K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM 36Mb DDR SRAM Specification 153BGA with Pb & Pb-Free (RoHS compliant) INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND. 1. For updates or additional information about Samsung products, contact your nearest Samsung office. 2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. * Samsung Electronics reserves the right to change products or specification without notice. -1- Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM Document Title 36M DDR SYNCHRONOUS SRAM Revision History Rev No. History Draft Data Remark Rev. 0.0 Initial document. Nov. 2005 Advance Rev. 0.1 Change AC Characteritics, Pin Capacitance, DC Characteristics Apr. 2006 Preliminary Rev. 0.2 Change Samsung JEDEC Code in ID REGISTER DEFINITION Jun. 2006 Preliminary Rev. 1.0 Correct Typo Aug. 2006 Final -2- Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM FEATURES * * * * * 1Mx36 or 2Mx18 Organizations. 1.8~2.5V VDD/1.5V ~1.8VDDQ. HSTL Input and Outputs. Single Differential HSTL Clock. Synchronous Pipeline Mode of Operation with Self-Timed Late Write. * Free Running Active High and Active Low Echo Clock Output Pin. * Registered Addresses, Burst Control and Data Inputs. * Registered Outputs. * Double and Single Data Rate Burst Read and Write. * Burst Count Controllable With Max Burst Length of 4 * Interleaved and Linear Burst mode support * Bypass Operation Support * Programmable Impedance Output Drivers. * JTAG Boundary Scan (subset of IEEE std. 1149.1) * 153(9x17) Ball Grid Array Package(14mmx22mm) * No Output enable support. GENERAL DESCRIPTION The K7D323674C and K7D321874C are 37,748,736 bit Synchronous Pipeline Burst Mode SRAM devices. They are organized as 1,048,576 words by 36 bits for K7D323674C and 2,097,152 words by 18 bits for K7D321874C, fabricated using Samsung's advanced CMOS technology. Single differential HSTL level clock, K and K are used to initiate the read/write operation and all internal operations are self-timed. At the rising edge of K clock, all addresses and burst control inputs are registered internally. Data inputs are registered one cycle after write addresses are asserted(Late Write), at the rising edge of K clock for single data rate (SDR) write operations and at rising and falling edge of K clock for a double data rate (DDR) write operations. Data outputs are updated from output registers off the rising edges of K clock for SDR read operations and off the rising and falling edges of K clock for DDR read operations. Free running echo clocks are supported which are representative of data output access time for all SDR and DDR operations. The chip is operated with 1.8~2.5V power supply and is compatible with HSTL input and output. The package is 9x17(153) Ball Grid Array balls on a 1.27mm pitch. ORDERING INFORMATION Organization 1Mx36 2Mx18 Maximum Frequency Part Number 400MHz K7D323674C-H(G)1C40 375MHz K7D323674C-H(G)1C37 333MHz K7D323674C-H(G)1C33 400MHz K7D321874C-H(G)1C40 375MHz K7D321874C-H(G)1C37 333MHz K7D321874C-H(G)1C33 Note 1. H(G) [Package type] : G-Pb Free, H-Pb -3- Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM FUNCTIONAL BLOCK DIAGRAM SA[0:20]( or SA[0:21]) Address Register 18(or 19) (Burst Address) CE Clock Buffer K,K 20(or 21) Advance Co Control B3 SD/DD Data Out 36(or 18)x2 Synchronous Select & R/W control W/D Array (Burst Write Address) 20(or 21) 36(or 18)x2 18(or 19) 36(or18)x2 2 : 1 MUX CE Data In 36(or18)x2 S/A Array Write Address Register (2 stage) CE B2 Memory Array 1Mx36 or (2Mx18) Dec. Burst Counter Comparator B1 2:1 MUX Write Buffer Strobe_out Data Output Strobe LD Echo Clock Output Output Buffer R/W Data In Register (2 stage) Data Output Enable State Machine Internal Clock Generator 36(or 18) DQ XDIN CQ,CQ PIN DESCRIPTION Pin Name Pin Description Pin Name Pin Description K, K Differential Clocks TCK SA Synchronous Address Input TMS JTAG Test Mode Select Synchronous Burst Address Input (SA0 = LSB) TDI JTAG Test Data Input Synchronous Data I/O TDO JTAG Test Data Output SA0, SA1 DQ JTAG Test Clock Differential Output Echo Clocks VREF HSTL Input Reference Voltage B1 Load External Address VDD Power Supply B2 Burst R/W Enable VDDQ Output Power Supply B3 Single/Double Data Selection VSS GND Linear Burst Order NC No Connection CQ, CQ LBO ZQ Output Driver Impedance Control Input -4- Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM PACKAGE PIN CONFIGURATIONS(TOP VIEW) K7D323674C(1Mx36) A 1 2 3 4 5 6 7 8 9 VSS VDDQ SA SA ZQ SA SA VDDQ VSS B DQ DQ SA VSS B1 VSS SA DQ DQ C VSS VDDQ SA SA SA SA SA VDDQ VSS D DQ DQ SA Vss(5) VDD Vss(6) SA DQ DQ E VSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS F DQ CQ DQ VDD VDD VDD DQ CQ DQ G VSS VDDQ VSS VSS K VSS VSS VDDQ VSS H DQ DQ DQ VDD K VDD DQ DQ DQ J VSS VDDQ VSS VDD VDD VDD VSS VDDQ VSS K DQ DQ DQ VSS B2 VSS DQ DQ DQ L VSS VDDQ VSS LBO B3 MODE(7) VSS VDDQ VSS M DQ CQ DQ VDD VDD VDD DQ CQ DQ N VSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS P DQ DQ NC* VSS VDD(2) VSS SA DQ DQ R VSS VDDQ VDD(4) SA SA1 SA VDD(3) VDDQ VSS T DQ DQ SA VSS SA0 VSS SA DQ DQ U VSS VDDQ TMS TDI TCK TDO NC VDDQ VSS 1 2 3 4 5 6 7 8 9 K7D321874C(2Mx18) A VSS VDDQ SA SA ZQ SA SA VDDQ VSS B NC DQ SA VSS B1 VSS SA NC DQ C VSS VDDQ SA SA SA SA SA VDDQ VSS D DQ NC SA Vss(5) VDD Vss(6) SA DQ NC E VSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS F NC CQ NC VDD VDD VDD DQ NC DQ G VSS VDDQ VSS VSS K VSS VSS VDDQ VSS H DQ NC DQ VDD K VDD NC DQ NC J VSS VDDQ VSS VDD VDD VDD VSS VDDQ VSS K NC DQ NC VSS B2 VSS DQ NC DQ L VSS VDDQ VSS LBO B3 MODE(7) VSS VDDQ VSS M DQ NC DQ VDD VDD VDD NC CQ NC N VSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS VDD(2) VSS SA NC DQ SA1 SA VDD(3) VDDQ VSS P NC DQ SA VSS R VSS VDDQ VDD(4) SA T DQ NC SA VSS SA0 VSS SA DQ NC U VSS VDDQ TMS TDI TCK TDO NC VDDQ VSS (1) Variable address see "Variable address assignment table" (2) Variable address see "Variable address assignment table" (3) Variable address see "Variable address assignment table" (4) Variable address see "Variable address assignment table" (5) Variable address see "Variable address assignment table" (6) Variable address see "Variable address assignment table" (7) Internally NC -5- Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM VARIABLE ADDRESS ASSIGNMENT TABLE Density Ball 5C (1) Ball 5P (2) Ball 7R (3) Ball 3R (4) Ball 4D (5) Ball 6D (6) 32 Mb SA VDD VDD VDD Vss Vss 64 Mb SA SA VDD VDD Vss Vss 144 Mb NC SA SA SA Vss Vss 288 Mb SA SA SA SA Vss Vss 576 Mb NC SA SA SA SA SA 1152 Mb SA SA SA SA SA SA NOTE : - SRAM density definition beyond 144Mb will include the parity bits. -6- Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM Read Operation(Single and Double) During SDR read operations, addresses and controls are registered at the first rising edge of K clock and then the internal array is read between first and second rising edges of K clock. Data outputs are updated from output registers off the second rising edge of K clock. During DDR read operations, addresses and controls are registered at the first rising edge of K clock, and then the internal array is read twice between first and second rising edges of K clock. Data outputs are updated from output registers sequentially by burst order off the second rising and falling edge of K clock. Interleave and linear burst operation is controlled by LBO pin and the burst count is controllable with the maximum burst length of 4. To avoid data contention,at least two NOP operations are required between the last read and the first write operation. Write Operation(Late Write) During SDR write operations, addresses and controls are registered at the first rising edge of K clock and data inputs are registered at the following rising edge of K clock. During DDR write operations, addresses and controls are registered at the first rising edge of K clock and data inputs are registered twice at the following rising and falling edge of K clock. Write addresses and data inputs are stored in the data in registers until the next write operation, and only at the next write operation are data inputs fully written into SRAM array. Echo clock operation Free running type of Echo clocks are generated from K clock regardless of read, write and NOP operations. They will stop operation only when K clock is in the stop mode. Echo clocks are designed to represent data output access time and this allows the echo clocks to be used as reference to capture data outputs. Bypass Read Operation Bypass read operation occurs when the last write operation is followed by a read operation where write and read addresses are identical. For this case, data outputs are from the data in registers instead of SRAM array. Programmable Impedance Output Driver This HSTL Late Write SRAM has been designed with programmable impedance output buffers. The SRAMs output buffer impedance can be adjusted to match the system data bus impedance, by connecting a external resistor (RQ) between the ZQ pin of the SRAM and VSS. The value of RQ must be five times the value of the intended line impedance driven by the SRAM. For example, a 250 resistor will give an output buffer impedance of 50. The allowable range of RQ is from 175 to 350. Internal circuits evaluate and periodically adjust the output buffer impedance, as the impedance is affected by drifts in supply voltage and temperature. One evaluation occurs every 32 clock cycles, with each evaluation moving the output buffer impedance level only one step at a time toward the optimum level. Impedance updates occur when the SRAM is in High-Z state, and thus are triggered by write and deselect operations. Updates will also be triggered with G HIGH initiated High-Z state, providing the specified G setup and hold times are met. Impedance match is not instantaneous upon power-up. In order to guarantee optimum output driver impedance, the SRAM requires a minimum number of non-read cycles (1,024) after power-up. The output buffers can also be programmed in a minimum impedance configuration by connecting ZQ to VSS or VDDQ. Power-Up/Power-Down Supply Voltage Sequencing The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-down. -7- Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM TRUTH TABLE K B1 B2 H L L H L H L L B3 DQ Operation X Hi-Z No Operation, Pipeline High-Z H DOUT Load Address, Single Read L DOUT Load Address, Double Read H DIN Load Address, Single Write L L L DIN Load Address, Double Write H H X B Increment Address, Continue NOTE : - B(Both) is DIN in write cycle and DOUT in read cycle. Byte write function is not supported. X means "Don't Care". - K & K are complementary. OUTPUT TRISTATE TRUTH TABLE K Operation DQ (n) DQ (n+1) Write (B2=L) X High-Z Deselect (NOP) (B1=H, B2=L) X High-Z BURST SEQUENCE TABLE 4 Burst Operation for Interleaved Burst (LBO = VDDQ) Interleaved Burst Mode First Address Fourth Address Case 1 Case 2 Case 3 Case 4 A1 A0 A1 A0 A1 A0 A1 A0 0 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 NOTE : - For Interleave Burst LBO = VDDQ is recommended. If LBO = VDD, it must not exceed 2.63V. 4 Burst Operation for Linear Burst (LBO = VSS) Linear Burst Mode First Address Fourth Address Case 1 Case 2 Case 3 Case 4 A1 A0 A1 A0 A1 A0 A1 A0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 -8- Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM BUS CYCLE STATE DIAGRAM LOAD NEW ADDRESS 3 ,B 3 B1 B1 B1 B1 ,B B2 B2 ,B B2 B2 ,B 3 3 B1, B2 B1, B2 B1, B2 B1, B2 INCREMENT ADDRESS B1, B2 B1 , B2 B1, B2 B1 , B2 B1 , B2 B1, B2 POWER UP WRITE DDR INCREMENT ADDRESS B1 , B2 INCREMENT ADDRESS B1 , B2 INCREMENT ADDRESS READ DDR B1, B2 B1, B2 WRITE SDR B1, B2 B1, B2 READ SDR NO OP NOTE : 1. State transitions ; B1 =(Load Address), B1=(Increment Address, Continue) B2 =(Read), B2 =(Write) B3 =(Single Data Rate), B3 =(Double Data Rate) -9- Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM ABSOLUTE MAXIMUM RATINGS Parameter Symbol Value Unit Core Supply Voltage Relative to VSS VDD -0.5 to 3.13 V Output Supply Voltage Relative to VSS VDDQ -0.5 to 2.3 V VIN -0.5 to VDDQ+0.5 (2.3V MAX) V Voltage on any pin Relative to VSS Output Short-Circuit Current(per I/O) IOUT 25 mA Storage Temperature TSTR -55 to 125 C Maximum Junction Temperature TJ 110 C Maximum Power Dissipation PD 3.0 W NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data. Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. RECOMMENDED DC OPERATING CONDITIONS Symbol Min Typ Max Unit Core Power Supply Voltage Parameter VDD 1.7 2.5 2.6 V Output Power Supply Voltage VDDQ 1.4 1.5 1.9 V VIH VREF+0.1 - VDDQ+0.3 V 1, 2 1, 3 Input High Level Voltage Input Low Level Voltage VIL -0.3 - VREF-0.1 V Input Reference Voltage VREF 0.68 0.75 1.0 V Note NOTE :1. These are DC test criteria. DC design criteria is VREF50mV. The AC VIH/VIL levels are defined separately for measuring timing parameters. 2. VIH (Max)DC=VDDQ+0.3, VIH (Max)AC=2.6V (2.1V for DQs) (pulse width 20% of cycle time). 3. VIL (Min)DC=-0.3V, VIL (Min)AC=-1.0V (-0.5V for DQs) (pulse width 20% of cycle time). DC CHARACTERISTICS Min Max Unit Note Average Power Supply Operating Current(x36) (Cycle time = tKHKH min) IDD40 IDD37 IDD33 - 700 650 600 mA 1,2 Average Power Supply Operating Current(x18) (Cycle time = tKHKH min) IDD40 IDD37 IDD33 - 650 600 550 mA 1,2 Stop Clock Standby Current (VIN=VDD-0.2V or 0.2V fixed, K=Low, K=High) ISB1 - 300 mA 1 Input Leakage Current (VIN=VSS or VDDQ) ILI -3 3 A Output Leakage Current (VOUT=VSS or VDDQ) ILO -5 5 A Output High Voltage(Programmable Impedance Mode) VOH1 VDDQ/2 VDDQ V 3 Output Low Voltage(Programmable Impedance Mode) VOL1 VSS VDDQ/2 V 4 Output High Voltage(IOH=-0.1mA) VOH2 VDDQ-0.2 VDDQ V Output Low Voltage(IOL=0.1mA) VOL2 VSS 0.2 V Parameter Symbol NOTE :1. Minimum cycle. IOUT=0mA. 2. 50% read cycles. 3. |IOH|=(VDDQ/2)/(RQ/5)15% @VOH=VDDQ/2 for 175 RQ 300. 4. |IOL|=(VDDQ/2)/(RQ/5)15% @VOL=VDDQ/2 for 175 RQ 300. - 10 Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM PIN CAPACITANCE Parameter Input Capacitance Data Output Capacitance Symbol Test Condition TYP Max Unit CIN VIN=0V - 4 pF COUT VOUT=0V - 5 pF Max Unit Note V - VREF - 0.4 V - V - V - Note NOTE : Periodically sampled and not 100% tested.(TA=25C, f=500MHz) AC INPUT CHARACTERISTICS Parameter Symbol Min AC Input Logic High VIH (AC) VREF + 0.4 AC Input Logic Low VIL (AC) Clock Input Differential Voltage VDIF (AC) VREF Peak-to-Peak AC Voltage VREF (AC) 0.8 5% VREF (DC) AC INPUT DEFINITION CK VDIF(AC) CK VIH(AC) VREF Setup Time VIL(AC) Hold Time AC TEST CONDITIONS(TA=0 to 70C, VDD=2.37 -2.63V, VDDQ=1.5V) Symbol Value Unit Input High/Low Level Parameter VIH/VIL 1.25/0.25 V - Input Reference Level VREF 0.75 V - Input Rise/Fall Time TR/TF 0.5/0.5 ns - 0.75 V - Clock Input Timing Reference Level Cross Point V - Output Load See Below Output Timing Reference Level - 11 - Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM AC TEST OUTPUT LOAD 50 0.75V 50 5pF 25 DQ 0.75V 50 50 0.75V 5pF AC TIMING CHARACTERISTICS PARAMETER SYMBOL -40 MIN -37 MAX MIN -33 MAX MIN MAX UNITS NOTES Clock Clock Cycle Time tKHKH 2.50 2.67 3.00 ns Clock High Pulse Width tKHKL 1.15 1.25 1.40 ns Clock Low Pulse Width tKLKH 1.15 1.25 1.40 ns Address Setup Time tAVKH 0.30 0.33 0.35 ns Control(B1,B2,B3) Setup Time tBVKH 0.30 0.33 0.35 ns Data Setup Time tDVKX 0.20 0.25 0.30 ns Address Hold Time tKHAX 0.30 0.33 0.35 ns Control(B1,B2,B3) Hold Time tKHBX 0.30 0.33 0.35 ns Data Hold Time tKXDX 0.20 0.25 0.30 ns 2 tCHCL tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 ns 2 Echo Clock Low Pulse Width tCLCH tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 ns 2 Clock Crossing to Echo Clock tKXCH 1.0 2.5 1.0 2.5 1.0 2.5 ns 3 Clock Crossing to Echo Clock tKXCL 1.0 2.5 1.0 2.5 1.0 2.5 ns 3 Echo Clock High to Output Valid tKHQV 0.20 0.20 0.20 ns Echo Clock Low to Output Valid tCLQV 0.20 0.20 0.20 ns Echo Clock High to Output Hold tCHQX -0.20 -0.20 -0.20 ns Echo Clock Low to Output Hold tCLQX -0.20 -0.20 -0.20 ns Echo Clock High to Output High-Z tCHQZ Echo Clock High to Output Low-Z tCHLZ 1 Setup Times 2 Hold Times Output Times Echo Clock High Pulse Width 0.20 -0.20 0.20 -0.20 0.20 -0.20 ns ns Notes: 1. The maximum cycle time must be limited to guarantee AC timing specification. 2. This parameter is guaranteed by design, and may not be tested at values shown in the table. 3. This parameter refers to CQ and CQ rising and falling edges. 4. K and K Clocks must be used differentially to meet AC timing specifications. - 12 Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM TIMING WAVEFORMS FOR DOUBLE DATA RATE CYCLES (Burst Length=4, 2) NOP 1 READ READ READ CONTINUE READ CONTINUE READ NOP (burst of 4) (burst of 4) (burst of 2) 2 5 4 3 NOP 7 6 8 WRITE WRITE CONTINUE READ (burst of 4) (burst of 4) 9 10 READ CONTINUE 12 11 K tKHKH K B1 B2 tBVKH tKHBX B3 SA A5 A0 tAVKH A2 A1 A3 tKHAX tKHDX tDVKH DQ Q01 QX2 tKXCH tCHQV tCHQZ Q02 Q03 Q04 tCHQX Q51 tCLQV Q52 Q53 Q54 tCLQX Q11 Q12 D21 D22 D23 D24 Q31 tKXCL tCHCL tCLCH tCHLZ CQ CQ DON'T CARE UNDEFINED NOTE 1. Q01 refers to output from address A. Q02 refers to output from the next internal burst address following A, etc. 2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present. 3. Doing more than one Read Continue or Write Continue will cause the address to wrap around. - 13 Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM TIMING WAVEFORMS FOR SINGLE DATA RATE CYCLES (Burst Length=4, 2, 1) NOP READ (burst of 4) 1 READ CONTINUE 2 3 READ READ CONTINUE CONTINUE 4 5 READ NOP (burst of 1) 6 7 NOP 8 WRITE WRITE (burst of 2) 9 READ CONTINUE READ CONTINUE (burst of 2) 10 11 12 K tKHKH tKHKL tKLKH K B1 B2 tBVKH tKHBX B3 tAVKH A2 A1 A0 SA A3 tDVKH tKHAX tKHDX DQ Q01 QX1 Q02 Q03 Q04 Q11 D21 D22 Q31 tKXCH tCHQV tCHQZ tCHLZ tKXCL tCHQX tCHCLtCLCH CQ CQ DON'T CARE UNDEFINED NOTE : 1. Q01 refers to output from address A0. Q02 refers to output from the next internal burst address following A0, etc. 2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present. 3. This devices supports cycle lengths of 1, 2, 4. Continue(B1=HIGH, B2=HIGH, B3=X) up to three times following a B1 operation. Any further Continue assertions constitute invalid operations. 4. This device will have an address wraparound if further Continues are applied. - 14 Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG The SRAM provides a limited set of IEEE standard 1149.1 JTAG functions. This is to test the connectivity during manufacturing between SRAM, printed circuit board and other components. Internal data is not driven out of SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must be tied to VSS to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the application of a logic 1, and therefore can be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left unconnected. JTAG Block Diagram JTAG Instruction Coding IR2 IR1 IR0 Instruction SRAM CORE SA SA TDI BYPASS Reg. Notes 0 0 0 EXTEST Boundary Scan Register 1 0 0 1 IDCODE Identification Register 2 0 1 0 SAMPLE-Z Boundary Scan Register 0 1 1 PRIVATE3 Bypass Register 1 0 0 SAMPLE Boundary Scan Register 1 0 1 PRIVATE2 Bypass Register 3,5 1 1 0 PRIVATE1 Bypass Register 3,5 1 1 1 BYPASS Bypass Register 3 1 3,5 4 NOTE : 1. Places DQs in Hi-Z in order to sample all input data regardless of other SRAM inputs. Input terminators are switched off. 2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data. 3. Bypass register is initiated to VSS when BYPASS instruction is invoked. The Bypass Register also holds serially loaded TDI when exiting the Shift DR states. 4. SAMPLE instruction dose not places DQs in Hi-Z. 5. PRIVATE1 and PRIVATE2 are reserved for the exclusive use of SAMSUNG. This instruction should not be used. TDO Identification Reg. Instruction Reg. Control Signals TMS TCK TDO Output TAP Controller TAP Controller State Diagram 1 Test Logic Reset 0 0 Run Test Idle 1 Select DR 1 Select IR 0 1 0 1 Capture DR 0 0 1 Pause DR 1 Exit2 DR 1 Update DR 0 - 15 Shift IR 1 Exit1 DR 0 1 Capture IR 0 Shift DR 1 1 0 1 Exit1 IR 0 0 0 Pause IR 1 Exit2 IR 1 Update IR 0 0 0 1 Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM BOUNDARY SCAN EXIT ORDER(x36) BOUNDARY SCAN EXIT ORDER(x18) 1 5P VDD(2) 38 5C SA 1 5P VDD(2) 28 5C 2 5R SA1 39 4A SA 2 5R SA1 29 4A SA 3 5T SA0 40 4C SA 3 5T SA0 30 4C SA 4 6R SA 41 4D VSS(2 4 6R SA 31 4D VSS(2) 5 7T SA 42 3A SA 5 7T SA 32 3A SA 6 7R VDD(2) 43 3B SA 6 7R VDD(2) 33 3B SA 7 7P SA 44 3C SA 7 7P SA 34 3C SA 8 8T DQ1 45 3D SA 8 8T DQ1 35 3D SA 9 9T DQ2 46 2B DQ19 36 2B DQ10 10 8P DQ10 47 1B DQ20 11 7M DQ0 48 2D DQ28 12 9P DQ12 49 3F DQ18 9 9P DQ2 13 8M CQ(3) 50 1D DQ30 10 8M CQ(3) 37 1D DQ11 14 9M DQ3 51 2F CQ(3) 38 2F CQ(3) 39 3H DQ9 15 7K DQ9 52 1F DQ21 16 8K DQ11 53 3H DQ27 17 9K DQ13 54 2H 18 6L MODE 55 19 5H K 56 20 5G K 21 9H DQ4 22 8H 23 24 SA 11 7K DQ0 DQ29 12 9K DQ3 1H DQ31 13 6L MODE 40 1H DQ12 5A ZQ(1) 14 5H K 41 5A ZQ(1) 57 5B B1 15 5G K 42 5B B1 58 5K B2 43 5K B2 DQ6 59 5L B3 44 5L B3 7H DQ8 60 4L LBO 45 4L LBO 9F DQ14 61 1K DQ22 25 8F CQ(3) 62 2K DQ24 46 2K DQ15 26 9D DQ5 63 3K DQ26 27 7F DQ17 64 1M DQ32 18 7F DQ8 47 1M DQ13 28 8D DQ7 65 2M CQ(3) 19 8D DQ7 20 9B DQ5 16 8H DQ6 17 9F DQ4 29 9B DQ15 66 1P DQ23 30 8B DQ16 67 3M DQ35 48 3M DQ17 31 7D SA 68 2P DQ25 21 7D SA 49 2P DQ16 32 7C SA 69 1T DQ33 22 7C SA 50 1T DQ14 33 7B SA 70 2T DQ34 23 7B SA 51 3P SA 34 7A SA 71 3R VDD(2) 24 7A SA 52 3R VDD(2) 35 6D VSS(2) 72 3T SA 25 6D VSS(2) 53 3T SA 36 6C SA 73 4R SA 26 6C SA 54 4R SA 37 6A SA 74 7U NC 27 6A SA 55 7U NC * Reserved for Mode Pin * Reserved for Mode Pin NOTE : 1. This pin is place holder for higher density. TDO will be low for VSS and high for VDD SCAN REGISTER DEFINITION Part Instruction Register Bypass Register ID Register Boundary Scan 1M x 36 3 bits 1 bits 32 bits 74 bits 2M x 18 3 bits 1 bits 32 bits 55 bits - 16 Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM ID REGISTER DEFINITION Part Revision Number (31:28) Part Configuration (27:18) Vendor Definition (17:12) Samsung JEDEC Code (11: 1) Start Bit (0) 1M x 36 0000 01000 00100 XXXXXX 00011001110 1 2M x 18 0000 01001 00011 XXXXXX 00011001110 1 JTAG DC OPERATING CONDITIONS Parameter Symbol Min Typ Max Unit Power Supply Voltage VDD 1.7 2.5 2.6 V Input High Level VIH 0.65*VDD - VDD+0.3 V Input Low Level VIL -0.3 - 0.35*VDD V Output High Voltage(IOH=-2mA) VOH 0.75*VDD - VDD V Output Low Voltage(IOL=2mA) VOL VSS - 0.25*VDD V Note NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification. JTAG AC TEST CONDITIONS Symbol Min Unit Input High/Low Level Parameter VIH/VIL VDD/0.0 V Input Rise/Fall Time TR/TF 1.0/1.0 ns VDD/2 V Input and Output Timing Reference Level Note 1 NOTE : 1. See SRAM AC test output load on page 5. JTAG AC Characteristics Symbol Min Max Unit TCK Cycle Time Parameter tCHCH 50 - ns TCK High Pulse Width tCHCL 20 - ns TCK Low Pulse Width tCLCH 20 - ns TMS Input Setup Time tMVCH 5 - ns TMS Input Hold Time tCHMX 5 - ns TDI Input Setup Time tDVCH 5 - ns TDI Input Hold Time tCHDX 5 - ns Clock Low to Output Valid tCLQV 0 10 ns Note JTAG TIMING DIAGRAM TCK tCHCH TMS tCHCL tMVCH tCHMX tDVCH tCHDX tCLCH TDI tCLQV TDO - 17 Rev. 1.0 August 2006 K7D323674C K7D321874C 1Mx36 & 2Mx18 SRAM 153 BGA PACKAGE DIMENSIONS 1.27 0.050 12.50 0.10 0.492 0.004 14.00 0.10 0.551 0.004 0.56 0.04 0.022 0.002 0.90 0.10 0.035 0.004 2.21 MAX 0.087 1.27 0.050 U T RPNML K J HGF EDCBA 9 8 7 6 5 4 3 2 1 22.00 0.10 0.866 0.004 20.50 0.10 0.807 0.004 0.60 0.10 0.024 0.004 153- 0.3/0.012MAX 0.75 0.15 0.030 0.006 0.15 0.006 MAX BOTTOM VIEW TOP VIEW NOTE : 1. All Dimensions are in Millimeters. 2. Solder Ball to PCS Offset : 0.10 MAX. 3. PCB to Cavity Offset : 0.10 MAX. 153 BGA PACKAGE THERMAL CHARACTERISTICS Symbol Thermal Resistance Unit Junction to Ambient(at still air) Parameter Theta_JA 19.5 C/W Junction to Case Theta_JC 0.9 C/W Junction to Board Theta_JB 6.9 C/W Note NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA. - 18 Rev. 1.0 August 2006