Core} DUAL LOW VOLTAGE POWER AMPLIFIER NJM2073 The NJM2073 is a monolithic integrated circuit in 8 lead dual-in-line package. which is designed for dual audio power amplifier in portable radio and handy cassette player. mw Features + Supply Voltage V+=1.8~15V - Low Crossover Distortion + Low Supply Current * Bridge or Stereo Configuration * No Turn-on Noise a Absolute Maximum Ratings (Ta=25C) Supply Voltage vr Output Peak Current lop Power Dissipation Pp (D-Type) (S-Type) (M-Type) Input Voltage Range VIN Operating Temperature Range Topr Storage Temperature Range Tote u Typical Application & Test Circuit Fig.1 BTL Configuration INPUT 7{8) + 1(2) Ach. amy b CQ, WOuF | 67) - + ] Bech. io) - C2 oor | Ahh) @ Package Outline WJM 20730 WJM 2073 M 1sv LA 700mW 700m Ww 300mW +U.4V 20~+75C HJM 20798 40~+125C Fig.2 Stereo Configuration INPUT | 7(8) 100F + Cx weno) INPUT 6(7) 4, 100uF Came 5(6) note: pin No. to D,M-Type (to S-Type 4-34@ Electrical Characteristics D,S-Type (v-=6v. Ta=25) (1) BTL Configuration (Test Circuit Fig. 1) NJM2073 Parameter Symbol Test Condition Min. | Typ. | Max Unit Operating Supply Voltage vt ts} 15 |v Supply Current lec RL =o 6 9 mA Output Offset Voltage AVo Ri =80 _ 10 50 | mv (Between the Outputs) {nput Bias Current Ib _ 100 |ndA Output Power THD= 10%, f= 1kHz Po Vt=9V, Ri =160 (Note) _ 20 | |W Po Vt=6V, Ri =8Q (Note) 0.9 12} |W Po Vt+=4.5V, Ri =80 _ 06) |W Po V*+=4.5V, Rt =40. (Note) _ 08 | |W Po Vr=3V, Rt =40 200 | 300 |mWw Po Vt=2V, Ri =40 _ 80 |mw THD=1%, f=40kHz~ [SkHz Po V*=6V, Ri =80 _ 10} |W Po Vt=45V, Ri =40 _ 06) |W Total Harmonic Distortion THD Po =0.5W, Ry =80, f=LkHz _ 02) |% Close Loop Voltage Gain Av f=1kHz 41 44 47 | dB Input Impedance Zin f=1kHz 100 _ {ka Equivalent Input Noise Voltage Vail Rs =10kQ, A Curve _ 2 |nVv Vni2 Rs =10kQ, B=22H2~22kHz _ 25 | [pv Ripple Rejection RR f=100Hz 40 |B Cutoff Frequency fu Ay=~3dB from f=1kHz, Rp =8Q,Po=IW | 130 |kHz (Note) At on PC Board (2) Stereo Configuration (Test Circuit Fig. 2) Parameter Symbol Test Condition Min. | Typ. | Max. | Unit Operating Supply Voltage vt LB} 15 Vv Output Voltage Vo _ 27 - |V Supply Current Icc Ry =0o _ 6 9 mA Input Bias Current Ip 100 |nd Output Power (Each Channel) THD= 10%, f=1kHz Po V*=6V, Ri =40. (Note) 05 | 065/ |W Po Vt=45V, Ri =40, _ 0.32) |W Po V*=3V, Ri =40 1120 |mw Po +=2, Ri =40 _ 30 _ mW THD=1%, f=1kHz Po Vt=6V, Ri =40 |500 _ mW Po Vt=45V, RL =40 {250 |mw Total Harmonic Distortion THD Po =0.4W, Ri =40, f= 1kHz 0.25) |% Voltage Gain Av f=1kHz 41 44 47 |dB Channel Balance AAy _ _ tl [dB Input Impedance Zin f=IkHz 100 _ ko Equivalent Input Noise Voltage Vnil Rs =10kQ, A Curve _ 2.5 |uv Vni2 Rs =10kQ, B=22Hz~-22kHz _ 3 pv Ripple Rejection RR f= L00Hz, Cx =100uF 24 30 |dB Cutoff Frequency fu Ay =3dB from f= 1kHz 1200 |kHz Ri =80. Po =250mW (Note) At on PC Board New Japan Radio Co, Ltd. 4-35zl NJM2073 ws Electrical Characteristics M-Type (V~=6V, Ta=25C) (1) BTL Configuration (Test Circuit Fig. 1) Parameter Symbol Test Condition Min. | Typ. | Max Unit OperatingSupply Voltage ve 1.8 _ 15 Vv ; Supply Current: lee Ry = 6 9 mA Output Offset Voltage (Between the Outputs) AVa R,=kO _ 10 50 mV Input Bias Current ly lou nA Output Power TPD= 10%, f=1kHz Po VT=6V, R_=160 (Note) _ 0.8 _ w Po V*=4V, R, =82(Note) 350 | 460 |mw Po Vt =3V. Ri =40(Note) 20 | 300 |mw Po V'=2V.R, =40 | xs | mw THD= 1%, f=40Hz~ 15kHz P., Vt =4V, RL =80 | 380 | mw Total Harmonic Distortion THD V*=4V_ Ry =80, Py =2NimW, f=1kHz _ 0.2 _ th Close Loop Voltage Gain Ay f= 1kHz 41 44 47, | dB Input Impedance Zin f=1kHz 10 _ kar Equivalent Input Noise Voltage Vat Rs= L0kf), A Curve 2 BV Vue Rs=10kM, B=22Hz~22kHz 25; |pv Ripple Rejection RR f= 100Hz | 40 | dB Cutoff Frequency fy Ay =3dB from f=!kHz. 130 |kHz Ri =169, Po=0.5W (Note) Aton PC Board (2) Stereo Configuration (Test Circuit Fig. 2) Parameter Symbot Test Condition Min. | Typ. | Max Unit Operating Supply Voltage ve ig} Is |v Output Voltage Vo 2.7 _ Vv Supply Current lee Ris _ 6 9 | mA Input Bias Current lp _ 100 nA Output Power (Each Channel) THD= 10%, f= 1kHz Po V*=6V. R, =160 | 240 |mw Po Vt=5V_R, =8Q(Note) _ 27) _ mW Po V*t=4V. R, =40 (Note) 1x0 250) _ mW. Po V'=3V.R, =40 _ 120 _ mW Po Vt=2V,R,=40 _ 30 _ mW THD=1%, f=1kHz Po Vt=sdv.R, =40 _ 180 _ mW Total Harmonic Distortion THD V*=4V_R, =40, P= (S0mW. f= kHz _ 0.25 _ % Voltage Gain Ay f= tkHz 41 44 47 dB Channel Balance AAy _ _ +1 dB Input [npedance Zin f=IkHz Loo _ kQ Equivalent Input Noise Voltage Vuu Rx=10kf2, A Curve _ 2.5 _ nV Vane Ry=10kQ. B=22Hz~22kHz _ 3 _ nV Ripple Rejection RR f= 100Hz, Cx= 10UnF 24 30 _ dB Cutoff Frequency fu Av=-3dB from f=1kHz | 200 | kHz R, =160., Po= 125mW {Note) Aton PC Board 4-36NJM2073 @ Block Diagram & Connection Diagram S Type AINPUT D.M Type A+INPUT B+INPUT B-INPUT | 5 B-INPUT BtINPUT | 6 GND A+INPUT [7] B OUTPUT ve A-INPUT (| A OUTPUT GND Parasitic Oscillation Preventing Circuit Put 19 + 0.22F on parallel to load, if the load is speaker. Recommend putting 0.14F and more than 1004F capacitors with good high frequency characteristics in to near ground and supply voltage pins. In BTL operation of less than 2V supply voltage, parasitic oscillation may be occurred with R = 1. And so recom- mended R to be the same valve of pure resistance(r) when it is lower than 3V. a Muting Circuit When Mute ON. OUTPUT level saturates to GND side. Fig.3 BTL Configuration Fig.4 Stereo Configuration ve ve f Mute Mute f. an OFF ON ! e Ru 0.1 uF Ru =50kQ | - Mute Mute OFF ON Oia INPUT Ru = 50kQ | INPUT Mi + Re 0014F R. 0.22uF =5 1 , > + > 19g R 0.01eF 0.22uF == 100uF ap aw New Japan Radio Co,.Lid 4.37NJM2073 & Voltage Gain Reduction Application Example (1) Outline of way to further Reduction NJM2073 by taking in assamption, as one of OP-AMP (Gain 44dB, minus input impedance about 300Q), to feedback from output to minus input helps to get reduction of stablized voltage Gain. Fig.5 indicates the model example. Here is the point to be noticed that, in order to get the appropriate output Bias Voltage, it is important to keep the minus input floating as DC condition,(inserting Cx), and also that when extended too much reduction of Gain might cause Oscillation due to high band phase margin. The reduction of voltage gain is limitted at around 26 dB(20 times), and when oscillation, it in necessary to attach the oscillation atopper. Please examine the Cx value accordingly to the application reguirement. Fig.5 Model of Voltage Gain Reduction _ % Rs+Re Ayv= = _ EO F "Te Rs RF Rsxer |) e160 160x300 (Ay) (Avi( Zin) (2) The Application Example of Voltage Gain Reduction.(STEREO) Fig.6 indicates the application example and Table | indicates the recommendable value of parts to be attached externally. Table |, Applicating purpose and Recommended Value of Externally parts to be attached. External partd Application purpose {Recommended Value Remarks R, Plus input to be grounded | Under about Catch the noise when much higher. by fixed DC 100k Rs AV shall be decided with Rr _ Rr AV shall be decided with Rs] About 5kQ The co-temperature of AV becomes higher in case when Rs is higher resistance. The current from output pin to GND becomes higher, in case when Rs is lower resistance. (The current sinks in vain.) Cx Minus input to be ground- - Low-band Cut off frequency (fL) is to be decided. ed by fixed DC The rise time becomes longer in case that Cx is big. Ccup Output DC Decoupling When Ry = 89, fL shall be decided by Ccup and Zi. More than 220uF Cri Stabilization of V* More than about Cap| Inserting near around V* pin and GND pin. Cp2 Prevention of Oscillation More than 0.1uF r y About Rc " c 0.22F To be examined by about the resisitor volume of the speaker load. Fig.6 STEREO Application Example. Cr; 100u FE Coz O.1u Coup 4702 + F Vin 4-38 New Japan Radio Co,Ltd.NJM2073 @ Application for Voltage Gain Reduction (BTL) Fig.7 indicates the application example, Table 2 shows recommended value of externally attaching parts. Table 2 Applicating purpose and Recommended Value of External Part External partd Application parpose Recommended Value Remarks Ry DC condition ground of | Below about 10kKQ | Making noise when higher. plus input Rs AV shall be decided with Rr Rr AV shall be decided with R;| About 5kQ Temperature feature to be increased accordingly as in higher AV value. When lower, to be trended of Oscillation. Cc Releasing minus input in to Setting up low band Cut-off frequency (fL). DC condition More higher, the rise time become longer. Q Preventing Oscillation About 0.02F The more higher in ralue, the high band THD, due to phase slippling to be deteriorated. When lower, to be trended of oscillation. Cri Stability of V* more than about | Inserting near around at V* and the GND pin. Preventing Oscillation 100,F Cp2 Preventing Oscillation mote than 0.14F t " About Ri To be examined at around pure resister Value of speaker load. Cc 0.22nF Fig.7 BTL Application 2 Qo So Rs 1302 RF 5K Rs 130Q2 Rf 5K New Japan Radio Co, Lid. Cp, 100z 4-39NJM2073 m= Typical Characteristics Supply Current Power Dissipation a 2 5 S v a = a a 8 Ice o a (mA) PD Ww (mW) 333C/W = 25 50 5 Ambient Temperature Ta (C) Supply Voltage V* (V) Ripple Rejection Ratio (BTL) (Ta=25C) o 10 . . . = Ripple Rejection Ratio (Stereo) zy 8 (Ta=25C) g ze 5 - 2 30 S 2 2 3 & 4 -< 2 2 2 50 RR * 4 (dB) ! ! RR 100 ik 10k (dB) 19 100 1k 10k Frequency f (Hz) z} Frequency f (Hz) Maximum Output Voltage (BTL) Maximum Output Voltage (Stereo) (Ta=25C) (Ta=25C) 30 15 28 14 26 g 13 = 4 = 2 7 2 > on 3 = a 20 S g g 1 5 6 3 E 16 e 8 Ee a 3 14 & 7 12 3 S 3 6 10 = 5 Vom Vom 4 (Vv) 6 () 3 4 2 2 1 0 6 7 8 9 10 11 12 13 1415 123 4 Supply Voltage V* (V) Supply Voltage V+ (V) 4-40 __- New Jigar Radio Co, Ld.NJM2073 = Typical Characteristics Total Harmonic Distortion (BTL) (Vt=6V, RL=80) Total Harmonic Distortion (Stereo) (Vt=6V, Ri=42) 5 s & 2 Es : 2 a s g 4 E a = E 3 = 3 = e 3 Ee THD (%) THD (%) Output Power Po (W) Output Power Po (W) Power Dissipation Power Dissipation vs. Output Power (BTL) vs. Output Power (BTL) (Ry =4Q, f=1kHz, Ta=25C) (R, =8Q, =1kHz, Ta=25C) Vr=45 10 Vt=6V 0.9 g gs 3 B 07 B A 06 g 3 0.5 < 0.4 Pp Po 03 (Ww) (W) g2 0.1 0 0.8 12 Output Power Po (W) Output Power Po (W) Power Dissipation Power Dissipation vs. Output Power (BTL) vs. Output Power (BTL) (Ri =16Q, f=1kHz, Ta=25C) (Ri =32Q, f=1kHz) 10 vt=oV Vt=12V g S 2 3 a S . G a THD=10% a THD=10% 5 - 8 : 1% 3 THD=1 2 a Pp Po (W) (Ww) Output Power Po (W) Output Power Po (W) 4-4] New Japan Radio Co.Ltd.NJM2073 ee reer rere ee rene nee ee = Typical Characteristics Power Dissipation Power Dissipation vs. Output Power (Stereo) vs. Output Power (Stereo) (R_ =4Q, f=1kHz) (Ry =BQ, f=1kHz) =9V a 3 3 & = Fe A : . Ss Oo zs 2 05 2 oo 4 Pp Po ww) (w) 11 Output Power Po (W/ch) Output Power Po (W/ch) Power Dissipation Power Dissipation vs. Output Power (Stereo) vs. Output Power (Stereo) (Ri =16Q, f=1kHz) (RL =32Q, =1kHz) 1.0 Vr=12V 0.9 VI=I5V 8 Et BR 07 3B z 0.6 5 BS 05 3 = a 2 4, Pp Pp (W) (W) 4 0.5 0.7 08 Output Power Pp (W/ch) Output Power Po (W/ch) 4-42 New lqoa Radio Co, 4d.NJM2073 @ Typical Characteristics Supply Current vs. Temperature Voltage Gain vs. Temperature (vt=6V) (Vr =6V) 9 49 2 8 48 8 7 & 47 G6 2% 25 a 45 B 4 2 4 3 > 4 3 43 . Ay 4 se 2 (dB) (mA) 1 0 40 50 -25 0 25 50 75 100 125 50 25 0 25 50 vi) 100 125 Ambient Temperature Ta (C) Ambient Temperature Ta (C) Channel Separation vs. Frequency (Vt*=6V, Rs =50kQ, Ta=25C) Channel Separation OQ o (dB? 0 10 100 Ik 10k 100k Frequency f (Hz) 4-43 New Japan Radio Co.Ltd.