This is information on a product in full production.
January 2015 DocID027114 Rev 2 1/88
STM32F070xB STM32F070x6
ARM®-based 32-bit MCU, up to 128 KB Flash, USB FS 2.0,
11 timers, ADC, communication interfaces, 2.4 - 3.6 V
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M0 CPU,
frequency up to 48 MHz
Memories
32 to 128 Kbytes of Flash memory
6 to 16 Kbytes of SRAM with HW parity
CRC calculation unit
Reset and power management
Digital & I/Os supply: VDD = 2.4 V to 3.6 V
Analog supply: VDDA = VDD to 3.6 V
Power-on/Power down reset (POR/PDR)
Low power modes: Sleep, Stop, Standby
Clock management
4 to 32 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
Internal 8 MHz RC with x6 PLL option
Internal 40 kHz RC oscillator
Up to 51 fast I/Os
All mappable on external interrupt vectors
Up to 5155 I/Os with 5V tolerant capability
5-channel DMA controller
One 12-bit, 1.0 μs ADC (up to 16 channels)
Conversion range: 0 to 3.6 V
Separate analog supply: 2.4 V to 3.6 V
Calendar RTC with alarm and periodic wakeup
from Stop/Standby
11 timers
One 16-bit advanced-control timer for
six-channel PWM output
Up to seven 16-bit timers, with up to four
IC/OC, OCN, usable for IR control
decoding
Independent and system watchdog timers
SysTick timer
Communication interfaces
Up to two I2C interfaces
one supporting Fast Mode Plus
(1 Mbit/s) with 20 mA current sink,
one supporting SMBus/PMBus.
Up to four USARTs supporting master
synchronous SPI and modem control; one
with auto baud rate detection
Up to two SPIs (18 Mbit/s) with 4 to 16
programmable bit frames
USB 2.0 full-speed interface with BCD and
LPM support
Serial wire debug (SWD)
All packages ECOPACK®2
Table 1. Device summary
Reference Part number
STM32F070xB STM32F070CB, STM32F070RB
STM32F070x6 STM32F070C6, STM32F070F6
LQFP64 10x10 mm
LQFP48 7x7 mm
TSSOP20
www.st.com
Contents STM32F070xB STM32F070x6
2/88 DocID027114 Rev 2
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . 12
3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13
3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16
3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16
3.10 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.11 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.2 General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 19
3.11.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Universal synchronous/asynchronous receiver transmitters (USART) . . 22
DocID027114 Rev 2 3/88
STM32F070xB STM32F070x6 Contents
4
3.15 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 41
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 42
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Contents STM32F070xB STM32F070x6
4/88 DocID027114 Rev 2
6.3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DocID027114 Rev 2 5/88
STM32F070xB STM32F070x6 List of tables
6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F070xB/6 family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 7. STM32F070xB/6 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 8. STM32F070xB/6 USART implementationF070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 9. STM32F070xB/6 SPI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 10. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 11. STM32F070xB/6 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 12. Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 31
Table 13. Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 32
Table 14. Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 33
Table 15. Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 33
Table 16. Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 33
Table 17. STM32F070xB/6 peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 18. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 19. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 20. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 21. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 22. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 23. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 24. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 43
Table 26. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 44
Table 27. Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 44
Table 28. Typical current consumption in Run mode, code with data processing
running from Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Table 29. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 30. Low-power mode wakeup timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 31. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 32. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 33. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 35. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 36. HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 37. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 38. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 39. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 40. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 41. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 42. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 43. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 44. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 45. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 46. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 47. Output voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
List of tables STM32F070xB STM32F070x6
6/88 DocID027114 Rev 2
Table 48. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 49. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 50. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 51. RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 52. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 53. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 54. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 55. IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 56. WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 57. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 58. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 59. USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 60. LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 77
Table 61. LQFP48 - 7 mm x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 80
Table 62. TSSOP20 - 20-pin thin shrink small outline package mechanical data . . . . . . . . . . . . . . . 83
Table 63. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Table 64. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 65. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DocID027114 Rev 2 7/88
STM32F070xB STM32F070x6 List of figures
7
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. LQFP64 64-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 4. LQFP48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5. TSSOP20 20-pin package pinout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 6. STM32F070xB/6 memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 7. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 8. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 9. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 10. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 11. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 12. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 13. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 14. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 15. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Figure 16. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 17. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 18. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 19. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 20. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 21. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 22. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 23. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 24. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 77
Figure 25. LQFP64 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 26. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 27. LQFP48 - 7 mm x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 80
Figure 28. LQFP48 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 29. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 30. TSSOP20 - 20-pin thin shrink small outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 31. TSSOP20 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 32. TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Introduction STM32F070xB STM32F070x6
8/88 DocID027114 Rev 2
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F070xB/6 microcontrollers.
This document should be read in conjunction with the STM32F0x0xx reference manual
(RM0360). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the ARM® Cortex®-M0 core, please refer to the Cortex®-M0 Technical
Reference Manual, available from the www.arm.com website.
DocID027114 Rev 2 9/88
STM32F070xB STM32F070x6 Description
23
2 Description
The STM32F070xB/6 microcontrollers incorporate the high-performance ARM® Cortex®-
M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up
to 128 Kbytes of Flash memory and up to 16 Kbytes of SRAM), and an extensive range of
enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to
two I2Cs, up to two SPIs and up to four USARTs), one USB Full speed device, one 12-bit
ADC, seven general-purpose 16-bit timers and an advanced-control PWM timer.
The STM32F070xB/6 microcontrollers operate in the -40 to +85 °C temperature range from
a 2.4 to 3.6V power supply. A comprehensive set of power-saving modes allows the design
of low-power applications.
The STM32F070xB/6 microcontrollers include devices in three different packages ranging
from 20 pins to 64 pins. Depending on the device chosen, different sets of peripherals are
included. The description below provides an overview of the complete range of
STM32F070xB/6 peripherals proposed.
These features make the STM32F070xB/6 microcontrollers suitable for a wide range of
applications such as application control and user interfaces, handheld equipment, A/V
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,
PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.
Description STM32F070xB STM32F070x6
10/88 DocID027114 Rev 2
Table 2. STM32F070xB/6 family device features and peripheral counts
Peripheral STM32F070F6 STM32F070C6 STM32F070CB STM32F070RB
Flash (Kbytes) 32 128
SRAM (Kbytes) 6 16
Timers
Advanced
control 1 (16-bit)
General
purpose 4 (16-bit) 5 (16-bit)
Basic - 2 (16-bit)
Comm.
interfaces
SPI 1 2
I2C1 2
USART 2 4
USB 1
12-bit ADC
(number of channels)
1
(9 ext. + 3 int.)
1
(10 ext. + 3 int.)
1
(10 ext. + 3 int.)
1
(16 ext. + 3 int.)
GPIOs 15 37 37 51
Max. CPU frequency 48 MHz
Operating voltage 2.4 to 3.6 V
Operating temperature Ambient operating temperature: -40°C to 85°C
Junction temperature: -40°C to 105°C
Packages TSSOP20 LQFP48 LQFP48 LQFP64
DocID027114 Rev 2 11/88
STM32F070xB STM32F070x6 Description
23
Figure 1. Block diagram
06Y9
FKDQQHOV
FRPSO&KDQQHOV
%5.(75LQSXWDV$)
FK(75DV$)
FKDQQHODV$)
FKDQQHOV
FRPSO%5.DV$)
FKDQQHO
FRPSO%5.DV$)
FKDQQHO
FRPSO%5.DV$)
,5B287DV$)
5;7;&76576
&.DV$)
5;7;&76576
&.DV$)
6&/6'$60%$
P$IRU)0
DV$)
6&/6'$DV$)
#9'',2
#9''$
$+%3&/.
$3%3&/.
$'&&/.
86$57&/.
+&/.
)&/.
&(&&/.
3$>@
3%>@
3&>@3&>@
3'
3)>@
#9''$
$)
026,6'
0,620&.
6&.&.
166:6DV$)
#9''$
9''$
966$
*3'0$
FKDQQHOV
&257(;0&38
I0$; 0+]
6HULDO:LUH
'HEXJ
19,&
*3,2SRUW$
*3,2SRUW%
*3,2SRUW&
*3,2SRUW)
(;7,7
:.83
63,
63,
6<6&)*,)
7,0(5
'%*0&8
:,QGRZ:'*
$3%
$+%
&5&
5(6(7
&/2&.
&21752/
3:07,0(5
7,0(5
7,0(5
7,0(5
7,0(5
7,0(5
86$57
86$57
,&
,&
3RZHU
&RQWUROOHU
;7$/26&
0+]
,QG:LQGRZ:'*
6833/<
683(59,6,21
3253'5
32:(5
92/75(*
9WR9
5&+60+]
5&+60+]
5&/6
3//
)ODVK
LQWHUIDFH
)ODVK*3/
8SWR.%
ELWV
2EO
65$0
8SWR
.%
65$0
FRQWUROOHU
7HPS
VHQVRU
,)
ELW
$'&
6:&/.
6:',2
DV$)

$'LQSXWV
$+%
GHFRGHU
%XVPDWUL[
#9''$
#9'',2
9''
325
5HVHW
,QW
9'',2 WR9
966
1567
9''$
966$
26&B,13)
26&B2873)
26&B,1
26&B287
7$03(557&
$/$50287
57&
57&LQWHUIDFH
;7$/N+]
#96:
7,0(5
*3,2SRUW'
86%
3+<
'' 86%
#9''86%
86%&/.
9''86%2.,1
65$0
%
65$0
%
026,6'
0,620&.
6&.&.
166:6DV$)
>ĞŐĞŶĚ 6XSSOLHGE\9''$ 6XSSOLHGE\9''
5;7;&76576
&.DV$)
86$57
5;7;&76576
&.DV$)
86$57
Functional overview STM32F070xB STM32F070x6
12/88 DocID027114 Rev 2
3 Functional overview
3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM
The ARM® Cortex®-M0 processor is the latest generation of ARM processors for
embedded systems. It has been developed to provide a low-cost platform that meets the
needs of MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced system response to
interrupts.
The ARM® Cortex®-M0 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The STM32F0xx family has an embedded ARM core and is therefore compatible with all
ARM tools and software.
Figure 1 shows the general block diagram of the device family.
3.2 Memories
The device has the following features:
6 to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0
wait states and featuring embedded parity checking with exception generation for fail-
critical applications.
The non-volatile memory is divided into two arrays:
32 to 128 Kbytes of embedded Flash memory for programs and data
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (Cortex®-M0 serial wire) and
boot in RAM selection disabled
3.3 Boot modes
At startup, the boot pin and boot selector option bit are used to select one of the three boot
options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART on pins PA14/PA15 or PA9/PA10.
DocID027114 Rev 2 13/88
STM32F070xB STM32F070x6 Functional overview
23
3.4 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
3.5 Power management
3.5.1 Power supply schemes
VDD = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.
VDDA = from VDD to 3.6 V: external analog power supply for ADC, Reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). The
VDDA voltage level must be always greater or equal to the VDD voltage level and must
be provided first.
For more details on how to connect power pins, refer to Figure 9: Power supply scheme.
3.5.2 Power supply supervisors
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
3.5.3 Voltage regulator
The regulator has two operating modes and it is always enabled after reset.
Main (MR) is used in normal operating mode (Run).
Low power (LPR) can be used in Stop mode where the power demand is reduced.
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high
impedance and the kernel circuitry is powered down, inducing zero consumption (but the
contents of the registers and SRAM are lost).
Functional overview STM32F070xB STM32F070x6
14/88 DocID027114 Rev 2
3.5.4 Low-power modes
The STM32F070xB/6 microcontrollers support three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled. The voltage regulator can also be put either in
normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line
source can be one of the 16 external lines and RTC.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the RTC
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pins, or an RTC event occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.6 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the application to configure the frequency of the AHB and the APB
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
DocID027114 Rev 2 15/88
STM32F070xB STM32F070x6 Functional overview
23
Figure 2. Clock tree
3.7 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
The I/O configuration can be locked if needed following a specific sequence in order to
avoid spurious writing to the I/Os registers.

0+]
+6(26&
26&B,1
26&B287
26&B,1
26&B287
0+]
+6,5&
WR,:'*
3//
[[
[
3//08/
0&2
0DLQFORFN
RXWSXW
$+%

3//&/.
+6,
+6(
$3%
SUHVFDOHU

+&/.
3//&/.
WR$+%EXVFRUH
PHPRU\DQG'0$
WR$'&
FORFNLQSXW
/6(
/6,
+6,
+6,
+6(
WR57&
3//65&
6:
0&2

6<6&/.
57&&/.
57&6(/>@
6<6&/.
WR7,0

,I$3%SUHVFDOHU
[HOVH[
)/,7)&/.
WR)ODVK
+6,
0+]
+6,5&
+6,
WR,&
6<6&/.
+6,
3&/.
WRFRUWH[6\VWHPWLPHU
)&/.&RUWH[IUHHUXQQLQJFORFN
WR$3%SHULSKHUDOV
$+%
SUHVFDOHU

&66


/6(26&
N+]
/6,5&
N+]
/6,
/6(
35(',9


3//12',9
SURJUDPPLQJLQWHUIDFH
WR86%
0&235(
WR7,0
DV\QFKURQRXV
069
WR86$57
3&/.
6<6&/.
+6,
/6(
Functional overview STM32F070xB STM32F070x6
16/88 DocID027114 Rev 2
3.8 Direct memory access controller (DMA)
The 5-channel general-purpose DMA manages memory-to-memory, peripheral-to-memory
and memory-to-peripheral transfers.
The DMA supports circular buffer management, removing the need for user code
intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except
TIM14) and ADC.
3.9 Interrupts and events
3.9.1 Nested vectored interrupt controller (NVIC)
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M0) and 4
priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.9.2 Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 32 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 51
GPIOs can be connected to the 16 external interrupt lines.
DocID027114 Rev 2 17/88
STM32F070xB STM32F070x6 Functional overview
23
3.10 Analog to digital converter (ADC)
The 12-bit analog to digital converter has up to 16 external and two internal (temperature
sensor, voltage reference measurement) channels and performs conversions in single-shot
or scan modes. In scan mode, automatic conversion is performed on a selected group of
analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
3.10.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.10.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage
of VREFINT is individually measured for each part by ST during production test and stored in
the system memory area. It is accessible in read-only mode.
Table 3. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (±5 °C),
VDDA= 3.3 V (±10 mV)
0x1FFF F7B8 - 0x1FFF F7B9
Table 4. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at a
temperature of 30 °C (±5 °C),
VDDA= 3.3 V (±10 mV)
0x1FFF F7BA - 0x1FFF F7BB
Functional overview STM32F070xB STM32F070x6
18/88 DocID027114 Rev 2
3.11 Timers and watchdogs
The STM32F070xB/6 devices include up to six general-purpose timers, two basic timers
and one advanced control timer.
Table 5 compares the features of the different timers.
Table 5. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA request
generation
Capture/compare
channels
Complementary
outputs
Advanced
control TIM1 16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes 4 Yes
General
purpose
TIM3 16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes 4 No
TIM14 16-bit Up
Any integer
between 1
and 65536
No 1 No
TIM15(1) 16-bit Up
Any integer
between 1
and 65536
Yes 2 No
TIM16,
TIM17 16-bit Up
Any integer
between 1
and 65536
Yes 1 Yes
Basic TIM6,(1)
TIM7(1) 16-bit Up
Any integer
between 1
and 65536
Yes 0 No
1. Not available on STM32F070x6 devices.
DocID027114 Rev 2 19/88
STM32F070xB STM32F070x6 Functional overview
23
3.11.1 Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six
channels. It has complementary PWM outputs with programmable inserted dead times. It
can also be seen as a complete general-purpose timer. The four independent channels can
be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes)
One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same
architecture. The advanced control timer can therefore work together with the other timers
via the Timer Link feature for synchronization or event chaining.
3.11.2 General-purpose timers (TIM3, TIM14..17)
There are five synchronizable general-purpose timers embedded in the STM32F070xB/6
devices (see Table 5 for differences). Each general-purpose timer can be used to generate
PWM outputs, or as simple time base.
TIM3
STM32F070xB/6 devices feature one synchronizable 4-channel general-purpose timer.
TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. It features
four independent channels each for input capture/output compare, PWM or one-pulse mode
output. This gives up to 12 input captures/output compares/PWMs on the largest packages.
The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the
Timer Link feature for synchronization or event chaining.
TIM3 has an independent DMA request generation.
This timer is capable of handling quadrature (incremental) encoder signals and the digital
outputs from 1 to 3 hall-effect sensors.
The counter can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse
mode output.
Its counter can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
Functional overview STM32F070xB STM32F070x6
20/88 DocID027114 Rev 2
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate
withTIM1 via the Timer Link feature for synchronization or event chaining.
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and
independent DMA request generation.
Their counters can be frozen in debug mode.
3.11.3 Basic timers TIM6 and TIM7
These timers can be used as a generic 16-bit time base.
3.11.4 Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it
operates independently from the main clock, it can operate in Stop and Standby modes. It
can be used either as a watchdog to reset the device when a problem occurs, or as a free
running timer for application timeout management. It is hardware or software configurable
through the option bytes. The counter can be frozen in debug mode.
3.11.5 System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the
counter can be frozen in debug mode.
3.11.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source (HCLK or HCLK/8)
DocID027114 Rev 2 21/88
STM32F070xB STM32F070x6 Functional overview
23
3.12 Real-time clock (RTC)
The RTC is an independent BCD timer/counter. Its main features are the following:
Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
Programmable alarm with wake up from Stop and Standby mode capability.
Periodic wakeup unit with programmable resolution and period.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize the RTC with a master clock.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
Tow anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 40 kHz)
The high-speed external clock divided by 32
3.13 Inter-integrated circuit interfaces (I2C)
Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both
can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also
supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two
addresses, one with configurable mask). They also include programmable analog and
digital noise filters.
Table 6. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2C peripheral clocks
Benefits Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks Variations depending on
temperature, voltage, process -
Functional overview STM32F070xB STM32F070x6
22/88 DocID027114 Rev 2
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management.
The I2C interfaces can be served by the DMA controller.
Refer to Table 7 for the differences between I2C1 and I2C2.
3.14 Universal synchronous/asynchronous receiver transmitters
(USART)
The device embeds up to four universal synchronous/asynchronous receiver transmitters
(USART1, USART2 and USART3, USART4 on STM32F070xB devices only), which
communicate at speeds of up to 6 Mbit/s.
They provide hardware management of the CTS and RTS signals, multiprocessor
communication mode, master synchronous communication and single-wire half-duplex
communication mode. USART1 supports also the auto baud rate feature.
The USART interfaces can be served by the DMA controller.
Table 7. STM32F070xB/6 I2C implementation
I2C features(1)
1. X = supported.
I2C1 I2C2(2)
2. Only available on STM32F070xB devices.
7-bit addressing mode X X
10-bit addressing mode X X
Standard mode (up to 100 kbit/s) X X
Fast mode (up to 400 kbit/s) X X
Fast Mode Plus (up to 1 Mbit/s) with 20mA output drive I/Os X -
Independent clock X -
SMBus X -
Wakeup from STOP - -
Table 8. STM32F070xB/6 USART implementationF070(1)
1. Where X means supported.
USART modes/features USART1 and USART2 USART3(2)and USART4(2)
2. Not available on STM32F070x6 devices.
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode X X
Single-wire half-duplex communication X X
Receiver timeout interrupt X -
Auto baud rate detection X -
DocID027114 Rev 2 23/88
STM32F070xB STM32F070x6 Functional overview
23
3.15 Serial peripheral interface (SPI)
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-
duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
SPI1 and SPI2 are identical and implement the set of features shown in the following table.
3.16 Universal serial bus (USB)
The STM32F070xB/6 embeds a full-speed USB device peripheral compliant with the USB
specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP
pull-up and also battery charging detection according to Battery Charging Specification
Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with
added support for USB 2.0 Link Power Management. It has software-configurable endpoint
setting with packet memory up-to 1 KB and suspend/resume support. It requires a precise
48 MHz clock which can be generated from the internal main PLL (the clock source must
use an HSE crystal oscillator).
3.17 Serial wire debug port (SW-DP)
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected
to the MCU.
Table 9. STM32F070xB/6 SPI implementation
SPI features(1)
1. X = supported.
SPI1 SPI2(2)
2. Available on STM32F070xB only.
Hardware CRC calculation X X
Rx/Tx FIFO X X
NSS pulse mode X X
TI mode X X
Pinouts and pin descriptions STM32F070xB STM32F070x6
24/88 DocID027114 Rev 2
4 Pinouts and pin descriptions
Figure 3. LQFP64 64-pin package pinout (top view)
              
















             











9''
3&26&B,1
3)26&B,1
1567
3&
3&
3&
3&
966$
9''$
3$
3$
3$
9''
3%
3%
%227
3%
3%
3%
3%
3%
3'
3& 
3& 
3& 
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3$
966
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
3%
/4)3
3&
9''
966
9''
966
3)26&B287
3&26&B287
069
DocID027114 Rev 2 25/88
STM32F070xB STM32F070x6 Pinouts and pin descriptions
30
Figure 4. LQFP48 48-pin package pinout (top view)
Figure 5. TSSOP20 20-pin package pinout (top view)
069
      















         






  
/4)3
3$
3$
3$
3$
3$
3%
3%
3%
3%
3%
966
9''
9''
966
3$
3$
3$
3$
3$
3$
3%
3%
3%
3%
9''
1567
966$
9''$
3$
3$
3$
9''
966
3%
3%
%227
3%
3%
3%
3%
3%
3$
3$
3&
3&26&B,1
3)26&B,1
3)26&B287
3&26&B287

 








3)26&B,1
%227
3)26&B287
1567
9''$
3$
9''
3$
3$
3$
3%
966
3$
3$
3$
3$ 3$
3$
3$>3$@
3$>3$@
069
Pinouts and pin descriptions STM32F070xB STM32F070x6
26/88 DocID027114 Rev 2
Table 10. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, FM+ capable
TTa 3.3 V tolerant I/O directly connected to ADC
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset.
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 11. STM32F070xB/6 pin definitions
Pin numbers
Pin name
(function after
reset)
Pin
type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
TSSOP20
Alternate functions Additional functions
1 1 - VDD S Digital power supply
2 2 - PC13 I/O TC
(1)
(2) -
WKUP2,
RTC_TAMP1,
RTC_TS,
RTC_OUT
33-
PC14-OSC32_IN
(PC14) I/O TC
(1)
(2) - OSC32_IN
44-
PC15-
OSC32_OUT
(PC15)
I/O TC
(1)
(2) - OSC32_OUT
552 PF0-OSC_IN
(PF0) I/O FT I2C1_SDA(3) OSC_IN
663
PF1-OSC_OUT
(PF1) I/O FT I2C1_SCL(3) OSC_OUT
7 7 4 NRST I/O RST Device reset input / internal reset output (active low)
DocID027114 Rev 2 27/88
STM32F070xB STM32F070x6 Pinouts and pin descriptions
30
8 - - PC0 I/O TTa EVENTOUT ADC_IN10
9 - - PC1 I/O TTa EVENTOUT ADC_IN11
10 - - PC2 I/O TTa SPI2_MISO, EVENTOUT ADC_IN12
11 - - PC3 I/O TTa SPI2_MOSI, EVENTOUT ADC_IN13
12 8 - VSSA S Analog ground
13 9 5 VDDA S Analog power supply
14 10 6 PA0 I/O TTa (4) USART2_CTS,
USART4_TX
RTC_ TAMP2,
WKUP1, ADC_IN0,
15 11 7 PA1 I/O TTa (4)
USART2_RTS,
TIM15_CH1N,
USART4_RX, EVENTOUT
ADC_IN1
16 12 8 PA2 I/O TTa (4) USART2_TX, TIM15_CH1 ADC_IN2, WKUP4
17 13 9 PA3 I/O TTa (4) USART2_RX, TIM15_CH2 ADC_IN3
18 - 15 VSS S Ground
19 - 16 VDD S Digital power supply
20 14 20 PA4 I/O TTa
SPI1_NSS, TIM14_CH1,
USART2_CK,
USB_NOE(3)
ADC_IN4
21 15 11 PA5 I/O TTa SPI1_SCK ADC_IN5
22 16 12 PA6 I/O TTa (4)
SPI1_MISO, TIM3_CH1,
TIM1_BKIN,
TIM16_CH1, EVENTOUT,
USART3_CTS
ADC_IN6
23 17 13 PA7 I/O TTa
SPI1_MOSI, TIM3_CH2,
TIM14_CH1,
TIM1_CH1N, TIM17_CH1,
EVENTOUT
ADC_IN7
24 - - PC4 I/O TTa (4) EVENTOUT, USART3_TX ADC_IN14
25 - - PC5 I/O TTa (4) USART3_RX ADC_IN15, WKUP5
26 18 - PB0 I/O TTa (4)
TIM3_CH3, TIM1_CH2N,
EVENTOUT,
USART3_CK
ADC_IN8
27 19 14 PB1 I/O TTa (4)
TIM3_CH4,
USART3_RTS,
TIM14_CH1, TIM1_CH3N
ADC_IN9
28 20 - PB2 I/O FT - -
29 21 - PB10 I/O FT (4) SPI2_SCK, USART3_TX -
Table 11. STM32F070xB/6 pin definitions (continued)
Pin numbers
Pin name
(function after
reset)
Pin
type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
TSSOP20
Alternate functions Additional functions
Pinouts and pin descriptions STM32F070xB STM32F070x6
28/88 DocID027114 Rev 2
30 22 - PB11 I/O FT (4) USART3_RX,
EVENTOUT, I2C2_SDA -
31 23 - VSS S Ground
32 24 - VDD S Digital power supply
33 25 - PB12 I/O FT (4)
TIM1_BKIN, TIM15_BKIN,
SPI2_NSS, EVENTOUT,
USART3_CK
-
34 26 - PB13 I/O FTf (4)
SPI2_SCK, I2C2_SCL,
TIM1_CH1N,
USART3_CTS
-
35 27 - PB14 I/O FTf (4)
SPI2_MISO, I2C2_SDA,
TIM1_CH2N, TIM15_CH1,
USART3_RTS
-
36 28 - PB15 I/O FT (4)
SPI2_MOSI, TIM1_CH3N,
TIM15_CH1N,
TIM15_CH2
WKUP7,
RTC_REFIN
37 - - PC6 I/O FT TIM3_CH1 -
38 - - PC7 I/O FT TIM3_CH2 -
39 - - PC8 I/O FT TIM3_CH3 -
40 - - PC9 I/O FT TIM3_CH4 -
41 29 - PA8 I/O FT USART1_CK, TIM1_CH1,
EVENTOUT, MCO -
42 30 17 PA9 I/O FT (4)
USART1_TX, TIM1_CH2,
TIM15_BKIN,
I2C1_SCL(3)
-
43 31 18 PA10 I/O FT
USART1_RX, TIM1_CH3,
TIM17_BKIN,
I2C1_SDA(3)
-
44 32 17(5) PA11 I/O FT USART1_CTS,
TIM1_CH4, EVENTOUT USB_DM
45 33 18(5) PA12 I/O FT USART1_RTS,
TIM1_ETR, EVENTOUT USB_DP
46 34 19 PA13 I/O FT (6) IR_OUT, SWDIO,
USB_NOE -
47 35 - VSS S Ground
48 36 - VDD S Digital power supply
49 37 20 PA14 I/O FT USART2_TX, SWCLK -
Table 11. STM32F070xB/6 pin definitions (continued)
Pin numbers
Pin name
(function after
reset)
Pin
type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
TSSOP20
Alternate functions Additional functions
DocID027114 Rev 2 29/88
STM32F070xB STM32F070x6 Pinouts and pin descriptions
30
50 38 - PA15 I/O FT (4)
SPI1_NSS, USART2_RX,
USART4_RTS,
EVENTOUT
-
51 - - PC10 I/O FT (4) USART3_TX,
USART4_TX -
52 - - PC11 I/O FT (4) USART3_RX,
USART4_RX -
53 - - PC12 I/O FT (4) USART3_CK,
USART4_CK -
54 - - PD2 I/O FT (4) TIM3_ETR,
USART3_RTS -
55 39 - PB3 I/O FT SPI1_SCK, EVENTOUT -
56 40 - PB4 I/O FT SPI1_MISO, TIM17_BKIN,
TIM3_CH1, EVENTOUT -
57 41 - PB5 I/O FT (4)
SPI1_MOSI, I2C1_SMBA,
TIM16_BKIN,
TIM3_CH2
WKUP6
58 42 - PB6 I/O FTf I2C1_SCL, USART1_TX,
TIM16_CH1N -
59 43 - PB7 I/O FTf (4)
I2C1_SDA, USART1_RX,
USART4_CTS,
TIM17_CH1N
-
60 44 1 BOOT0 I B Boot memory selection
61 45 - PB8 I/O FTf I2C1_SCL, TIM16_CH1 -
62 46 - PB9 I/O FTf (4)
SPI2_NSS, I2C1_SDA,
IR_OUT,
TIM17_CH1, EVENTOUT
-
63 47 - VSS S Ground
64 48 - VDD S Digital power supply
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the
content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to
the RTC domain and RTC register descriptions in the reference manual.
3. Available on STM32F070x6 devices only.
4. TIM15, I2C2, WKUP4, WKUP5, WKUP6, WKUP7, SPI2, USART3 and USART4 are available on STM32F070xB devices
only.
5. On STM32F070x6 devices, pin pair PA11/12 can be remapped instead of pin pair PA9/10 using SYSCFG_CFGR1 register.
Table 11. STM32F070xB/6 pin definitions (continued)
Pin numbers
Pin name
(function after
reset)
Pin
type
I/O structure
Notes
Pin functions
LQFP64
LQFP48
TSSOP20
Alternate functions Additional functions
Pinouts and pin descriptions STM32F070xB STM32F070x6
30/88 DocID027114 Rev 2
6. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO
pin and the internal pull-down on the SWCLK pin are activated.
STM32F070xB STM32F070x6
DocID027114 Rev 2 31/88
Table 12. Alternate functions selected through GPIOA_AFR registers for port A
Pin
name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PA0 - USART2_CTS - - USART4_TX(1)
1. Available on STM32F070xB devices only.
---
PA1 EVENTOUT USART2_RTS - - USART4_RX(1) TIM15_CH1N(1) --
PA2 TIM15_CH1(1) USART2_TX - - - - - -
PA3 TIM15_CH2(1) USART2_RX - - - - - -
PA4 SPI1_NSS USART2_CK USB_NOE(2)
2. Available on STM32F070x6 devices only.
- TIM14_CH1 - - -
PA5 SPI1_SCK - - - - - - -
PA6 SPI1_MISO TIM3_CH1 TIM1_BKIN - USART3_CTS(1) TIM16_CH1 EVENTOUT -
PA7 SPI1_MOSI TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 EVENTOUT -
PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - - - -
PA9 TIM15_BKIN(1) USART1_TX TIM1_CH2 - I2C1_SCL (2) ---
PA10 TIM17_BKIN USART1_RX TIM1_CH3 - I2C1_SDA (2) ---
PA11 EVENTOUT USART1_CTS TIM1_CH4 - - - - -
PA12 EVENTOUT USART1_RTS TIM1_ETR - - - - -
PA13 SWDIO IR_OUT USB_NOE - - - - -
PA14 SWCLK USART2_TX - - - - - -
PA15 SPI1_NSS USART2_RX - EVENTOUT USART4_RTS(1) ---
STM32F070xB STM32F070x6
32/88 DocID027114 Rev 2
Table 13. Alternate functions selected through GPIOB_AFR registers for port B
Pin name AF0 AF1 AF2 AF3 AF4 AF5
PB0 EVENTOUT TIM3_CH3 TIM1_CH2N - USART3_CK(1)
1. Available on STM32F070xB devices only.
-
PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N - USART3_RTS(1) -
PB2 - - - - - -
PB3 SPI1_SCK EVENTOUT - - - -
PB4 SPI1_MISO TIM3_CH1 EVENTOUT - - TIM17_BKIN
PB5 SPI1_MOSI TIM3_CH2 TIM16_BKIN I2C1_SMBA - -
PB6 USART1_TX I2C1_SCL TIM16_CH1N - - -
PB7 USART1_RX I2C1_SDA TIM17_CH1N - USART4_CTS(1) -
PB8 - I2C1_SCL TIM16_CH1 - - -
PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT - SPI2_NSS(1)
PB10 - I2C2_SCL(1) - - USART3_TX(1) SPI2_SCK(1)
PB11 EVENTOUT I2C2_SDA(1) - - USART3_RX(1) -
PB12 SPI2_NSS(1) EVENTOUT TIM1_BKIN - USART3_CK(1) TIM15_BKIN(1)
PB13 SPI2_SCK(1) - TIM1_CH1N - USART3_CTS(1) I2C2_SCL(1)
PB14 SPI2_MISO(1) TIM15_CH1 TIM1_CH2N - USART3_RTS(1) I2C2_SDA(1)
PB15 SPI2_MOSI(1) TIM15_CH2 TIM1_CH3N TIM15_CH1N(1) --
DocID027114 Rev 2 33/88
STM32F070xB STM32F070x6
33
Table 14. Alternate functions selected through GPIOC_AFR registers for port C
Pin name AF0(1) AF1(1)
PC0 EVENTOUT(1) -
PC1 EVENTOUT(1) -
PC2 EVENTOUT(1) SPI2_MISO(1)
PC3 EVENTOUT(1) SPI2_MOSI(1)
PC4 EVENTOUT(1) USART3_TX(1)
1. Available on STM32F070xB devices only.
PC5 - USART3_RX(1)
PC6 TIM3_CH1(1) -
PC7 TIM3_CH2(1) -
PC8 TIM3_CH3(1) -
PC9 TIM3_CH4(1) -
PC10 USART4_TX(1) USART3_TX(1)
PC11 USART4_RX(1) USART3_RX(1)
PC12 USART4_CK(1) USART3_CK(1)
PC13 - -
PC14 - -
PC15 - -
Table 15. Alternate functions selected through GPIOD_AFR registers for port D
Pin name AF0(1)
1. Available on STM32F070xB devices only.
AF1(1)
PD2 TIM3_ETR(1) -
Table 16. Alternate functions selected through GPIOF_AFR registers for port F
Pin name AF0 AF1
PF0 - I2C1_SDA(1)
1. Available on STM32F070x6 devices only.
PF1 - I2C1_SCL(1)
Memory mapping STM32F070xB STM32F070x6
34/88 DocID027114 Rev 2
5 Memory mapping
Figure 6. STM32F070xB/6 memory map
5HVHUYHG
$+%
[))))))))
3HULSKHUDOV
65$0
)ODVKPHPRU\
5HVHUYHG
6\VWHPPHPRU\
2SWLRQE\WHV
&RUWH[ 0,QWHUQDO
3HULSKHUDOV
[(
069
)ODVKV\VWHPPHPRU\
RU65$0GHSHQGLQJRQ
%227FRQILJXUDWLRQ
[
[(
[&
[$
[
[
[
[
[
[
[
[)))&
[))))
[)))))))
[
5HVHUYHG
&2'(
$3%
$3%
5HVHUYHG
[
[
[
[
5HVHUYHG
[
$+%
[
UHVHUYHG
[))
[))
DocID027114 Rev 2 35/88
STM32F070xB STM32F070x6 Memory mapping
36
Table 17. STM32F070xB/6 peripheral register boundary addresses
Bus Boundary address Size Peripheral
0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved
AHB2
0x4800 1400 - 0x4800 17FF 1 KB GPIOF
0x4800 1000 - 0x4800 13FF 1 KB Reserved
0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD
0x4800 0800 - 0x4800 0BFF 1 KB GPIOC
0x4800 0400 - 0x4800 07FF 1 KB GPIOB
0x4800 0000 - 0x4800 03FF 1 KB GPIOA
0x4002 4400 - 0x47FF FFFF ~128 MB Reserved
AHB1
0x4002 3400 - 0x4002 43FF 4 KB Reserved
0x4002 3000 - 0x4002 33FF 1 KB CRC
0x4002 2400 - 0x4002 2FFF 3 KB Reserved
0x4002 2000 - 0x4002 23FF 1 KB FLASH Interface
0x4002 1400 - 0x4002 1FFF 3 KB Reserved
0x4002 1000 - 0x4002 13FF 1 KB RCC
0x4002 0400 - 0x4002 0FFF 3 KB Reserved
0x4002 0000 - 0x4002 03FF 1 KB DMA
0x4001 8000 - 0x4001 FFFF 32 KB Reserved
APB
0x4001 5C00 - 0x4001 7FFF 9 KB Reserved
0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU
0x4001 4C00 - 0x4001 57FF 3 KB Reserved
0x4001 4800 - 0x4001 4BFF 1 KB TIM17
0x4001 4400 - 0x4001 47FF 1 KB TIM16
0x4001 4000 - 0x4001 43FF 1 KB TIM15
0x4001 3C00 - 0x4001 3FFF 1 KB Reserved
0x4001 3800 - 0x4001 3BFF 1 KB USART1
0x4001 3400 - 0x4001 37FF 1 KB Reserved
0x4001 3000 - 0x4001 33FF 1 KB SPI1
0x4001 2C00 - 0x4001 2FFF 1 KB TIM1
0x4001 2800 - 0x4001 2BFF 1 KB Reserved
0x4001 2400 - 0x4001 27FF 1 KB ADC
0x4001 0800 - 0x4001 23FF 7 KB Reserved
0x4001 0400 - 0x4001 07FF 1 KB EXTI
0x4001 0000 - 0x4001 03FF 1 KB SYSCFG
0x4000 8000 - 0x4000 FFFF 32 KB Reserved
Memory mapping STM32F070xB STM32F070x6
36/88 DocID027114 Rev 2
APB
0x4000 7400 - 0x4000 7FFF 3 KB Reserved
0x4000 7000 - 0x4000 73FF 1 KB PWR
0x4000 6C00 - 0x4000 6FFF 1 KB Reserved
0x4000 6400 - 0x4000 67FF 2 KB Reserved
0x4000 6000 - 0x4000 63FF 1 KB USB RAM
0x4000 5800 - 0x4000 5BFF 1 KB I2C2(1)
0x4000 5400 - 0x4000 57FF 1 KB I2C1
0x4000 5000 - 0x4000 53FF 3 KB Reserved
0x4000 4C00 - 0x4000 4FFF 1 KB USART4(1)
0x4000 4800 - 0x4000 4BFF 1 KB USART3(1)
0x4000 4400 - 0x4000 47FF 1 KB USART2
0x4000 3C00 - 0x4000 43FF 2 KB Reserved
0x4000 3800 - 0x4000 3BFF 1 KB SPI2(1)
0x4000 3400 - 0x4000 37FF 1 KB Reserved
0x4000 3000 - 0x4000 33FF 1 KB IWDG
0x4000 2C00 - 0x4000 2FFF 1 KB WWDG
0x4000 2800 - 0x4000 2BFF 1 KB RTC
0x4000 2400 - 0x4000 27FF 1 KB Reserved
0x4000 2000 - 0x4000 23FF 1 KB TIM14
0x4000 1800 - 0x4000 1FFF 2 KB Reserved
0x4000 1400 - 0x4000 17FF 1 KB TIM7
0x4000 1000 - 0x4000 13FF 1 KB TIM6
0x4000 0800 - 0x4000 0FFF 2 KB Reserved
0x4000 0400 - 0x4000 07FF 1 KB TIM3
0x4000 0000 - 0x4000 03FF 1 KB Reserved
1. Available on STM32F070xB devices only.
Table 17. STM32F070xB/6 peripheral register boundary addresses (continued)
Bus Boundary address Size Peripheral
DocID027114 Rev 2 37/88
STM32F070xB STM32F070x6 Electrical characteristics
75
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 7.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 8.
Figure 7. Pin loading conditions Figure 8. Pin input voltage
069
0&8SLQ
& S)
069
0&8SLQ
9,1
Electrical characteristics STM32F070xB STM32F070x6
38/88 DocID027114 Rev 2
6.1.6 Power supply scheme
Figure 9. Power supply scheme
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
069
/HYHOVKLIWHU
$QDORJ5&V
3//FRPSDUDWRUV23$03

$'&'$&
.HUQHOORJLF
&38
GLJLWDO
PHPRULHV
,2ORJLF
/6(57&
:DNHXSORJLF
*3,2V
9''
287
,1
5HJXODWRU
[9''
[966
9''$
9''$
95()
95()
966$
[Q)
[)
Q)
)
DocID027114 Rev 2 39/88
STM32F070xB STM32F070x6 Electrical characteristics
75
6.1.7 Current consumption measurement
Figure 10. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics,
Table 19: Current characteristics and Table 20: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
069
9''
9''$
,''
,''$
Table 18. Voltage characteristics(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
Symbol Ratings Min Max Unit
VDD–VSS External main supply voltage -0.3 4.0 V
VDDA–VSS External analog supply voltage -0.3 4.0 V
VDD–VDDA Allowed voltage difference for VDD > V
DDA - 0.4 V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum
allowed injected current values.
Input voltage on FT and FTf pins VSS 0.3 VDDIOx + 4.0 (3)
3. VDDIOx is internally connected with VDD pin.
V
Input voltage on TTa pins VSS 0.3 4.0 V
BOOT0 0 VDDIOx + 4.0 (3) V
Input voltage on any other pin VSS 0.3 4.0 V
|ΔVDDx| Variations between different VDD power pins - 50 mV
|VSSx VSS|Variations between all the different ground
pins -50mV
VESD(HBM)
Electrostatic discharge voltage
(human body model)
see Section 6.3.12: Electrical
sensitivity characteristics
Electrical characteristics STM32F070xB STM32F070x6
40/88 DocID027114 Rev 2
Table 19. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD power lines (source)(1) 120
mA
ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) -120
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100
IIO(PIN)
Output current sunk by any I/O and control pin 25
Output current source by any I/O and control pin -25
ΣIIO(PIN)
Total output current sunk by sum of all I/Os and control pins(2) 80
Total output current sourced by sum of all I/Os and control pins(2) -80
IINJ(PIN)(3)
Injected current on FT and FTf pins -5/+0(4)
Injected current on TC and RST pin ± 5
Injected current on TTa pins(5) ± 5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by VIN > V
DDIOx while a negative injection is induced by VIN < V
SS. IINJ(PIN) must never be
exceeded. Refer to Table 18: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. On these I/Os, a positive injection is induced by VIN > V
DDA. Negative injection disturbs the analog performance of the
device. See note (2) below Table 52: ADC accuracy.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 20. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
DocID027114 Rev 2 41/88
STM32F070xB STM32F070x6 Electrical characteristics
75
6.3 Operating conditions
6.3.1 General operating conditions
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 22 are derived from tests performed under the ambient
temperature condition summarized in Table 21.
Table 21. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 48
MHz
fPCLK Internal APB clock frequency - 0 48
VDD Standard operating voltage - 2.4 3.6 V
VDDA Analog operating voltage Must have a potential equal
to or higher than VDD
2.4 3.6 V
VIN I/O input voltage
TC and RST I/O -0.3 VDDIOx+0.3
V
TTa I/O -0.3 VDDA+0.3(2)
FT and FTf I/O -0.3 5.5(2)
BOOT0 0 5.5
PD
Power dissipation at TA = 85 °C
for suffix 6 (1)
LQFP64 - 455
mW
LQFP48 - 364
TSSOP20 - 263
TA Ambient temperature for the
suffix 6 version
Maximum power dissipation -40 85
°C
Low power dissipation(2) -40 105
TJ Junction temperature range Suffix 6 version -40 105 °C
1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2:
Thermal characteristics).
Table 22. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate
-
0
μs/V
VDD fall time rate 20
tVDDA
VDDA rise time rate
-
0
VDDA fall time rate 20
Electrical characteristics STM32F070xB STM32F070x6
42/88 DocID027114 Rev 2
6.3.3 Embedded reset and power control block characteristics
The parameters given in Table 23 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
6.3.4 Embedded reference voltage
The parameters given in Table 24 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
6.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 10: Current consumption
measurement scheme.
Table 23. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPOR/PDR(1)
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
Power on/power down
reset threshold
Falling edge(2)
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.80 1.88 1.96(3)
3. Data based on characterization results, not tested in production.
V
Rising edge 1.84(3) 1.92 2.00 V
VPDRhyst PDR hysteresis - 40 - mV
tRSTTEMPO(4)
4. Guaranteed by design, not tested in production.
Reset temporization 1.50 2.50 4.50 ms
Table 24. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +85 °C 1.16 1.2 1.24(1)
1. Data based on characterization results, not tested in production.
V
tS_vrefint
ADC sampling time when
reading the internal
reference voltage
4(2)
2. Guaranteed by design, not tested in production.
-- μs
ΔVREFINT
Internal reference voltage
spread over the
temperature range
VDDA = 3 V - - 10(2) mV
TCoeff Temperature coefficient - 100(2) -100(2) ppm/°C
DocID027114 Rev 2 43/88
STM32F070xB STM32F070x6 Electrical characteristics
75
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 25 to Table 27 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6 V
Symbol
Parameter Conditions fHCLK
All peripherals enabled
Unit
Typ
Max @ TA(1)
85 °C
IDD
Supply current in
Run mode, code
executing from Flash
HSI or HSE clock, PLL on
48 MHz 24.1 27.6
mA24 MHz 12.4 14.4
HSI or HSE clock, PLL off 8 MHz 4.52 5.28
IDD
Supply current in
Run mode, code
executing from RAM
HSI or HSE clock, PLL on
48 MHz 23.1 25.0
mA24 MHz 11.5 13.6
HSI or HSE clock, PLL off 8 MHz 4.34 5.03
IDD
Supply current in
Sleep mode, code
executing from Flash
or RAM
HSI or HSE clock, PLL on
48 MHz 15.0 17.3
mA24 MHz 7.53 8.87
HSI or HSE clock, PLL off 8 MHz 2.95 3.41
1. Data based on characterization results, not tested in production unless otherwise specified.
Electrical characteristics STM32F070xB STM32F070x6
44/88 DocID027114 Rev 2
Table 26. Typical and maximum current consumption from the VDDA supply
Symbol Parameter Conditions(1) fHCLK
VDDA = 3.6 V
Unit
Typ
Max @ TA
85 °C
IDDA
Supply current in
Run or Sleep mode,
code executing from
Flash or RAM
HSE bypass, PLL on 48 MHz 165 196
μA
HSE bypass, PLL off
8 MHz 3.6 5.2
1 MHz 3.6 5.2
HSI clock, PLL on 48 MHz 245 279
HSI clock, PLL off 8 MHz 83.4 95.3
1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being
in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent from the
frequency.
Table 27. Typical and maximum consumption in Stop and Standby modes
Symbol Parameter Conditions
Typ @VDD
(VDD = VDDA)Max(1)
Unit
3.6 VT
A = 85 °C
IDD
Supply current in
Stop mode
Regulator in run mode, all oscillators OFF 15.9 49
μA
Regulator in low-power mode, all oscillators OFF 3.7 33
Supply current in
Standby mode LSI ON and IWDG ON 1.5 -
IDDA
Supply current in
Stop mode
VDDA monitoring ON
Regulator in run or low-
power mode, all
oscillators OFF
2.8 3.6
Supply current in
Standby mode
LSI ON and IWDG ON 3.5 -
LSI OFF and IWDG OFF 2.6 3.6
Supply current in
Stop mode
VDDA monitoring OFF
Regulator in run or low-
power mode, all
oscillators OFF
1.5 -
Supply current in
Standby mode
LSI ON and IWDG ON 2.2 -
LSI OFF and IWDG OFF 1.4 -
1. Data based on characterization results, not tested in production unless otherwise specified.
DocID027114 Rev 2 45/88
STM32F070xB STM32F070x6 Electrical characteristics
75
Typical current consumption
The MCU is placed under the following conditions:
VDD = VDDA = 3.3 V
All I/O pins are in analog input configuration
The Flash access time is adjusted to fHCLK frequency:
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled, fPCLK = fHCLK
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively
Table 28. Typical current consumption in Run mode, code with data processing
running from Flash
Symbol Parameter Conditions fHCLK
Typ
Unit
Peripherals
enabled
Peripherals
disabled
IDD
Supply current in Run
mode from VDD
supply
Running from
HSE crystal
clock 8 MHz,
code executing
from Flash
48 MHz 23.5 13.5
mA
8 MHz 4.8 3.1
IDDA
Supply current in Run
mode from VDDA
supply
48 MHz 163.3 163.3
μA
8 MHz 2.5 2.5
Electrical characteristics STM32F070xB STM32F070x6
46/88 DocID027114 Rev 2
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 46: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously, the I/Os
used by an application also contribute to the current consumption. When an I/O pin
switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to
charge/discharge the capacitive load (internal or external) connected to the pin:
ISW VDDIOx fSW C××=
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
DocID027114 Rev 2 47/88
STM32F070xB STM32F070x6 Electrical characteristics
75
Table 29. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS = 7 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
ISW
I/O current
consumption
VDDIOx = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
4 MHz 0.18
mA
8 MHz 0.37
16 MHz 0.76
24 MHz 1.39
48 MHz 2.188
VDDIOx = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
4 MHz 0.49
8 MHz 0.94
16 MHz 2.38
24 MHz 3.99
VDDIOx = 3.3 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
4 MHz 0.81
8 MHz 1.7
16 MHz 3.67
Electrical characteristics STM32F070xB STM32F070x6
48/88 DocID027114 Rev 2
6.3.6 Wakeup time from low-power mode
The wakeup times given in Table 30 are the latency between the event and the execution of
the first user instruction. The device goes in low-power mode after the WFE (Wait For
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles
must be added to the following timings due to the interrupt latency in the Cortex M0
architecture.
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.
During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.
The wakeup source from Standby mode is the WKUP1 pin (PA0).
All timings are derived from tests performed under the ambient temperature and supply
voltage conditions summarized in Table 21: General operating conditions.
Table 30. Low-power mode wakeup timings
Symbol Parameter Conditions
Typ @VDD =
VDDA Max Unit
= 3.3 V
tWUSTOP Wakeup from Stop mode Regulator in run mode 2.8 5
μs
tWUSTANDBY Wakeup from Standby mode - 51 -
tWUSLEEP Wakeup from Sleep mode - 4 SYSCLK
cycles -
DocID027114 Rev 2 49/88
STM32F070xB STM32F070x6 Electrical characteristics
75
6.3.7 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 11: High-speed external clock
source AC timing diagram.
Figure 11. High-speed external clock source AC timing diagram
Table 31. High-speed external user clock characteristics
Symbol Parameter(1)
1. Guaranteed by design, not tested in production.
Min Typ Max Unit
fHSE_ext User external clock source frequency - 8 32 MHz
VHSEH OSC_IN input pin high level voltage 0.7 V
DDIOx -V
DDIOx V
VHSEL OSC_IN input pin low level voltage VSS - 0.3 V
DDIOx
tw(HSEH)
tw(HSEL)
OSC_IN high or low time 15 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time - - 20
069
9+6(+
WI+6(


7+6(
W
WU+6(
9+6(/
WZ+6(+
WZ+6(/
Electrical characteristics STM32F070xB STM32F070x6
50/88 DocID027114 Rev 2
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 12.
Figure 12. Low-speed external clock source AC timing diagram
Table 32. Low-speed external user clock characteristics
Symbol Parameter(1)
1. Guaranteed by design, not tested in production.
Min Typ Max Unit
fLSE_ext User external clock source frequency - 32.768 1000 kHz
VLSEH OSC32_IN input pin high level voltage 0.7 V
DDIOx -V
DDIOx V
VLSEL OSC32_IN input pin low level voltage VSS - 0.3 V
DDIOx
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time - - 50
069
9/6(+
WI/6(


7/6(
W
WU/6(
9/6(/
WZ/6(+
WZ/6(/
DocID027114 Rev 2 51/88
STM32F070xB STM32F070x6 Electrical characteristics
75
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 33. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 13). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 33. HSE oscillator characteristics
Symbol Parameter Conditions(1)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
Min(2) Typ Max(2)
2. Guaranteed by design, not tested in production.
Unit
fOSC_IN Oscillator frequency 4 8 32 MHz
RFFeedback resistor - 200 - kΩ
IDD HSE current consumption
During startup(3)
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
- - 8.5
mA
VDD = 3.3 V,
Rm = 45 Ω,
CL = 10 pF@8 MHz
- 0.5 -
VDD = 3.3 V,
Rm = 30 Ω,
CL = 20 pF@32 MHz
- 1.5 -
gm Oscillator transconductance Startup 10 - - mA/V
tSU(HSE)(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
Electrical characteristics STM32F070xB STM32F070x6
52/88 DocID027114 Rev 2
Figure 13. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
069

26&B,1
26&B287
5)
%LDV
FRQWUROOHG
JDLQ
I+6(
5(;7
0+]
UHVRQDWRU
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
&/
DocID027114 Rev 2 53/88
STM32F070xB STM32F070x6 Electrical characteristics
75
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 34. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol Parameter Conditions(1) Min(2) Typ Max(2) Unit
IDD LSE current consumption
LSEDRV[1:0]=00
lower driving capability - 0.5 0.9
μA
LSEDRV[1:0]= 01
medium low driving capability --1
LSEDRV[1:0] = 10
medium high driving capability - - 1.3
LSEDRV[1:0]=11
higher driving capability - - 1.6
gm
Oscillator
transconductance
LSEDRV[1:0]=00
lower driving capability 5- -
μA/V
LSEDRV[1:0]= 01
medium low driving capability 8- -
LSEDRV[1:0] = 10
medium high driving capability 15 - -
LSEDRV[1:0]=11
higher driving capability 25 - -
tSU(LSE)(3) Startup time VDDIOx is stabilized - 2 - s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Electrical characteristics STM32F070xB STM32F070x6
54/88 DocID027114 Rev 2
Figure 14. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
069
26&B,1
26&B287
'ULYH
SURJUDPPDEOH
DPSOLILHU
I+6(
N+]
UHVRQDWRU
5HVRQDWRUZLWKLQWHJUDWHG
FDSDFLWRUV
&/
&/
DocID027114 Rev 2 55/88
STM32F070xB STM32F070x6 Electrical characteristics
75
6.3.8 Internal clock source characteristics
The parameters given in Table 35 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI) RC oscillator
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Table 35. HSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = -40 to 85°C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 8 - MHz
TRIM HSI user trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCyHSI Duty cycle - 45(2) -55
(2) %
ACCHSI
Accuracy of the HSI oscillator
(factory calibrated)
TA = -40 to 85°C - ±5 - %
TA = 25°C - ±1(3)
3. With user calibration.
-%
tSU(HSI) HSI oscillator startup time - 1(2) -2
(2) μs
IDDA(HSI)
HSI oscillator power
consumption - - 80 - μA
Table 36. HSI14 oscillator characteristics(1)
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI14 Frequency - 14 - MHz
TRIM HSI14 user-trimming step - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCy(HSI14) Duty cycle 45(2) -55
(2) %
ACCHSI14
Accuracy of the HSI14
oscillator (factory calibrated) TA = –40 to 85 °C - ±5 %
tsu(HSI14) HSI14 oscillator startup time 1(2) -2
(2) μs
IDDA(HSI14)
HSI14 oscillator power
consumption - 100 - μA
Electrical characteristics STM32F070xB STM32F070x6
56/88 DocID027114 Rev 2
Low-speed internal (LSI) RC oscillator
6.3.9 PLL characteristics
The parameters given in Table 38 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Table 37. LSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI Frequency 30 40 50 kHz
tsu(LSI)(2)
2. Guaranteed by design, not tested in production.
LSI oscillator startup time - - 85 μs
IDDA(LSI)(2) LSI oscillator power consumption - 0.75 - μA
Table 38. PLL characteristics
Symbol Parameter
Value
Unit
Min Typ Max
fPLL_IN
PLL input clock(1)
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the
range defined by fPLL_OUT
.
1(2) 8.0 24(2) MHz
PLL input clock duty cycle 40(2) -60
(2) %
fPLL_OUT PLL multiplier output clock 16(2) - 48 MHz
tLOCK PLL lock time - - 200(2)
2. Guaranteed by design, not tested in production.
μs
JitterPLL Cycle-to-cycle jitter - - 300(2) ps
DocID027114 Rev 2 57/88
STM32F070xB STM32F070x6 Electrical characteristics
75
6.3.10 Memory characteristics
Flash memory
The characteristics are given at TA = -40 to 85 °C unless otherwise specified.
6.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 41. They are based on the EMS levels and classes
defined in application note AN1709.
Table 39. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Guaranteed by design, not tested in production.
Unit
tprog 16-bit programming time TA=-40 to +85 °C - 53.5 - μs
tERASE Page erase time (2)
2. Page size is 1KB for STM32F070x6 devices and 2KB for STM32F070xB devices.
TA =-40 to +85 °C - 30 - ms
tME Mass erase time TA =-40 to +85 °C - 30 - ms
IDD Supply current
Write mode - - 10 mA
Erase mode - - 12 mA
Vprog Programming voltage 2.4 - 3.6 V
Table 40. Flash memory endurance and data retention
Symbol Parameter Conditions Min(1)
1. Data based on characterization results, not tested in production.
Unit
NEND Endurance TA = -40 to +85 °C 1kcycles
tRET Data retention 1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
20 Years
Electrical characteristics STM32F070xB STM32F070x6
58/88 DocID027114 Rev 2
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 41. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD =3.3V, LQFP48, TA =+25 °C,
fHCLK =48 MHz,
conforming to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD =3.3V, LQFP48, TA =+25°C,
fHCLK =48 MHz,
conforming to IEC 61000-4-4
4B
Table 42. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz
SEMI Peak level
VDD =3.6 V, TA =25 °C,
LQFP100 package
compliant with
IEC 61967-2
0.1 to 30 MHz -3
dBμV30 to 130 MHz 23
130 MHz to 1 GHz 17
EMI Level 4 -
DocID027114 Rev 2 59/88
STM32F070xB STM32F070x6 Electrical characteristics
75
6.3.12 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 43. ESD absolute maximum ratings
Symbol Ratings Conditions Packages Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA =+25 °C, conforming
to JESD22-A114 All 2 2000 V
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA =+25 °C, conforming
to ANSI/ESD STM5.3.1 All II 500 V
1. Data based on characterization results, not tested in production.
Table 44. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA =+105 °C conforming to JESD78A II level A
Electrical characteristics STM32F070xB STM32F070x6
60/88 DocID027114 Rev 2
6.3.13 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal
product operation. However, in order to give an indication of the robustness of the
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests
are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 μA/+0 μA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 45.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
6.3.14 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the conditions summarized in Table 21: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
Table 45. I/O current injection susceptibility
Symbol Description
Functional
susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 and PF1 pins -0 NA
mA
Injected current on PA9, PB3, PB13, PF11 pins with induced
leakage current on adjacent pins less than 50 μA-5 NA
Injected current on PA11 and PA12 pins with induced
leakage current on adjacent pins less than -1 mA -5 NA
Injected current on all other FT and FTf pins -5 NA
Injected current on PB0 and PB1 pins -5 NA
Injected current on PC0 pin -0 +5
Injected current on all other TTa, TC and RST pins -5 +5
DocID027114 Rev 2 61/88
STM32F070xB STM32F070x6 Electrical characteristics
75
Table 46. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
Low level input
voltage
TC and TTa I/O - - 0.3 V
DDIOx+0.07(1)
V
FT and FTf I/O - - 0.475 V
DDIOx–0.2(1)
BOOT0 - - 0.3 V
DDIOx–0.3(1)
All I/Os except
BOOT0 pin - - 0.3 V
DDIOx
VIH
High level input
voltage
TC and TTa I/O 0.445 V
DDIOx+0.398(1) --
V
FT and FTf I/O 0.5 V
DDIOx+0.2(1) --
BOOT0 0.2 V
DDIOx+0.95(1) --
All I/Os except
BOOT0 pin 0.7 V
DDIOx --
Vhys Schmitt trigger
hysteresis
TC and TTa I/O - 200(1) -
mVFT and FTf I/O - 100(1) -
BOOT0 - 300(1) -
Ilkg Input leakage
current(2)
TC, FT and FTf I/O
TTa in digital mode
VSS
VIN
VDDIOx
--±0.1
μA
TTa in digital mode
VDDIOx VIN
VDDA
--1
TTa in analog mode
VSS
VIN
VDDA
--±0.2
FT and FTf I/O (3)
VDDIOx VIN
5 V --10
RPU
Weak pull-up
equivalent resistor
(4)
VIN =VSS 25 40 55 kΩ
RPD
Weak pull-down
equivalent
resistor(4)
VIN =VDDIOx 25 40 55 kΩ
CIO I/O pin capacitance - 5 - pF
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45:
I/O current injection susceptibility.
3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled.
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
Electrical characteristics STM32F070xB STM32F070x6
62/88 DocID027114 Rev 2
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 15 for standard I/Os, and in Figure 16 for
5 V tolerant I/Os. The following curves are design simulation results, not tested in
production.
Figure 15. TC and TTa I/O input characteristics
MS32130V3
0
0.5
1
1.5
2
2.5
3
1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
TTL standard requirement
TTL standard requirement
T
TL stan
d
ar
d
re
q
uiremen
t
TESTED RANGE
TESTED RANGE
UNDEFINED INPUT RANGE
VDDIOx (V)
VIN (V)
DocID027114 Rev 2 63/88
STM32F070xB STM32F070x6 Electrical characteristics
75
Figure 16. Five volt tolerant (FT and FTf) I/O input characteristics
0
0.5
1
1.5
2
2.5
3
1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
TTL standard requirement
TTL standard requirement
T
TL stan
d
ar
d
re
q
uiremen
t
TESTED RANGE
TESTED RANGE
VIN (V)
VDDIOx (V)
MS32131V3
Electrical characteristics STM32F070xB STM32F070x6
64/88 DocID027114 Rev 2
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 18: Voltage characteristics).
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see
Table 18: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 17 and
Table 48, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
Table 47. Output voltage characteristics(1)
Symbol Parameter Conditions Min Max Unit
VOL Output low level voltage for an I/O pin |IIO| = 8 mA
VDDIOx 2.7 V
- 0.4
V
VOH Output high level voltage for an I/O pin VDDIOx–0.4 -
VOL(2) Output low level voltage for an I/O pin |IIO| = 20 mA
VDDIOx 2.7 V
- 1.3
V
VOH(2) Output high level voltage for an I/O pin VDDIOx–1.3 -
VOL(2) Output low level voltage for an I/O pin
|IIO| = 6 mA
- 0.4
V
VOH(2) Output high level voltage for an I/O pin VDDIOx–0.4 -
VOLFm+(2) Output low level voltage for an FTf I/O pin in
Fm+ mode
|IIO| = 20 mA
VDDIOx 2.7 V - 0.4 V
|IIO| = 10 mA - 0.4 V
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. Data based on characterization results. Not tested in production.
DocID027114 Rev 2 65/88
STM32F070xB STM32F070x6 Electrical characteristics
75
Table 48. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] value(1) Symbol Parameter Conditions Min Max Unit
x0
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx 2.4 V
- 2 MHz
tf(IO)out Output fall time - 125
ns
tr(IO)out Output rise time - 125
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx 2.4 V
- 10 MHz
tf(IO)out Output fall time - 25
ns
tr(IO)out Output rise time - 25
11
fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDDIOx 2.7 V - 50
MHzCL = 50 pF, VDDIOx 2.7 V - 30
CL = 50 pF, 2.4 V VDDIOx < 2.7 V - 20
tf(IO)out Output fall time
CL = 30 pF, VDDIOx 2.7 V - 5
ns
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, 2.4 V VDDIOx < 2.7 V - 12
tr(IO)out Output rise time
CL = 30 pF, VDDIOx 2.7 V - 5
CL = 50 pF, VDDIOx 2.7 V - 8
CL = 50 pF, 2.4 V VDDIOx < 2.7 V - 12
Fm+
configuration
(4)
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDDIOx 2.4 V
- 2 MHz
tf(IO)out Output fall time - 12
ns
tr(IO)out Output rise time - 34
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
10 - ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0360 reference manual for a
description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
3. The maximum frequency is defined in Figure 17.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0360
for a detailed description of Fm+ I/O configuration.
Electrical characteristics STM32F070xB STM32F070x6
66/88 DocID027114 Rev 2
Figure 17. I/O AC characteristics definition
6.3.15 NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-
up resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions.
069
7


 


0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW
ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ
UI
U,2RXW
WI,2RXW
W
-
7DQGLIWKHGXW\F\FOHLV
Table 49. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1)
V
VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) --
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis - - 200 - mV
RPU
Weak pull-up equivalent
resistor(2) VIN =VSS 25 40 55 kΩ
VF(NRST) NRST input filtered pulse - - 100(1) ns
VNF(NRST) NRST input not filtered pulse
2.7 < VDD < 3.6 300(3) --
ns
2.4 < VDD < 3.6 500(3) --
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance is minimal (~10% order).
3. Data based on design simulation only. Not tested in production.
DocID027114 Rev 2 67/88
STM32F070xB STM32F070x6 Electrical characteristics
75
Figure 18. Recommended NRST pin protection
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
069
([WHUQDO
UHVHWFLUFXLWU\
1567
)
9''
538
)LOWHU
,QWHUQDOUHVHW
Electrical characteristics STM32F070xB STM32F070x6
68/88 DocID027114 Rev 2
6.3.16 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 50 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 21: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
Table 50. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply voltage for
ADC ON - 2.4 - 3.6 V
IDDA (ADC)
Current consumption of
the ADC(1) VDD = VDDA = 3.3 V - 0.9 - mA
fADC ADC clock frequency - 0.6 - 14 MHz
fS(2) Sampling rate - 0.05 - 1 MHz
fTRIG(2) External trigger frequency
fADC = 14 MHz - - 823 kHz
- - - 17 1/fADC
VAIN Conversion voltage range - 0 - VDDA V
RAIN(2) External input impedance See Equation 1 and
Table 51 for details - - 50 kΩ
RADC(2) Sampling switch
resistance ---1kΩ
CADC(2) Internal sample and hold
capacitor ---8pF
tCAL(2) Calibration time
fADC = 14 MHz 5.9 μs
- 83 1/fADC
WLATENCY(2) ADC_DR register write
latency
ADC clock = HSI14
1.5 ADC
cycles + 2
fPCLK cycles
-
1.5 ADC
cycles + 3
fPCLK cycles
ADC clock = PCLK/2 - 4.5 - fPCLK
cycle
ADC clock = PCLK/4 - 8.5 - fPCLK
cycle
tlatr(2) Trigger conversion latency
fADC = fPCLK/2 = 14 MHz 0.196 μs
fADC = fPCLK/2 5.5 1/fPCLK
fADC = fPCLK/4 = 12 MHz 0.219 μs
fADC = fPCLK/4 10.5 1/fPCLK
fADC = fHSI14 = 14 MHz 0.188 - 0.259 μs
JitterADC ADC jitter on trigger
conversion fADC = fHSI14 -1-1/f
HSI14
tS(2) Sampling time
fADC = 14 MHz 0.107 - 17.1 μs
1.5 - 239.5 1/fADC
RAIN
TS
fADC CADC 2N2+
()ln××
--------------------------------------------------------------RADC
<
DocID027114 Rev 2 69/88
STM32F070xB STM32F070x6 Electrical characteristics
75
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
tSTAB(2) Power-up time 0 0 1 μs
tCONV(2) Total conversion time
(including sampling time)
fADC = 14 MHz 1 - 18 μs
14 to 252 (tS for sampling +12.5 for
successive approximation) 1/fADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μA on IDDA and 60 μA
on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
Table 50. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 51. RAIN max for fADC = 14 MHz
Ts (cycles) tS (μs) RAIN max (kΩ)(1)
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
28.5 2.04 25.2
41.5 2.96 37.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
1. Guaranteed by design, not tested in production.
Table 52. ADC accuracy(1)(2)(3)
Symbol Parameter Test conditions Typ Max(4) Unit
ET Total unadjusted error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 kΩ
VDDA = 2.7 V to 3.6 V
TA = 40 to 85 °C
±3.3 ±4
LSB
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
EL Integral linearity error ±1.2 ±1.7
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
Electrical characteristics STM32F070xB STM32F070x6
70/88 DocID027114 Rev 2
Figure 19. ADC accuracy characteristics
Figure 20. Typical connection diagram using the ADC
1. Refer to Table 50: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
(
2
(
*
/6%
,'($/
 ([DPSOHRIDQDFWXDO WUDQVIHUFXUYH
7KHLGHDOWUDQVIHUFXUYH
(QG SRLQWFRUUHODWLRQOLQH
(
7
7RWDO 8QDGMXVWHG (UURU PD[LPXP GHYLDWLRQ
EHWZHHQ WKHDFWXDODQGWKHLGHDOWUDQVIHU FXUYHV
(
2
2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO
WUDQVLWLRQDQGWKH ILUVWLGHDORQH
(
*
*DLQ (UURU GHYLDWLRQ EHWZHHQ WKH ODVW LGHDO
WUDQVLWLRQDQGWKH ODVWDFWXDORQH
(
'
'LIIHUHQWLDO/LQHDULW\(UURU PD[LPXPGHYLDWLRQ
EHWZHHQ DFWXDOVWHSVDQGWKHLGHDORQH
(
/
,QWHJUDO /LQHDULW\ (UURU PD[LPXP GHYLDWLRQ
EHWZHHQ DQ\ DFWXDO WUDQVLWLRQ DQG WKH HQG SRLQW
FRUUHODWLRQOLQH



    


(
7
(
'
(
/

9
''$
9
66$
-36
069
9''$
$,1[
,/ $
97
5$,1 
&SDUDVLWLF
9
$,1
97
5$'& ELW
FRQ YHU WHU
&$'&
6DPSOHDQGKROG$'&
FRQ YHU WHU
DocID027114 Rev 2 71/88
STM32F070xB STM32F070x6 Electrical characteristics
75
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 9: Power supply scheme.
The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as
possible to the chip.
6.3.17 Temperature sensor characteristics
6.3.18 Timer characteristics
The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 53. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V30 Voltage at 30 °C (±5 °C)(2) 1.34 1.43 1.52 V
tSTART(1) Startup time 4 - 10 μs
tS_temp(1) ADC sampling time when reading the
temperature 4--μs
1. Guaranteed by design, not tested in production.
2. Measured at VDDA = 3.3 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte.Refer to Table 3:
Temperature sensor calibration values.
Table 54. TIMx characteristics
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
1-
tTIMxCLK
fTIMxCLK = 48 MHz 20.8 - ns
fEXT
Timer external clock
frequency on CH1 to
CH4
0
fTIMxCLK/2 MHz
fTIMxCLK = 48 MHz 0 24 MHz
ResTIM Timer resolution TIMx - 16 bit
tCOUNTER 16-bit counter clock
period
1 65536 tTIMxCLK
fTIMxCLK = 48 MHz 0.0208 1365 μs
tMAX_COUNT Maximum possible count
with 32-bit counter
- 65536 × 65536 tTIMxCLK
fTIMxCLK = 48 MHz - 89.48 s
Electrical characteristics STM32F070xB STM32F070x6
72/88 DocID027114 Rev 2
6.3.19 Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 55. IWDG min/max timeout period at 40 kHz (LSI)(1)
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Prescaler divider PR[2:0] bits Min timeout RL[11:0]=
0x000
Max timeout RL[11:0]=
0xFFF Unit
/4 0 0.1 409.6
ms
/8 1 0.2 819.2
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 6 or 7 6.4 26214.4
Table 56. WWDG min/max timeout value at 48 MHz (PCLK)
Prescaler WDGTB Min timeout value Max timeout value Unit
1 0 0.0853 5.4613
ms
2 1 0.1706 10.9226
4 2 0.3413 21.8453
8 3 0.6826 43.6906
DocID027114 Rev 2 73/88
STM32F070xB STM32F070x6 Electrical characteristics
75
SPI characteristics
Unless otherwise specified, the parameters given in Table 58 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 21: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 57. I2C analog filter characteristics(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter 50(2)
2. Spikes with widths below tAF(min) are filtered.
260(3)
3. Spikes with widths above tAF(max) are not filtered
ns
Table 58. SPI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode - 18
MHz
Slave mode - 18
tr(SCK)
tf(SCK)
SPI clock rise and fall
time Capacitive load: C = 15 pF - 6 ns
tsu(NSS) NSS setup time Slave mode 4Tpclk -
ns
th(NSS) NSS hold time Slave mode 2Tpclk + 10 -
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode, fPCLK = 36 MHz,
presc = 4 Tpclk/2 -2 Tpclk/2 + 1
tsu(MI)
tsu(SI)
Data input setup time
Master mode 4 -
Slave mode 5 -
th(MI) Data input hold time
Master mode 4 -
th(SI) Slave mode 5 -
ta(SO)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk
tdis(SO)(3) Data output disable time Slave mode 0 18
tv(SO) Data output valid time Slave mode (after enable edge) - 22.5
tv(MO) Data output valid time Master mode (after enable edge) - 6
th(SO) Data output hold time
Slave mode (after enable edge) 11.5 -
th(MO) Master mode (after enable edge) 2 -
DuCy(SCK) SPI slave input clock
duty cycle Slave mode 25 75 %
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
Electrical characteristics STM32F070xB STM32F070x6
74/88 DocID027114 Rev 2
Figure 21. SPI timing diagram - slave mode and CPHA = 0
Figure 22. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3 V
DD and 0.7 V
DD.
DLF
^</ŶƉƵƚ
W,сϬ
DK^/
/EWhd
D/^K
KhdWhd
W,сϬ
D^ K hd
D^ /E
/ Khd
>^ /E
>^ Khd
WK>сϬ
WK>сϭ
/dϭ /E
E^^ŝŶƉƵƚ
ƚ^h;E^^Ϳ
ƚĐ;^<Ϳ
ƚŚ;E^^Ϳ
ƚĂ;^KͿ
ƚǁ;^<,Ϳƚǁ;^<>Ϳ
ƚǀ;^KͿ ƚŚ;^KͿ ƚƌ;^<ͿƚĨ;^<Ϳ
ƚĚŝƐ;^KͿ
ƚƐƵ;^/Ϳ
ƚŚ;^/Ϳ
DL
^</ŶƉƵƚ
W,сϭ
DK^ /
/EWhd
D/^ K
Khd W hd
W,сϭ
D^ K h d
D^ /E
/ dϲ Kh d
>^ /E
>^ Khd
WK>сϬ
WK>сϭ
/dϭ /E
ƚ^h;E^^Ϳ ƚĐ;^<Ϳ ƚŚ;E^^Ϳ
ƚĂ;^KͿ
ƚǁ;^>,Ϳ
ƚǁ;^>>Ϳ
ƚǀ;^KͿ ƚŚ;^KͿ ƚƌ;^>Ϳ
ƚĨ;^>Ϳ
ƚĚŝƐ;^KͿ
ƚƐƵ;^/Ϳ ƚŚ;^/Ϳ
E^^ŝŶƉƵƚ
DocID027114 Rev 2 75/88
STM32F070xB STM32F070x6 Electrical characteristics
75
Figure 23. SPI timing diagram - master mode
1. Measurement points are done at CMOS levels: 0.3 V
DD and 0.7 V
DD.
USB characteristics
The STM32F070xB/6 USB interface is fully compliant with the USB specification version 2.0
and is USB-IF certified (for Full-speed device operation).
AI6
3#+/UTPUT
#0(!
-/3)
/54054
-)3/
).0 54
#0(!
-3 ").
- 3"/54
") 4).
,3"/54
,3").
#0/,
#0/,
" ) 4/54
.33INPUT
TC3#+
TW3#+(
TW3#+,
TR3#+
TF3#+
TH-)
(IGH
3#+/UTPUT
#0(!
#0(!
#0/,
#0/,
TSU-)
TV-/ TH-/
Table 59. USB electrical characteristics
Symbol Parameter Conditions Min. Typ Max. Unit
VDD
USB transceiver operating
voltage 3.0(1)
1. The STM32F070xB/6 USB functionality is ensured down to 2.7 V but not the full USB electrical
characteristics which are degraded in the 2.7-to-3.0 V voltage range.
- 3.6 V
tSTARTUP(2)
2. Guaranteed by design, not tested in production.
USB transceiver startup time - - 1.0 μs
RPUI
Embedded USB_DP pull-up
value during idle 1.1 1.26 1.5
kΩ
RPUR
Embedded USB_DP pull-up
value during reception 2.0 2.26 2.6
ZDRV(2) Output driver impedance(3)
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching
impedance is already included in the embedded driver.
Driving high
and low 28 40 44 Ω
Package characteristics STM32F070xB STM32F070x6
76/88 DocID027114 Rev 2
7 Package characteristics
7.1 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID027114 Rev 2 77/88
STM32F070xB STM32F070x6 Package characteristics
86
Figure 24. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline
1. Drawing is not to scale.
Table 60. LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 - 0.0079
D 11.800 12.000 12.200 0.4646 0.4724 0.4803
D1 9.800 10.000 10.200 0.3858 0.3937 0.4016
D3 - 7.500 - - 0.2953 -
E 11.800 12.000 12.200 0.4646 0.4724 0.4803
E1 9.800 10.000 10.200 0.3858 0.3937 0.4016
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
Package characteristics STM32F070xB STM32F070x6
78/88 DocID027114 Rev 2
Figure 25. LQFP64 recommended footprint
1. Dimensions are in millimeters.
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
K 3.5° 3.5°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 60. LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data
(continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max



 










DocID027114 Rev 2 79/88
STM32F070xB STM32F070x6 Package characteristics
86
Device marking for LQFP64
The following figure shows the device marking for the LQFP64 package.
Figure 26. LQFP64 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
3URGXFWLGHQWLILFDWLRQ
3LQLGHQWLILFDWLRQ
'DWHFRGH
5HYLVLRQFRGH
:88
45.'
3#5
3
069
Package characteristics STM32F070xB STM32F070x6
80/88 DocID027114 Rev 2
Figure 27. LQFP48 - 7 mm x 7 mm, 48 pin low-profile quad flat package outline
1. Drawing is not to scale.
Table 61. LQFP48 - 7 mm x 7 mm low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
DocID027114 Rev 2 81/88
STM32F070xB STM32F070x6 Package characteristics
86
Figure 28. LQFP48 recommended footprint
1. Dimensions are in millimeters.
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
K 3.5° 3.5°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 61. LQFP48 - 7 mm x 7 mm low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
  













AID

Package characteristics STM32F070xB STM32F070x6
82/88 DocID027114 Rev 2
Device marking for LQFP48
The following figure shows the device marking for the LQFP48 package.
Figure 29. LQFP48 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
069
3LQLGHQWLILFDWLRQ
'HYLFHLGHQWLILFDWLRQ 45.
'$#5
3
:88
'DWHFRGH
5HYLVLRQFRGH
DocID027114 Rev 2 83/88
STM32F070xB STM32F070x6 Package characteristics
86
Figure 30. TSSOP20 - 20-pin thin shrink small outline
1. Drawing is not to scale.
9!?-%?6

#
C
,
%%
$
!
!
K
EB


!
,
AAA
3%!4).'
0,!.%
#'!5'%0,!.%
MM
0).
)$%.4)&)#!4)/.
Table 62. TSSOP20 - 20-pin thin shrink small outline package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ
A - 1.2 - - 0.0472
A1 0.05 - 0.15 0.002 - 0.0059
A2 0.8 1 1.05 0.0315 0.0394 0.0413
b 0.19 0.3 0.0075 - 0.0118
c 0.09 0.2 0.0035 - 0.0079
D(2) 6.4 6.5 6.6 0.252 0.2559 0.2598
E 6.2 6.4 6.6 0.2441 0.252 0.2598
E1(3) 4.3 4.4 4.5 0.1693 0.1732 0.1772
e - 0.65 - - 0.0256 -
L 0.45 0.6 0.75 0.0177 0.0236 0.0295
L1 - 1 - - 0.0394 -
k 0.0° - 8.0° 0.0° - 8.0°
aaa - - 0.1 - - 0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15mm per side.
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per
side.
Package characteristics STM32F070xB STM32F070x6
84/88 DocID027114 Rev 2
Figure 31. TSSOP20 recommended footprint
1. Dimensions are in millimeters.
Device marking for TSSOP20
The following figure shows the device marking for the TSSOP20 package.
Figure 32. TSSOP20 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
9!?&0?6
 




 



069
5HYLVLRQFRGH
'DWHFRGH
'HYLFHLGHQWLILFDWLRQ
3LQLGHQWLILFDWLRQ
''1
:883
DocID027114 Rev 2 85/88
STM32F070xB STM32F070x6 Package characteristics
86
7.2 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 21: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ(VOL × IOL) + Σ((VDD - VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.2.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
Table 63. Package thermal characteristics
Symbol Parameter Value Unit
ΘJ
Thermal resistance junction-ambient
LQFP64 - 10 mm x 10 mm 44
°C/W
Thermal resistance junction-ambient
LQFP48 - 7 mm x 7 mm 55
Thermal resistance junction-ambient
TSSOP20 - 6.5 mm x 6.4 mm 76
Part numbering STM32F070xB STM32F070x6
86/88 DocID027114 Rev 2
8 Part numbering
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
+ Table 64. Ordering information scheme
Example: STM32 F 070 C 6 T 6 x
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
070 = STM32F070xx
Pin count
F = 20 pins
C = 48 pins
R = 64 pins
Code size
4 = 16 Kbytes of Flash memory
6 = 32 Kbytes of Flash memory
8 = 64 Kbytes of Flash memory
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
P = TSSOP
T = LQFP
Temperature range
6 = –40 to 85 °C
Options
xxx = programmed parts
TR = tape and reel
DocID027114 Rev 2 87/88
STM32F070xB STM32F070x6 Revision history
87
9 Revision history
Table 65. Document revision history
Date Revision Changes
27-Nov-2014 1 Initial release.
15-Jan-2015 2
Updated the number of SPI in Features and Section 2:
Description.
Updated Section 3.15: Serial peripheral interface (SPI).
Updated the footnote4. of Table 11: STM32F070xB/6 pin
definitions, and added the reference to PB9 pin.
Moved the AF3 data to AF4 for PA9 and PA10 pins in
Table 12: Alternate functions selected through
GPIOA_AFR registers for port A.
Added the reference to footnote 1. to AF0 data for PB12,
PB13, PB14 and PB15, and to AF5 data for PB9 and
PB10 in Table 13: Alternate functions selected through
GPIOB_AFR registers for port B.
Added the reference to footnote 1. to SPI2 in Table 17:
STM32F070xB/6 peripheral register boundary
addresses.
STM32F070xB STM32F070x6
88/88 DocID027114 Rev 2
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved