatible ACCESS.bus Slave Address Register ......................................... 35
14.3.2 MFGCODE - Manufacturer Code Register ..................................................................... 35
14.3.3 SWREV - Software Revision Register ............................................................................ 35
14.3.4 SWRESET - Software Reset ........................................................................................ 35
14.3.5 RSTCTRL - System Reset Register .............................................................................. 35
14.3.6 RSTINTCLR - Clear NO Init/Power-On Interrupt Register ................................................. 36
14.3.7 CLKMODE - Clock Mode Register ................................................................................ 36
14.3.8 CLKCFG - Clock Configuration Register ........................................................................ 37
14.3.9 CLKEN - Clock Enable Register ................................................................................... 37
14.3.10 AUTOSLP - Autosleep Enable Register ....................................................................... 37
14.3.11 AUTOSLPTI - Auto Sleep Time Register ...................................................................... 38
14.3.12 IRQST - Global Interrupt Status Register ...................................................................... 38
14.4 GPIO FEATURE CONFIGURATION ....................................................................................... 39
14.4.1 GPIO Feature Mapping ............................................................................................... 39
14.4.2 IOCGF - Input/Output Pin Mapping Configuration Register ............................................... 39
14.4.3 IOPC0 - Pull Resistor Configuration Register 0 ............................................................... 40
14.4.4 IOPC1 - Pull Resistor Configuration Register 1 ............................................................... 40
14.4.5 IOPC2 - Pull Resistor Configuration Register 2 ............................................................... 41
14.4.6 GPIOOME0 - GPIO Open Drain Mode Enable Register 0 ................................................. 42
14.4.7 GPIOOMS0 - GPIO Open Drain Mode Select Register 0 .................................................. 42
14.4.8 GPIOOME1 - GPIO Open Drain Mode Enable Register 1 ................................................. 43
14.4.9 GPIOOMS1 - GPIO Open Drain Mode Select Register 1 .................................................. 43
14.4.10 GPIOOME2 - GPIO Open Drain Mode Enable Register 2 ............................................... 43
14.4.11 GPIOOMS2 - GPIO Open Drain Mode Select Register 2 ................................................ 44
14.5 GPIO DATA INPUT/OUTPUT ................................................................................................. 44
14.5.1 GPIOPDATA0 - GPIO Data Register 0 .......................................................................... 44
14.5.2 GPIOPDATA1 - GPIO Data Register 1 .......................................................................... 45
14.5.3 GPIOPDATA2 - GPIO Data Register 2 .......................................................................... 46
14.5.4 GPIOPDIR0 - GPIO Port Direction Register 0 ................................................................. 47
14.5.5 GPIOPDIR1 - GPIO Port Direction Register 1 ................................................................. 47
14.5.6 GPIOPDIR2 - GPIO Port Direction Register 2 ................................................................. 47
14.6 GPIO INTERRUPT CONTROL ............................................................................................... 48
14.6.1 GPIOIS0 - Interrupt Sense Configuration Register 0 ........................................................ 48
14.6.2 GPIOIS1 - Interrupt Sense Configuration Register 1 ........................................................ 48
14.6.3 GPIOIS2 - Interrupt Sense Configuration Register 2 ........................................................ 48
14.6.4 GPIOIBE0 - GPIO Interrupt Edge Configuration Register 0 ............................................... 48
14.6.5 GPIOIBE1 - GPIO Interrupt Edge Configuration Register 1 ............................................... 49
14.6.6 GPIOIBE2 - GPIO Interrupt Edge Configuration Register 2 ............................................... 49
14.6.7 GPIOIEV0 - GPIO Interrupt Edge Select Register 0 ......................................................... 49
14.6.8 GPIOIEV1 - GPIO Interrupt Edge Select Register 1 ......................................................... 49
14.6.9 GPIOIEV2 - GPIO Interrupt Edge Select Register 2 ......................................................... 50
14.6.10 GPIOIE0 - GPIO Interrupt Enable Register 0 ................................................................ 50
14.6.11 GPIOIE1 - GPIO Interrupt Enable Register 1 ................................................................ 50
14.6.12 GPIOIE2 - GPIO Interrupt Enable Register 2 ................................................................ 50
14.6.13 GPIOIC0 - GPIO Clear Interrupt Register 0 .................................................................. 51
14.6.14 GPIOIC1 - GPIO Clear Interrupt Register 1 .................................................................. 51
14.6.15 GPIOIC2 - GPIO Clear Interrupt Register 2 .................................................................. 51
14.7 GPIO INTERRUPT STATUS .................................................................................................. 52
14.7.1 GPIORIS0 - Raw Interrupt Status Register 0 .................................................................. 51
14.7.2 GPIORIS1 - Raw Interrupt Status Register 1 .................................................................. 52
14.7.3 GPIORIS2 - Raw Interrupt Status Register 2 .................................................................. 52
14.7.4 GPIOMIS0 - Masked Interrupt Status Register 0 ............................................................. 52
14.7.5 GPIOMIS1 - Masked Interrupt Status Register 1 ............................................................. 53
14.7.6 GPIOMIS2 - Masked Interrupt Status Register 2 ............................................................. 53
14.8 GPIO WAKE-UP CONTROL .................................................................................................. 53
14.8.1 GPIOWAKE0 - GPIO Wake-Up Register 0 ..................................................................... 53
14.8.2 GPIOWAKE1 - GPIO Wake-Up Register 1 ..................................................................... 53
14.8.3 GPIOWAKE2 - GPIO Wake-Up Register 2 ..................................................................... 54
14.9 DIRECT KEY REGISTERS AND DIRECT KEY CONTROL ........................................................ 54
5 www.national.com
LM8327
14.9.1 DEVTCODE - Direct Key Event Code Register ............................................................... 54
14.9.2 DBOUNCE - Direct Key Debounce Time Register ........................................................... 55
14.9.3 DIRECT0 - Direct Key Register 0 .................................................................................. 55
14.9.4 DIRECT1 - Direct Key Register 1 .................................................................................. 55
14.9.5 DIRECT2 - Direct Key Register 2 .................................................................................. 55
14.9.6 DIRECT3 - Direct Key Register 3 .................................................................................. 56
14.9.7 DKBDRIS - Direct Key Raw Interrupt Status Register ...................................................... 56
14.9.8 DKBDMIS - Direct Key Masked Interrupt Status Register ................................................. 56
14.9.9 DKBDIC - Direct Key Interrupt Clear Register ................................................................. 57
14.9.10 DKBDMSK - Direct Key Interrupt Mask Register ............................................................ 57
15.0 Absolute Maximum Ratings ........................................................................................................... 58
16.0 Electrical Characteristics ............................................................................................................... 58
17.0 Registers .................................................................................................................................... 61
17.1 REGISTER MAPPING .......................................................................................................... 61
17.1.1 Keyboard Registers .................................................................................................... 61
17.1.2 Direct Key Registers ................................................................................................... 61
17.1.3 PWM Timer Registers ................................................................................................. 62
17.1.4 System Registers ....................................................................................................... 63
17.1.5 Global Interrupt Registers ............................................................................................ 63
17.1.6 GPIO Registers .......................................................................................................... 63
18.0 Physical Dimensions .................................................................................................................... 69
www.national.com 6
LM8327
6.0 Ordering Information
NSID Spec Package Type Package Method
LM8327JGR8 NOPB MICRO ARRAY 1000 pieces tape & reel
LM8327JGR8X NOPB MICRO ARRAY 3500 pieces tape & reel
7.0 Signal Descriptions
7.1 DEVICE PIN FUNCTIONS
TABLE 1. KEY AND ALTERNATE FUNCTIONS OF ALL DEVICE PINS
Ball Function 0 Function 1 Function 2 Function 3 Pin Count Ball Name
D2 Direct Keypad24 Clock In Genio 1 DIRECT24
CLKIN
D1 Direct Keypad25 Genio 1 DIRECT25
F3 Interrupt 1 IRQN
A4
F4 Supply Voltage 2 VCC
C1 ResetN 1 RESETN
E1 Main I2C - Clk 1 SCL
E2 Main I2C - Data 1 SDA
A6 Direct Keypad0 Keypad - I/O X0 Genio 1 DIRECT0
KPX0
A5 Direct Keypad1 Keypad - I/O X1 Genio 1 DIRECT1
KPX1
F1 Direct Keypad2 Keypad - I/O X2 Genio 1 DIRECT2
KPX2
F2 Direct Keypad3 Keypad - I/O X3 Genio 1 DIRECT3
KPX3
A2 Direct Keypad4 Keypad - I/O X4 Genio 1 DIRECT4
KPX4
B3 Direct Keypad5 Keypad - I/O X5 Genio 1 DIRECT5
KPX5
A3 Direct Keypad6 Keypad - I/O X6 Genio 1 DIRECT6
KPX6
B4 Direct Keypad7 Keypad - I/O X7 Genio 1 DIRECT7
KPX7
C6 Direct Keypad8 Keypad - I/O Y0 Genio 1 DIRECT8
KPY0
C5 Direct Keypad9 Keypad - I/O Y1 Genio 1 DIRECT9
KPY1
B6 Direct Keypad10 Keypad - I/O Y2 Genio 1 DIRECT10
KPY2
B5 Direct Keypad11 Keypad - I/O Y3 Genio 1 DIRECT11
KPY3
B2 Direct Keypad12 Keypad - I/O Y4 Genio 1 DIRECT12
KPY4
A1 Direct Keypad13 Keypad - I/O Y5 Genio 1 DIRECT13
KPY5
B1 Direct Keypad14 Keypad - I/O Y6 Genio 1 DIRECT14
KPY6
C2 Direct Keypad15 Keypad - I/O Y7 Genio 1 DIRECT15
KPY7
7 www.national.com
LM8327
Ball Function 0 Function 1 Function 2 Function 3 Pin Count Ball Name
E3 Direct Keypad16 Keypad - I/O Y8 Genio 1 DIRECT16
KPY8
D5 Direct Keypad17 Keypad - I/O Y9 Genio 1 DIRECT17
KPY9
E6 Direct Keypad18 Keypad - I/O Y10 Genio 1 DIRECT18
KPY10
F6 Direct Keypad19 Keypad - I/O Y11 Clockout Genio 1 DIRECT19
KPY11
E4 Direct Keypad20 PWM output 0 Genio 1 DIRECT20
PWM0
F5 Direct Keypad21 PWM output 1 Genio 1 DIRECT21
PWM1
E5 Direct Keypad22 PWM output 2 Genio 1 DIRECT22
PWM2
D6 Direct Keypad23 Genio 1 DIRECT23
GENIO1
C3
C4
D3
D4
Ground 4 GND
TOTAL 36
www.national.com 8
LM8327
7.2 PIN CONFIGURATION AFTER RESET
Upon power-up or RESET the LM8327 will have defined
states on all pins. Table 2 provides a comprehensive overview
on the states of all functional pins.
TABLE 2. Pin Configuration after Reset
Pins Pin States
DIRECT KEYPAD 0
DIRECT KEYPAD 1
DIRECT KEYPAD 2
DIRECT KEYPAD 3
DIRECT KEYPAD 4
DIRECT KEYPAD 5
DIRECT KEYPAD 6
DIRECT KEYPAD 7
DIRECT KEYPAD 8
DIRECT KEYPAD 9
DIRECT KEYPAD 10
DIRECT KEYPAD 11
DIRECT KEYPAD 12
DIRECT KEYPAD 13
DIRECT KEYPAD 14
DIRECT KEYPAD 15
DIRECT KEYPAD 16
DIRECT KEYPAD 17
DIRECT KEYPAD 18
DIRECT KEYPAD 19
DIRECT KEYPAD 20
DIRECT KEYPAD 21
DIRECT KEYPAD 22
DIRECT KEYPAD 23
DIRECT KEYPAD 24
DIRECT KEYPAD 25
Full Buffer mode input with an on-chip pull-up resistor enabled.
IRQN Open Drain mode with no pull resistor enabled, driven low.
NOTE: The IRQN is driven low after Power-On Reset due to PORIRQ signal. The
value 0x01 must be written to the RSTINTCLR register (0x84) to release the IRQN
pin.
SCL
SDA Open Drain mode with no pull resistor enabled.
9 www.national.com
LM8327
8.0 Typical Application Setup
30124203
FIGURE 2. LM8327 in a Typical Setup with Standard Handset Keypad
8.1 FEATURES
The following features are supported with the application ex-
ample shown above:
8.1.1 Hardware
Hardware
4 x 8 keys and 8 Special Function (SF) keys for 40 keys.
ACCESS.bus interface for communication with a host
device.
- communication speeds supported are: 100 kHz standard
mode and 400 kHz fast mode of operation.
Interrupt signal (IRQN) to indicate any keypad or hardware
interrupt events to the host.
Sophisticated PWM function block with 3 independent
channels to control color LED.
External clock input for accurate PWM clock (not used).
Four host-programmable dedicated general-purpose
output pins (GPIOs:KPY4:7) supporting I/O-expansion
capabilities for host device.
Six host-programmable dedicated direct key connection
input pins (DIRECT 16:19, 23, 25) with wake-up
supporting I/O-expansion capabilities for host device.
8.1.2 Communication Layer
Versatile register-based command integration supported
from on-chip command interpreter.
Keypad event storage.
Individual PWM script file storage and execution control
for 3 PWM channels.
www.national.com 10
LM8327
9.0 Halt Mode
9.1 HALT MODE DESCRIPTION
The fully static architecture of the LM8327 allows stopping the
internal RC clock in Halt mode, which reduces power con-
sumption to the minimum level. Figure 3 shows an estimate
of the current in Halt mode at the maximum VCC (1.98V) from
25°C to +85°C.
30124204
FIGURE 3. Halt Current vs. Temperature at 1.98V
Halt mode is entered when no key-press event, key-release
event, or is detected for a certain period of time (by default,
1020 milliseconds). The mechanism for entering Halt mode is
always enabled in hardware, but the host can program the
period of inactivity which triggers entry into Halt mode using
the autosleep function. (See Table 52.)
9.2 ACCESS.BUS ACTIVITY
When the LM8327 is in Halt mode, only activity on the
ACCESS.bus interface that matches the LM8327 Slave Ad-
dress will cause the LM8327 to exit from Halt mode. However,
the LM8327 will not be able to acknowledge the first bus cycle
immediately following wake-up from Halt mode. It will respond
with a negative acknowledgement, and the host should then
repeat the cycle. A peripheral that is continuously active can
share the bus since this activity will not prevent the LM8327
from entering Halt mode.
11 www.national.com
LM8327
10.0 LM8327 Programming Interface
The LM8327 operation is controlled from a host device by a
complete register set, accessed via the I2C-compatible
ACCESS.bus interface. The ACCESS.bus communication is
based on a READ/WRITE structure, following the I2C trans-
mission protocol. All functions can be controlled by configur-
ing one or multiple registers. Please refer to Section 14.0
LM8327 Register Set for the complete register set.
10.1 ACCESS.BUS COMMUNICATION
Figure 4 shows a typical read cycle initiated by the host.
30124205
FIGURE 4. Master/Slave Serial Communication (Host to LM8327)
TABLE 3. Definition of Terms used in Serial Command Example
Term Bits Description
S START Condition (always generated from the master device)
ADDRESS 7 Slave address of LM8327 sent from the host
R/W 1
This bit determines if the following data transfer is from master to slave (data write) or from slave
to master (data read).
0: Write
1: Read
ACK 1
An acknowledge bit is mandatory and must be appended on each byte transfer. The Acknowledge
status is actually provided from the slave and indicates to the master that the byte transfer was
successful.
REG 8 The first byte after sending the slave address is the REGISTER byte which contains the physical
address the host wants to read from or write to.
RS Repeated START condition
DATA 8 The DATA field contains information to be stored into a register or information read from a register.
NACK 1
Not Acknowledge Bit. The Not Acknowledge status is assigned from the Master receiving data
from a slave. The NACK status will actually be assigned from the master in order to signal the
end of a communication cycle transfer
P STOP condition (always generated from the master device).
All actions associated with the non-shaded boxes in
Figure 4 are controlled from the master (host) device.
All actions associated with the shaded boxes in Figure 4 are
controlled from the slave (LM8327) device.
The master device can send subsequent REGISTER ad-
dresses separated by Repeated START conditions. A STOP
condition must be set from the master at the very end of a
communication cycle.
It is recommended to use Repeated START conditions in
multi-Master systems when sending subsequent REGISTER
addresses. This technique will make sure that the master de-
vice communicating with the LM8327 will not loose bus arbi-
tration.
10.1.1 Starting a Communication Cycle
There are two reasons for the host device to start communi-
cation to the LM8327:
1. The LM8327 device has set the IRQN line low in order to
signal a key - event or any other condition which
initializes a hardware interrupt from LM8327 to the host.
2. The host device wants to set a GENIO port, read from a
GENIO port, configure a GENIO port, and read the status
from a register or initialize any other function which is
supported from the LM8327. In case a GENIO shall be
read it will be most likely, that the LM8327 device will be
residing in “sleep mode”. In this mode the system clock
will be off to establish the lowest possible current
consumption. If the host device starts the communication
under this condition the LM8327 device will not be able
to acknowledge the first attempt of sending the slave
address. The LM8327 will wake up because of the
START condition but it can’t establish the internal timing
to scan the first byte received. The master device must
therefore apply a second attempt to start the
communication with the LM8327 device.
www.national.com 12
LM8327
10.1.2 Communication Initialized from Host (Restart from
Sleep Mode)
30124206
FIGURE 5. Host Starts Communication While LM8327 is in Sleep Mode
In the timing diagram shown in Figure 5 the LM8327
resides in sleep mode. Since the LM8327 device can’t
acknowledge the slave address the host must generate a
STOP condition followed by a second START condition.
On the second attempt the slave address is being
acknowledged from the LM8327 device because it is in
active mode now.
The host can send different WRITE and/or READ
commands subsequently after each other.
The host must finally free the bus by generating a STOP
condition.
10.1.3 ACCESS.Bus Communication Flow
The LM8327 will only be driven in slave mode. The maximum
communication speed supported is Fast Mode (FS) which is
400 kHz. The device can be heavily loaded as it is processing
different kind of events caused from the human interface and
the host device. In such cases the LM8327 may temporarily
be unable to accept new commands and data sent from the
host device.
Please Note: “It is a legitimate measure of the slave device to
hold SCL line low in such cases in order to force the master
device into a waiting state!. It is therefore the obligation of the
host device to detect such cases. Typically there is a control
bit set in the master device indicating the Busy status of the
bus. As soon as the SCL line is released the host can continue
sending commands and data.”
Further Remarks:
In systems with multiple masters it is recommended to
separate commands with Repeat START conditions
rather than sending a STOP - and another START -
condition to communicate with the LM8327 device.
Delays enforced by the LM8327 during very busy phases
of operation should typically not exceed a duration of 100
µsec.
Normally the LM8327 will clock stretch after the
acknowledge bit is transmitted; however, there are some
conditions where the LM8327 will clock stretch between
the SDA Start bit and the first rising edge of SCL.
10.1.4 Auto Increment
In order to improve multi-byte register access, the LM8327
supports the auto increment of the address pointer.
A typical protocol access sequence to the LM8327 starts with
the I2C-compatible ACCESS.bus address, followed by REG,
the register to access (see Figure 4). After a REPEATED
START condition the host reads/writes a data byte from/to this
address location. If more than one byte is transmitted, the
LM8327 automatically increments the address pointer for
each data byte by 1. The address pointer keeps the status
until the STOP condition is received.
The LM8327 always uses auto increments unless otherwise
noted.
Please refer to Table 4 and Table 5 for the typical
ACCESS.bus flow of reading and writing multiple data bytes.
10.1.5 Reserved Registers and Bits
The LM8327 includes reserved registers for future implemen-
tation options. Please use value 0 on a write to all reserved
register bits.
10.1.6 Global Call Reset
The LM8327 supports the Global Call Reset as defined in the
I2C Specification, which can be used by the host to reset all
devices connected to interface. The Global call reset is a sin-
gle byte ACCESS.bus/I2C write of data byte 0x06 to slave
address 0x00.
The Global Call Reset changes the I2C-compatible
ACCESS.bus Slave address of the LM8327 back to its default
value of 0x8A.
13 www.national.com
LM8327
TABLE 4. Multi-Byte Write with Auto Increment
Step Master/Slave I2C Com. Value Address Pointer Comment
1 M S START condition
2 M ADDR. 0x8A I2C-compatible ACCESS.bus Address
3 M R/W 0 Write
4 S ACK Acknowledge
5 M REG 0xAA 0xAA Register Address, used as Address Pointer
6 S ACK 0xAA Acknowledge
7 M DATA 0x01 0xAA Write Data to Address in Pointer
8 S ACK 0 0xAB Acknowledge, Address pointer incremented
9 M DATA 0x05 0xAB Write Data to address 0xAB
10 S ACK 0 0xAC Acknowledge, Address pointer incremented
11 M P STOP condition
TABLE 5. Multi-Byte Read with Auto Increment
Step Master/Slave I2C Com. Value Address Pointer Comment
1 M S START condition
2 M ADDR. 0x8A I2C-compatible ACCESS.bus Address
3 M R/W 0 Write
4 S ACK Acknowledge
5 M REG 0xAA 0xAA Register Address, used as Address pointer
6 S ACK 0xAA Acknowledge
7 M RS 0xAA Repeated Start
8 M ADDR. 0x8A 0xAA I2C-compatible ACCESS.bus Address
9 M R/W 1 Read
10 S ACK 0 0xAA Acknowledge
11 S DATA 0x01 0xAA Read Data from Address in Pointer
12 M ACK 0 0xAB Acknowledge, Address Pointer incremented
13 S DATA 0x05 0xAB Read Data from Address in Pointer
14 M NACK 0 0xAC No Acknowledge, stops transmission
15 M P STOP condition
All non-bolded actions rows in Tables 4 and 5 are controlled from the master (host) device.
All highlighted rows in Tables 4 and 5 are controlled from the slave (LM8327) device.
www.national.com 14
LM8327
11.0 Keyscan Operation
11.1 KEYSCAN INITIALIZATION
30124207
FIGURE 6. Keyscan Initialization
15 www.national.com
LM8327
11.2 KEYSCAN INITIALIZATION EXAMPLE
Table 6 shows all the LM8327 register configurations to ini-
tialize keyscan:
Keypad matrix configuration is 8 rows x 12 columns.
TABLE 6. Keyscan Initialization Example
Register name Adress Access
Type Value Comment
CLKEN 0x8A byte 0x01 enable keyscan clock
KBDSETTLE 0x01 byte 0x80 set the keyscan settle time to 12 msec
KBDBOUNCE 0x02 byte 0x80 set the keyscan debounce time to 12 msec
KBDSIZE 0x03 byte 0x8C set the keyscan matrix size to 8 rows x 12 columns
KBDDEDCFG 0x04 word 0xFFFF configure KPX[7:2] and KPY[11:2] pins as keyboard matrix
IOCFG 0xA7 byte 0x00 write default value to enable all pins as keyboard matrix
IOPC0 0xAA word 0xAAAA configure pull-up resistors for KPX[7:0]
IOPC1 0xAC word 0x5555 configure pull-down resistors for KPY[7:0]
IOPC2 0xAE word 0x0055 configure pull-down resistors for KPY[11:8]
KBDIC 0x08 byte 0x03 clear any pending interrupts
KBDMSK 0x09 byte 0x03 enable keyboard interrupts
www.national.com 16
LM8327
11.3 KEYSCAN PROCESS
The LM8327 keyscan functionality is based on a specific
scanning procedure performed in a 4ms interval. On each
scan all assigned key matrix pins are evaluated for state
changes.
In case a key event has been identified, the event is stored in
the key event FIFO, accessible via the EVTCODE register. A
key event can either be a key press or a key release. In ad-
dition, key presses are also stored in the KBDCODE[3:0]
registers. As soon as the EVTCODE FIFO includes a event,
the device sets the RAW keyboard event interrupt REVTINT.
The RSINT interrupt is set anytime the keyboard status has
changed.
Depending on the interrupt masking for the keyboard events
(KBDMSK) and the masked interrupt handling (KBDMIS), the
pin IRQN will follow the IRQST.KBDIRQ status, which is set
as soon as one interrupt in KBDRIS is set.
Figure 7 shows the basic flow of a scanning process and
which registers are affected.
30124208
FIGURE 7. Example Keyscan Operation for
1 Key Press and Release
17 www.national.com
LM8327
11.4 READING KEYSCAN STATUS BY THE HOST
In order to keep track of the keyscan status, the host either
needs to regularly poll the EVTCODE register or needs to re-
act on the Interrupt signaled by the IRQN pin.
Figure 8 gives an example on which registers to read to get
the keyboard events from the LM8327 and how they influence
the interrupt event registers. The example is based on the
assumption that the LM8327 has indicated the keyboard
event by the IRQN pin.
Since the interrupt pin has various sources, the host first
checks the IRQST register for the interrupt source. If KBDIRQ
is set, the host can check the KBDMIS register to define the
exact interrupt source. KBDMIS contains the masked status
of KBDRIS and reflects the source for raising the interrupt pin.
The interrupt mask is defined by KBDMSK. The complete
status of all pending keyboard interrupts is available in the raw
interrupt register KBDRIS.
After evaluating the interrupt source the host starts reading
the EVTCODE or KBDCODE register. In this example the
host first reads the KBDCODE to get possible key press
events and afterwards reads the complete event list by read-
ing the EVTCODE register until all events are captured (0x7F
indicates end of buffer).
Reading KBDCODE clears the RSINT interrupt bit if all key-
boards events are emptied. In the same way, REVTINT is
cleared in case the EVTCODE FIFO reaches its empty state
on read.
The event buffer content and the REVTINT and RELINT (lost
event) interrupt bits are also cleared if the KBDIC.EVTIC bit
is set.
Interrupt bits in the masked interrupt register KBDMIS follow
the masked KBDRIS status.
In order to support efficient Multi-byte reads from EVTCODE,
the autoincrement feature is turned off for this register. There-
fore the host can continuously read the complete EVTCODE
buffer by sending one command.
30124209
FIGURE 8. Example Host Reacting to
Interrupt for Keypad Event
www.national.com 18
LM8327
11.5 MULTIPLE KEY PRESSES
The LM8327 supports up to four simultaneous key presses.
Any time a single key is pressed KBDCODE0 is set with the
appropriate key code. If a second key is pressed, the key is
stored in KBDCODE1 and the MULTIKEY flag of KBDCODE0
is set. Additional key presses are stored in KBDCODE2 and
KBDCODE3 accordingly. The four registers signal the last
multi-key press events.
All events are stored in parallel in the EVTCODE register for
the complete set of events.
All KBDCODE[3:0] registers are cleared on read.
30124210
FIGURE 9. Example Keyscan Operation for 2 Key Press Events
and 1 Key Release Event
19 www.national.com
LM8327
12.0 Direct Key Operation
12.1 DIRECT KEY INITIALIZATION
30124213
FIGURE 10. Direct Key Initialization
www.national.com 20
LM8327
12.2 DIRECT KEY INITIALIZATION EXAMPLE
Table 7 shows all the LM8327 register configurations to initialize direct keys.
Direct key configuration is for 26 direct keys.
TABLE 7. Direct Key Initialization Example
Register Name Address Access Type Value Comment
CLKEN 0x8A byte 0x02 Enable direct key clock
DBOUNCE 0xE7 byte 0x04 Set the keyscan debounce time to 12 msec.
GPIOIBE0 0xCC byte 0x00 Configure single key event detection for DK[7:0]
GPIOIBE1 0xCD byte 0x00 Configure single key event detection for DK[15:8]
GPIOIBE2 0xCE byte 0x00 Configure single key event detection for DK[23:16]
GPIOIEV0 0xCF byte 0x00 Configure press key event detection DK[7:0]
GPIOIEV1 0xD0 byte 0x00 Configure press key event detection DK[15:8]
GPIOIEV2 0xD1 byte 0x00 Configure press key event detection DK[23:16]
GPIOIE0 0xD2 byte 0x00 Disable GPI interrupts for DK[7:0]
GPIOIE1 0xD3 byte 0x00 Disable GPI interrupts for DK[15:8]
GPIOIE2 0xD4 byte 0x00 Disable GPI interrupts for DK[23:16]
IOCFG 0xA7 byte 0x00 Write default value to enable all pins as direct keys
IOPC0 0xAA word 0xAAAA Configure pull-up resistors for DK[7:0]
IOPC1 0xAC word 0xAAAA Configure pull-up resistors for DK[15:8]
IOPC2 0xAE word 0xAAAA Configure pull-up resistors for DK[23:16]
DKBDIC 0xF2 byte 0x01 Clear any pending interrupts
DKBDMSK 0xF3 byte 0x00 Enable direct key and lost direct key interrupts
DIRECT0 0xEC byte 0xFF Enable pins as DK[7:0]
DIRECT1 0xED byte 0xFF Enable pins as DK[15:8]
DIRECT2 0xEE byte 0xFF Enable pins as DK[23:16]
DIRECT3 0xEF byte 0x03 Enable pins as DK[25:24]
21 www.national.com
LM8327
13.0 PWM Timer
The LM8327 supports a timer module dedicated to smooth
LED control techniques (lighting controls).
The PWM timer module consists of three independent timer
units of which each can generate a PWM output with a fixed
period and automatically incrementing or decrementing vari-
able duty cycle. The timer units are all clocked with a slow
(32.768 kHz) clock whereas the interface operates with the
main system clock.
13.1 OVERVIEW OF PWM FEATURES
Each PWM can establish fixed - or variable - duty-cycle
signal sequences on its output.
Each PWM can trigger execution of any pre-programmed
task on another PWM channel.
The execution of any pre-programmed task is self-
sustaining and does not require further interaction from the
host.
64-byte script buffer for each PWM for up to 32
consecutive instructions.
Direct addressing within script buffer to support multiple
PWM tasks in one buffer.
13.2 OVERVIEW ON PWM SCRIPT COMMANDS
The commands listed in Table 8 are dedicated to the slow
PWM timers.
Please note: The PWM Script commands are not part of the
command set supported by the LM8327 command inter-
preter. These commands must be transferred from the host
with help of the register-based command set.
TABLE 8. PWM Script Commands
Command 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAMP 0 PRESCALE STEPTIME SIGN INCREMENT
SET_PWM 0 1 0 PWMVALUE
GO_TO_ 0
START
BRANCH 1 0 1 LOOPCOUNT ADDR STEPNUMBER
END 1 1 0 1 INT X
TRIGGER 1 1 1 WAITTRIGGER SENDTRIGGER 0
13.2.1 RAMP COMMAND
A RAMP command will vary the duty cycle of a PWM output
in either direction (up or down). The INCREMENT field spec-
ifies the amount of steps for the RAMP. The maximum amount
of steps which can be executed with one RAMP Command is
126 which is equivalent to 50%. The SIGN bit field determines
the direction of a RAMP (up or down). The STEPTIME field
and the PRESCALE bit determine the duration of one step.
Based on a 32.768 kHz clock, the minimum time resulting
from these options would be 0.49 milliseconds and the max-
imum time for one step would be 1 second.
TABLE 9. RAMP Command Bit Fields
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 PRESCALE STEPTIME SIGN INCREMENT
TABLE 10. Description of Command Bit Fields of the RAMP Command
Bit or Field Value Description
PRESCALE 0 Divide the 32.768 kHz clock by 16
1 Divide the 32.768 kHz clock by 512
STEPTIME 1 - 63 Number of prescaled clock cycles per step
SIGN 0 Increment RAMP counter
1 Decrement RAMP counter
INCREMENT 0 - 126 Number of steps executed by this instruction; a value of 0 functions as a
WAIT determined by STEPTIME.
13.2.2 SET_PWM COMMAND
The SET_PWM command does not allow generation of a
PWM output with a fixed duty cycle between 0% and 100%.
This command will set the starting duty cycle MIN SCALE or
FULL SCALE (0% or 100%). A RAMP command following the
SET_PWM command will finally establish the desired duty
cycle on the PWM output.
TABLE 11. SET_PWM Command Bit Fields
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 0 DUTYCYCLE
www.national.com 22
LM8327
TABLE 12. Description of Bit Fields of the SET_PWM Command
Bit or Field Value Description
DUTYCYCLE 0 Duty cycle is 0%.
255 Duty cycle is 100%.
13.2.3 GO_TO_START COMMAND
The GO_TO_START command jumps to the first command
in the script command file.
TABLE 13. GO_TO_START Command Bit Fields
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0
13.2.4 BRANCH COMMAND
The BRANCH command jumps to the specified command in
the script command file. The BRANCH is executed with either
absolute or relative addressing. In addition, the command
gives the option of looping for a specified number of repeti-
tions.
Please note: Nested loops are not allowed.
TABLE 14. BRANCH Command Bit Fields
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 LOOPCOUNT ADDR STEPNUMBER
TABLE 15. Description of Command Bit Fields of the BRANCH Command
Bit or Field Value Description
LOOPCOUNT 0 Loop until a STOP PWM SCRIPT command is issued by the host.
1 - 63 Number of loops to perform.
ADDR 0 Absolute addressing
1 Relative addressing
STEPNUMBER 0 - 63
Depending on ADDR:
ADDR=0: Addr to jump to
ADDR=1: Number of backward steps
13.2.5 TRIGGER COMMAND
Triggers are used to synchronize operations between PWM
channels. A TRIGGER command that sends a trigger takes
sixteen 32.768 kHz clock cycles, and a command that waits
for a trigger takes at least sixteen 32.768 kHz clock cycles.
A TRIGGER command that waits for a trigger (or triggers) will
stall script execution until the trigger conditions are satisfied.
On trigger it will clear the trigger(s) and continue to the next
command.
When a trigger is sent, it is stored by the receiving channel
and can only be cleared when the receiving channel executes
a TRIGGER command that waits for the trigger.
TABLE 16. TRIGGER Command Bit Fields
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 WAITTRIGGER SENDTRIGGER 0
TABLE 17. Description of Command Bit Fields
Field Value Description
WAITTRIGGER
000xx1 Wait for trigger from channel 0
000x1x Wait for trigger from channel 1
0001xx Wait for trigger from channel 2
SENDTRIGGER
000xx1 Send trigger to channel 0
000x1x Send trigger to channel 1
0001xx Send trigger to channel 2
13.2.6 END COMMAND
The END command terminates script execution. It will only
assert an interrupt to the host if the INT bit is set to “1”.
When the END command is executed, the PWM output will
be set to the level defined by PWMCFG.PWMPOL for this
channel. Also, the script counter is reset back to the beginning
of the script command buffer.
23 www.national.com
LM8327
Please note: If a PWM channel is waiting for the trigger (last
executed command was "TRIGGER") and the script execu-
tion is halted then the "END" command can’t be executed
because the previous command is still pending. This is an
exception - in this case the IRQ signal will not be asserted.
TABLE 18. END Command Bit Fields
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 INT 0
TABLE 19. Description of Command Bit Fields of the END Command
Field Value Description
INT 0 No interrupt will be sent.
1 Set TIMRIS.CDIRQ for this PWM channel to notify that program has ended.
www.national.com 24
LM8327
14.0 LM8327 Register Set
14.1 KEYBOARD REGISTERS AND KEYBOARD
CONTROL
Keyboard selection and control registers are mapped in the
address range from 0x01 to 0x10. This paragraph describes
the functions of the associated registers down to the bit level.
14.1.1 KBDSETTLE - Keypad Settle Time Register
TABLE 20. KBDSETTLE - Keypad Settle Time Register
Register - Name Address Type Register Function
KBDSETTLE 0x01 R/W Initial time for keys to settle, before the key-scan process is started.
Bit - Name Bit Default Bit Function
WAIT[7:0] 7:0 0x80
The default value 0x80 : 0xBF sets a time target of 12 msec
Further time targets are as follows:
0xC0 - 0xFF: 16 msec
0x80 - 0xBF: 12 msec
0x40 - 0x7F: 8 msec
0x01 - 0x3F: 4 msec
0x00 : no settle time
14.1.2 KBDBOUNCE - Debounce Time Register
TABLE 21. KBDBOUNCE - Debounce Time Register
Register - Name Address Type Register Function
KBDBOUNCE 0x02 R/W Time between first detection of key and final sampling of key.
Bit - Name Bit Default Bit Function
WAIT[7:0] 7:0 0x80
The default value 0x80 : 0xBF sets a time target of 12 msec.
Further time targets are as follows:
0xC0 - 0xFF: 16 msec
0x80 - 0xBF: 12 msec
0x40 - 0x7F: 8 msec
0x01 - 0x3F: 4 msec
0x00: no debouncing time
14.1.3 KBDSIZE - Set Keypad Size Register
TABLE 22. KBDSIZE - Set Keypad Size Register
Register - Name Address Type Register Function
KBDSIZE 0x03 R/W Defines the physical keyboard matrix size.
Bit - Name Bit Default Bit Function
ROWSIZE[3:0] 7:4 0x2
Number of rows in the keyboard matrix:
0x0: free all rows to become GPIO, KPX[1:0] used as dedicated key
inputs if scanning is enabled by CLKEN.KBEN.
0x1: (illegal value)
0x2 - 0x8: Number of rows in the matrix
COLSIZE[3:0] 3:0 0x2
Number of columns in the keyboard matrix:
0x0: free all rows to become GPIO, KPY[1:0] used as dedicated key
inputs if scanning is enabled by CLKEN.KBEN
0x1: (illegal value)
0x2 - 0xC: Number of columns in the matrix
25 www.national.com
LM8327
14.1.4 KBDDEDCFG - Dedicated Key Register
TABLE 23. KBDDEDCFG - Dedicated Key Register
Register - Name Address Type Register Function
KBDDEDCFG 0x04 R/W Defines if a key is used as a standard keyboard/GPIO pin or whether
it is used as dedicated key input.
Bit - Name Bit Default Bit Function
ROW[7:2] 15:10 0x3F
Each bit in ROW [7:2] corresponds to ball KPX7 : KPX2.
Bit=0: the dedicated key function applies.
Bit=1: no dedicated key function is selected. The standard GPIO
functionality applies according to register IOCFG or defined keyboard
matrix.
COL[11:10] 9:8 0x03
Each bit in COL [11:10] corresponds to ball KPY11 : KPY10.
Bit=0: the dedicated key function applies.
Bit=1: no dedicated key function is selected. The standard GPIO
functionality applies according to register IOCFG or defined keyboard
matrix.
COL[9:2] 7:0 0xFF
Each bit in COL [9:2] corresponds to ball KPY9 : KPY2 and can be
configured individually.
Bit=0: the dedicated key function applies.
Bit=1: no dedicated key function is selected. The standard GPIO
functionality applies according to register IOCFG or defined keyboard
matrix.
14.1.5 KBDRIS - Keyboard Raw Interrupt Status Register
TABLE 24. KBDRIS - Keyboard Raw Interrupt Status Register
Register - Name Address Type Register Function
KBDRIS 0x06 R Returns the status of stored keyboard interrupts.
Bit - Name Bit Default Bit Function
(reserved) 7:4 (reserved)
RELINT 3 0x0
Raw event lost interrupt.
More than 8 keyboard events have been detected and caused the
event buffer to overflow. This bit is cleared by setting bit EVTIC of the
KBDIC register.
REVTINT 2 0x0
Raw keyboard event interrupt.
At least one key press or key release is in the keyboard event buffer.
Reading from EVTCODE until the buffer is empty will clear this
interrupt.
RKLINT 1 0x0
Raw key lost interrupt indicates a lost key-code.
This interrupt is asserted when RSINT has not been cleared upon
detection of a new key press or key release, or when more than 4 keys
are pressed simultaneously.
RSINT 0 0x0
Raw scan interrupt.
Interrupt generated after keyboard scan, if the keyboard status has
changed.
www.national.com 26
LM8327
14.1.6 KBDMIS - Keypad Masked Interrupt Status Register
TABLE 25. KBDMIS - Keypad Masked Interrupt Status Register
Register - Name Address Type Register Function
KBDMIS 0x07 R Returns the status on masked keyboard interrupts after masking with
the KBDMSK register.
Bit - Name Bit Default Bit Functions
(reserved) 7:4 (reserved)
MELINT 3 0x0
Masked event lost interrupt.
More than 8 keyboard events have been detected and caused the
event buffer to overflow. This bit is cleared by setting bit EVTIC of the
KBDIC register.
MEVTINT 2 0x0
Masked keyboard event interrupt.
At least one key press or key release is in the keyboard event buffer.
Reading from EVTCODE until the buffer is empty will clear this
interrupt.
MKLINT 1 0x0
Masked key lost interrupt.
Indicates a lost key-code. This interrupt is asserted when RSINT has
not been cleared upon detection of a new key press or key release,
or when more than 4 keys are pressed simultaneously.
MSINT 0 0x0
Masked scan interrupt.
Interrupt generated after keyboard scan, if the keyboard status has
changed, after masking process.
14.1.7 KBDIC - Keypad Interrupt Clear Register
TABLE 26. KBDIC - Keypad Interrupt Clear Register
Register - Name Address Default Register Function
KBDIC 0x08 W Setting these bits clears Keypad active Interrupts.
Bit - Name Bit Default Bit Function
SFOFF 7
Switches off scanning of special function (SF) keys, when keyboard
has no special function layout.
0: keyboard layout and SF keys are scanned
1: only keyboard layout is scanned, SF keys are not scanned
(reserved) 6:2 (reserved)
EVTIC 1 Clear event buffer and corresponding interrupts REVTINT and
RELINT by writing a 1 to this bit position.
KBDIC 0 Clear RSINT and RKLINT interrupt bits by writing a 1 to this bit
position.
27 www.national.com
LM8327
14.1.8 KBDMSK - Keypad Interrupt Mask Register
TABLE 27. KBDMSK - Keypad Interrupt Mask Register
Register - Name Address Type Register Function
KBDMSK 0x09 R/W
Configures masking of keyboard interrupts. Masked interrupts do not
trigger an event on the Interrupt output.
In case the interrupt processes registers KBDCODE[3:0], MSKELINT
and MSKEINT should be set to 1. When the Event FIFO is processed,
MSKLINT and MSKSINT should be set. For keyboard polling
operations, all bits should be set and the polling operation consists of
reading out the EVTCODE.
Bit - Name Bit Default Bit Function
(reserved) 7:4 (reserved)
MSKELINT 3 0x1 0: keyboard event lost interrupt RELINT triggers IRQ line
1: keyboard event lost interrupt RELINT is masked
MSKEINT 2 0x1 0: keyboard event interrupt REVINT triggers IRQ line
1: keyboard event interrupt REVINT is masked
MSKLINT 1 0x0 0: keyboard lost interrupt RKLINT triggers IRQ line
1: keyboard lost interrupt RKLINT is masked
MSKSINT 0 0x0 0: keyboard status interrupt RSINT triggers IRQ line
1: keyboard status interrupt RSINT is masked
14.1.9 KBDCODE0 - Keyboard Code Register 0
The key code detected by the keyboard scan can be read from
the registers KBDCODE0: KBDCODE3. Up to 4 keys can be
detected simultaneously. Each KBDCODE register includes
a bit (MULTIKEY) indicating if another key has been detected.
Please note: Reading out all key code registers (KBDCODE0
to KBDCODE3) will automatically reset the keyboard scan in-
terrupt RSINT the same way as an active write access into bit
KBDIC of the interrupt clear register does. Reading 0x7F from
the KBDCODE0 register means that no key was pressed.
TABLE 28. KBDCODE0 - Keyboard Code Register 0
Register - Name Address Default Register Function
KBDCODE0 0x0B R Holds the row and column information of the first detected key.
Bit - Name Bit Default Bit Function
MULTIKEY 7 0x0 If this bit is 1 another key is available in KBDCODE1 register.
KEYROW[2:0] 6:4 0x7 ROW index of detected key (0 to 7)
KEYCOL[3:0] 3:0 0xF Column index of detected (0 to 11, 12 for special function key).
14.1.10 KBDCODE1 - Keyboard Code Register 1
TABLE 29. KBDCODE1 - Keyboard Code Register 1
Register - Name Address Default Register Function
KBDCODE1 0x0C R Holds the row and column information of the second detected key.
Bit - Name Bit Default Bit Function
MULTIKEY 7 0x0 If this bit is 1 another key is available in KBDCODE2 register.
KEYROW[2:0] 6:4 0x7 ROW index of detected key (0 to 7)
KEYCOL[3:0] 3:0 0xF Column index of detected key (0 to 11, 12 for special function key).
www.national.com 28
LM8327
14.1.11 KBDCODE2 - Keyboard Code Register 2
TABLE 30. KBDCODE2 - Keyboard Code Register 2
Register - Name Address Default Register Function
KBDCODE2 0x0D R Holds the row and column information of the third detected key.
Bit - Name Bit Default Bit Function
MULTIKEY 7 0x0 If this bit is 1 another key is available in KBDCODE3 register.
KEYROW[2:0] 6:4 0x7 ROW index of detected key (0 to 7)
KEYCOL[3:0] 3:0 0xF Column index of detected key (0 to 11, 12 for special function key).
14.1.12 KBDCODE3 - Keyboard Code Register 3
TABLE 31. KBDCODE3 - Keyboard Code Register 3
Register - Name Address Default Register Function
KBDCODE3 0x0E R Holds the row and column information of the forth detected key.
Bit - Name Bit Default Bit Function
MULTIKEY 7 0x0 If this bit is set to “1” then more than 4 keys are pressed
simultaneously.
KEYROW[2:0] 6:4 0x7 ROW index of detected key (0 to 7)
KEYCOL[3:0] 3:0 0xF Column index of detected key (0 to 11, 12 for special function key).
14.1.13 EVTCODE - Key Event Code Register
TABLE 32. EVTCODE - Key Event Code Register
Register - Name Address Default Bit Function
EVTCODE 0x10 R
With this register a FIFO buffer is addressed storing up to 15
consecutive events.
Reading the value 0x7F from this address means that the FIFO buffer
is empty. See further details below.
NOTE: Auto increment is disabled on this register. Multi-byte read will
always read from the same address.
Bit - Name Bit Default Bit Function
RELEASE 7 0x0
This bit indicates, whether the keyboard event was a key press or a
key release event.
0: key was pressed
1: key was released
KEYROW[2:0] 6:4 0x7 Row index of key that is pressed or released.
KEYCOL[3:0] 3:0 0xF Column index of key that is pressed (0...11, 12 for special function
key) or released.
14.2 PWM TIMER CONTROL REGISTERS
The LM8327 provides three host-programmable PWM out-
puts useful for smooth LED brightness modulation. All PWM
timer control registers are mapped in the range from 0x60 to
0x7F. This paragraph describes the functions of the associ-
ated registers down to the bit level.
14.2.1 TIMCFGx - PWM Timer 0, 1 and 2 Configuration Registers
TABLE 33. TIMCFGx - PWM Timer 0, 1 and 2 Configuration Registers
Register - Name Address Type Register Function
TIMCFG0 0x60
R/W This register configures interrupt masking and handles PWM start/
stop control of the associated PWM channel.
TIMCFG1 0x68
TIMCFG2 0x70
Bit - Name
(x = 0, 1 or 2) Bit Default Bit Function
29 www.national.com
LM8327
Register - Name Address Type Register Function
CYCIRQxMSK 4 0x0
Interrupt mask for PWM CYCIRQx (see Table 37):
0: interrupt enabled
1: interrupt masked
(reserved) 3:0 0x0 (reserved)
14.2.2 PWMCFGx - PWM Timer 0, 1 and 2 Configuration Control Registers
TABLE 34. PWMCFGx - PWM Timer 0, 1 and 2 Configuration Control Registers
Register - Name Address Type Register Function
PWMCFG0 0x61
R/W
This register defines interrupt masking and the output behavior for the
associated PWM channel.
PWMCFG1 0x69 PGEx is used to start and stop the PWM script execution.
PWMCFG2 0x71 PWMENx sets the PWM output to either reflect the generated pattern
or the value configured in PWMPOLx.
Bit - Name
(x = 0, 1 or 2) Bit Default Bit Function
CDIRQxMSK 3 0x0
Mask for CDIRQ:
0: CDIRQ enabled
1: CDIRQ disabled/masked
PGEx 2 0x0
Pattern Generator Enable. Start/Stop PWM command processing for
this channel. Script execution is started always from beginning.
0: Pattern Generator disabled
1: Pattern Generator enabled
PWMENx 1 0x0
0: PWM disabled. PWM timer output assumes value programmed in
PWMPOL.
1: PWM enabled
PWMPOLx 0 0x0
Off-state of PWM output, when PWMEN=0.
0: PWM off-state is low
1: PWM off-state is high
14.2.3 TIMSCALx - PWM Timer 0, 1 and 2 Prescale Registers
TABLE 35. TIMSCALx - PWM Timer 0, 1 and 2 Prescale Registers
Register - Name Address Type Register Function
TIMSCAL0
TIMSCAL1
TIMSCAL2
0x62
0x6A
0x72
R/W
The registers determine the divider of the CLKIN external clock. The
resulting clock is only used for PWM generation. The value should
only be changed while PWM is stopped. Since all 3 PWM channels
use the same slow clock, TIMSCAL0 affects all 3 PWM channels.
TIMSCAL1 and TIMSCAL2 are directly linked to TIMSCAL0.
Bit - Name Bit Default Bit Function
SCAL[7:0] 7:0 0x0 CLKIN is divided by (SCAL+1).
www.national.com 30
LM8327
14.2.4 TIMSWRES - PWM Timer Software Reset Registers
TABLE 36. TIMSWRES - PWM Timer Software Reset Registers
Register - Name Address Type Register Function
TIMSWRES 0x78 W
Reset control on all PWM timers.
A reset forces the pattern generator to fetch the first pattern and stops
it. Each reset stops all state-machines and timer.
Patterns stored in the pattern configuration register remain unaffected.
Interrupts on each timer are not cleared, they need to be cleared
writing into register TIMIC.
Bit - Name Bit Default Bit Function
(reserved) 7:3 (reserved)
SWRES2 2
Software reset of timer 2.
0: no action
1: Software reset on timer 2, needs not to be written back to 0.
SWRES1 1
Software reset of timer 1.
0: no action
1: Software reset on timer 1, needs not to be written back to 0.
SWRES0 0
Software reset of timer 0.
0: no action
1: software reset on timer 0, needs not to be written back to 0.
14.2.5 TIMRIS - PWM Timer Interrupt Status Register
TABLE 37. TIMRIS - PWM Timer Interrupt Status Register
Register - Name Address Type Register Function
TIMRIS 0x7A R
This register returns the raw interrupt status from the PMW timers 0,
1 and 2.
CYCIRQx - Interrupt from the timers when PWM cycle is complete
(applies to the current PWM command residing in the active command
register of a PWM block).
CDIRQx - Interrupt from the pattern generator when PWM pattern
code is complete (applies to a completed task residing in the script
buffer of a PWM block).
Bit - Name Bit Default Bit Functions
(reserved) 7:6 (reserved)
CDIRQ2 5 0x0
Raw interrupt status for CDIRQ timer2:
0: no interrupt pending
1: unmasked interrupt generated
CDIRQ1 4 0x0
Raw interrupt status for CDIRQ timer1:
0: no interrupt pending
1: unmasked interrupt generated
CDIRQ0 3 0x0
Raw interrupt status for CDIRQ timer0:
0: no interrupt pending
1: unmasked interrupt generated
CYCIRQ2 2 0x0
Raw interrupt status for CYCIRQ timer2:
0: no interrupt pending
1: unmasked interrupt generated
CYCIRQ1 1 0x0
Raw interrupt status for CYCIRQ timer1:
0: no interrupt pending
1: unmasked interrupt generated
31 www.national.com
LM8327
Register - Name Address Type Register Function
CYCIRQ0 0 0x0
Raw interrupt status for CYCIRQ timer0:
0: no interrupt pending
1: unmasked interrupt generated
14.2.6 TIMMIS - PWM Timer Masked Interrupt Status Register
TABLE 38. TIMMIS - PWM Timer Masked Interrupt Status Register
Register - Name Address Type Register Function
TIMMIS 0x7B R
This register returns the masked interrupt status from the PMW timers
0,1 and 2. The raw interrupt status (TIMRIS) is masked with the
associated TIMCFGx.CYCIRQxMSK and PWMCFGx.CDIRQxMSK
bits to get the masked interrupt status of this register.
CYCIRQ - Interrupt from the timers when PWM cycle is complete
(applies to the current PWM command residing in the active command
register of a PWM block).
CDIRQ - Interrupt from the pattern generator when PWM pattern code
is complete (applies to a completed task residing in the script buffer
of a PWM block).
Bit - Name Bit Default Bit Function
(reserved) 7:6 (reserved)
CDIRQ2 5 0x0
Interrupt after masking, indicates active contribution to the interrupt
ball, when set. Status for CDIRQ timer2:
0: no interrupt pending
1: interrupt generated
CDIRQ1 4 0x0
Interrupt after masking, indicates active contribution to the interrupt
ball, when set. Status for CDIRQ timer1:
0: no interrupt pending
1: interrupt generated
CDIRQ0 3 0x0
Interrupt after masking, indicates active contribution to the interrupt
ball, when set. Status for CDIRQ timer0:
0: no interrupt pending
1: interrupt generated
CYCIRQ2 2 0x0
Interrupt after masking, indicates active contribution to the interrupt
ball, when set. Status for CYCIRQ timer2:
0: no interrupt pending
1: interrupt generated
CYCIRQ1 1 0x0
Interrupt after masking, indicates active contribution to the interrupt
ball, when set. Status for CYCIRQ timer1:
0: no interrupt pending
1: interrupt generated
CYCIRQ0 0 0x0
Interrupt after masking, indicates active contribution to the interrupt
ball, when set. Status for CYCIRQ timer0:
0: no interrupt pending
1: interrupt generated
www.national.com 32
LM8327
14.2.7 TIMIC - PWM Timer Interrupt Clear Register
TABLE 39. TIMIC - PWM Timer Interrupt Clear Register
Register - Name Address Type Register Function
TIMIC 0x7C W
This register clears timer and pattern interrupts.
CYCIRQ - Interrupt from the timers when PWM cycle is complete
(applies to the current PWM command residing in the active command
register of a PWM block).
CDIRQ - Interrupt from the pattern generator when PWM pattern code
is complete (applies to a completed task residing in the script buffer
of a PWM block).
Bit - Name Bit Default Bit Function
(reserved) 7:6 (reserved)
CDIRQ2 5
Clears interrupt CDIRQ timer2:
0: no effect
1: interrupt is cleared. Does not need to be written back to 0
CDIRQ1 4
Clears interrupt CDIRQ timer1:
0: no effect
1: interrupt is cleared. Does not need to be written back to 0
CDIRQ0 3
Clears interrupt CDIRQ timer0:
0: no effect
1: interrupt is cleared. Does not need to be written back to 0
CYCIRQ2 2
Clears interrupt CYCIRQ timer2:
0: no effect
1: interrupt is cleared. Does not need to be written back to 0
CYCIRQ1 1
Clears interrupt CYCIRQ timer1:
0: no effect
1: interrupt is cleared. Does not need to be written back to 0
CYCIRQ0 0
Clears interrupt CYCIRQ timer0:
0: no effect
1: interrupt is cleared. Does not need to be written back to 0
14.2.8 PWMWP - PWM Timer Pattern Pointer Register
TABLE 40. PWMWP - PWM Timer Pattern Pointer Register
Register - Name Address Type Register Function
PWMWP 0x7D R/W
Pointer to the pattern position inside the configuration register, which
will be overwritten by the next write access to be PWMCFG register.
NOTE: 1 pattern consist of 2 bytes and not the byte position (low or
high). It is incremented by 1 every time a full PWMCFG register access
(word) is performed.
Bit - Name Bit Default Bit Function
(reserved) 7 0x0 (reserved)
POINTER[6:0] 6:0 0x0
0 POINTER < 32 : timer0 patterns 0 to 31
32 POINTER < 64 : timer1 patterns 0 to 31
64 POINTER < 96 : timer2 patterns 0 to 31
96 POINTER < 128: not valid
33 www.national.com
LM8327
14.2.9 PWMCFG - PWM Script Register (Two Byte)
TABLE 41. PWMCFG - PWM Script Register
Register - Name Address Type Register Function
PWMCFG 0x7E W
Two byte pattern storage register for a PWM script command indexed
by PWMWP. PWMWP is automatically incremented.
To be applied by two consecutive parameter bytes in one I2C Write
Transaction.
NOTE: Autoincrement is disabled on this register. Address will stay
at 0x7E for each word access.
Bit - Name Bit Default Bit Function
CMD[15:8] 15:8 High byte portion of a PWM script command.
CMD[7:0] 7:0 Low byte portion of a PWM script command.
www.national.com 34
LM8327
14.3 INTERFACE CONTROL REGISTERS
The following section describes the functions of special con-
trol registers provided for the main controller.
The manufacturer code MFGCODE and the software revision
number SWREV tell the main device which configuration file
has to be used for this device.
NOTE: I2CSA and MFGCODE use the same address. They
just differentiate in the access type:
Write - I2CSA
Read - MFGCODE
14.3.1 I2CSA - I2C-Compatible ACCESS.bus Slave Address Register
TABLE 42. I2CSA - I2C-Compatible ACCESS.bus Slave Address Register
Register - Name Address Type Register Function
I2CSA 0x80 W I2C-compatible ACCESS.bus Slave Address.
The address is internally applied after the next I2C STOP.
Bit - Name Bit Default Bit Function
SLAVEADDR[7:1] 7:1 0x45 7-bit address field for the I2C-compatible ACCESS.bus slave address.
(reserved) 0 (reserved)
14.3.2 MFGCODE - Manufacturer Code Register
TABLE 43. MFGCODE - Manufacturer Code Register
Register - Name Address Type Register Function
MFGCODE 0x80 R Manufacturer code of the LM8327.
Bit - Name Bit Default Bit Function
MFGBIT 7:0 0x00 8-bit field containing the manufacturer code.
14.3.3 SWREV - Software Revision Register
TABLE 44. SWREV - Software Revision Register
Register - Name Address Type Register Function
SWREV 0x81 R
Software revision code of the LM8327.
NOTE: Writing the SW revision with the inverted value triggers a reset
(see SWRESET).
Bit - Name Bit Default Bit Function
SWBIT 7:0 0xC4 8-bit field containing the SW Revision number.
14.3.4 SWRESET - Software Reset
TABLE 45. SWRESET - Software Reset Register
Register - Name Address Type Register Function
SWRESET 0x81 W
Software reset.
NOTE: the reset is only applied if the supplied parameter has the
inverted value as SWBIT.
Reading this register provides the software revision (see Table 44).
Bit - Name Bit Default Bit Function
SWBIT 7:0 Reapply inverted value for software reset.
14.3.5 RSTCTRL - System Reset Register
This register allows to reset specific blocks of the LM8327.
For global reset of the I/OExpander the I2C command 'Gen-
eral Call reset' is used (see Section 10.1.6 Global Call Re-
set). This will reset the slave address back to 0x8A. During
an active reset of a module, the LM8327 blocks the access to
the module registers. A read will return 0, write commands
are ignored.
35 www.national.com
LM8327
TABLE 46. RSTCTRL - System Reset Register
Register - Name Address Type Register Function
RSTCTRL 0x82 R/W Software reset of specific parts of the LM8327.
Bit - Name Bit Default Bit Function
(reserved) 7:5 (reserved)
IRQRST 4 0x0
Interrupt controller reset. Does not change status on IRQN ball. Only
controls IRQ module register. Interrupt status read out is not possible
when this bit is set.
0: interrupt controller not reset
1: interrupt controller reset
TIMRST 3 0x0
Timer reset for Timers 0, 1, 2:
0: timer not reset
1: timer is reset
(reserved) 2 0x0 (reserved)
KBDRST 1 0x0
Keyboard interface reset:
0: keyboard is not reset
1: keyboard is reset
GPIRST 0 0x0
GENIO reset:
0: GENIO not reset
1: GENIO is reset.
14.3.6 RSTINTCLR - Clear NO Init/Power-On Interrupt Register
TABLE 47. RSTINTCLR - Clear NO Init/Power-On Interrupt Register
Register - Name Address Type Register Function
RSTINTCLR 0x84 W
This register allows to de-assert the POR/No Init Interrupt set every
time the device returns from RESET (either POR, HW or SW Reset),
the IRQN line is assigned active (low) and the IRQST.PORIRQ bit is
set.
Bit - Name Bit Default Bit Function
reserved 7:1 (reserved)
IRQCLR 0 1: Clears the PORIRQ Interrupt signalled in IRQST register.
0: is ignored
14.3.7 CLKMODE - Clock Mode Register
TABLE 48. CLKMODE - Clock Mode Register
Register - Name Address Type Register Function
CLKMODE 0x88 R/W This register controls the current operating mode of the LM8327
device.
Bit - Name Bit Default Bit Function
(reserved) 7:2 (reserved)
MODCTL[1:0] 1:0 0x01
Writing to 00 forces the device to immediately enter sleep mode,
regardless of any autosleep configuration. Reading this bit returns the
current operating mode, which should always be 01.
00: SLEEP Mode
01: Operation Mode
1x: Future modes
www.national.com 36
LM8327
14.3.8 CLKCFG - Clock Configuration Register
TABLE 49. CLKCFG - Clock Configuration Register
Register - Name Address Type Register Function
CLKCFG 0x89 R/W Configures clock sources and power options of the device.
NOTE: Don't change while a PWM script is in progress.
Bit - Name Bit Default Bit Function
(reserved) 7 0x0 (reserved)
CLKSRCSEL[1:0] 6:5 0x2
00: (reserved)
01: use externally generated clock from CLKIN pin as PWM slow clock
1x: use internally generated PWM slow clock
(reserved) 4:0 0x0 (reserved)
14.3.9 CLKEN - Clock Enable Register
TABLE 50. CLKEN - Clock Enable Register
Register - Name Address Type Register Function
CLKEN 0x8A R/W Controls the clock to different functional units. It shall be used to
enable the functional blocks globally and independently.
Bit - Name Bit Default Bit Function
CLKOUTEN 7:6 0x0
CLKOUT clock output enable:
00: CLKOUT clock disabled. Fixed to low level.
01: CLKOUT frequency = PWM slow clock frequency.
10: reserved
11: reserved
(reserved) 5:3 (reserved)
TIMEN 2 0x0
PWM Timer 0, 1, 2 clock enable:
0: Timer 0, 1, 2 clock disabled
1: Timer 0, 1, 2 clock enabled.
DKBDEN*1 0x0
Direct Key clock enable (starts/stops direct key scan):
0: Direct Key clock disabled
1: Direct Key clock enabled
KBDEN*0 0x0
Keyboard clock enable (starts/stops key scan):
0: Keyboard clock disabled
1: Keyboard clock enabled
*Note: Only one of KBDEN or DKBDEN of CLKEN register can be set at a time, since Direct Key functions cannot be used at the same time as Keypad (Matrix).
Setting both bits to 1 at the same time will enable only Direct Key.
14.3.10 AUTOSLP - Autosleep Enable Register
TABLE 51. AUTOSLP - Autosleep Enable Register
Register - Name Address Type Register Function
AUTOSLP 0x8B R/W This register controls the Auto Sleep function of the LM8327 device.
Bit - Name Bit Default Bit Function
(reserved) 7:1 (reserved)
ENABLE 0 0x00
Enables automatic sleep mode after a defined activity time stored in
the AUTOSLPTI register:
1: Enable entering auto sleep mode
0: Disable entering auto sleep mode
37 www.national.com
LM8327
14.3.11 AUTOSLPTI - Auto Sleep Time Register
TABLE 52. AUTOSLPTI - Auto Sleep Time Register
Register - Name Address Type Register Function
AUTOSLPTIL
AUTOSLPTIH
0x8C
0x8D R/W
This register defines the activity time. If this time passes without any
processing events then the device enters into sleep-mode, but only if
AUTOSLP.ENABLE bit is set to 1.
Bit - Name Bit Default Bit Function
(reserved) 15:11 (reserved)
UPTIME[10:8]
UPTIME[7:0]
10:8
7:0
0x00
0xFF
Values of UPTIME[10:0] match to multiples of 4ms:
0x00: no autosleep, regardless if AUTOSLP.ENABLE is set
0x01: 4ms
0x02: 8ms
0x7A: 500 ms
0xFF: 1020 ms (default after reset)
0x100: 1024 ms
0x7FF: 8188 ms
14.3.12 IRQST - Global Interrupt Status Register
TABLE 53. IRQST - Global Interrupt Status Register
Register - Name Address Type Register Function
IRQST 0x91 R
Returns the interrupt status from various on-chip function blocks. If
any of the bits is set and an IRQN line is configured, the IRQN line is
asserted active
Bit - Name Bit Default Bit Function
PORIRQ 7 0x1
Supply failure on VCC.
Also power-on is considered as an initial supply failure. Therefore,
after power-on, the bit is set.
0: no failure recorded
1: Failure, device was completely reset and requires re-programming.
KBDIRQ 6 0x0
Keyboard interrupt (further key selection in keyboard module):
0: inactive
1: active
DKBDIRQ 5 0x0
Direct key interrupt (further key selection in direct key module):
0: inactive
1: active
(reserved) 4 (reserved)
TIM2IRQ 3 0x0
Timer2 expiry (CDIRQ or CYCIRQ):
0: inactive
1: active
TIM1IRQ 2 0x0
Timer1 expiry (CDIRQ or CYCIRQ):
0: inactive
1: active
TIM0IRQ 1 0x0
Timer0 expiry (CDIRQ or CYCIRQ):
0: inactive
1: active
GPIOIRQ 0 0x0
GPIO interrupt (further selection in GPIO module):
0: inactive
1: active
www.national.com 38
LM8327
14.4 GPIO FEATURE CONFIGURATION
14.4.1 GPIO Feature Mapping
The LM8327 has a flexible I/O structure which allows user to
dynamically assign different functionality to each ball. The
functionality of each ball is determined by the complete con-
figuration of the balls.
In general the following priority is given:
Direct Key
Keypad
GPIO
PWM
With this, each ball will be available as keypad, GPIO, or PWM
unless it is specified to be a direct key. The configuration for
direct key, keypad, GPIO or PWM usage is defined by the
following registers:
DIRECTn
This register defines a ball as a direct key.
KBDSIZE and KBDDEDCFG
Both registers define a ball as either part of the keypad
matrix or as dedicated key input. These settings have
highest priority and will overwrite settings made in other
registers.
IOCFG
This register is used to define the usage of PWM[2:0]
and EXTIO if not configured to be part of the keymatrix,
to be used as GPIO.
TABLE 54. Ball Configuration Options
BALL Module connectivity
GPIOSEL BALLCFG
0x0 0x1 0x2 0x3 0x4 0x5 0x6
KPX[7:0] not used GPIO[7:0] - - - - - -
KPY[7:0] not used GPIO[15:8] - - - - - -
KPY8 not used GPIO16 - - - - - -
KPY9 not used GPIO17 - - - - - -
KPY10 not used GPIO18 - - - - - -
KPY11 not used GPIO19 - - - - - -
PWM0 GPIO20 PWM0 - - - - - -
PWM1 GPIO21 PWM1 - - - - - -
PWM2 GPIO22 PWM2 - - - - - -
EXTIO GPIO23 - - - - - - -
14.4.2 IOCGF - Input/Output Pin Mapping Configuration Register
TABLE 55. IOCGF - Input/Output Pin Mapping Configuration Register
Register - Name Address Type Register Function
IOCFG 0xA7 W Configures usage of PWM[2:0] and EXTIO if not used as primary
function.
Bit - Name Bit Default Bit Function
GPIOSEL 7:4 TBD
(reserved) 3 (reserved)
BALLCFG 2:0 Select column to configure, see Table 54
39 www.national.com
LM8327
14.4.3 IOPC0 - Pull Resistor Configuration Register 0
TABLE 56. IOPC0 - Pull Resistor Configuration Register 0
Register - Name Address Type Register Function
IOPC0*OxAA R/W Defines the pull resistor configuration for balls KPX[7:0].
Bit - Name Bit Default Bit Function
KPX7PR[1:0] 15:14 0x3
Resistor enable for KPX7 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPX6PR[1:0] 13:12 0x3
Resistor enable for KPX6 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPX5PR[1:0] 11:10 0x3
Resistor enable for KPX5 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPX4PR[1:0] 9:8 0x3
Resistor enable for KPX4 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPX3PR[1:0] 7:6 0x3
Resistor enable for KPX3 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPX2PR[1:0] 5:4 0x3
Resistor enable for KPX2 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPX1PR[1:0] 3:2 0x3
Resistor enable for KPX1 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPX0PR[1:0] 1:0 0x3
Resistor enable for KPX0 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
* Written values of 0x2 and 0x3 will always be read back as 0x3.
14.4.4 IOPC1 - Pull Resistor Configuration Register 1
TABLE 57. IOPC1 - Pull Resistor Configuration Register 1
Register - Name Address Type Register Function
IOPC1** 0xAC R/W Defines the pull resistor configuration for balls KPY[7:0].
Bit - Name Bit Default Bit Function
KPY7PR[1:0] 15:14 0x3
Resistor enable for KPY7 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
www.national.com 40
LM8327
Register - Name Address Type Register Function
KPY6PR[1:0] 13:12 0x3
Resistor enable for KPY6 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY5PR[1:0] 11:10 0x3
Resistor enable for KPY5 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY4PR[1:0] 9:8 0x3
Resistor enable for KPY4 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY3PR[1:0] 7:6 0x3
Resistor enable for KPY3 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY2PR[1:0] 5:4 0x3
Resistor enable for KPY2 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY1PR[1:0] 3:2 0x3
Resistor enable for KPY1 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY0PR[1:0] 1:0 0x3
Resistor enable for KPY0 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
** Written values of 0x2 and 0x3 will always be read back as 0x3.
14.4.5 IOPC2 - Pull Resistor Configuration Register 2
TABLE 58. IOPC2 - Pull Resistor Configuration Register 2
Register - Name Address Type Register Function
IOPC2*** 0xAE R/W Defines the pull resistor configuration for balls KPY[11:8], PWM[2:0],
EXTIO.
Bit - Name Bit Default Bit Function
EXTIO[1:0] 15:14 0x3
Resistor enable for EXTIO ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
PWM2[1:0] 13:12 0x3
Resistor enable for PWM2 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
PWM1[1:0] 11:10 0x3
Resistor enable for PWM1 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
41 www.national.com
LM8327
Register - Name Address Type Register Function
PWM0[1:0] 9:8 0x3
Resistor enable for PWM0 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY11PR[1:0] 7:6 0x3
Resistor enable for KPY11 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY10PR[1:0] 5:4 0x3
Resistor enable for KPY10 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY9PR[1:0] 3:2 0x3
Resistor enable for KPY9 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
KPY8PR[1:0] 1:0 0x3
Resistor enable for KPY8 ball:
00: no pull resistor at ball
01: pull down resistor programmed
1x: pull up resistor programmed
*** Written values of 0x2 and 0x3 will always be read back as 0x3.
14.4.6 GPIOOME0 - GPIO Open Drain Mode Enable Register 0
TABLE 59. GPIOOME0 - GPIO Open Drain Mode Enable Register 0
Register - Name Address Type Register Function
GPIOOME0 0xE0 R/W Configures KPX[7:0] for Open Drain or standard output functionality.
The Open Drain drive source is configured by GPIOOMS0.
Bit - Name Bit Default Bit Function
KPX[7:0]ODE 7:0 0x0
Open Drain Enable on KPX[7:0]:
0: full buffer
1: open drain functionality
14.4.7 GPIOOMS0 - GPIO Open Drain Mode Select Register 0
TABLE 60. GPIOOMS0 - GPIO Open Drain Mode Select Register 0
Register - Name Address Type Register Function
GPIOOMS0 0xE1 R/W Configures the Open Drain drive source on KPX[7:0] if selected by
GPIOOME0.
Bit - Name Bit Default Bit Function
KPX[7:0]ODM 7:0 0x0
0: Only NMOS transistor is active in output driver stage. Output can
be driven to gnd or Hi-Z.
1: Only PMOS transistor is active in output driver stage. Output can
be driven to VCC or Hi-Z.
www.national.com 42
LM8327
14.4.8 GPIOOME1 - GPIO Open Drain Mode Enable Register 1
TABLE 61. GPIOOME1 - GPIO Open Drain Mode Enable Register 1
Register - Name Address Type Register Function
GPIOOME1 0xE2 R/W Configures KPY[7:0] for Open Drain or standard output functionality.
The Open Drain drive source is configured by GPIOOMS1.
Bit - Name Bit Default Bit Function
KPY[7:0]ODE 7:0 0x0
Open Drain Enable on KPY[7:0]:
0: full buffer
1: open drain functionality
14.4.9 GPIOOMS1 - GPIO Open Drain Mode Select Register 1
TABLE 62. GPIOOMS1 - GPIO Open Drain Mode Select Register 1
Register - Name Address Type Register Function
GPIOOMS1 0xE3 R/W Configures the Open Drain drive source on KPY[7:0] if selected by
GPIOOME1.
Bit - Name Bit Default Bit Function
KPY[7:0]ODM 7:0 0x0
0: Only NMOS transistor is active in output driver stage. Output can
be driven to GND or Hi-Z.
1: Only PMOS transistor is active in output driver stage. Output can
be driven to VCC or Hi-Z.
14.4.10 GPIOOME2 - GPIO Open Drain Mode Enable Register 2
TABLE 63. GPIOOME2 - GPIO Open Drain Mode Enable Register 2
Register - Name Address Type Register Function
GPIOOME2 0xE4 R/W
Configures KPY[11:8], PWM[2:0], EXTIO for Open Drain or standard
output functionality. The Open Drain drive source is configured by
GPIOOMS2.
Bit - Name Bit Default Bit Function
EXTIOODM 7 0x0
Open Drain Enable on EXTIO:
0: full buffer
1: open drain functionality
PWM[2:0]ODM 6:4 0x0
Open Drain Enable on PWM[2:0]:
0: full buffer
1: open drain functionality
KPY[11:8]ODE 3:0 0x0
Open Drain Enable on KPY[11:8]:
0: full buffer
1: open drain functionality
43 www.national.com
LM8327
14.4.11 GPIOOMS2 - GPIO Open Drain Mode Select Register 2
TABLE 64. GPIOOMS2 - GPIO Open Drain Mode Select Register 2
Register - Name Address Type Register Function
GPIOOMS2 0xE5 R/W Configures the Open Drain drive source on KPY[11:8], PWM[2:],
EXTIO if selected by GPIOOME2.
Bit - Name Bit Default Bit Function
EXTIOODM 7 0x0
0: only NMOS transistor is active in output driver stage. Output can be
driven to GND or Hi-Z.
1: only PMOS transistor is active in output driver stage. Output can be
driven to GND or Hi-Z.
PWM[2:0]ODM 6:4 0x0 same as above
KPY[11:8]ODM 3:0 0x0 same as above
14.5 GPIO DATA INPUT/OUTPUT
30124211
14.5.1 GPIOPDATA0 - GPIO Data Register 0
TABLE 65. GPIOPDATA0 - GPIO Data Register 0
Register - Name Address Type Register Function
GPIODATA0 0xC0 R/W
This register is used for data input/output of KPX[7:0]. Every data I/O is
masked with the associated MASK register.
If one of the I/Os is defined as output (see Table 68) values written to this
register are masked with MASK and then applied to the associated pin.
If one of the I/Os is defined as input (see Table 68) values read from this
register hold the masked input value of the associated pin.
Bit - Name Bit Default Bit Function
MASK7 15 0x0
Mask Status for KPX7 when enabled as GPIO:
1: KPX7 enabled
0: KPX7 disabled
MASK6 14 0x0
Mask Status for KPX6 when enabled as GPIO:
1: KPX6 enabled
0: KPX6 disabled
MASK5 13 0x0
Mask Status for KPX5 when enabled as GPIO:
1: KPX5 enabled
0: KPX5 disabled
MASK4 12 0x0
Mask Status for KPX4 when enabled as GPIO:
1: KPX4 enabled
0: KPX4 disabled
MASK3 11 0x0
Mask Status for KPX3 when enabled as GPIO:
1: KPX3 enabled
0: KPX3 disabled
www.national.com 44
LM8327
Register - Name Address Type Register Function
MASK2 10 0x0
Mask Status for KPX2 when enabled as GPIO:
1: KPX2 enabled
0: KPX2 disabled
MASK1 9 0x0
Mask Status for KPX1 when enabled as GPIO:
1: KPX1 enabled
0: KPX1 disabled
MASK0 8 0x0
Mask Status for KPX0 when enabled as GPIO:
1: KPX0 enabled
0: KPX0 disabled
DATA7 7 0x0 Pin Status for KPX7 when enabled as GPIO.
DATA6 6 0x0 Pin Status for KPX6 when enabled as GPIO.
DATA5 5 0x0 Pin Status for KPX5 when enabled as GPIO.
DATA4 4 0x0 Pin Status for KPX4 when enabled as GPIO.
DATA3 3 0x0 Pin Status for KPX3 when enabled as GPIO.
DATA2 2 0x0 Pin Status for KPX2 when enabled as GPIO.
DATA1 1 0x0 Pin Status for KPX1 when enabled as GPIO.
DATA0 0 0x0 Pin Status for KPX0 when enabled as GPIO.
14.5.2 GPIOPDATA1 - GPIO Data Register 1
TABLE 66. GPIOPDATA1 - GPIO Data Register 1
Register - Name Address Type Register Function
GPIODATA1 0xC2 R/W
This register is used for data input/output of KPY[7:0]. Every data I/O is
masked with the associated MASK register.
If one of the I/Os is defined as output (see Table 69) values written to this
register are masked with MASK and then applied to the associated pin.
If one of the I/Os is defined as input (see Table 69) values read from this
register hold the masked input value of the associated pin.
Bit - Name Bit Default Bit Function
MASK15 15 0x0
Mask Status for KPY7 when enabled as GPIO:
1: KPY7 enabled
0: KPY7 disabled
MASK14 14 0x0
Mask Status for KPY6 when enabled as GPIO:
1: KPY6 enabled
0: KPY6 disabled
MASK13 13 0x0
Mask Status for KPY5 when enabled as GPIO:
1: KPY5 enabled
0: KPY5 disabled
MASK12 12 0x0
Mask Status for KPY4 when enabled as GPIO:
1: KPY4 enabled
0: KPY4 disabled
MASK11 11 0x0
Mask Status for KPY3 when enabled as GPIO:
1: KPY3 enabled
0: KPY3 disabled
MASK10 10 0x0
Mask Status for KPY2 when enabled as GPIO:
1: KPY2 enabled
0: KPY2 disabled
MASK9 9 0x0
Mask Status for KPY1 when enabled as GPIO:
1: KPY1 enabled
0: KPY1 disabled
45 www.national.com
LM8327
Register - Name Address Type Register Function
MASK8 8 0x0
Mask Status for KPY0 when enabled as GPIO:
1: KPY0 enabled
0: KPY0 disabled
DATA15 7 0x0 Pin Status for KPY7 when enabled as GPIO.
DATA14 6 0x0 Pin Status for KPY6 when enabled as GPIO.
DATA13 5 0x0 Pin Status for KPY5 when enabled as GPIO.
DATA12 4 0x0 Pin Status for KPY4 when enabled as GPIO.
DATA11 3 0x0 Pin Status for KPY3 when enabled as GPIO.
DATA10 2 0x0 Pin Status for KPY2 when enabled as GPIO.
DATA9 1 0x0 Pin Status for KPY1 when enabled as GPIO.
DATA8 0 0x0 Pin Status for KPY0 when enabled as GPIO.
14.5.3 GPIOPDATA2 - GPIO Data Register 2
TABLE 67. GPIOPDATA2 - GPIO Data Register 2
Register - Name Address Type Register Function
GPIODATA2 0xC4 R/W
This register is used for data input/output of KPY[11:8], PWM[2:0],
EXTIO. Every data I/O is masked with the associated MASK register.
If one of the I/Os is defined as output (see Table 70) values written to this
register are masked with MASK and then applied to the associated pin.
If one of the I/Os is defined as input (see Table 70) values read from this
register hold the masked input value of the associated pin.
Bit - Name Bit Default Bit Function
MASK23 15 0x0
Mask Status for EXTIO when enabled as GPIO:
1: EXTIO enabled
0: EXTIO disabled
MASK22 14 0x0
Mask Status for PWM2 when enabled as GPIO:
1: PWM2 enabled
0: PWM2 disabled
MASK21 13 0x0
Mask Status for PWM1 when enabled as GPIO:
1: PWM1 enabled
0: PWM1 disabled
MASK20 12 0x0
Mask Status for PWM0 when enabled as GPIO:
1: PWM0 enabled
0: PWM0 disabled
MASK19 11 0x0
Mask Status for KPY11 when enabled as GPIO:
1: KPY11 enabled
0: KPY11 disabled
MASK18 10 0x0
Mask Status for KPY10 when enabled as GPIO:
1: KPY10 enabled
0: KPY10 disabled
MASK17 9 0x0
Mask Status for KPY9 when enabled as GPIO:
1: KPY9 enabled
0: KPY9 disabled
MASK16 8 0x0
Mask Status for KPY8 when enabled as GPIO:
1: KPY8 enabled
0: KPY8 disabled
DATA23 7 0x0 Pin Status for EXTIO when enabled as GPIO.
DATA22 6 0x0 Pin Status for PWM2 when enabled as GPIO.
DATA21 5 0x0 Pin Status for PWM1 when enabled as GPIO.
DATA20 4 0x0 Pin Status for PWM0 when enabled as GPIO.
www.national.com 46
LM8327
Register - Name Address Type Register Function
DATA19 3 0x0 Pin Status for KPY11 when enabled as GPIO
DATA18 2 0x0 Pin Status for KPY10 when enabled as GPIO.
DATA17 1 0x0 Pin Status for KPY9 when enabled as GPIO.
DATA16 0 0x0 Pin Status for KPY8 when enabled as GPIO.
14.5.4 GPIOPDIR0 - GPIO Port Direction Register 0
TABLE 68. GPIOPDIR0 - GPIO Port Direction Register 0
Register - Name Address Type Register Function
GPIODIR0 0xC6 R/W Port direction for KPX[7:0].
Bit - Name Bit Default Bit Function
KPX[7:0]DIR 7:0 0x00
Direction bits for KPX[7:0]:
0: input mode
1: output mode
14.5.5 GPIOPDIR1 - GPIO Port Direction Register 1
TABLE 69. GPIOPDIR1 - GPIO Port Direction Register 1
Register - Name Address Type Register Function
GPIODIR1 0xC7 R/W Port direction for KPY[7:0].
Bit - Name Bit Default Bit Function
KPY[7:0]DIR 7:0 0x00
Direction bits for KPY[7:0]:
0: input mode
1: output mode
14.5.6 GPIOPDIR2 - GPIO Port Direction Register 2
TABLE 70. GPIOPDIR2 - GPIO Port Direction Register 2
Register - Name Address Type Register Function
GPIODIR2 0xC8 R/W Port direction for KPY[11:8], PWM[2:0], EXTIO.
Bit - Name Bit Default Bit Function
EXTIODIR 7 0x0
Direction bits for EXTIO:
0: input mode
1: output mode
PWM[2:0]DIR 6:4 0x0
Direction bits for PWM[2:0:]:
0: input mode
1: output mode
KPY[11:8]DIR 3:0 0x00
Direction bits for KPY[11:8]:
0: input mode
1: output mode
47 www.national.com
LM8327
14.6 GPIO INTERRUPT CONTROL
14.6.1 GPIOIS0 - Interrupt Sense Configuration Register 0
TABLE 71. GPIOIS0 - Interrupt Sense Configuration Register 0
Register - Name Address Type Register Function
GPIOIS0 0xC9 R/W Interrupt type on KPX[7:0].
Bit - Name Bit Default Bit Function
KPX[7:0]IS 7:0 0x0
Interrupt type bits for KPX[7:0]:
0: edge sensitive interrupt
1: level sensitive interrupt
14.6.2 GPIOIS1 - Interrupt Sense Configuration Register 1
TABLE 72. GPIOIS1 - Interrupt Sense Configuration Register 1
Register - Name Address Type Register Function
GPIOIS1 0xCA R/W Interrupt type on KPY[7:0].
Bit - Name Bit Default Bit Function
KPY[7:0]IS 7:0 0x0
Interrupt type bits for KPY[7:0]:
0: edge sensitive interrupt
1: level sensitive interrupt
14.6.3 GPIOIS2 - Interrupt Sense Configuration Register 2
TABLE 73. GPIOIS2 - Interrupt Sense Configuration Register 2
Register - Name Address Type Register Function
GPIOIS2 0xCB R/W Interrupt type on KPY[11:8], PWM[2:0], EXTIO.
Bit - Name Bit Default Bit Function
EXTIOIS 7 0x0
Interrupt type bits for EXTIO:
0: edge sensitive interrupt
1: level sensitive interrupt
PWM[2:0]IS 6:4 0x0
Interrupt type bits for PWM[2:0:]:
0: edge sensitive interrupt
1: level sensitive interrupt
KPY[11:8]IS 3:0 0x0
Interrupt type bits for KPY[11:8]:
0: edge sensitive interrupt
1: level sensitive interrupt
14.6.4 GPIOIBE0 - GPIO Interrupt Edge Configuration Register 0
TABLE 74. GPIOIBE0 - GPIO Interrupt Edge Configuration Register 0
Register - Name Address Type Register Function
GPIOIBE0 0xCC R/W Defines whether an interrupt on KPX[7:0] is triggered on both edges
or on a single edge. See Table 77 for the edge configuration.
Bit - Name Bit Default Bit Function
KPX[7:0]IBE 7:0 0x0
Interrupt both edges bits for KPX[7:0]:
0: interrupt generated at the active edge
1: interrupt generated after both edges
www.national.com 48
LM8327
14.6.5 GPIOIBE1 - GPIO Interrupt Edge Configuration Register 1
TABLE 75. GPIOIBE1 - GPIO Interrupt Edge Configuration Register 1
Register - Name Address Type Register Function
GPIOIBE1 0xCD R/W Defines whether an interrupt on KPY[7:0] is triggered on both edges
or on a single edge. See Table 78 for the edge configuration.
Bit - Name Bit Default Bit Function
KPY[7:0]IBE 7:0 0x0
Interrupt both edges bits for KPY[7:0]:
0: interrupt generated at the configured edge
1: interrupt generated after both edges
14.6.6 GPIOIBE2 - GPIO Interrupt Edge Configuration Register 2
TABLE 76. GPIOIBE2 - GPIO Interrupt Edge Configuration Register 2
Register - Name Address Type Register Function
GPIOIBE2 0xCE R/W
Defines whether an interrupt on KPY[11:8], PWM[2:0], EXTIO is
triggered on both edges or on a single edge. See Table 79 for the edge
configuration.
Bit - Name Bit Default Bit Function
EXTIOIBE 7 0x0
Interrupt both edges bits for EXTIO:
0: interrupt generated at the active edge
1: interrupt generated after both edges
PWM[2:0]IBE 6:4 0x0
Interrupt both edges bits for PWM[2:0:]:
0: interrupt generated at the active edge
1: interrupt generated after both edges
KPY[11:8]IBE 3:0 0x0
Interrupt both edges bits for KPY[11:8]:
0: interrupt generated at the active edge
1: interrupt generated after both edges
14.6.7 GPIOIEV0 - GPIO Interrupt Edge Select Register 0
TABLE 77. GPIOIEV0 - GPIO Interrupt Edge Select Register 0
Register - Name Address Type Register Function
GPIOIEV0 0xCF R/W Select Interrupt edge for KPX[7:0].
Bit - Name Bit Default Bit Function
KPX[7:0]EV 7:0 0x0
Interrupt edge select from KPX[7:0]:
0: interrupt at low level or falling edge
1: interrupt at high level or rising edge
14.6.8 GPIOIEV1 - GPIO Interrupt Edge Select Register 1
TABLE 78. GPIOIEV1 - GPIO Interrupt Edge Select Register 1
Register - Name Address Type Register Function
GPIOIEV1 0xD0 R/W Select Interrupt edge for KPY[7:0].
Bit - Name Bit Default Bit Function
KPY[7:0]EV 7:0 0x0
Interrupt edge select from KPY[7:0]:
0: interrupt at low level or falling edge
1: interrupt at high level or rising edge
49 www.national.com
LM8327
14.6.9 GPIOIEV2 - GPIO Interrupt Edge Select Register 2
TABLE 79. GPIOIEV2 - GPIO Interrupt Edge Select Register 2
Register - Name Address Type Register Function
GPIOIEV2 0xD1 R/W Select Interrupt edge for KPY[11:8], PWM[2:0], EXTIO.
Bit - Name Bit Default Bit Function
EXTIOEV 7 0x0
Interrupt edge select from EXTIO:
0: interrupt at low level or failig edge
1: interrupt at high level or rising edge
PWM[2:0]EV 6:4 0x0
Interrupt edge select from PWM[2:0:]:
0: interrupt at low level or failig edge
1: interrupt at high level or rising edge
KPY[11:8]EV 3:0 0x0
Interrupt edge select from KPY[11:8]:
0: interrupt at low level or falling edge
1: interrupt at high level or rising edge
14.6.10 GPIOIE0 - GPIO Interrupt Enable Register 0
TABLE 80. GPIOIE0 - GPIO Interrupt Enable Register 0
Register - Name Address Type Register Function
GPIOIE0 0xD2 R/W Enable/disable interrupts on KPX[7:0].
Bit - Name Bit Default Bit Function
KPX[7:0]IE 7:0 0x0
Interrupt enable on KPX[7:0]:
0: disable interrupt
1: enable interrupt
14.6.11 GPIOIE1 - GPIO Interrupt Enable Register 1
TABLE 81. GPIOIE1 - GPIO Interrupt Enable Register 1
Register - Name Address Type Register Function
GPIOIE1 0xD3 R/W Enable/disable interrupts on KPY[7:0]
Bit - Name Bit Default Bit Function
KPY[7:0]IE 7:0 0x0
Interrupt enable on KPY[7:0]:
0: disable interrupt
1: enable interrupt
14.6.12 GPIOIE2 - GPIO Interrupt Enable Register 2
TABLE 82. GPIOIE2 - GPIO Interrupt Enable Register 2
Register - Name Address Type Register Function
GPIOIE2 0xD4 R/W Enable/disable interrupts on KPY[11:8], PWM[2:0], EXTIO.
Bit - Name Bit Default Bit Function
EXTIOIE 7 0x0
Interrupt enable on EXTIO:
0: disable interrupt
1: enable interrupt
PWM[2:0]IE 6:4 0x0
Interrupt enable on PWM[2:0:]:
0: disable interrupt
1: enable interrupt
www.national.com 50
LM8327
Register - Name Address Type Register Function
KPY[11:8]IE 3:0 0x0
Interrupt enable on KPY[11:8]:
0: disable interrupt
1: enable interrupt
14.6.13 GPIOIC0 - GPIO Clear Interrupt Register 0
TABLE 83. GPIOIC0 - GPIO Clear Interrupt Register 0
Register - Name Address Type Register Function
GPIOIC0 0xDC W Clears the interrupt on KPX[7:0].
Bit - Name Bit Default Bit Function
KPX[7:0]IC 7:0
Clear Interrupt on KPX[7:0].
0: no effect
1: Clear corresponding interrupt
14.6.14 GPIOIC1 - GPIO Clear Interrupt Register 1
TABLE 84. GPIOIC1 - GPIO Clear Interrupt Register 1
Register - Name Address Type Register Function
GPIOIC1 0xDD W Clears the interrupt on KPY[7:0].
Bit - Name Bit Default Bit Function
KPY[7:0]IC 7:0
Clear Interrupt on KPY[7:0].
0: no effect
1: Clear corresponding interrupt
14.6.15 GPIOIC2 - GPIO Clear Interrupt Register 2
TABLE 85. GPIOIC2 - GPIO Clear Interrupt Register 2
Register - Name Address Type Register Function
GPIOIC2 0xDE W Clears the interrupt on KPY[11:8], PWM[2:0], EXTIO.
Bit - Name Bit Default Bit Function
EXTIOIC 7
Clear interrupt on EXTIO:
0: no effect
1: Clear corresponding interrupt
PWM[2:0]IC 6:4
Clear interrupt on PWM[2:0]:
0: no effect
1: Clear corresponding interrupt
KPY[11:8]IC 3:0
Clear Interrupt on KPY[11:8]:
0: no effect
1: Clear corresponding interrupt
51 www.national.com
LM8327
14.7 GPIO INTERRUPT STATUS
14.7.1 GPIORIS0 - Raw Interrupt Status Register 0
TABLE 86. GPIORIS0 - Raw Interrupt Status Register 0
Register - Name Address Type Register Function
GPIORIS0 0xD6 R Raw interrupt status on KPX[7:0].
Bit - Name Bit Default Bit Function
KPX[7:0]RIS 7:0 0x0
Raw Interrupt status data on KPX[7:0]:
0: no interrupt condition at GPIO
1: interrupt condition at GPIO
14.7.2 GPIORIS1 - Raw Interrupt Status Register 1
TABLE 87. GPIORIS1 - Raw Interrupt Status Register 1
Register - Name Address Type Register Function
GPIORIS1 0xD7 R Raw interrupt status on KPY[7:0].
Bit - Name Bit Default Bit Function
KPY[7:0]RIS 7:0 0x0
Raw Interrupt status data on KPY[7:0]:
0: no interrupt condition at GPIO
1: interrupt condition at GPIO
14.7.3 GPIORIS2 - Raw Interrupt Status Register 2
TABLE 88. GPIORIS2 - Raw Interrupt Status Register 2
Register - Name Address Type Register Function
GPIORIS2 0xD8 R Raw interrupt status on KPY[11:8], PWM[2:0], EXTIO.
Bit - Name Bit Default Bit Function
EXTIORIS 7 0x0
Raw Interrupt status data on EXTIO:
0: no interrupt condition at GPIO
1: interrupt at GPIO is active
PWM[2:0]RIS 6:4 0x0
Raw Interrupt status data on PWM[2:0]:
0: no interrupt condition at GPIO
1: interrupt at GPIO is active
KPY[11:8]RIS 3:0 0x0
Raw Interrupt status data on KPY[11:8]:
0: no interrupt condition at GPIO
1: interrupt condition at GPIO
14.7.4 GPIOMIS0 - Masked Interrupt Status Register 0
TABLE 89. GPIOMIS0 - Masked Interrupt Status Register 0
Register - Name Address Type Register Function
GPIOMIS0 0xD9 R Masked interrupt status on KPX[7:0].
Bit - Name Bit Default Bit Function
KPX[7:0]MIS 7:0 0x0
Masked Interrupt status data on KPX[7:0]:
0: no interrupt contribution from GPIO
1: interrupt GPIO is active
www.national.com 52
LM8327
14.7.5 GPIOMIS1 - Masked Interrupt Status Register 1
TABLE 90. GPIOMIS1 - Masked Interrupt Status Register 1
Register - Name Address Type Register Function
GPIOMIS1 0xDA R Masked interrupt status on KPY[7:0].
Bit - Name Bit Default Bit Function
KPY[7:0]MIS 7:0 0x0
Masked Interrupt status data on KPY[7:0]:
0: no interrupt contribution from GPIO
1: interrupt GPIO is active
14.7.6 GPIOMIS2 - Masked Interrupt Status Register 2
TABLE 91. GPIOMIS2 - Masked Interrupt Status Register 2
Register - Name Address Type Register Function
GPIOMIS2 0xDB R Masked interrupt status on KPY[11:8], PWM[2:0], EXTIO.
Bit - Name Bit Default Bit Function
EXTIOMIS 7 0x0
Masked Interrupt status data on EXTIO:
0: no interrupt condition from GPIO
1: interrupt at GPIO is active
PWM[2:0]MIS 6:4 0x0
Masked Interrupt status data on PWM[2:0]:
0: no interrupt condition from GPIO
1: interrupt at GPIO is active
KPY[11:8]MIS 3:0 0x0
Masked Interrupt status data on KPY[11:8]:
0: no interrupt contribution from GPIO
1: interrupt GPIO is active
14.8 GPIO WAKE-UP CONTROL
14.8.1 GPIOWAKE0 - GPIO Wake-Up Register 0
TABLE 92. GPIOWAKE0 - GPIO Wake-Up Register 0
Register - Name Address Type Register Function
GPIOWAKE0 0xE9 R/W
Configures wake-up conditions for KPX[7:0].
Each bit corresponds to a ball. When bit set, the corresponding ball
contributes to wakeup from auto sleep mode.
Bit - Name Bit Default Bit Function
KPX[7:0]WAKE 7:0 0x0
Wakeup enable on KPX[7:0]:
0: disable wakeup
1: enable wakeup
14.8.2 GPIOWAKE1 - GPIO Wake-Up Register 1
TABLE 93. GPIOWAKE1 - GPIO Wake-Up Register 1
Register - Name Address Type Register Function
GPIOWAKE1 0xEA R/W
Configures wake-up conditions for KPY[7:0].
Each bit corresponds to a ball. When bit set, the corresponding ball
contributes to wakeup from auto sleep mode.
Bit - Name Bit Default Bit Function
KPY[7:0]WAKE 7:00 0x0
Wakeup enable on KPX[7:0]:
0: disable wakeup
1: enable wakeup
53 www.national.com
LM8327
14.8.3 GPIOWAKE2 - GPIO Wake-Up Register 2
TABLE 94. GPIOWAKE2 - GPIO Wake-Up Register 2
Register - Name Address Type Register Function
GPIOWAKE2 0xEB R/W
Configures wake-up conditions for KPY[11:8], PWM[2:0}, EXTIO.
Each bit corresponds to a ball. When bit set, the corresponding ball
contributes to wakeup from auto sleep mode.
Bit - Name Bit Default Bit Function
EXTIOWAKE 7 0x0
Wakeup enable on EXTIO:
0: disable wakeup
1: enable wakeup
PWM[2:0]WAKE 6:4 0x0
Wakeup enable on PWM[2:0]:
0: disable wakeup
1: enable wakeup
KPY[11:8]WAKE 3:0 0x0
Wakeup enable on KPY[11:8]:
0: disable wakeup
1: enable wakeup
14.9 DIRECT KEY REGISTERS AND DIRECT KEY
CONTROL
Direct Key selection and control registers are mapped in the
address range from 0xE6 to 0xF3. This paragraph describes
the functions of the associated registers down to the bit level.
14.9.1 DEVTCODE - Direct Key Event Code Register
TABLE 95. DEVTCODE - Direct Key Event Code Register
Register - Name Address Type Register Function
DEVTCODE 0xE6 R
With this register a FIFO buffer is addressed storing up to 15
consecutive events.
Reading the value 0x3F from this address means that the FIFO buffer
is empty and a key is not pressed. Reading the value 0x1F form this
address means that the FIFO buffer is empty and a key is still pressed.
DKBDRIS.DREVTINT bit is cleared as soon as this FIFO reaches its
empty state. See further details below.
NOTE: Auto increment is disabled on this register. Multi-byte read will
always read from the same address.
Bit - Name Bit Default Bit Function
(reserved) 7:6 (reserved)
DKEYSTAT 5 0x0
This bit indicates whether the direct key event was a key press or a
key release event.
0: direct key was pressed
1: direct key was released.
DKEYCODE 4:0 0x1F Column index of key is pressed (0...24, 25 for Direct keys).
www.national.com 54
LM8327
14.9.2 DBOUNCE - Direct Key Debounce Time Register
TABLE 96. DBOUNCE - Direct Key Debounce Time Register
Register - Name Address Type Register Function
DBOUNCE 0xE7 R/W Time between first detection of key and final sampling of key.
Bit - Name Bit Default Bit Function
(reserved) 7:5 (reserved)
DEBOUNCE 4:0 0x03
De-bounce time for direct keys.
Values of DEBOUNCE[4:0] match to multiples of 3ms:
0x00: 0ms
0x01: 3ms
0x02: 6ms
0x03: 9ms
0x1F: 93 ms
14.9.3 DIRECT0 - Direct Key Register 0
The direct key settings. If not enabled as a direct key, then
that pin follows the IOCFG and keypad registers. Direct Key
bits take priority over anything else. Direct key bits must be
cleared before IOCFG is accessed to set other functions for
the pins.
TABLE 97. DIRECT0 - Direct Key Register 0
Register - Name Address Type Register Function
DIRECT0 0xEC R/W Enable Direct Key connections for DK[7:0].
Bit - Name Bit Default Bit Function
DK[7:0] 7:0 0xFF 1: Direct Key connection
0: Direct Key follows IOCFG and keypad registers.
14.9.4 DIRECT1 - Direct Key Register 1
TABLE 98. DIRECT1 - Direct Key Register 1
Register - Name Address Type Register Function
DIRECT1 0xED R/W Enable Direct Key connections for DK[15:8].
Bit - Name Bit Default Bit Function
DK[15:8] 7:0 0xFF 1: Direct Key connection
0: Direct Key follows IOCFG and keypad registers.
14.9.5 DIRECT2 - Direct Key Register 2
TABLE 99. DIRECT2 - Direct Key Register 2
Register - Name Address Type Register Function
DIRECT2 0xEE R/W Enable Direct Key connections for DK[23:16].
Bit - Name Bit Default Bit Function
DK[23:16] 7:0 0xFF 1: Direct Key connection
0: Direct Key follows IOCFG and keypad registers.
55 www.national.com
LM8327
14.9.6 DIRECT3 - Direct Key Register 3
TABLE 100. DIRECT3 - Direct Key Register 3
Register - Name Address Type Register Function
DIRECT3 0xEF R/W Enable Direct Key connections for DK[25:24].
Bit - Name Bit Default Bit Function
(reserved) 7:2 (reserved)
DK[25:24] 1:0 0x03 1: Direct Key connection
0: Direct Key follows IOCFG and keypad registers.
14.9.7 DKBDRIS - Direct Key Raw Interrupt Status Register
TABLE 101. DKBDRIS - Direct Key Raw Interrupt Status Register
Register - Name Address Type Register Function
DKBDRIS 0xF0 R Returns the status of stored direct key interrupts.
Bit - Name Bit Default Bit Function
(reserved) 7:2 (reserved)
DRELINT 1 0x0
Raw event lost interrupt.
More than 8 direct key events have been detected and caused the
event buffer to overflow. This bit is cleared by setting bit DEVTIC of
the DKBDIC register.
DREVTINT 0 0x0
Raw direct key event interrupt.
At least one direct key press or direct key release is in the direct key
event buffer. Reading from DEVTCODE until the buffer is empty will
automatically clear this interrupt.
14.9.8 DKBDMIS - Direct Key Masked Interrupt Status Register
TABLE 102. DKBDMIS - Direct Key Masked Interrupt Status Register
Register - Name Address Type Register Function
DKBDMIS 0xF1 R Returns the status of masked direct key interrupts after masking with
the DKBDMSK register.
Bit - Name Bit Default Bit Function
(reserved) 7:2 (reserved)
DMELINT 1 0x0
Masked event lost interrupt.
More than 8 direct key events have been detected and caused the
event buffer to overflow. This bit is cleared by setting bit DEVTIC of
the DKBDIC register.
DMEVTINT 0 0x0
Masked direct key event interrupt.
At least one direct key press or direct key release is in the direct key
event buffer. Reading from DEVTCODE until the buffer is empty will
automatically clear this interrupt.
www.national.com 56
LM8327
14.9.9 DKBDIC - Direct Key Interrupt Clear Register
TABLE 103. DKBDIC - Direct Key Interrupt Clear Register
Register - Name Address Type Register Function
DKBDIC 0xF2 W Setting these bits clears direct key active interrupts.
Bit - Name Bit Default Bit Function
(reserved) 7:1 (reserved)
DEVTIC 0 Clear event buffer and corresponding interrupts DREVTINT and
DRELINT by writing a '1' to this bit position.
14.9.10 DKBDMSK - Direct Key Interrupt Mask Register
TABLE 104. DKBDMSK - Direct Key Interrupt Mask Register
Register - Name Address Type Register Function
DKBDMSK 0xF3 R/W Configures masking of direct key interrupts. Masked interrupts do not
trigger an event of the interrupt output.
Bit - Name Bit Default Bit Function
(reserved) 7:2 (reserved)
MSKELINT 1 0x1 0: direct key event lost interrupt DRELINT triggers IRQ line
1: direct key event lost interrupt DRELINT is masked.
MSKEINT 0 0x1 0: direct key event interrupt DREVTINT triggers IRQ line
1: direct key event interrupt DREVTINT is masked.
57 www.national.com
LM8327
15.0 Absolute Maximum Ratings (Note
1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage (VCC)−0.3V to 2.2V
Voltage at Generic IOs −0.2V to VCC +0.2V
Voltage at Backdrive/Overvoltage
IOs −0.3V to +4.25V
Maximum Input Current Without
Latchup ±100 mA
ESD Protection Level
(Human Body Model) 2kV
(Machine Model) 200V
(Charge Device Model) 750V
Total Current into VCC Pin (Source) 100 mA
Total Current out of GND Pin (Sink) 100 mA
Storage Temperature Range −65°C to +140°C
16.0 Electrical Characteristics
TABLE 105. DC ELECTRICAL CHARACTERISTICS
Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.
(Temperature: −40°C TA +85°C, unless otherwise specified)
Parameter Conditions Min Typ Max Units
Operating Voltage (VCC) Core Supply Voltage 1.62 1.98 V
Maximum Input voltage for Backdrive/Overvoltage IOs 3.60 V
Supply Current (IDD) (Note 2, Note 3)
Internal Clock = ON, all internal functional
blocks running, No loads on pins, 1.2 2.0 mA
VCC = 1.8V, TC = 1µs
TA = 25°C
Sleep Mode HALT Current (IHALT) (Note 4) VCC = 1.8V, TA = 25°C
Internal Clock = OFF, no internal functional
blocks running
<9 40 µA
IDLE Current Internal Clock = ON, no internal functional
blocks running 1 mA
TABLE 106. AC ELECTRICAL CHARACTERISTICS
(Temperature: −40°C TA +85°C)
Data sheet specification limits are guaranteed by design, test, or statistical analysis.
Parameter Conditions Min Typ Max Units
System Clock Frequency Internal RC 10.5 MHz
System Clock Period (mclk) 1.62V VCC 1.98V 95 ns
Internal RC Oscillator (tC)1.62V VCC 1.98V 0.95 μs
Internal RC Oscillator Frequency Variation ±7 %
ACCESS.bus Input Signals
mclk
Bus Free Time Between Stop and Start
Condition (tBUFi) (Note 5)
16
SCL Setup Time (tCSTOsi) (Note 5) Before Stop Condition 8
SCL Hold Time (tCSTRhi) (Note 5) After Start Condition 8
SCL Setup Time (tCSTRsi) (Note 5) Before Start Condition 8
Data High Setup Time (tDHCsi) (Note 5)
(Note 6)
Before SCL Rising Edge (RE) 2
Data Low Setup Time (tDLCsi) (Note 5)
(Note 6)
Before SCL RE 2
SCL Low Time (tSCLlowi) (Note 5) After SCL Falling Edge (FE) 12
SCL High Time (tSCLhighi) (Note 5)
(Note 6)
After SCL FE 12
SDA Hold Time (tSDAhi) (Note 5) After SCL FE 0
SDA Setup Time (tSDAsi) (Note 5)
(Note 6)
Before SCL RE 2
www.national.com 58
LM8327
Parameter Conditions Min Typ Max Units
ACCESS.bus Output Signals
SDA Hold Time (tSDAho) (Note 5) After SCL Falling Edge 2 mclk
TABLE 107. GENERAL GPIO CHARACTERISTICS
Characteristics for all pins except CLKIN, IRQN/KPY11/PWM2, SDA, and SCL in GPIO mode.
Parameter Conditions Min Typ Max Units
VIH (Min. Input High Voltage) 0.7xVCC V
VIL (Max. Input Low Voltage) 0.3xVCC V
ISource
VCC = 1.62
VOH = 0.7xVCC
−16 mA
ISink
VCC = 1.62
VOL = 0.3xVCC
16 mA
Allowable Sink current per pin (Note 7) 16 mA
IPU (Weak Pull-UP Current) (Note 8) VOUT = 0V -30 -160
µA
IPD (Weak Pull-Down Current) (Note 8) VOUT = VCC 30 160
IOZ (Input Leakage Current) GPIO output disabled ±2
Vpin = 0 to VCC
tRise/Fall (Max. Rise and Fall times) (Note 5) CLOAD = 50 pF 15 ns
TABLE 108. BACKDRIVE/OVERVOLTAGE I/O DC CHARACTERISTICS
Characteristics for pins CLKIN, IRQN/KPY11/PWM2, SDA and SCL
Parameter Conditions Min Typ Max Units
VIH (Min. Input High Voltage) 0.7xVCC V
VIL (Max. Input Low Voltage) 0.3xVCC
ISource
VCC = 1.62V
VOH = 1.15V -6 mA
ISink1 (as GPIO) VCC = 1.62V
VOL = 0.4V 12 mA
ISink2 (as ACCESS.bus) VCC = 1.62V
VOL = 0.4V 3 mA
ISink3 (as ACCESS.bus) VCC = 1.62V
VOL = 0.6V 4 mA
Allowable Sink current per pin (Note 7) 12 mA
IPU (Weak Pull-UP Current) (Note 8) VOUT = 0V -7 -40
µA
IPD (Weak Pull-Down Current) (Note 8) VOUT = VCC 7 40
IOZ1 (Input Leakage Current) (Note 9)
GPIO output disabled
VCC = 1.62V to 1.98V
Vpin = 0 to VCC ±2
Vpin = VCC to 3.6V ±10
IOZ2 (Input Backdrive Leakage Current) 0 VCC 0.5V
Vpin = 0 to 3.6V ±10 µA
TABLE 109. BACKDRIVE/OVERVOLTAGE I/O AC CHARACTERISTICS
Characteristics for pins CLKIN, IRQN/KPY11/PWM2, SDA and SCL
Parameter Conditions Min Typ Max Units
tRise/Fall
(Max. Rise and Fall time) (Note 5)CLOAD=50 pF @ 1MHz 70
ns
tFall
(Max. Fall time) as ACCESS.bus (SDA, SCL
only) (Note 5)
CLOAD=10 pF to 100 pF
VIHmin to VILmax
10 120
59 www.national.com
LM8327
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when
operating the device at absolute maximum ratings.
Note 2: Supply and IDLE current is measured with inputs connected to VCC and outputs driven low but not connected to a load.
Note 3: Values are estimates. Values will be updated after characterization is completed.
Note 4: In sleep mode, the internal clock is switched off. Supply current in sleep mode is measured with inputs connected to VCC and outputs driven low but not
connected to a load.
Note 5: Guaranteed by design, not tested.
Note 6: The ACCESS.bus interface implements and meets the timings necessary for interface to the I2C and SMBus protocols at logic levels. The bus drivers
have open-drain outputs for bidirectional operation. Due to Internal RC Oscillator Frequency Variation, this specification may not meet the AC timing and current/
voltage drive requirements of the full-bus specifications.
Note 7: The sum of all I/O sink/source current must not exceed the maximum total current into VCC and out of GND as specified in the absolute maximum ratings.
Note 8: This is the internal weak pull-up (pull-down) current when driver output is disabled. If enabled, during receiving mode, this is the current required to switch
the input from one state to another.
Note 9: IOZ1 for CLKIN is max 60 µA if VPIN > VCC because the weak pull-down is enabled.
www.national.com 60
LM8327
17.0 Registers
17.1 REGISTER MAPPING
17.1.1 Keyboard Registers
Table 110 shows the register map for keyboard functionality.
In addition to Global Call Reset (see Section 10.1.6 Global
Call Reset) or Software Reset using SWRESET (see Table
45), these registers are reset to 0x00 values by a module reset
using RSTCTRL.KBDRST and should be rewritten for desired
settings (see RSTCTRL - Section 14.3.5 RSTCTRL - System
Reset Register).
TABLE 110. Register Map for Keyboard Functionality
Register Name Description Register File
Address Register Type ACCESS
Size
Default
value
Next RF
Address
KBDSETTLE Keypad Settle Time 0x01 R/W byte 0x80 0x02
KBDBOUNCE Keypad Debounce Time 0x02 R/W byte 0x80 0x03
KBDSIZE Keypad Size
Configuration 0x03 R/W byte 0x22 0x04
KBDDEDCFG0 Keypad Dedicated Key 0 0x04 R/W byte 0xFF 0x05
KBDDEDCFG1 Keypad Dedicated Key 1 0x05 R/W byte 0xFF 0x06
KBDRIS Keypad Raw Interrupt
Status 0x06 R byte 0x00 0x07
KBDMIS Keypad Masked
Interrupt Status 0x07 R byte 0x00 0x08
KBDIC Keypad Interrupt Clear 0x08 W byte 0x09
KBDMSK Keypad Interrupt Mask 0x09 R byte 0x0C 0x0A
KBDCODE0 Keypad Code 0 0x0B R byte 0x7F 0x0C
KBDCODE1 Keypad Code 1 0x0C R byte 0x7F 0x0D
KBDCODE2 Keypad Code 2 0x0D R byte 0x7F 0x0E
KBDCODE3 Keypad Code 3 0x0E R byte 0x7F 0x0F
EVTCODE Key Event Code 0x10 R byte 0x7F 0x10
17.1.2 Direct Key Registers
Table 111 shows the register map for keyboard functionality
when using direct keys. In addition to Global Call Reset (see
Section 10.1.6 Global Call Reset) or Software Reset using
SWRESET (see Section 14.3.4 SWRESET - Software Re-
set), these registers are reset to 0x00 values by a module
reset using RSTCTRL.KBDRST and should be rewritten for
desired settings (see RSTCTRL, Section 14.3.5 RSTCTRL -
System Reset Register).
TABLE 111. Register Map for Direct Key Registers
Register Name Description Register File
Address Register Type ACCESS
Size
Default
value
Next RF
Address
DEVTCODE Direct Key Event Code 0xE6 R byte 0x3F 0xE6
DBOUNCE Direct Key Debounce
Time 0xE7 R/W byte 0x03 0xE8
DIRECT0 Direct Key Config 0 0xEC R/W byte 0xFF 0xED
DIRECT1 Direct Key Config 1 0xED R/W byte 0xFF 0xEE
DIRECT2 Direct Key Config 2 0xEE R/W byte 0xFF 0xEF
DIRECT3 Direct Key Config 3 0xEF R/W byte 0x03 0xF0
DKBDRIS Direct Key Raw
Interrupt Status 0xF0 R byte 0x00 0xF1
DKBDMIS Direct Key Masked Int.
Status 0xF1 R byte 0x00 0xF2
DKBDIC Direct Key Interrupt
Clear 0xF2 W byte 0xF3
DKBDMSK Direct Key Interrupt
Mask 0xF3 R/W byte 0x03 0xF4
61 www.national.com
LM8327
17.1.3 PWM Timer Registers
Table 112 shows the register map for PWM Timer functionality. In addition to Global Call Reset (see Section 10.1.6 Global Call
Reset) or Software Reset using SWRESET (see Table 45), these registers are reset to default values by a module reset using
RSTCTRL.TIMRST (see Section 14.3.5 RSTCTRL - System Reset Register).
TABLE 112. Register Map for PWM Timer Functionality
Register Name Description Register File
Address Register Type ACCESS
Size
Default
value
Next RF
Address
TIMCFG0 PWM Timer
Configuration 0 0x60 R/W byte 0x00 0x61
PWMCFG0 PWM Configuration 0 0x61 R/W byte 0x00 0x62
TIMSCAL0 PWM Timer Prescaler 0 0x62 R/W byte 0x00 0x63
TIMCFG1 PWM Timer
Configuration 1 0x68 R/W byte 0x00 0x69
PWMCFG1 PWM Configuration 1 0x69 R/W byte 0x00 0x6A
TIMSCAL1 PWM Timer Prescaler 1 0x6A R/W byte 0x00 0x6B
TIMCFG2 PWM Timer
Configuration 2 0x70 R/W byte 0x00 0x71
PWMCFG2 PWM Configuration 2 0x71 R/W byte 0x00 0x72
TIMSCAL2 PWM Timer Prescaler 2 0x72 R/W byte 0x00 0x73
TIMSWRES PWM Timer SW Reset 0x78 W byte 0x79
TIMRIS PWM Timer Interrupt
Status 0x7A R byte 0x00 0x7B
TIMMIS PWM Timer Masked Int.
Status 0x7B R byte 0x00 0x7C
TIMIC Timer Interrupt Clear 0x7C W byte 0x7D
PWMWP PWM Command Write
Pointer 0x7D R/W byte 0x00 0x7E
PWMCFG PWM Command Script 0x7E W word 0x7F
www.national.com 62
LM8327
17.1.4 System Registers
Table 113 shows the register map for general system regis-
ters. These registers are not affected by any of the module
resets addressed by RSTCTRL (see Section 14.3.5 RSTC-
TRL - System Reset Register). These registers can only be
reset to default values by a Global Call Reset (see Sec-
tion 10.1.6 Global Call Reset) or by a complete Software
Reset using SWRESET (seeTable 45).
TABLE 113. Register Map for System Control Functionality
Register Name Description Register File
Address
Register Type ACCESS
Size
Default
value
Next RF
Address
I2CSA I2C Slave Address 0x80 W byte 0x8A 0x81
MFGCODE Manufacturer Code 0x80 R byte 0x00 0x81
SWREV SW Revision 0x81 R byte 0xC4 0x82
SWRESET SW Reset 0x81 W byte 0x82
RSTCTRL System Reset 0x82 R/W byte 0x00 0x83
RSTINTCLR Clear No Init/Power On
Interrupt 0x84 W byte 0x85
CLKMODE Clock Mode 0x88 R/W byte 0x01 0x89
CLKCFG Clock Configuration 0x89 R/W byte 0x40 0x8A
CLKEN Clock Enable 0x8A R/W byte 0x00 0x8B
AUTOSLP Auto Sleep Enable 0x8B R/W byte 0x00 0x8C
AUTOSLPTI Auto Sleep Time 0x8C R/W word 0x00FF 0x8D
MMASTER Multi-Master Mode 0xF4 R/W byte 0x00 0xF5
17.1.5 Global Interrupt Registers
Table 114 shows the register map for global interrupt func-
tionality. In addition to Global Call Reset (see Section 10.1.6
Global Call Reset) or Software Reset using SWRESET (see
Table 45), these registers are reset to default values by a
module reset using RSTCTRL.IRQRST (see Section 14.3.5
RSTCTRL - System Reset Register).
TABLE 114. Register Map for Global Interrupt Functionality
Register Name Description Register File
Address
Register Type ACCESS Size Default
value
Next RF
Address
IRQST Global Interrupt Status 0x91 R byte 0x80 0x92
17.1.6 GPIO Registers
Table 115 shows the register map for GPIO functionality. In
addition to Global Call Reset (see Section 10.1.6 Global Call
Reset) or Software Reset using SWRESET (see Table 45),
these registers are reset to 0x00 values by a module reset
using RSTCTRL.GPIRST and should be rewritten for desired
settings (see Section 14.3.5 RSTCTRL - System Reset Reg-
ister).
TABLE 115. Register Map for GPIO Functionality
Register Name Description Register File
Address
Register Type ACCESS Size Default
value
Next RF
Address
IOCFG I/O Pin Mapping
Configuration 0xA7 W byte 0xA8
IOPC0 Pull Resistor
Configuration 0 0xAA R/W word 0xFFFF 0xAB
IOPC1 Pull Resistor
Configuration 1 0xAC R/W word 0xFFFF 0xAD
IOPC2 Pull Resistor
Configuration 2 0xAE R/W word 0xFFFF 0xAF
GPIODATA0 GPIO I/O Data 0 0xC0 R/W byte 0x00 0xC1
GPIOMASK0 GPIO I/O Mask 0 0xC1 W byte 0xC2
GPIODATA1 GPIO I/O Data 1 0xC2 R/W byte 0x00 0xC3
GPIOMASK1 GPIO I/O Mask 1 0xC3 W byte 0xC4
GPIODATA2 GPIO I/O Data 2 0xC4 R/W byte 0x00 0xC5
GPIOMASK2 GPIO I/O Mask 2 0xC5 W byte 0xC6
GPIODIR0 GPIO I/O Direction 0 0xC6 R/W byte 0x00 0xC7
GPIODIR1 GPIO I/O Direction 1 0xC7 R/W byte 0x00 0xC8
63 www.national.com
LM8327
Register Name Description Register File
Address
Register Type ACCESS Size Default
value
Next RF
Address
GPIODIR2 GPIO I/O Direction 2 0xC8 R/W byte 0x00 0xC9
GPIOIS0 GPIO Int Sense Config 0 0xC9 R/W byte 0x00 0xCA
GPIOIS1 GPIO Int Sense Config 1 0xCA R/W byte 0x00 0xCB
GPIOIS2 GPIO Int Sense Config 2 0xCB R/W byte 0x00 0xCC
GPIOIBE0 GPIO Int Both Edges
Config 0 0xCC R/W byte 0x00 0xCD
GPIOIBE1 GPIO Int Both Edges
Config 1 0xCD R/W byte 0x00 0xCE
GPIOIBE2 GPIO Int Both Edges
Config 2 0xCE R/W byte 0x00 0xCF
GPIOIEV0 GPIO Int Edge Select 0 0xCF R/W byte 0x00 0xD0
GPIOIEV1 GPIO Int Edge Select 1 0xD0 R/W byte 0x00 0xD1
GPIOIEV2 GPIO Int Edge Select 2 0xD1 R/W byte 0x00 0xD2
GPIOIE0 GPIO Interrupt Enable 0 0xD2 R/W byte 0x00 0xD3
GPIOIE1 GPIO Interrupt Enable 1 0xD3 R/W byte 0x00 0xD4
GPIOIE2 GPIO Interrupt Enable 2 0xD4 R/W byte 0x00 0xD5
GPIORIS0 GPIO Raw Int Status 0 0xD6 R byte 0x00 0xD7
GPIORIS1 GPIO Raw Int Status 1 0xD7 R byte 0x00 0xD8
GPIORIS2 GPIO Raw Int Status 2 0xD8 R byte 0x00 0xD9
GPIOMIS0 GPIO Masked Int Status
00xD9 R byte 0x00 0xDA
GPIOMIS1 GPIO Masked Int Status
10xDA R byte 0x00 0xDB
GPIOMIS2 GPIO Masked Int Status
20xDB R byte 0x00 0xDC
GPIOIC0 GPIO Interrupt Clear 0 0xDC W byte 0xDD
GPIOIC1 GPIO Interrupt Clear 1 0xDD W byte 0xDE
GPIOIC2 GPIO Interrupt Clear 2 0xDE W byte 0xDF
GPIOOME0 GPIO Open Drain Mode
Enable 0 0xE0 R/W byte 0x00 0xE1
GPIOOMS0 GPIO Open Drain Mode
Select 0 0xE1 R/W byte 0x00 0xE2
GPIOOME1 GPIO Open Drain Mode
Enable 1 0xE2 R/W byte 0x00 0xE3
GPIOOMS1 GPIO Open Drain Mode
Select 1 0xE3 R/W byte 0x00 0xE4
GPIOOME2 GPIO Open Drain Mode
Enable 2 0xE4 R/W byte 0x08 0xE5
GPIOOMS2 GPIO Open Drain Mode
Select 2 0xE5 R/W byte 0x00 0xE6
GPIOWAKE0 GPIO Wakeup Enable 0 0xE9 R/W byte 0x00 0xEA
GPIOWAKE1 GPIO Wakeup Enable 1 0xEA R/W byte 0x00 0xEB
GPIOWAKE2 GPIO Wakeup Enable 2 0xEB R/W byte 0x00 0xEC
www.national.com 64
LM8327
TABLE 116. REGISTER LAYOUT - Control Bits in LM8327 Registers
Register Addr. BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
KBDSETTLE 0x01 Wait[7:0]
KBDBOUNCE 0x02 Wait[7:0]
KBDSIZE 0x03 ROWSIZE3 ROWSIZE2 ROWSIZE1 ROWSIZE0 COLSIZE3 COLSIZE2 COLSIZE1 COLSIZE0
KBDDEDCFG0 0x04 COL9 COL8 COL7 COL6 COL5 COL4 COL3 COL2
KBDDEDCFG1 0x05 ROW7 ROW6 ROW5 ROW4 ROW3 ROW2 COL11 COL10
KBDRIS 0x06 RELINT REVTINT RKLINT RSINT
KBDMIS 0x07 MELINT MEVTINT MKLINT MSINT
KBDIC 0x08 SFOFF EVTIC KBDIC
KBDMSK 0x09 MSKELINT MSKEINT MSKLINT MSKSINT
KBDCODE0 0x0B MULTIKEY KEYROW2 KEYROW1 KEYROW0 KEYCOL3 KEYCOL2 KEYCOL1 KEYCOL0
KBDCODE1 0x0C MULTIKEY KEYROW2 KEYROW1 KEYROW0 KEYCOL3 KEYCOL2 KEYCOL1 KEYCOL0
KBDCODE2 0x0D MULTIKEY KEYROW2 KEYROW1 KEYROW0 KEYCOL3 KEYCOL2 KEYCOL1 KEYCOL0
KBDCODE3 0x0E MULTIKEY KEYROW2 KEYROW1 KEYROW0 KEYCOL3 KEYCOL2 KEYCOL1 KEYCOL0
EVTCODE 0x10 RELEASE KEYROW2 KEYROW1 KEYROW0 KEYCOL3 KEYCOL2 KEYCOL1 KEYCOL0
TIMCFG0 0x60 CYCIRQ0MSK START
PWMCFG0 0x61 CDIRQ0MSK PGE PWMEN PWMPOL
TIMSCAL0 0x62 SCAL[7:0]
TIMCFG1 0x68 CYCIRQ1MSK START
PWMCFG1 0x69 CDIRQ1MSK PGE PWMEN PWMPOL
TIMSCAL1 0x6A SCAL[7:0]
TIMCFG2 0x70 CYCIRQ2MSK START
PWMCFG2 0x71 CDIRQ2MSK PGE PWMEN PWMPOL
TIMSCAL2 0x72 SCAL[7:0]
TIMSWRES 0x78 SWRES2 SWRES1 SWRES0
TIMRIS 0x7A CDIRQ2 CDIRQ1 CDIRQ0 CYCIRQ2 CYCIRQ1 CYCIRQ0
TIMMIS 0x7B CDIRQ2 CDIRQ1 CDIRQ0 CYCIRQ2 CYCIRQ1 CYCIRQ0
TIMIC 0x7C CDIRQ2 CDIRQ1 CDIRQ0 CYCIRQ2 CYCIRQ1 CYCIRQ0
PWMWP 0x7D 0 PWMWP[6:0]
PWMCFG(Low) 0x7E CMD[7:0]
PWMCFG(High) 0x7F CMD[15:8]
I2CSA 0x80 SLAVEADDR[7:1] 0
MFGCODE 0x80 MFGBIT[7:0]
SWREV 0x81 SWBIT[7:0]
SWRESET 0x81 SWBIT[7:0]
65 www.national.com
LM8327
Register Addr. BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
RSTCTRL 0x82 IRQRST TIMRST KBDRST GPIRST
RSTINTCLR 0x84 IRQCLR
CLKMODE 0x88 MODCTL[1:0]
CLKCFG 0X89 CLKSRCSEL[1:0]
CLKEN 0x8A CLKOUTEN[1:0] TIMEN DKBDEN KBDEN
AUTOSLP 0x8B ENABLE
AUTOSLPTI (Low) 0x8C UP-TIME [7:0]
AUTOSLPTI (High) 0x8D UP-TIME [10:8]
IRQST 0x91 PORIRQ KBD1RQ DKBDIRQ TIM2IRQ TIM1IRQ TIM01RQ GPIIRQ
IOCFG 0xA7 IOCFGPM [7:0]
IOPC0 (Low) 0xAA KPX3PR[1:0] KPX2PR[1:0] KPX1PR[1:0] KPX0PR[1:0]
IOPC0 (High) 0xAB KPX7PR[1:0] KPX6PR[1:0] KPX5PR[1:0] KPX4PR[1:0]
IOPC1 (Low) 0xAC KPY3PR[1:0] KPY2PR[1:0] KPY1PR[1:0] KPY0PR[1:0]
IOPC1 (High) 0xAD KPY7PR[1:0] KPY6PR[1:0] KPY5PR[1:0] KPY4PR[1:0]
IOPC2 (Low) 0xAE KPY11PR[1:0] KPY10PR[1:0] KPY9PR[1:0] KPY8PR[1:0]
IOPC2 (High) 0xAF EXTIOPR[1:0] PWM2PR[1:0] PWM1PR{1:0] PWM0PR[1:0]
GPIODATA0 0xC0 DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0
GPIOMASK0 0xC1 MASK7 MASK6 MASK5 MASK4 MASK3 MASK2 MASK1 MASK0
GPIODATA1 0xC2 DATA15 DATA14 DATA13 DATA12 DATA11 DATA10 DATA9 DATA8
GPIOMASK1 0xC3 MASK15 MASK14 MASK13 MASK12 MASK11 DATA10 DATA9 DATA8
GPIODATA2 0xC4 DATA23 DATA22 DATA21 DATA20 DATA19 DATA18 DATA17 DATA16
GPIOMASK2 0xC5 MASK23 MASK22 MASK21 MASK20 MASK19 MASK18 MASK17 MASK16
GPIODIR0 0xC6 KPX7DIR KPX6DIR KPX5DIR KPX4DIR KPX3DIR KPX2DIR KPX1DIR KPX0DIR
GPIODIR1 0xC7 KPY7DIR KPY6DIR KPY5DIR KPY4DIR KPY3DIR KPY2DIR KPY1DIR KPY0DIR
GPIODIR2 0xC8 EXTIODIR PWM2DIR PWM1DIR PWM0DIR KP11DIR KPY10DIR KPY9DIR KPY8DIR
GPIOIS0 0xC9 KPX7IS KPX6IS KPX5IS KPX4IS KPX3IS KPX2IS KPX1IS KPX0IS
GPIOIS1 0xCA KPY7IS KPY6IS KPY5IS KPY4IS KPY3IS KPY2IS KPY1IS KPY0IS
GPIOIS2 0xCB EXTIOIS PWM2IS PWM1IS PWM0IS KPY11IS KPY10IS KPY9IS KPY8IS
GPIOIBE0 0xCC KPX7IBE KPX6IBE KPX5IBE KPX4IBE KPX3IBE KPX2IBE KPX1IBE KPX0IBE
GPIOIBE1 0xCD KPY7IBE KPY6IBE KPY5IBE KPY4IBE KPY3IBE KPY2IBE KPY1IBE KPY0IBE
GPIOIBE2 0xCE EXTIOIBE PWM2IBE PWM1IBE PWM0IBE KPY11IBE KPY10IBE KPY9IBE KPY8IBE
GPIOIEV0 0xCF KPX7EV KPX6EV KPX5EV KPX4EV KPX3EV KPX2EV KPX1EV KPX0EV
GPIOIEV1 0xD0 KPY7EV KPY6EV KPY5EV KPY4EV KPY3EV KPY2EV KPY1EV KPY0EV
GPIOIEV2 0xD1 EXTIOIEV PWM2IEV PWM1IEV PWM0IEV KPY11IEV KPY10IEV KPY9IEV KPY8IEV
GPIOIE0 0xD2 KPX7IE KPX6IE KPX5IE KPX4IE KPX3IE KPX2IE KPX1IE KPX0IE
www.national.com 66
LM8327
Register Addr. BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
GPIOIE1 0xD3 KPY7IE KPY6IE KPY5IE KPY4IE KPY3IE KPY2IE KPY1IE KPY0IE
GPIOIE2 0xD4 EXTIOIE PWM2IE PWM1IE PWM0IE KPY11IE KPY10IE KPY9IE KPY8IE
GPIORIS0 0xD6 KPX7RIS KPX6RIS KPX5RIS KPX4RIS KPX3RIS KPX2RIS KPX1RIS KPX0RIS
GPIORIS1 0xD7 KPY7RIS KPY6RIS KPY5RIS KPY4RIS KPY3RIS KPY2RIS KPY1RIS KPY0RIS
GPIORIS2 0xD8 EXTIORIS PWM2RIS PWM1RIS PWM0RIS KPY11RIS KPY10RIS KPY9RIS KPY8RIS
GPIOMIS0 0xD9 KPX7MIS KPX6MIS KPX5MIS KPX4MIS KPX3MIS KPX2MIS KPX1MIS KPX0MIS
GPIOMIS1 0xDA KPY7MIS KPY6MIS KPY5MIS KPY4MIS KPY3MIS KPY2MIS KPY1MIS KPY0MIS
GPIOMIS2 0xDB EXTIOMIS PWM2MIS PWM1MIS PWM0MIS KPY11MIS KPY10MIS KPY9MIS KPY8MIS
GPIOIC0 0xDC KPX7IC KPX6IC KPX5IC KPX4IC KPX3IC KPX2IC KPX1IC KPX0IC
GPIOIC1 0xDD KPY7IC KPY6IC KPY5IC KPY4IC KPY3IC KPY2IC KPY1IC KPY0IC
GPIOIC2 0xDE EXTIOIC PWM2IC PWM1IC PWM0IC KPY11IC KPY10IC KPY9IC KPY8IC
GPIOOME0 0xE0 KPX7ODE KPX6ODE KPX5ODE KPX4ODE KPX3ODE KPX2ODE KPX1ODE KPX0ODE
GPIOOMS0 0xE1 KPX7ODM KPX6ODM KPX5ODM KPX4ODM KPX3ODM KPX2ODM KPX1ODM KPX0ODM
GPIOOME1 0xE2 KPY7ODE KPY6ODE KPY5ODE KPY4ODE KPY3ODE KPY2ODE KPY1ODE KPY0ODE
GPIOOMS1 0xE3 KPY7ODM KPY6ODM KPY5ODM KPY4ODM KPY3ODM KPY2ODM KPY1ODM KPY0ODM
GPIOOME2 0xE4 EXTIO-ODE PWM2-ODE PWM1-ODE PWM0-ODE KPY11ODE KPY10ODE KPY9 ODE KPY8 ODE
GPIOOMS2 0xE5 EXTIO-ODM PWM2-ODM PWM1-ODM PWM0-ODM KPY11ODM KPY10ODM KPY9 ODM KPY8 ODM
DEVTCODE 0xE6 DKEYCODE[4:0]
DBOUNCE 0xE7 DBOUNCE[4:0]
GPIOWAKE0 0xE9 KPX7WAKE KPX6WAKE KPX5WAKE KPX4WAKE KPX3WAKE KPX2WAKE KPX1WAKE KPX0WAKE
GPIOWAKE1 0xEA KPY7WAKE KPY6WAKE KPY5WAKE KPY4WAKE KPY3WAKE KPY2WAKE KPY1WAKE KPY0WAKE
GPIOWAKE2 0xEB EXTIOWAKE PWM2WAKE PWM1WAKE PWM0WAKE KPY11WAKE KPY10WAKE KPY9WAKE KPY8WAKE
DIRECT0 0xEC DK07 DK06 DK05 DK04 DK03 DK02 DK01 DK00
DIRECT1 0xED DK15 DK14 DK13 DK12 DK11 DK10 DK09 DK08
DIRECT2 0xEE DK23 DK22 DK21 DK20 DK19 DK18 DK17 DK16
DIRECT3 0xEF DK25 DK24
DKBDRIS 0xF0 DRELINT DREVTINT
DKBDMIS 0xF1 DMELINT DMEVTINT
DKBDIC 0xF2 DEVTIC
DKBDMSK 0xF3 DMSKELINT DMSKEINT
MMASTER 0xF4 MSTADR[7:1] MMSTEN
67 www.national.com
LM8327
www.national.com 68
LM8327
18.0 Physical Dimensions inches (millimeters) unless otherwise noted
MICRO ARRAY Package
Order Number LM8327JGR8 NOPB or LM8327JGR8X NOPB
NS Package Number GRA36A
69 www.national.com
LM8327
Notes
LM8327 Mobile I/O Companion Supporting Keyscan, I/O Expansion, PWM, and ACCESS.bus
Host Interface
For more National Semiconductor product information and proven design tools, visit the following Web sites at:
www.national.com
Products Design Support
Amplifiers www.national.com/amplifiers WEBENCH® Tools www.national.com/webench
Audio www.national.com/audio App Notes www.national.com/appnotes
Clock and Timing www.national.com/timing Reference Designs www.national.com/refdesigns
Data Converters www.national.com/adc Samples www.national.com/samples
Interface www.national.com/interface Eval Boards www.national.com/evalboards
LVDS www.national.com/lvds Packaging www.national.com/packaging
Power Management www.national.com/power Green Compliance www.national.com/quality/green
Switching Regulators www.national.com/switchers Distributors www.national.com/contacts
LDOs www.national.com/ldo Quality and Reliability www.national.com/quality
LED Lighting www.national.com/led Feedback/Support www.national.com/feedback
Voltage References www.national.com/vref Design Made Easy www.national.com/easy
PowerWise® Solutions www.national.com/powerwise Applications & Markets www.national.com/solutions
Serial Digital Interface (SDI) www.national.com/sdi Mil/Aero www.national.com/milaero
Temperature Sensors www.national.com/tempsensors SolarMagic™ www.national.com/solarmagic
PLL/VCO www.national.com/wireless PowerWise® Design
University
www.national.com/training
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other
brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright© 2011 National Semiconductor Corporation
For the most current product information visit us at www.national.com
National Semiconductor
Americas Technical
Support Center
Email: support@nsc.com
Tel: 1-800-272-9959
National Semiconductor Europe
Technical Support Center
Email: europe.support@nsc.com
National Semiconductor Asia
Pacific Technical Support Center
Email: ap.support@nsc.com
National Semiconductor Japan
Technical Support Center
Email: jpn.feedback@nsc.com
www.national.com
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic."Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps
DLP®Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity
TI E2E Community Home Page e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright ©2011, Texas Instruments Incorporated