January 2012 I
© 2012 Microsemi Corporation
ACT 2 Family FPGAs
Features
Up to 8,000 Gate Array Gates
(20,000 PLD equivalent gates)
Replaces up to 200 TTL Packages
Replaces up to eighty 20-Pin PAL® Packages
Design Library with over 500 Macro Functions
Single-Module Sequence Functions
Wide-Input Combinatorial Functions
Up to 1,232 Programmable Logic Modules
Up to 998 Flip-Flops
Datapath Performance at 105 MHz
16-Bit Accumulator Performance to 39 MHz
Two In-Circuit Diagnostic Probe Pins Support Speed
Analysis to 50 MHz
Two High-Speed, Low-Skew Clock Networks
I/O Drive to 10 mA
Nonvolatile, User Programmable
Logic Fully Tested Prior to Shipment
1.0 micron CMOS Technology
Table 1 • ACT 2 Product Family Profile
Device A1225A A1240A A1280A
Capacity
Gate Array Equivalent Gates 2,500 4,000 8,000
PLD Equivalent Gates 6,250 10,000 20,000
TTL Equivalent Package 63 100 200
20-Pin PAL Equivalent Packages 25 40 80
Logic Modules 451 684 1,232
S-Module 231 348 624
C-Module 220 336 608
Flip-Flops (maximum) 382 568 998
Routing Resources
Horizontal Tracks/Channel 36 36 36
Vertical Tracks/Channel 15 15 15
PLICE Antifuse Elements 250,000 400,000 750,000
User I/Os (maximum) 83 104 140
Performance1
16-Bit Prescaled Counters 105 MHz 100 MHz 85 MHz
16-Bit Loadable Counters 70 MHz 69 MHz 67 MHz
16-Bit Accumulators 39 MHz 38 MHz 36 MHz
Packages2
CPGA
PLCC
PQFP
VQFP
TQFP
CQFP
PG100
PL84
PQ100
VQ100
PG132
PL84
PQ144
TQ176
PG176
PL84
PQ160
TQ176
CQ172
Notes:
1. Performance is based on –2 speed devices at commercial worst-case operating conditions using PREP Benchmarks, Suite #1,
Version 1.2, dated 3-28-93. Any analysis is not endorsed by PREP.
2. See the "Product Plan" on page III for package availability.
Revision 8
ACT 2 Family FPGAs
II Revision 8
Ordering Information
_
Part Number
Speed Grade
Package Type
Package Lead Count
C = Commercial (0 to +70°C)
I = Industrial (–40 to +85°C)
M = Military (–55 to +125°C)
B = MIL-STD-883
Application (T emperature Range)
PL = Plastic J-Leaded Chip Carrier
PQ = Plastic Quad Flat Pack
CQ = Ceramic Quad Flat Pack
PG = Ceramic Pin Grid Array
TQ = Thin (1.4 mm) Quad Flat Pack
VQ = Very Thin (1.0 mm) Quad Flat Pack
Blank = Standard Speed
–1 = Approximately 15% faster than Standard
–2 = Approximately 25% faster than Standard
A1225 = 2,500 Gates
A1240 = 4,000 Gates
A1280 = 8,000 Gates
A1280 1
Die Revision
A = 1.0 μm CMOS Process
APG 176G C
Lead-Free Packaging
Blank = Standard Packaging
G = RoHS Compliant Packaging
ACT 2 Family FPGAs
Revision 8 III
Product Plan
Device Resources
Contact your local Microsemi SoC Products Group representative for device availability:
http://www.microsemi.com/soc/contact/default.aspx.
Device/Package
Speed Grade1Application1
Std. –1 –2 C I M B
A1225A Device
84-Pin Plastic Leaded Chip Carrier (PL) ✓✓✓✓ ––
100-Pin Plastic Quad Flatpack (PQ) ✓✓✓✓ ––
100-Pin Very Thin Quad Flatpack (VQ) ✓✓––
100-Pin Ceramic Pin Grid Array (PG) ✓✓––
A1240A Device
84-Pin Plastic Leaded Chip Carrier (PL) ✓✓✓✓ ––
132-Pin Ceramic Pin Grid Array (PG) ✓✓✓✓
144-Pin Plastic Quad Flat Pack (PQ) ✓✓✓✓ ––
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ) ✓✓––
A1280A Device
160-Pin Plastic Quad Flatpack (PQ) ✓✓✓✓ ––
172-Pin Ceramic Quad Flatpack (CQ) ✓✓✓✓
176-Pin Ceramic Pin Grid Array (PG) ✓✓✓✓
176-Pin Thin (1.4 mm) Quad Flat Pack (TQ) ✓✓––
Notes:
1. Applications:
C = Commercial
I = Industrial
M = Military
B = MIL-STD-883
Availability:
= Available
P = Planned
– = Not planned
Speed Grade:
–1 = Approx. 15% faster than Std.
–2 = Approx. 25% faster than Std.
2. Contact your Microsemi SoC Products Group sales represen tative for product availab ility.
Device
Series Logic
Modules Gates
User I/Os
PG176 PG132 PG100 PQ160 PQ144 PQ100 PL84 CQ172 TQ176 VQ100
A1225A 451 2,500 83 83 72 83
A1240A 684 4,000 104 104 72 104
A1280A 1,232 8,000 140 125 72 140 140
ACT 2 Family FPGAs
Revision 8 IV
Table of Content s
ACT 2 Family Overview
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Detailed Specifications
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
ACT 2 Timing Model1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Package Pin Assignments
PL84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
PQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
PQ144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
PQ160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
CQ172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
PG100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
PG132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
PG176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Datasheet Information
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Revision 8 1-1
1 – ACT 2 Family Overview
General Description
The ACT 2 family represents Actel’s second generation of field programmable gate arrays
(FPGAs). The ACT 2 family presents a two-module architecture, consisting of C-modules and S-
modules. These modules are optimized for both combinatorial and sequential designs. Based on Actel’s
patented channeled array architecture, the ACT 2 family provides significant enhancements to gate
density and performance while maintaining downward compatibility with the ACT 1 design environment
and upward compatibility with the ACT 3 design environment. The devices are implemented in silicon
gate, 1.0-μm, two-level metal CMOS, and employ Actel’s PLICE® antifuse technology. This revolutionary
architecture offers gate array design flexibility, high performance, and fast time-to-production with user
programming. The ACT 2 family is supported by the Designer and Designer Advantage Systems, which
offers automatic pin assignment, validation of electrical and design rules, automatic placement and
routing, timing analysis, user programming, and diagnostic probe capabilities. The systems are
supported on the following platforms: 386/486™ PC, Sun™, and HP™ workstations. The systems
provide CAE interfaces to the following design environments: Cadence, Viewlogic®, Mentor Graphics®,
and OrCAD™.
Revision 8 2-1
2 – Detailed Specifications
Operating Conditions
Table 2-1 • Absolute Maximum Ratings1
Symbol Parameter Limits Units
VCC DC supply voltage –0.5 to +7.0 V
VI Input voltage –0.5 to VCC + 0.5 V
VO Output voltage –0.5 to VCC + 0.5 V
IIO I/O source sink current2±20 mA
TSTG Storage temperature –65 to +150 °C
Notes:
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be
operated outside the recommended operating conditions.
2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater
than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will be forward biased and can draw
excessive current.
Table 2-2 • Recommended Operating Conditions
Parameter Commercial Industrial Military Units
Temperature range* 0 to +70 –40 to +85 –55 to +125 °C
Power supply tolerance ±5 ±10 ±10 %VCC
Note: *Ambient temperature (TA) is used for commercial and in dus trial; case temperature (TC) is used for military.
Detailed Specifications
2-2 Revision 8
Table 2-3 • Electrical Specifications
Symbol Parameter
Commercial Industrial Military
UnitsMin. Max. Min. Max. Min. Max.
VOH1(IOH = –10 mA)22.4 V
(IOH = –6 mA) 3.84 V
(IOH = –4 mA) 3.7 3.7 V
VOL1(IOL = 10 mA)2–0.5 –V
(IOL = 6 mA) 0.33 0.40 0.40 V
VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 V
VIH 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V
Input Transition Time tR, tF2 500 500 500 ns
CIO I/O capacitance2,3 –1010–10pF
Standby Current, ICC4 (typical = 1 mA) 2 10 20 mA
Leakage Current5–10 +10 –10 +10 –10 +10 µA
ICC(D) Dynamic VCC supply current. See the Power Dissipation section.
Notes:
1. Only one output tested at a time. VCC = minimum.
2. Not tested, for information only.
3. Includes worst-case PG176 package capacitance. VOUT = 0 V, f = 1 MHz
4. All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal
operations.
5. VOUT, VIN = VCC or GND.
ACT 2 Family FPGAs
Revision 8 2-3
Package Thermal Characteristics
The device junction to case thermal characteristic is θjc, and the junction to ambient air characteristic is
θja. The thermal characteristics for θja are shown with two different air flow rates.
Maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power dissipation allowed for a PQ160 package at
commercial temperature and still air is as follows:
EQ 1
Power Dissipation
P = [ICC standby + ICCactive] * VCC + IOL * VOL * N + IOH* (VCC – VOH) * M
EQ 2
where:
ICC standby is the current flowing when no inputs or outputs are changing
ICCactive is the current flowing due to CMOS switching.
IOL and IOH are TTL sink/source currents.
VOL and VOH are TTL level output voltages.
N is the number of outputs driving TTL loads to VOL.
M is the number of outputs driving TTL loads to VOH.
An accurate determination of N and M is problematical because their values depend on the family type,
design details, and on the system I/O. The power can be divided into two components: static and active.
Table 2-4 • Package Thermal Characteristics
Package Type* Pin Count θjc
θja
Still Air θja
300 ft./min. Units
Ceramic Pin Grid Array 100 5 35 17 °C/W
132 5 30 15 °C/W
176 8 23 12 °C/W
Ceramic Quad Flatpack 172 8 25 15 °C/W
Plastic Quad Flatpack1100 13 48 40 °C/W
144 15 40 32 °C/W
160 15 38 30 °C/W
Plastic Leaded Chip Carrier 84 12 37 28 °C/W
Very Thin Quad Flatpack 100 12 43 35 °C/W
Thin Quad Flatpack 176 15 32 25 °C/W
Notes: (Maximum Power in Still Air)
1. Maximum power dissipation values for PQFP packages are 1.9 W (PQ100), 2.3 W (PQ144), and 2.4 W
(PQ160).
2. Maximum power dissipation for PLCC packages is 2.7 W.
3. Maximum power dissipation for VQFP packages is 2.3 W.
4. Maximum power dissipation for TQFP packages is 3.1 W.
Max. junction temp. (°C) Max. ambient temp. (°C)
θja°C/W
--------------------------------------------------------------------------------------------------------------------------------------- 150°C 70°C
33°C/W
------------------------------------2.4 W==
Detailed Specifications
2-4 Revision 8
Static Power Compo nent
Microsemi FPGAs have small static power components that result in lower power dissipation than PALs
or PLDs. By integrating multiple PALs/PLDs into one FPGA, an even greater reduction in board-level
power dissipation can be achieved.
The power due to standby current is typically a small component of the overall power. Standby power is
calculated in Tab le 2-5 for commercial, worst case conditions.
The static power dissipated by TTL loads depends on the number of outputs driving high or low and the
DC load current. Again, this value is typically small. For instance, a 32-bit bus sinking 4 mA at 0.33 V will
generate 42 mW with all outputs driving low, and 140 mW with all outputs driving high. The actual
dissipation will average somewhere between as I/Os switch states with time.
Active Power Component
Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This
component is frequency dependent, a function of the logic and the external I/O. Active power dissipation
results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module
inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs.
An additional component of the active power dissipation is the totem-pole current in CMOS transistor
pairs. The net effect can be associated with an equivalent capacitance that can be combined with
frequency and voltage to represent active power dissipation.
Equivalent Capacitance
The power dissipated by a CMOS circuit can be expressed by EQ 3.
Power (µW) = CEQ * VCC2 * F
EQ 3
Where:
CEQ is the equivalent capacitance expressed in pF.
VCC is the power supply in volts.
F is the switching frequency in MHz.
Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for
each circuit component of interest. Measurements have been made over a range of frequencies at a
fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used
over a wide range of operating conditions. Equivalent capacitance values are shown in Table 2-6.
Table 2-5 • Standby Power Calculation
ICC VCC Power
2 mA 5.25 V 10.5 mW
Table 2-6 • CEQ Values for Microsemi FPGAs
Item CEQ Value
Modules (CEQM) 5.8
Input Buffers (CEQI) 12.9
Output Buffers (CEQO) 23.8
Routed Array Clock Buffer Loads (CEQCR)3.9
ACT 2 Family FPGAs
Revision 8 2-5
To calculate the active power dissipated from the complete design, the switching frequency of each part
of the logic must be known. EQ 4 shows a piece-wise linear summation over all components.
Power =VCC2 * [(m * CEQM * fm)modules + (n * CEQI * fn) inputs
+ (p * (CEQO+ CL) * fp)outputs
+ 0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1
+ 0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2
EQ 4
Where:
m = Number of logic modules switching at fm
n = Number of input buffers switching at fn
p = Number of output buffers switching at fp
q1 = Number of clock loads on the first routed array clock
q2 = Number of clock loads on the second routed array clock
r1 = Fixed capacitance due to first routed array clock
r2 = Fixed capacitance due to second routed array clock
CEQM = Equivalent capacitance of logic modules in pF
CEQI = Equivalent capacitance of input buffers in pF
CEQO = Equivalent capacitance of output buffers in pF
CEQCR = Equivalent capacitance of routed array clock in pF
CL = Output lead capacitance in pF
fm = Average logic module switching rate in MHz
fn = Average input buffer switching rate in MHz
fp = Average output buffer switching rate in MHz
fq1 = Average first routed array clock rate in MHz
fq2 = Average second routed array clock rate in MHz
Table 2-7 • Fixed Capacitance Values for Microsemi FPGAs
Device Type r1, routed_Clk1 r2, routed_Clk2
A1225A 106 106.0
A1240A 134 134.2
A1280A 168 167.8
Detailed Specifications
2-6 Revision 8
Determining Average Switching Frequency
To determine the switching frequency for a design, you must have a detailed understanding of the data
input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that
they can be generally used to predict the upper limits of power dissipation. These guidelines are given in
Table 2-8.
Table 2-8 • Guidelines for Predicting Power Dissipation
Data Value
Logic Modules (m) 80% of modules
Inputs switching (n) # inputs/4
Outputs switching (p) # output/4
First routed array clock loads (q1) 40% of sequential modules
Second routed array clock loads (q2) 40% of sequential modules
Load capacitance (CL) 35 pF
Average logic module switching rate (fm)F/10
Average input switching rate (fn)F/5
Average output switching rate (fp)F/10
Average first routed array clock rate (fq1)F
Average second routed array clock rate (fq2)F/2
ACT 2 Family FPGAs
Revision 8 2-7
ACT 2 Timing Model1
Notes:
1. Values shown for A1240A-2 at worst-case commercial conditions.
2. Input module predict ed routing delay
Figure 2-1 Timing Model
Output DelaysInternal DelaysInput Delays
tINH = 2.0 ns
tINSU
= 4.0 ns
I/O Module
DQ
tINGL
= 4.7 ns
tINYL
= 2.6 ns tIRD2
= 4.8 ns(2)
Combinatorial
Logic Module
tPD
= 3.8 ns
Sequential
Logic Module
I/O Module
tRD1 = 1.4 ns
tDLH = 8.0 ns
I/O Module
ARRAY
CLOCKS
FMAX
= 100 MHz
Combin-
atorial
Logic
Included
in tSUD
DQDQ
tOUTH = 0.0 ns
tOUTSU
= 0.4 ns
tGLH = 9.0 ns
tDLH = 8.0 ns
tENHZ = 7.1 ns
tRD1
= 1.4 ns
tCO
= 3.8 ns
tSUD
= 0.4 ns
tHD
= 0.0 ns
tRD4
= 3.1 ns
tRD8
= 4.7 ns
Predicted
Routing
Delays
tCKH
= 11.8 ns
G
G
FO = 256
tRD2 = 1.7 ns
Detailed Specifications
2-8 Revision 8
Parameter Measurement
Figure 2-2 Output Buffer Delays
Figure 2-3 AC Test Loads
Figure 2-4 Input Buffer Delays
To AC test loads (shown below)
PA D
D
E
TRIBUFF
In
VCC
GND
50%
PAD
VOL
VOH
1.5 V
tDHS,
50%
1.5 V
tDHS
E
VCC
GND
50%
PAD
VOL
1.5 V
tENZL
50%
10%
tENLZ
E
VCC
GND
50%
PAD
GND
VOH
1.5 V
tENZH
50%
90%
tENHZ
VCC
Load 1
(Used to measure propagation delay) Load 2
(Used to measure rising/falling edges)
50 pF
To the output under test
VCC GND
50 pF
To the output under test
R to VCC for tPLZ / tPZL
R to GND for tPHZ / tPZH
R = 1 kΩ
PA D Y
INBUF
PAD
3V
0V
1.5 V
Y
GND
VCC
50%
t
INYH
1.5 V
50%
t
INYL
ACT 2 Family FPGAs
Revision 8 2-9
Sequential Module Timing Characteristics
Figure 2-5 Module Delays
S
A
B
Y
S, A or B
Y
GND
VCC
50%
tPLH
Y
GND
GND
VCC
50%
50% 50%
VCC
50% 50%
tPHL
tPHL
tPLH
Note: D represents all data functions invo lvi ng A, B, and S for multiplexed flip-flops.
Figure 2-6 Flip-Flops and Latches
(Positive edge triggered)
E
D
CLK CLR
Y
D*
G, CLK
Q
E
PRE, CLR
tWCLKA
tWASYN
tHD
tSUD tA
tWCLKI
t
SUENA
tCO
t
RS
t
HENA
Detailed Specifications
2-10 Revision 8
Figure 2- 7 • Input Buffer Latches
Figure 2- 8 • Output Buffer Latches
G
PAD
PAD
CLK
DATA
G
CLK
tINH
CLKBUF
tINSU
tSUEXT
tHEXT
IBDL
DATA
D
G
tOUTSU
tOUTH
PAD
OBDLHS
D
G
ACT 2 Family FPGAs
Revision 8 2-11
Timing Derating Factor (Temperature and Voltage)
Table 2-9 • Timing Derating Factor (Temperature and Vol tage)
(Commercial Minimum/Maximum Specification) x Industrial Military
Min. Max. Min. Max.
0.69 1.11 0.67 1.23
Table 2-10 • Timing Derating Factor for Designs at Typical Temperature (TJ = 25°C)
and Voltage (5.0 V)
(Commercial Maximum Specification) x 0.85
Table 2-11 • Temperature and Voltage Derating Fac tors
(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)
55400 257085125
4.50 0.75 0.79 0.86 0.92 1.06 1.11 1.23
4.75 0.71 0.75 0.82 0.87 1.00 1.05 1.13
5.00 0.69 0.72 0.80 0.85 0.97 1.02 1.13
5.25 0.68 0.69 0.77 0.82 0.95 0.98 1.09
5.50 0.67 0.69 0.76 0.81 0.93 0.97 1.08
Note: This derating factor applies to all routing and propagation d elays.
Figure 2- 9 • Junction Temperature and Voltage Derating Curves
(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
4.504.755.005.255.50
rotcaF gnit
areD
Voltage (V)
125˚C
85˚C
70˚C
25˚C
0˚C
–40˚C
–55˚C
Detailed Specifications
2-12 Revision 8
A1225A Timing Characteristics
Table 2-12 • A1 225A Worst-Case Commercial Conditions, VCC = 4.75 V, T J = 70 °C
Logic Module Propag a t io n Dela y s1–2 S peed3 –1 Speed Std. Speed
Units
Parameter/Description Min. Max. Min. Max. Min. Max.
tPD1 Single Module 3.8 4.3 5.0 ns
tCO Sequential Clock to Q 3.8 4.3 5.0 ns
tGO Latch G to Q 3.8 4.3 5.0 ns
tRS Flip-Flop (Latch) Reset to Q 3.8 4.3 5.0 ns
Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 1.1 1.2 1.4 ns
tRD2 FO = 2 Routing Delay 1.7 1.9 2.2 ns
tRD3 FO = 3 Routing Delay 2.3 2.6 3.0 ns
tRD4 FO = 4 Routing Delay 2.8 3.1 3.7 ns
tRD8 FO = 8 Routing Delay 4.4 4.9 5.8 ns
Sequential Timing Characteristics3,4
tSUD Flip-Flop (Latch) Data Input Setup 0.4 0.4 0.5 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.8 0.9 1.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.5 5.0 6.0 ns
tWASYN Flip-Flop (Latch) Clock Asynchronous Pulse Width 4.5 5.0 6.0 ns
tAFlip-Flop Clock Input Period 9.4 11.0 13.0 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Setup 0.4 0.4 0.5 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.4 0.4 0.5 ns
fMAX Flip-Flop (Latch) Clock Frequency 105.0 90.0 75.0 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD—whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the DirectTime Analyzer utility.
4. Setup and hold ti ming para meters for t he Input Buffer Latch a re defined wit h respect to the PAD and the D i nput. Ex ternal
setup/hold timing parame ters must account for delay fr om an external PAD signal to the G inputs . Delay from an ex ternal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
ACT 2 Family FPGAs
Revision 8 2-13
A1225A Timing Characteristics (continued)
Table 2-13 • A1 225A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C
I/O Module Input Propagation Delays –2 Speed –1 Speed Std. Speed Units
Parameter/Description Min. Max. Min. Max. Min. Max.
tINYH Pad to Y High 2.9 3.3 3.8 ns
tINYL Pad to Y Low 2.6 3.0 3.5 ns
tINGH G to Y High 5.0 5.7 6.6 ns
tINGL G to Y Low 4.7 5.4 6.3 ns
Input Module Predicted Input Routing Delays*
tIRD1 FO = 1 Routing Delay 4.1 4.6 5.4 ns
tIRD2 FO = 2 Routing Delay 4.6 5.2 6.1 ns
tIRD3 FO = 3 Routing Delay 5.3 6.0 7.1 ns
tIRD4 FO = 4 Routing Delay 5.7 6.4 7.6 ns
tIRD8 FO = 8 Routing Delay 7.4 8.3 9.8 ns
Global Clock Network
tCKH Input Low to High FO = 32 10.2 11.0 12.8 ns
FO = 256 11.8 13.0 15.7
tCKL Input High to Low FO = 32 10.2 11.0 12.8 ns
FO = 256 12.0 13.2 15.9
tPWH Minimum Pulse Width High FO = 32 3.4 4.1 4.5 ns
FO = 256 3.8 4.5 5.0
tPWL Minimum Pulse Width Low FO = 32 3.4 4.1 4.5 ns
FO = 256 3.8 4.5 5.0
tCKSW Maximum Skew FO = 32 0.7 0.7 0.7 ns
FO = 256 3.5 3.5 3.5
tSUEXT Input Latch External Setup FO = 32 0.0 0.0 0.0 ns
FO = 256 0.0 0.0 0.0
tHEXT Input Latch External Hold FO = 32 7.0 7.0 7.0 ns
FO = 256 11.2 11.2 11.2
tPMinimum Period FO = 32 7.7 8.3 9.1 ns
FO = 256 8.1 8.8 10.0
fMAX Maximum Frequency FO = 32 130.0 120.0 110.0 ns
FO = 256 125.0 115.0 100.0
Note: *These parameters should be used for estimating device performance. Optimization techniques may further
reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-
route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on th e device prior to shipment.
Detailed Specifications
2-14 Revision 8
A1225A Timing Characteristics (continued)
Table 2-14 • A1 225A Worst-Case Commercial Conditions, VCC = 4.75 V, T J = 70 °C
TTL Output Module Timing1–2 Speed –1 Speed Std. Speed Units
Parameter/Description Min. Max. Min. Max. Min. Max.
tDLH Data to Pad High 8.0 9.0 10.6 ns
tDHL Data to Pad Low 10.1 11.4 13.4 ns
tENZH Enable Pad Z to High 8.9 10.0 11.8 ns
tENZL Enable Pad Z to Low 11.6 13.2 15.5 ns
tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns
tENLZ Enable Pad Low to Z 8.3 9.5 11.1 ns
tGLH G to Pad High 8.9 10.2 11.9 ns
tGHL G to Pad Low 11.2 12.7 14.9 ns
dTLH Delta Low to High 0.07 0.08 0.09 ns/pF
dTHL Delta High to Low 0.12 0.13 0.16 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 10.1 11.5 13.5 ns
tDHL Data to Pad Low 8.4 9.6 11.2 ns
tENZH Enable Pad Z to High 8.9 10.0 11.8 ns
tENZL Enable Pad Z to Low 11.6 13.2 15.5 ns
tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns
tENLZ Enable Pad Low to Z 8.3 9.5 11.1 ns
tGLH G to Pad High 8.9 10.2 11.9 ns
tGHL G to Pad Low 11.2 12.7 14.9 ns
dTLH Delta Low to High 0.12 0.13 0.16 ns/pF
dTHL Delta High to Low 0.09 0.10 0.12 ns/pF
Notes:
1. Delays based on 50 pF loading.
2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.
ACT 2 Family FPGAs
Revision 8 2-15
A1240A Timing Characteristics
Table 2-15 • A1 240A Worst-Case Commercial Conditions, VCC = 4.75 V, T J = 70 °C
Logic Module Propagation Delays1–2 S peed3 –1 Speed Std. Speed
Units
Parameter/Description Min. Max. Min. Max. Min. Max.
tPD1 Single Module 3.8 4.3 5.0 ns
tCO Sequential Clock to Q 3.8 4.3 5.0 ns
tGO Latch G to Q 3.8 4.3 5.0 ns
tRS Flip-Flop (Latch) Reset to Q 3.8 4.3 5.0 ns
Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 1.4 1.5 1.8 ns
tRD2 FO = 2 Routing Delay 1.7 2.0 2.3 ns
tRD3 FO = 3 Routing Delay 2.3 2.6 3.0 ns
tRD4 FO = 4 Routing Delay 3.1 3.5 4.1 ns
tRD8 FO = 8 Routing Delay 4.7 5.4 6.3 ns
Sequential Timing Characteristics3,4
tSUD Flip-Flop (Latch) Data Input Setup 0.4 0.4 0.5 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.8 0.9 1.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 4.5 6.0 6.5 ns
tWASYN Flip-Flop (Latch) Clock Asynchronous Pulse Width 4.5 6.0 6.5 ns
tAFlip-Flop Clock Input Period 9.8 12.0 15.0 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Setup 0.4 0.4 0.5 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.4 0.4 0.5 ns
fMAX Flip-Flop (Latch) Clock Frequency 100.0 80.0 66.0 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD—whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the DirectTime Analyzer utility.
4. Setup and hold ti ming para meters for t he Input Buffer Latch a re defined wit h respect to the PAD and the D i nput. Ex ternal
setup/hold timing parame ters must account for delay fr om an external PAD signal to the G inputs . Delay from an ex ternal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
Detailed Specifications
2-16 Revision 8
A1240A Timing Characteristics (continued)
Table 2-16 • A1 240A Worst-Case Commercial Conditions, VCC = 4.75 V, T J = 70 °C
I/O Module Input Propagation Delays –2 Speed –1 Speed Std. Speed Units
Parameter/Description Min. Max. Min. Max. Min. Max.
tINYH Pad to Y High 2.9 3.3 3.8 ns
tINYL Pad to Y Low 2.6 3.0 3.5 ns
tINGH G to Y High 5.0 5.7 6.6 ns
tINGL G to Y Low 4.7 5.4 6.3 ns
Input Module Predicted Input Routing Delays*
tIRD1 FO = 1 Routing Delay 4.2 4.8 5.6 ns
tIRD2 FO = 2 Routing Delay 4.8 5.4 6.4 ns
tIRD3 FO = 3 Routing Delay 5.4 6.1 7.2 ns
tIRD4 FO = 4 Routing Delay 5.9 6.7 7.9 ns
tIRD8 FO = 8 Routing Delay 7.9 8.9 10.5 ns
Global Clock Network
tCKH Input Low to High FO = 32 10.2 11.0 12.8 ns
FO = 256 11.8 13.0 15.7
tCKL Input High to Low FO = 32 10.2 11.0 12.8 ns
FO = 256 12.0 13.2 15.9
tPWH Minimum Pulse Width High FO = 32 3.8 4.5 5.5 ns
FO = 256 4.1 5.0 5.8
tPWL Minimum Pulse Width Low FO = 32 3.8 4.5 5.5 ns
FO = 256 4.1 5.0 5.8
tCKSW Maximum Skew FO = 32 0.5 0.5 0.5 ns
FO = 256 2.5 2.5 2.5
tSUEXT Input Latch External Setup FO = 32 0.0 0.0 0.0 ns
FO = 256 0.0 0.0 0.0
tHEXT Input Latch External Hold FO = 32 7.0 7.0 7.0 ns
FO = 256 11.2 11.2 11.2
tPMinimum Period FO = 32 8.1 9.1 11.1 ns
FO = 256 8.8 10.0 11.7
fMAX Maximum Frequency FO = 32 125.0 110.0 90.0 ns
FO = 256 115.0 100.0 85.0
Note: *These parameters should be used for estimating device performance. Optimization techniques may further
reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-
route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on th e device prior to shipment.
ACT 2 Family FPGAs
Revision 8 2-17
A1240A Timing Characteristics (continued)
Table 2-17 • A1 240A Worst-Case Commercial Conditions, VCC = 4.75 V, T J = 70 °C
TTL Output Module Timing1–2 Speed –1 Speed Std. Speed Units
Parameter/Description Min. Max. Min. Max. Min. Max.
tDLH Data to Pad High 8.0 9.0 10.6 ns
tDHL Data to Pad Low 10.1 11.4 13.4 ns
tENZH Enable Pad Z to High 8.9 10.0 11.8 ns
tENZL Enable Pad Z to Low 11.7 13.2 15.5 ns
tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns
tENLZ Enable Pad Low to Z 8.4 9.5 11.1 ns
tGLH G to Pad High 9.0 10.2 11.9 ns
tGHL G to Pad Low 11.2 12.7 14.9 ns
dTLH Delta Low to High 0.07 0.08 0.09 ns/pF
dTHL Delta High to Low 0.12 0.13 0.16 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 10.2 11.5 13.5 ns
tDHL Data to Pad Low 8.4 9.6 11.2 ns
tENZH Enable Pad Z to High 8.9 10.0 11.8 ns
tENZL Enable Pad Z to Low 11.7 13.2 15.5 ns
tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns
tENLZ Enable Pad Low to Z 8.4 9.5 11.1 ns
tGLH G to Pad High 9.0 10.2 11.9 ns
tGHL G to Pad Low 11.2 12.7 14.9 ns
dTLH Delta Low to High 0.12 0.13 0.16 ns/pF
dTHL Delta High to Low 0.09 0.10 0.12 ns/pF
Notes:
1. Delays based on 50 pF loading.
2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.
Detailed Specifications
2-18 Revision 8
A1280A Timing Characteristics
Table 2-18 • A1 280A Worst-Case Commercial Conditions, VCC = 4.75 V, T J = 70 °C
Logic Module Propagation Delays1–2 S peed3 –1 Speed Std. Speed
Units
Parameter/Description Min. Max. Min. Max. Min. Max.
tPD1 Single Module 3.8 4.3 5.0 ns
tCO Sequential Clock to Q 3.8 4.3 5.0 ns
tGO Latch G to Q 3.8 4.3 5.0 ns
tRS Flip-Flop (Latch) Reset to Q 3.8 4.3 5.0 ns
Predicted Routing Delays2
tRD1 FO = 1 Routing Delay 1.7 2.0 2.3 ns
tRD2 FO = 2 Routing Delay 2.5 2.8 3.3 ns
tRD3 FO = 3 Routing Delay 3.0 3.4 4.0 ns
tRD4 FO = 4 Routing Delay 3.7 4.2 4.9 ns
tRD8 FO = 8 Routing Delay 6.7 7.5 8.8 ns
Sequential Timing Characteristics3,4
tSUD Flip-Flop (Latch) Data Input Setup 0.4 0.4 0.5 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Setup 0.8 0.9 1.0 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 5.5 6.0 7.0 ns
tWASYN Flip-Flop (Latch) Clock Asynchronous Pulse Width 5.5 6.0 7.0 ns
tAFlip-Flop Clock Input Period 11.7 13.3 18.0 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Setup 0.4 0.4 0.5 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Setup 0.4 0.4 0.5 ns
fMAX Flip-Flop (Latch) Clock Frequency 85.0 75.0 50.0 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD—whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to
shipment.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules
can be obtained from the DirectTime Analyzer utility.
4. Setup and hold ti ming para meters for t he Input Buffer Latch a re defined wit h respect to the PAD and the D i nput. Ex ternal
setup/hold timing parame ters must account for delay fr om an external PAD signal to the G inputs . Delay from an ex ternal
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.
ACT 2 Family FPGAs
Revision 8 2-19
A1280A Timing Characteristics (continued)
A1280A Timing Characteristics (continued)
Table 2-19 • A1 280A Worst-Case Commercial Conditions, VCC = 4.75 V, T J = 70 °C
I/O Module Input Propagation Delays –2 Speed –1 Speed Std. Speed Units
Parameter/Description Min. Max. Min. Max. Min. Max.
tINYH Pad to Y High 2.9 3.3 3.8 ns
tINYL Pad to Y Low 2.7 3.0 3.5 ns
tINGH G to Y High 5.0 5.7 6.6 ns
tINGL G to Y Low 4.8 5.4 6.3 ns
Input Module Predicted Input Routing Delays*
tIRD1 FO = 1 Routing Delay 4.6 5.1 6.0 ns
tIRD2 FO = 2 Routing Delay 5.2 5.9 6.9 ns
tIRD3 FO = 3 Routing Delay 5.6 6.3 7.4 ns
tIRD4 FO = 4 Routing Delay 6.5 7.3 8.6 ns
tIRD8 FO = 8 Routing Delay 9.4 10.5 12.4 ns
Global Clock Network
tCKH Input Low to High FO = 32 10.2 11.0 12.8 ns
FO = 256 13.1 14.6 17.2
tCKL Input High to Low FO = 32 10.2 11.0 12.8 ns
FO = 256 13.3 14.9 17.5
tPWH Minimum Pulse Width High FO = 32 5.0 5.5 6.6 ns
FO = 256 5.8 6.4 7.6
tPWL Minimum Pulse Width Low FO = 32 5.0 5.5 6.6 ns
FO = 256 5.8 6.4 7.6
tCKSW Maximum Skew FO = 32 0.5 0.5 0.5 ns
FO = 256 2.5 2.5 2.5
tSUEXT Input Latch External Setup FO = 32 0.0 0.0 0.0 ns
FO = 256 0.0 0.0 0.0
tHEXT Input Latch External Hold FO = 32 7.0 7.0 7.0 ns
FO = 256 11.2 11.2 11.2
tPMinimum Period FO = 32 9.6 11.2 13.3 ns
FO = 256 10.6 12.6 15.3
fMAX Maximum Frequency FO = 32 105.0 90.0 75.0 ns
FO = 256 95.0 80.0 65.0
Note: *These parameters should be used for estimating device performance. Optimization techniques may further
reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-
route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on th e device prior to shipment.
Detailed Specifications
2-20 Revision 8
Table 2-20 • A1 280A Worst-Case Commercial Conditions, VCC = 4.75 V, T J = 70 °C
TTL Output Module Timing1–2 Speed –1 Speed Std. Speed Units
Parameter/Description Min. Max. Min. Max. Min. Max.
tDLH Data to Pad High 8.1 9.0 10.6 ns
tDHL Data to Pad Low 10.2 11.4 13.4 ns
tENZH Enable Pad Z to High 9.0 10.0 11.8 ns
tENZL Enable Pad Z to Low 11.8 13.2 15.5 ns
tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns
tENLZ Enable Pad Low to Z 8.4 9.5 11.1 ns
tGLH G to Pad High 9.0 10.2 11.9 ns
tGHL G to Pad Low 11.3 12.7 14.9 ns
dTLH Delta Low to High 0.07 0.08 0.09 ns/pF
dTHL Delta High to Low 0.12 0.13 0.16 ns/pF
CMOS Output Module Timing1
tDLH Data to Pad High 10.3 11.5 13.5 ns
tDHL Data to Pad Low 8.5 9.6 11.2 ns
tENZH Enable Pad Z to High 9.0 10.0 11.8 ns
tENZL Enable Pad Z to Low 11.8 13.2 15.5 ns
tENHZ Enable Pad High to Z 7.1 8.0 9.4 ns
tENLZ Enable Pad Low to Z 8.4 9.5 11.1 ns
tGLH G to Pad High 9.0 10.2 11.9 ns
tGHL G to Pad Low 11.3 12.7 14.9 ns
dTLH Delta Low to High 0.12 0.13 0.16 ns/pF
dTHL Delta High to Low 0.09 0.10 0.12 ns/pF
Notes:
1. Delays based on 50 pF loading.
2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.
ACT 2 Family FPGAs
Revision 8 2-21
Pin Descriptions
CLKA Clock A (Input)
TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic
modules. This pin can also be used as an I/O.
CLKB Clock B (Input)
TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic
modules. This pin can also be used as an I/O.
DCLK Diagnostic Clock (Input)
TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is
High. This pin functions as an I/O when the MODE pin is Low.
GND Ground
Low supply voltage.
I/O Input/Output (Input, Output)
The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are
compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven Low
by the ALS software.
MODE Mode (Input)
The MODE pin controls the use of multifunction pins (DCLK, PRA, PRB, SDI). When the MODE pin is
High, the special functions are active. When the MODE pin is Low, the pins function as I/Os. To provide
Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the
MODE pin can be pulled High when required.
NC No Connection
This pin is not connected to circuitry within the device.
PRA Probe A (Output)
The Probe A pin is used to output data from any user-defined design node within the device. This
independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic
output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when
debugging has been completed. The pin’s probe capabilities can be permanently disabled to protect
programmed design confidentiality. PRA is active when the MODE pin is High. This pin functions as an
I/O when the MODE pin is Low.
PRB Probe B (Output)
The Probe B pin is used to output data from any user-defined design node within the device. This
independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic
output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when
debugging has been completed. The pin’s probe capabilities can be permanently disabled to protect
programmed design confidentiality. PRB is active when the MODE pin is High. This pin functions as an
I/O when the MODE pin is Low.
SDI Serial Data Input (Input)
Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is High.
This pin functions as an I/O when the MODE pin is Low.
SDO Serial Data Output (Output)
Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as
an I/O when the MODE pin is Low.
VCC 5.0 V Supply Voltage
High supply voltage.
Revision 8 3-1
3 – Package Pin Assignment s
PL84
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.
12
13
14
15
16
18
17
19
20
21
22
23
24
25
26
27
28
29
30
31
32
74
73
72
71
70
68
69
67
66
65
64
63
62
61
60
59
58
57
56
55
54
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75
84-Pin
PLCC
Package Pin Assignments
3-2 Revision 8
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
PL84
Pin Number A1225A Function A1240A Function A1280A Function
2 CLKB, I/O CLKB, I/O CLKB, I/O
4 PRB, I/O PRB, I/O PRB, I/O
6 GND GND GND
10 DCLK, I/O DCLK, I/O DCLK, I/O
12 MODE MODE MODE
22 VCC VCC VCC
23 VCC VCC VCC
28 GND GND GND
43 VCC VCC VCC
49 GND GND GND
52 SDO SDO SDO
63 GND GND GND
64 VCC VCC VCC
65 VCC VCC VCC
70 GND GND GND
76 SDI, I/O SDI, I/O SDI, I/O
81 PRA, I/O PRA, I/O PRA, I/O
83 CLKA, I/O CLKA, I/O CLKA, I/O
84 VCC VCC VCC
ACT 2 Family FPGAs
Revision 8 3-3
PQ100
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Package Pin Assignments
3-4 Revision 8
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
PQ100
Pin Number A1225A Functio n
2 DCLK, I/O
4MODE
9GND
16 VCC
17 VCC
22 GND
34 GND
40 VCC
46 GND
52 SDO
57 GND
64 GND
65 VCC
66 VCC
67 VCC
72 GND
79 SDI, I/O
84 GND
87 PRA, I/O
89 CLKA, I/O
90 VCC
92 CLKB, I/O
94 PRB, I/O
96 GND
PQ100
Pin Number A1225A Function
ACT 2 Family FPGAs
Revision 8 3-5
PQ144
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
144
1
144-Pin
PQFP
Package Pin Assignments
3-6 Revision 8
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
PQ144
Pin Number A1240A Function
2MODE
9GND
10 GND
11 GND
18 VCC
19 VCC
20 VCC
21 VCC
28 GND
29 GND
30 GND
44 GND
45 GND
46 GND
54 VCC
55 VCC
56 VCC
64 GND
65 GND
71 SDO
79 GND
80 GND
81 GND
88 GND
89 VCC
90 VCC
91 VCC
92 VCC
93 VCC
100 GND
101 GND
102 GND
110 SDI, I/O
116 GND
117 GND
118 GND
123 PRA, I/O
125 CLKA, I/O
126 VCC
127 VCC
128 VCC
130 CLKB, I/O
132 PRB, I/O
136 GND
137 GND
138 GND
144 DCLK, I/O
PQ144
Pin Number A1240A Function
ACT 2 Family FPGAs
Revision 8 3-7
PQ160
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
Note: This is the top view of the package
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
160-Pin
PQFP
Package Pin Assignments
3-8 Revision 8
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
PQ160
Pin Number A1280A Function
2 DCLK, I/O
6VCC
11 GND
16 PRB, I/O
18 CLKB, I/O
20 VCC
21 CLKA, I/O
23 PRA, I/O
30 GND
35 VCC
38 SDI, I/O
40 GND
44 GND
49 GND
54 VCC
57 VCC
58 VCC
59 GND
60 VCC
61 GND
64 GND
69 GND
80 GND
82 SDO
86 VCC
89 GN
98 GND
99 GND
109 GND
114 VCC
120 GND
125 GND
130 GND
135 VCC
138 VCC
139 VCC
140 GND
145 GND
150 VCC
155 GND
159 MODE
160 GND
PQ160
Pin Number A1280A Function
ACT 2 Family FPGAs
Revision 8 3-9
VQ100
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
1
2
3
4
5
7
6
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
100-Pin
VQFP
75
74
73
72
71
69
70
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
32
31
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
94
95
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Package Pin Assignments
3-10 Revision 8
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
VQ100
Pin Number A1225A Function
2MODE
7GND
14 VCC
15 VCC
20 GND
32 GND
38 VCC
44 GND
50 SDO
55 GND
62 GND
63 VCC
64 VCC
65 VCC
70 GND
77 SDI, I/O
82 GND
85 PRA, I/O
87 CLKA, I/O
88 VCC
90 CLKB, I/O
92 PRB, I/O
94 GND
100 DCLK, I/O
VQ100
Pin Number A1225A Function
ACT 2 Family FPGAs
Revision 8 3-11
TQ176
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
41
42
43
44
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
140
139
138
137
176-Pin
TQFP
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
136
135
134
133
Package Pin Assignments
3-12 Revision 8
TQ176
Pin Number A1240A Function A1280A Function
1GND GND
2 MODE MODE
8NC NC
10 NC I/O
11 NC I/O
13 NC VCC
18 GND GND
19 NC I/O
20 NC I/O
22 NC I/O
23 GND GND
24 NC VCC
25 VCC VCC
26 NC I/O
27 NC I/O
28 VCC VCC
29 NC I/O
33 NC NC
37 NC I/O
38 NC NC
45 GND GND
52 NC VCC
54 NC I/O
55 NC I/O
57 NC NC
61 NC I/O
64 NC I/O
66 NC I/O
67 GND GND
68 VCC VCC
74 NC I/O
77 NC NC
78 NC I/O
80 NC I/O
82 NC VCC
86 NC I/O
87 SDO SDO
89 GND GND
96 NC I/O
97 NC I/O
101 NC NC
103 NC I/O
106 GND GND
107 NC I/O
108 NC I/O
109 GND GND
110 VCC VCC
111 GND GND
112 VCC VCC
113 VCC VCC
114 NC I/O
115 NC I/O
116 NC VCC
121 NC NC
124 NC I/O
125 NC I/O
126 NC NC
133 GND GND
135 SDI, I/O SDI, I/O
136 NC I/O
140 NC VCC
143 NC I/O
144 NC I/O
145 NC NC
147 NC I/O
151 NC I/O
152 PRA, I/O PRA, I/O
154 CLKA, I/O CLKA, I/O
TQ176
Pin Number A1240A Function A1280A Function
ACT 2 Family FPGAs
Revision 8 3-13
Notes:
1. NC denotes no connection.
2. All unlisted pin numbers are user I/Os.
3. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
155 VCC VCC
156 GND GND
158 CLKB, I/O CLKB, I/O
160 PRB, I/O PRB, I/O
161 NC I/O
165 NC NC
166 NC I/O
168 NC I/O
170 NC VCC
173 NC I/O
175 DCLK, I/O DCLK, I/O
TQ176
Pin Number A1240A Function A1280A Function
Package Pin Assignments
3-14 Revision 8
CQ172
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
172-Pin
CQFP
Pin #1
Index
172
1
ACT 2 Family FPGAs
Revision 8 3-15
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
CQ172
Pin Number A1280A Function
1MODE
7GND
12 VCC
17 GND
22 GND
23 VCC
24 VCC
27 VCC
32 GND
37 GND
50 VCC
55 GND
65 GND
66 VCC
75 GND
80 VCC
85 SDO
98 GND
103 GND
106 GND
107 VCC
108 GND
109 VCC
110 VCC
113 VCC
118 GND
123 GND
131 SDI, I/O
136 VCC
141 GND
148 PRA, I/O
150 CLKA, I/O
151 VCC
152 GND
154 CLKB, I/O
156 PRB, I/O
161 GND
166 VCC
171 DCLK, I/O
CQ172
Pin Number A1280A Function
Package Pin Assignments
3-16 Revision 8
PG100
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
1
A
234567891011
B
C
D
E
F
G
H
J
K
L
A
B
C
D
E
F
G
H
J
K
L
100-Pin
CPGA
1234567891011
Orientation Pin
ACT 2 Family FPGAs
Revision 8 3-17
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
PG100
Pin Number A1225A Function
A4 PRB, I/O
A7 PRA, I/O
B6 VCC
C2 MODE
C3 DCLK, I/O
C5 GND
C6 CLKA, I/O
C7 GND
C8 SDI, I/O
D6 CLKB, I/O
D10 GND
E3 GND
E11 VCC
F3 VCC
F9 VCC
F10 VCC
F11 GND
G1 VCC
G3 GND
G9 GND
J5 GND
J7 GND
J9 SDO
K6 VCC
PG100
Pin Number A1225A Function
Package Pin Assignments
3-18 Revision 8
PG132
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
132-Pin
CPGA
A
B
C
D
E
F
G
H
J
K
L
M
N
A
B
C
D
E
F
G
H
J
K
L
M
N
O rie nta tion Pin
1 2 3 4 5 6 7 8 9 10111213
1 2 3 4 5 6 7 8 9 10111213
ACT 2 Family FPGAs
Revision 8 3-19
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
PG132
Pin Number A1240A Function
A1 MODE
B5 GND
B6 CLKB, I/O
B7 CLKA, I/O
B8 PRA, I/O
B9 GND
B12 SDI, I/O
C3 DCLK, I/O
C5 GND
C6 PRB, I/O
C7 VCC
C9 GND
D7 VCC
E3 GND
E11 GND
E12 GND
F4 GND
G2 VCC
G3 VCC
G4 VCC
G10 VCC
G11 VCC
G12 VCC
G13 VCC
H13 GND
J2 GND
J3 GND
J11 GND
K7 VCC
K12 GND
L5 GND
L7 VCC
L9 GND
M9 GND
N12 SDO
PG132
Pin Number A1240A Function
Package Pin Assignments
3-20 Revision 8
PG176
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/docs.aspx
1
A
234567891011
B
C
D
E
F
G
H
J
K
L
176-Pin
CPGA
1234567891011
12
12
13
13
14
14
15
15
M
N
P
R
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
ACT 2 Family FPGAs
Revision 8 3-21
Notes:
1. All unlisted pin numbers are user I/Os.
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can
be terminated directly to GND.
PG176
Pin Number A1280A Function
A9 CLKA, I/O
B3 DCLK, I/O
B8 CLKB, I/O
B14 SDI, I/O
C3 MODE
C8 GND
C9 PRA, I/O
D4 GND
D5 VCC
D6 GND
D7 PRB, I/O
D8 VCC
D10 GND
D11 VCC
D12 GND
E4 GND
E12 GND
F4 VCC
F12 GND
G4 GND
G12 VCC
H2 VCC
H3 VCC
H4 GND
H12 GND
H13 VCC
H14 VCC
J4 VCC
J12 GND
J13 GND
J14 VCC
K4 GND
K12 GND
L4 GND
M4 GND
M5 VCC
M6 GND
M8 GND
M10 GND
M11 VCC
M12 GND
N8 VCC
P13 SDO
PG176
Pin Number A1280A Function
Revision 8 4-1
4 – Dat asheet Information
List of Changes
The following table lists critical changes that were made in each version of the datasheet.
Revision Changes Page
Revision 8
(January 2012)
The ACT 2 datasheet was formatted newly in the style used for current datasheets.
The same information is present (other than noted in the list of changes for this
revision) but divided into chapters.
N/A
Package names used in Table 1 • ACT 2 Product Family Profile and throughout the
document were revised to match standards given in Package Mechanical Drawings
(SAR 27395).
I
The description for SDO pins had earlier been removed from the datasheet and has
now been included again, in the "Pin Descriptions" section (SAR 35819).
2-21
SDO pin numbers had earlier been removed from package pin assignment tables in
the datasheet, and have now been restored to the pin tables (SAR 35819).
3-2
Revision 7
(June 2006)
The "Ordering Information" section was revised to include RoHS information. II
Revision 6
(December 2000)
In the "PG176" package, pin A3 was incorrectly assigned as CLKA, I/O. A3 is a user
I/O. Pin A9 is CLKA, I/O.
3-21
Datasheet Information
4-2 Revision 8
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheet parameters are published before
data has been fully characterized from silicon devices. The data provided for a given device is
designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these
categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general
product information. This document gives an overview of specific device and family information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production. This label only applies to the
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not
been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is
believed to be correct, but changes are possible.
Production
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations (EAR).
They could require an approved export license prior to export from the United States. An export includes
release of product or disclosure of technology to a foreign national inside or outside the United States.
Safety Critical, Life Support, and High-Reliability Applications
Policy
The products described in this advance status document may not have completed the Microsemi
qualification process. Products may be amended or enhanced during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the responsibility of
each customer to ensure the fitness of any product (but especially a new product) for a particular
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating
to life-support applications. A reliability report covering all of the SoC Products Group’s products is
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for
additional reliability information.
5172104-8/1.12
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996