Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 1 -
K7D321874C
K7D323674C
36Mb DDR SRAM Specification
153BGA with Pb & Pb-Free
(RoHS compliant)
* Samsung Electronics reserves the right to change products or specification without notice.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY.
ALL INFORMATION IN THIS DOCUMENT IS PROVIDED
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.
1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or simi-
lar applications where Product failure could result in loss of life or personal or physical harm, or any military
or defense application, or any governmental procurement to which special terms or provisions may apply.
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 2 -
K7D321874C
K7D323674C
Document Title
36M DDR SYNCHRONOUS SRAM
Revision History
Rev No.
Rev. 0.0
Rev. 0.1
Rev. 0.2
Rev. 1.0
Remark
Advance
Preliminary
Preliminary
Final
History
Initial document.
Change AC Characteritics, Pin Capacitance, DC Characteristics
Change Samsung JEDEC Code in ID REGISTER DEFINITION
Correct Typo
Draft Data
Nov. 2005
Apr. 2006
Jun. 2006
Aug. 2006
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 3 -
K7D321874C
K7D323674C
ORDERING INFORMATION
Organization Maximum Frequency Part Number
1Mx36
400MHz K7D323674C-H(G)1C40
375MHz K7D323674C-H(G)1C37
333MHz K7D323674C-H(G)1C33
2Mx18
400MHz K7D321874C-H(G)1C40
375MHz K7D321874C-H(G)1C37
333MHz K7D321874C-H(G)1C33
GENERAL DESCRIPTION
The K7D323674C and K7D321874C are 37,748,736 bit Synchronous Pipeline Burst Mode SRAM devices. They are organized as
1,048,576 words by 36 bits for K7D323674C and 2,097,152 words by 18 bits for K7D321874C, fabricated using Samsung's
advanced CMOS technology.
Single differential HSTL level clock, K and K are used to initiate the read/write operation and all internal operations are self-timed. At
the rising edge of K clock, all addresses and burst control inputs are registered internally. Data inputs are registered one cycle after
write addresses are asserted(Late Write), at the rising edge of K clock for single data rate (SDR) write operations and at rising and
falling edge of K clock for a double data rate (DDR) write operations.
Data outputs are updated from output registers off the rising edges of K clock for SDR read operations and off the rising and falling
edges of K clock for DDR read operations. Free running echo clocks are supported which are representative of data output access
time for all SDR and DDR operations.
The chip is operated with 1.8~2.5V power supply and is compatible with HSTL input and output. The package is 9x17(153) Ball Grid
Array balls on a 1.27mm pitch.
FEATURES
• 1Mx36 or 2Mx18 Organizations.
• 1.8~2.5V VDD/1.5V ~1.8VDDQ.
• HSTL Input and Outputs.
• Single Differential HSTL Clock.
• Synchronous Pipeline Mode of Operation with Self-Timed
Late Write.
• Free Running Active High and Active Low Echo Clock Output
Pin.
• Registered Addresses, Burst Control and Data Inputs.
• Registered Outputs.
• Double and Single Data Rate Burst Read and Write.
• Burst Count Controllable With Max Burst Length of 4
• Interleaved and Linear Burst mode support
• Bypass Operation Support
• Programmable Impedance Output Drivers.
• JTAG Boundary Scan (subset of IEEE std. 1149.1)
• 153(9x17) Ball Grid Array Package(14mmx22mm)
• No Output enable support.
Note 1. H(G) [Package type] : G-Pb Free, H-Pb
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 4 -
K7D321874C
K7D323674C
FUNCTIONAL BLOCK DIAGRAM
K,K
B
1
B
3
B
2
Register
CE
Memory Array
1Mx36
Data Out Data In
Advance
Control
SD/DD
Co
Clock
Synchronous
Buffer
Internal
Clock
Generator
CE
R/W
LD Data Output Strobe
Data Output Enable
State Machine
Strobe_out
S/A Array
2 : 1 MUX
Data In
Register
Write Buffer
W/D
Array
Echo Clock
Output
36(or 18)x2
36(or 18)x2
36(or18)x2
36(or18)x2
XDIN
CQ,CQ
DQ
36(or 18)
Select
&
R/W control
Output
Buffer
Write
CE
Burst
Counter
Register
Address
Address
Comparator
2:1
MUX Dec.
20(or 21) 18(or 19)
18(or 19)20(or 21)
(Burst Write
SA[0:20]( or SA[0:21])
or
(2Mx18)
(2 stage)
(2 stage)
(Burst Address)
Address)
PIN DESCRIPTION
Pin Name Pin Description Pin Name Pin Description
K, K Differential Clocks TCK JTAG Test Clock
SA Synchronous Address Input TMS JTAG Test Mode Select
SA0, SA1 Synchronous Burst Address Input (SA0 = LSB) TDI JTAG Test Data Input
DQ Synchronous Data I/O TDO JTAG Test Data Output
CQ, CQ Differential Output Echo Clocks VREF HSTL Input Reference Voltage
B1 Load External Address VDD Power Supply
B2 Burst R/W Enable VDDQ Output Power Supply
B3 Single/Double Data Selection VSS GND
LBO Linear Burst Order NC No Connection
ZQ Output Driver Impedance Control Input
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 5 -
K7D321874C
K7D323674C
PACKAGE PIN CONFIGURATIONS(TOP VIEW)
K7D323674C(1Mx36)
123456789
AVSS VDDQ SA SA ZQ SA SA VDDQ VSS
BDQ DQ SA VSS B1VSS SA DQ DQ
CVSS VDDQ SA SA SA SA SA VDDQ VSS
DDQ DQ SA Vss(5) VDD Vss(6) SA DQ DQ
EVSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
FDQ CQ DQ VDD VDD VDD DQ CQ DQ
GVSS VDDQ VSS VSS KVSS VSS VDDQ VSS
HDQ DQ DQ VDD K VDD DQ DQ DQ
JVSS VDDQ VSS VDD VDD VDD VSS VDDQ VSS
KDQ DQ DQ VSS B2VSS DQ DQ DQ
LVSS VDDQ VSS LBO B3MODE(7) VSS VDDQ VSS
MDQ CQ DQ VDD VDD VDD DQ CQ DQ
NVSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
PDQ DQ NC*VSS VDD(2) VSS SA DQ DQ
RVSS VDDQ VDD(4) SA SA1SA VDD(3) VDDQ VSS
TDQ DQ SA VSS SA0VSS SA DQ DQ
UVSS VDDQ TMS TDI TCK TDO NC VDDQ VSS
K7D321874C(2Mx18)
(1) Variable address see "Variable address assignment table"
(2) Variable address see "Variable address assignment table"
(3) Variable address see "Variable address assignment table"
(4) Variable address see "Variable address assignment table"
(5) Variable address see "Variable address assignment table"
(6) Variable address see "Variable address assignment table"
(7) Internally NC
123456789
AVSS VDDQ SA SA ZQ SA SA VDDQ VSS
BNC DQ SA VSS B1VSS SA NC DQ
CVSS VDDQ SA SA SA SA SA VDDQ VSS
DDQ NC SA Vss(5) VDD Vss(6) SA DQ NC
EVSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
FNC CQ NC VDD VDD VDD DQ NC DQ
GVSS VDDQ VSS VSS KVSS VSS VDDQ VSS
HDQ NC DQ VDD K VDD NC DQ NC
JVSS VDDQ VSS VDD VDD VDD VSS VDDQ VSS
KNC DQ NC VSS B2VSS DQ NC DQ
LVSS VDDQ VSS LBO B3MODE(7) VSS VDDQ VSS
MDQ NC DQ VDD VDD VDD NC CQ NC
NVSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
PNC DQ SA VSS VDD(2) VSS SA NC DQ
RVSS VDDQ VDD(4) SA SA1SA VDD(3) VDDQ VSS
TDQ NC SA VSS SA0VSS SA DQ NC
UVSS VDDQ TMS TDI TCK TDO NC VDDQ VSS
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 6 -
K7D321874C
K7D323674C
VARIABLE ADDRESS ASSIGNMENT TABLE
NOTE : - SRAM density definition beyond 144Mb will include the parity bits.
Density Ball 5C
(1)
Ball 5P
(2)
Ball 7R
(3)
Ball 3R
(4)
Ball 4D
(5)
Ball 6D
(6)
32 Mb SA VDD VDD VDD Vss Vss
64 Mb SA SA VDD VDD Vss Vss
144 Mb NC SA SA SA Vss Vss
288 Mb SA SA SA SA Vss Vss
576 Mb NC SA SA SA SA SA
1152 Mb SA SA SA SA SA SA
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 7 -
K7D321874C
K7D323674C
Read Operation(Single and Double)
During SDR read operations, addresses and controls are registered at the first rising edge of K clock and then the internal array is
read between first and second rising edges of K clock. Data outputs are updated from output registers off the second rising edge of
K clock. During DDR read operations, addresses and controls are registered at the first rising edge of K clock, and then the internal
array is read twice between first and second rising edges of K clock. Data outputs are updated from output registers sequentially by
burst order off the second rising and falling edge of K clock.
Interleave and linear burst operation is controlled by LBO pin and the burst count is controllable with the maximum burst length of 4.
To avoid data contention,at least two NOP operations are required between the last read and the first write operation.
Write Operation(Late Write)
During SDR write operations, addresses and controls are registered at the first rising edge of K clock and data inputs are registered
at the following rising edge of K clock. During DDR write operations, addresses and controls are registered at the first rising edge of
K clock and data inputs are registered twice at the following rising and falling edge of K clock. Write addresses and data inputs are
stored in the data in registers until the next write operation, and only at the next write operation are data inputs fully written into
SRAM array.
Echo clock operation
Free running type of Echo clocks are generated from K clock regardless of read, write and NOP operations. They will stop operation
only when K clock is in the stop mode.
Echo clocks are designed to represent data output access time and this allows the echo clocks to be used as reference to capture
data outputs.
Bypass Read Operation
Bypass read operation occurs when the last write operation is followed by a read operation where write and read addresses are
identical. For this case, data outputs are from the data in registers instead of SRAM array.
Programmable Impedance Output Driver
This HSTL Late Write SRAM has been designed with programmable impedance output buffers. The SRAMs output buffer imped-
ance can be adjusted to match the system data bus impedance, by connecting a external resistor (RQ) between the ZQ pin of the
SRAM and VSS. The value of RQ must be five times the value of the intended line impedance driven by the SRAM. For example, a
250 resistor will give an output buffer impedance of 50. The allowable range of RQ is from 175 to 350. Internal circuits evaluate
and periodically adjust the output buffer impedance, as the impedance is affected by drifts in supply voltage and temperature. One
evaluation occurs every 32 clock cycles, with each evaluation moving the output buffer impedance level only one step at a time
toward the optimum level. Impedance updates occur when the SRAM is in High-Z state, and thus are triggered by write and deselect
operations. Updates will also be triggered with G HIGH initiated High-Z state, providing the specified G setup and hold times are met.
Impedance match is not instantaneous upon power-up. In order to guarantee optimum output driver impedance, the SRAM requires
a minimum number of non-read cycles (1,024) after power-up. The output buffers can also be programmed in a minimum impedance
configuration by connecting ZQ to VSS or VDDQ.
Power-Up/Power-Down Supply Voltage Sequencing
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied
simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage
removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ
does not exceed VDD by more than 0.5V during power-down.
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 8 -
K7D321874C
K7D323674C
TRUTH TABLE
NOTE : - B(Both) is DIN in write cycle and DOUT in read cycle. Byte write function is not supported. X means "Don't Care".
- K & K are complementary.
KB1 B2 B3 DQ Operation
H L X Hi-Z No Operation, Pipeline High-Z
L H H DOUT Load Address, Single Read
LHL
DOUT Load Address, Double Read
L L H DIN Load Address, Single Write
L L L DIN Load Address, Double Write
H H X B Increment Address, Continue
4 Burst Operation for Interleaved Burst (LBO = VDDQ)
NOTE : - For Interleave Burst LBO = VDDQ is recommended. If LBO = VDD, it must not exceed 2.63V.
Interleaved Burst Mode Case 1 Case 2 Case 3 Case 4
A1A0A1A0A1A0A1A0
First Address
Fourth Address
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
BURST SEQUENCE TABLE
4 Burst Operation for Linear Burst (LBO = VSS)
Linear Burst Mode Case 1 Case 2 Case 3 Case 4
A1A0A1A0A1A0A1A0
First Address
Fourth Address
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
OUTPUT TRISTATE TRUTH TABLE
KOperation DQ (n) DQ (n+1)
Write (B2=L) X High-Z
Deselect (NOP) (B1=H, B2=L) X High-Z
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 9 -
K7D321874C
K7D323674C
NOTE :
1. State transitions ; B1 =(Load Address), B1=(Increment Address, Continue)
B2 =(Read), B2 =(Write)
B3 =(Single Data Rate), B3 =(Double Data Rate)
BUS CYCLE STATE DIAGRAM
LOAD
NEW ADDRESS
INCREMENT
ADDRESS
INCREMENT
ADDRESS
INCREMENT
ADDRESS
INCREMENT
ADDRESS
READ
SDR
WRITE
SDR
READ
DDR
WRITE
DDR
B
2
, B
3
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
NO OP
POWER
UP
B
2
, B
3
B
1
B
2
, B
3
B
1
B
2
, B
3
B
1
B
1
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
B1, B2
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 10
K7D321874C
K7D323674C
RECOMMENDED DC OPERATING CONDITIONS
NOTE :1. These are DC test criteria. DC design criteria is VREF±50mV. The AC VIH/VIL levels are defined separately for measuring
timing parameters.
2. VIH (Max)DC=VDDQ+0.3, VIH (Max)AC=2.6V (2.1V for DQs) (pulse width 20% of cycle time).
3. VIL (Min)DC=-0.3V, VIL (Min)AC=-1.0V (-0.5V for DQs) (pulse width 20% of cycle time).
Parameter Symbol Min Typ Max Unit Note
Core Power Supply Voltage VDD 1.7 2.5 2.6 V
Output Power Supply Voltage VDDQ 1.4 1.5 1.9 V
Input High Level Voltage VIH VREF+0.1 - VDDQ+0.3 V 1, 2
Input Low Level Voltage VIL -0.3 - VREF-0.1 V 1, 3
Input Reference Voltage VREF 0.68 0.75 1.0 V
ABSOLUTE MAXIMUM RATINGS
NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data.
Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
Parameter Symbol Value Unit
Core Supply Voltage Relative to VSS VDD -0.5 to 3.13 V
Output Supply Voltage Relative to VSS VDDQ -0.5 to 2.3 V
Voltage on any pin Relative to VSS VIN -0.5 to VDDQ+0.5 (2.3V MAX)V
Output Short-Circuit Current(per I/O) IOUT 25 mA
Storage Temperature TSTR -55 to 125 °C
Maximum Junction Temperature TJ110 °C
Maximum Power Dissipation PD3.0 W
DC CHARACTERISTICS
NOTE :1. Minimum cycle. IOUT=0mA.
2. 50% read cycles.
3. |IOH|=(VDDQ/2)/(RQ/5)±15% @VOH=VDDQ/2 for 175 RQ 300.
4. |IOL|=(VDDQ/2)/(RQ/5)±15% @VOL=VDDQ/2 for 175 RQ 300.
Parameter Symbol Min Max Unit Note
Average Power Supply Operating Current(x36)
(Cycle time = tKHKH min)
IDD40
IDD37
IDD33
-
700
650
600
mA 1,2
Average Power Supply Operating Current(x18)
(Cycle time = tKHKH min)
IDD40
IDD37
IDD33
-
650
600
550
mA 1,2
Stop Clock Standby Current
(VIN=VDD-0.2V or 0.2V fixed, K=Low, K=High) ISB1 - 300 mA 1
Input Leakage Current
(VIN=VSS or VDDQ)ILI -3 3 µA
Output Leakage Current
(VOUT=VSS or VDDQ)ILO -5 5 µA
Output High Voltage(Programmable Impedance Mode) VOH1 VDDQ/2 VDDQ V3
Output Low Voltage(Programmable Impedance Mode) VOL1 VSS VDDQ/2 V 4
Output High Voltage(IOH=-0.1mA) VOH2 VDDQ-0.2 VDDQ V
Output Low Voltage(IOL=0.1mA) VOL2 VSS 0.2 V
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 11
K7D321874C
K7D323674C
PIN CAPACITANCE
NOTE : Periodically sampled and not 100% tested.(TA=25°C, f=500MHz)
Parameter Symbol Test Condition TYP Max Unit
Input Capacitance CIN VIN=0V - 4 pF
Data Output Capacitance COUT VOUT=0V - 5 pF
AC TEST CONDITIONS(TA=0 to 70°C, VDD=2.37 -2.63V, VDDQ=1.5V)
Parameter Symbol Value Unit Note
Input High/Low Level VIH/VIL 1.25/0.25 V -
Input Reference Level VREF 0.75 V -
Input Rise/Fall Time TR/TF0.5/0.5 ns -
Output Timing Reference Level 0.75 V -
Clock Input Timing Reference Level Cross Point V -
Output Load See Below -
AC INPUT CHARACTERISTICS
Parameter Symbol Min Max Unit Note
AC Input Logic High VIH (AC) VREF + 0.4 V -
AC Input Logic Low VIL (AC) VREF - 0.4 V -
Clock Input Differential Voltage VDIF (AC) 0.8 V -
VREF Peak-to-Peak AC Voltage VREF (AC) 5% VREF (DC) V -
CK
CK
VIH(AC)
VREF
VIL(AC)
AC INPUT DEFINITION
Setup
Time
Hold
Time
V
DIF
(AC)
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 12
K7D321874C
K7D323674C
AC TIMING CHARACTERISTICS
Notes: 1. The maximum cycle time must be limited to guarantee AC timing specification.
2. This parameter is guaranteed by design, and may not be tested at values shown in the table.
3. This parameter refers to CQ and CQ rising and falling edges.
4. K and K Clocks must be used differentially to meet AC timing specifications.
PARAMETER SYMBOL -40 -37 -33 UNITS NOTES
MIN MAX MIN MAX MIN MAX
Clock
Clock Cycle Time tKHKH 2.50 2.67 3.00 ns 1
Clock High Pulse Width tKHKL 1.15 1.25 1.40 ns
Clock Low Pulse Width tKLKH 1.15 1.25 1.40 ns
Setup Times
Address Setup Time tAVKH 0.30 0.33 0.35 ns
Control(B1,B2,B3) Setup Time tBVKH 0.30 0.33 0.35 ns
Data Setup Time tDVKX 0.20 0.25 0.30 ns 2
Hold Times
Address Hold Time tKHAX 0.30 0.33 0.35 ns
Control(B1,B2,B3) Hold Time tKHBX 0.30 0.33 0.35 ns
Data Hold Time tKXDX 0.20 0.25 0.30 ns 2
Output Times
Echo Clock High Pulse Width tCHCL tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 ns 2
Echo Clock Low Pulse Width tCLCH tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 ns 2
Clock Crossing to Echo Clock tKXCH 1.0 2.5 1.0 2.5 1.0 2.5 ns 3
Clock Crossing to Echo Clock tKXCL 1.0 2.5 1.0 2.5 1.0 2.5 ns 3
Echo Clock High to Output Valid tKHQV 0.20 0.20 0.20 ns
Echo Clock Low to Output Valid tCLQV 0.20 0.20 0.20 ns
Echo Clock High to Output Hold tCHQX -0.20 -0.20 -0.20 ns
Echo Clock Low to Output Hold tCLQX -0.20 -0.20 -0.20 ns
Echo Clock High to Output High-Z tCHQZ 0.20 0.20 0.20 ns
Echo Clock High to Output Low-Z tCHLZ -0.20 -0.20 -0.20 ns
50
50
AC TEST OUTPUT LOAD
255pF
DQ
0.75V
5pF
0.75V
50
50
0.75V
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 13
K7D321874C
K7D323674C
NOP CONTINUE
K
K
B1
SA
t
AVKH
t
KHAX
CQ
NOP
12 3456781012
11
B2
B3
CQ
DQ
READ
(burst of 4)
READ
(burst of 2)
READ
(burst of 4)
NOP WRITE
CONTINUE
WRITE
(burst of 4)
READ
9
CONTINUE
READ
READ
(burst of 4)
CONTINUE
READ
A
0
A
1
A
2
A
3
Q
X2
Q
01
Q
02
Q
03
Q
04
Q
51
Q
52
Q
53
Q
54
Q
11
Q
12
D
21
D
23
D
24
D
22
Q
31
t
BVKH
t
KHBX
t
CHQZ
t
KXCH
t
CHLZ
t
CHQV
t
CHQX
t
DVKH
t
KHDX
t
KHKH
UNDEFINED
DON’T CARE
A
5
NOTE
1. Q01 refers to output from address A. Q02 refers to output from the next internal burst address following A, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.
3. Doing more than one Read Continue or Write Continue will cause the address to wrap around.
TIMING WAVEFORMS FOR DOUBLE DATA RATE CYCLES
(Burst Length=4, 2)
t
CLQV
t
CLQX
t
KXCL
t
CHCL
t
CLCH
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 14
K7D321874C
K7D323674C
TIMING WAVEFORMS FOR SINGLE DATA RATE CYCLES
NOTE :
1. Q01 refers to output from address A0. Q02 refers to output from the next internal burst address following A0, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.
3. This devices supports cycle lengths of 1, 2, 4. Continue(B1=HIGH, B2=HIGH, B3=X) up to three times following a B1 operation. Any further
Continue assertions constitute invalid operations.
4. This device will have an address wraparound if further Continues are applied.
NOP CONTINUE
t
KHKH
t
AVKH
t
KHAX
NOP
1 2 3 4 5 6 7 8 10 1211
READ
(burst of 2)
READ
READ
(burst of 4)
NOP WRITE
CONTINUE
WRITE
(burst of 2)
READ
9
CONTINUE
READ
CONTINUE
READ
CONTINUE
READ
A
0
A
1
A
2
A
3
Q
X1
D
22
D
21
t
BVKH
t
KHBX
t
CHQZ
t
KXCH
t
CHLZ
t
CHQV
t
CHQX
t
DVKH
t
KHDX
t
KLKH
Q
31
Q
01
Q
02
Q
03
Q
04
Q
11
UNDEFINED
DON’T CARE
t
KHKL
K
K
B1
SA
B2
B3
DQ
CQ
CQ
(Burst Length=4, 2, 1)
(burst of 1)
t
CHCL
t
CLCH
t
KXCL
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 15
K7D321874C
K7D323674C
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG
TAP Controller State Diagram
JTAG Block Diagram
SRAM
CORE
BYPASS Reg.
Identification Reg.
Instruction Reg.
Control Signals
TAP Controller
TDO
SA
SA
TDI
TMS
TCK
Test Logic Reset
Run Test Idle
0
11
1
1
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
0
0
0
0
0
Select DR
Capture DR
Shift DR
Exit1 DR
Pause DR
Exit2 DR
Update DR
Select IR
Capture IR
Shift IR
Exit1 IR
Pause IR
Exit2 IR
Update IR
1
1
1
1
1
The SRAM provides a limited set of IEEE standard 1149.1 JTAG functions. This is to test the connectivity during manufacturing
between SRAM, printed circuit board and other components. Internal data is not driven out of SRAM under JTAG control. In conform-
ance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP control-
ler has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use
this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must
be tied to VSS to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the
application of a logic 1, and therefore can be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left
unconnected.
JTAG Instruction Coding
NOTE :
1. Places DQs in Hi-Z in order to sample all input data regardless of other
SRAM inputs. Input terminators are switched off.
2. TDI is sampled as an input to the first ID register to allow for the serial
shift of the external TDI data.
3. Bypass register is initiated to VSS when BYPASS instruction is
invoked.
The Bypass Register also holds serially loaded TDI when exiting the
Shift DR states.
4. SAMPLE instruction dose not places DQs in Hi-Z.
5. PRIVATE1 and PRIVATE2 are reserved for the exclusive use of SAM-
SUNG. This instruction should not be used.
IR2 IR1 IR0 Instruction TDO Output Notes
0 0 0 EXTEST Boundary Scan Register 1
0 0 1 IDCODE Identification Register 2
0 1 0 SAMPLE-Z Boundary Scan Register 1
0 1 1 PRIVATE3 Bypass Register 3,5
1 0 0 SAMPLE Boundary Scan Register 4
1 0 1 PRIVATE2 Bypass Register 3,5
1 1 0 PRIVATE1 Bypass Register 3,5
1 1 1 BYPASS Bypass Register 3
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 16
K7D321874C
K7D323674C
BOUNDARY SCAN EXIT ORDER(x36)
* Reserved for Mode Pin
15P VDD(2) 38 5C SA
25RSA
139 4A SA
35TSA
040 4C SA
46RSA 41 4D VSS(2
57TSA 42 3A SA
67RV
DD(2) 43 3B SA
77PSA 44 3C SA
88TDQ1 45 3D SA
99TDQ2 46 2B DQ19
10 8P DQ10 47 1B DQ20
11 7M DQ0 48 2D DQ28
12 9P DQ12 49 3F DQ18
13 8M CQ(3) 50 1D DQ30
14 9M DQ3 51 2F CQ(3)
15 7K DQ9 52 1F DQ21
16 8K DQ11 53 3H DQ27
17 9K DQ13 54 2H DQ29
18 6L MODE 55 1H DQ31
19 5H K 56 5A ZQ(1)
20 5G K 57 5B B1
21 9H DQ4 58 5K B2
22 8H DQ6 59 5L B3
23 7H DQ8 60 4L LBO
24 9F DQ14 61 1K DQ22
25 8F CQ(3) 62 2K DQ24
26 9D DQ5 63 3K DQ26
27 7F DQ17 64 1M DQ32
28 8D DQ7 65 2M CQ(3)
29 9B DQ15 66 1P DQ23
30 8B DQ16 67 3M DQ35
31 7D SA 68 2P DQ25
32 7C SA 69 1T DQ33
33 7B SA 70 2T DQ34
34 7A SA 71 3R VDD(2)
35 6D VSS(2) 72 3T SA
36 6C SA 73 4R SA
37 6A SA 74 7U NC
BOUNDARY SCAN EXIT ORDER(x18)
* Reserved for Mode Pin
15PVDD(2) 28 5C SA
25RSA
129 4A SA
35TSA
030 4C SA
46RSA 31 4D VSS(2)
57TSA 32 3A SA
67RV
DD(2) 33 3B SA
77PSA 34 3C SA
88TDQ1 35 3D SA
36 2B DQ10
99PDQ2
10 8M CQ(3) 37 1D DQ11
38 2F CQ(3)
11 7K DQ0
39 3H DQ9
12 9K DQ3
13 6L MODE 40 1H DQ12
14 5H K 41 5A ZQ(1)
15 5G K 42 5B B1
43 5K B2
16 8H DQ6 44 5L B3
45 4L LBO
17 9F DQ4
46 2K DQ15
18 7F DQ8 47 1M DQ13
19 8D DQ7
20 9B DQ5
48 3M DQ17
21 7D SA 49 2P DQ16
22 7C SA 50 1T DQ14
23 7B SA 51 3P SA
24 7A SA 52 3R VDD(2)
25 6D VSS(2) 53 3T SA
26 6C SA 54 4R SA
27 6A SA 55 7U NC
NOTE :
1. This pin is place holder for higher density. TDO will be low for VSS and high for VDD
SCAN REGISTER DEFINITION
Part Instruction Register Bypass Register ID Register Boundary Scan
1M x 36 3 bits 1 bits 32 bits 74 bits
2M x 18 3 bits 1 bits 32 bits 55 bits
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 17
K7D321874C
K7D323674C
JTAG DC OPERATING CONDITIONS
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.
Parameter Symbol Min Typ Max Unit Note
Power Supply Voltage VDD 1.7 2.5 2.6 V
Input High Level VIH 0.65*VDD -VDD+0.3 V
Input Low Level VIL -0.3 - 0.35*VDD V
Output High Voltage(IOH=-2mA) VOH 0.75*VDD -VDD V
Output Low Voltage(IOL=2mA) VOL VSS - 0.25*VDD V
JTAG AC Characteristics
Parameter Symbol Min Max Unit Note
TCK Cycle Time tCHCH 50 - ns
TCK High Pulse Width tCHCL 20 - ns
TCK Low Pulse Width tCLCH 20 - ns
TMS Input Setup Time tMVCH 5-ns
TMS Input Hold Time tCHMX 5-ns
TDI Input Setup Time tDVCH 5-ns
TDI Input Hold Time tCHDX 5-ns
Clock Low to Output Valid tCLQV 010ns
JTAG AC TEST CONDITIONS
NOTE : 1. See SRAM AC test output load on page 5.
Parameter Symbol Min Unit Note
Input High/Low Level VIH/VIL VDD/0.0 V
Input Rise/Fall Time TR/TF 1.0/1.0 ns
Input and Output Timing Reference Level VDD/2 V 1
JTAG TIMING DIAGRAM
TCK
TMS
TDI
TDO
tCHCH tCHCL tCLCH
tMVCH tCHMX
tDVCH tCHDX
tCLQV
ID REGISTER DEFINITION
Part Revision Number
(31:28)
Part Configuration
(27:18)
Vendor Definition
(17:12)
Samsung JEDEC Code
(11: 1)
Start Bit
(0)
1M x 36 0000 01000 00100 XXXXXX 00011001110 1
2M x 18 0000 01001 00011 XXXXXX 00011001110 1
Rev. 1.0 August 2006
1Mx36 & 2Mx18 SRAM
- 18
K7D321874C
K7D323674C
153 BGA PACKAGE THERMAL CHARACTERISTICS
NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA.
Parameter Symbol Thermal Resistance Unit Note
Junction to Ambient(at still air) Theta_JA 19.5 °C/W
Junction to Case Theta_JC 0.9 °C/W
Junction to Board Theta_JB 6.9 °C/W
NOTE :
1. All Dimensions are in Millimeters.
2. Solder Ball to PCS Offset : 0.10 MAX.
3. PCB to Cavity Offset : 0.10 MAX.
153 BGA PACKAGE DIMENSIONS
1.27
7654321
0.050
BCDEFGHJKLMNPRTUA
1.27
0.050
BOTTOM VIEW
0.3/0.012MAX 153-0.030 ±0.006
14.00 ±0.10
0.551 ±0.004
22.00 ±0.10
0.866 ±0.004
12.50 ±0.10
0.492 ±0.004
0.60 ±0.10
0.024 ±0.004
20.50 ±0.10
0.807 ±0.004
0.56 ±0.04
0.022 ±0.002
0.90 ±0.10
0.035 ±0.004
2.21
0.087
TOP VIEW
0.006
0.15 MAX
0.75 ±0.15
MAX
98