BF998 / BF998R / BF998RW Vishay Semiconductors N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode 2 1 Features * * * * * * * SOT-143 Integrated gate protection diodes Low noise figure Low feedback capacitance High cross modulation performance Low input capacitance High AGC-range High gain 3 4 2 1 SOT-143R 4 3 1 Applications 2 Input and mixer stages in UHF tuners. SOT-343R Mechanical Data 4 Typ: BF998 Case: SOT-143 Plastic case Weight: approx. 8.0 mg Marking: MO 3 19216 Electrostatic sensitive device. Observe precautions for handling. Typ: BF998RW Case: SOT-343R Plastic case Weight: approx. 6.0 mg Marking: WMO Pinning: 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Pinning: 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Typ: BF998R Case: SOT-143R Plastic case Weight: approx. 8.0 mg Marking: MOR Pinning: 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Parts Table Part Ordering Code Marking Package BF998 BF998A-GS08 or BF998B-GS08 MO SOT143 BF998A BF998A-GS08 MO SOT143 BF998B BF998B-GS08 MO SOT143 BF998R BF998RA-GS08 or BF998RB-GS08 MOR SOT143R BF998RA BF998RA-GS08 MOR SOT143R BF998RB BF998RB-GS08 MOR SOT143R BF998RW BF998RAW-GS08 or BF998RBW-GS08 MOW SOT343R BF998RAW BF998RAW-GS08 MOW SOT343R BF998RBW BF998RBW-GS08 MOW SOT343R Document Number 85011 Rev. 1.5, 24-Nov-04 www.vishay.com 1 BF998 / BF998R / BF998RW VISHAY Vishay Semiconductors Absolute Maximum Ratings Tamb = 25 C, unless otherwise specified Parameter Test condition Symbol Value VDS 12 V ID 30 mA IG1/G2SM 10 mA Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Gate 1/Gate 2 - source voltage Total power dissipation Unit VG1S/G2S 7 V Ptot 200 mW Tamb 60 C Channel temperature TCh 150 C Storage temperature range Tstg - 65 to + 150 C Symbol Value Unit RthChA 450 K/W Maximum Thermal Resistance Parameter Channel ambient 1) Test condition 1) on glass fibre printed board (25 x 20 x 1.5) mm3 plated with 35 m Cu Electrical DC Characteristics Tamb = 25 C, unless otherwise specified Symbol Min Drain - source breakdown voltage Parameter ID = 10 A, - VG1S = - VG2S = 4 V Test condition Part V(BR)DS 12 Typ. Max Unit Gate 1 - source breakdown voltage IG1S = 10 mA, VG2S = VDS = 0 V(BR)G1SS 7 14 V Gate 2 - source breakdown voltage IG2S = 10 mA, VG1S = VDS = 0 V(BR)G2SS 7 14 V V Gate 1 - source leakage current VG1S = 5 V, VG2S = VDS = 0 IG1SS 50 nA Gate 2 - source leakage current VG2S = 5 V, VG1S = VDS = 0 IG2SS 50 nA Drain current VDS = 8 V, VG1S = 0, VG2S = 4 V BF998/ BF998R/ BF998RW IDSS 4 18 mA BF998A/ BF998RA/ BF998RAW IDSS 4 10.5 mA BF998B/ BF998RB/ BF998RBW IDSS 9.5 18 mA Gate 1 - source cut-off voltage VDS = 8 V, VG2S = 4 V, ID = 20 A - VG1S(OFF) 1.0 2.0 V Gate 2 - source cut-off voltage VDS = 8 V, VG1S = 0, ID = 20 A - VG2S(OFF) 0.6 1.0 V Electrical AC Characteristics Tamb = 25 C, unless otherwise specified VDS = 8 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz Parameter Test condition Forward transadmittance Gate 1 input capacitance Symbol Min Typ. |y21s| 21 24 Max Unit mS Cissg1 2.1 Cissg2 1.1 pF Feedback capacitance Crss 25 fF Output capacitance Coss 1.05 pF Gate 2 input capacitance www.vishay.com 2 VG1S = 0, VG2S = 4 V 2.5 pF Document Number 85011 Rev. 1.5, 24-Nov-04 BF998 / BF998R / BF998RW VISHAY Vishay Semiconductors Parameter Test condition Power gain Symbol Min GS = 2 mS, GL = 0.5 mS, f = 200 MHz Gps GS = 3,3 mS, GL = 1 mS, f = 800 MHz Gps 16.5 Gps 40 Typ. Max Unit 28 dB 20 dB AGC range VG2S = 4 to -2 V, f = 800 MHz Noise figure GS = 2 mS, GL = 0.5 mS, f = 200 MHz F 1.0 dB GS = 3,3 mS, GL = 1 mS, f = 800 MHz F 1.5 dB dB 300 20 V DS = 8 V 250 ID - Drain Current ( mA) Ptot -Total Power Dissipation ( mW ) Typical Characteristics (Tamb = 25 C unless otherwise specified) 200 150 100 50 0 0 20 40 60 80 16 1V 12 8 0 4 V G2S = -1 V -0.4 0.0 0.4 V G1S = 0.6 V 20 0.4 V 15 0.2 V 10 0 -0.2 V 5 20 ID - Drain Current ( mA) ID - Drain Current ( mA ) 25 16 0 2 4 6 8 10 V DS - Drain Source Voltage ( V ) Figure 2. Drain Current vs. Drain Source Voltage Document Number 85011 Rev. 1.5, 24-Nov-04 4V V DS = 8 V 5V 3V 2V 1V 12 8 0 4 V G1S = -1 V -0.4 V 0 12812 1.2 Figure 3. Drain Current vs. Gate 1 Source Voltage 30 V G2S = 4 V 0.8 V G1S - Gate 1 Source Voltage ( V ) 12816 Figure 1. Total Power Dissipation vs. Ambient Temperature 5V 4V 0 -0.8 100 120 140 160 Tamb - Ambient Temperature ( C ) 96 12159 3V 2V 6V 0 -0.6 12817 -0.2 0.2 0.6 1.0 1.4 V G2S - Gate 2 Source Voltage ( V ) Figure 4. Drain Current vs. Gate 2 Source Voltage www.vishay.com 3 BF998 / BF998R / BF998RW VISHAY y21s - Forward Transadmittance ( mS ) C issg1 - Gate 1 Input Capacitance ( pF ) Vishay Semiconductors 3.0 V DS = 8 V V G2S = 4 V f = 1 MHz 2.5 2.0 1.5 1.0 0.5 0.0 -2 -1.5 -1 -0.5 0 0.5 1.0 3V 20 16 2V 12 8 1V 4 0 0 0 16 20 24 28 f = 1300 MHz 16 14 Im ( y11) ( mS ) 2.0 1.5 1.0 1000 MHz 12 10 700 MHz 8 6 400 MHz 4 0.5 2 100 MHz V DS = 8 V V G2S = 4 V I D = 10 mA f = 100...1300 MHz 0 2 4 6 8 10 12 V DS - Drain Source Voltage ( V ) 12864 0 10 0 -20 -0.2 V -30 2 -0.4 V -40 -50 -1.0 V DS = 8 V V G2S = 4 V f = 100...1300 MHz 0 -5 Im ( y21) ( mS ) 0 -10 I D = 5 mA -15 10 mA 0.0 0.5 1.0 -30 www.vishay.com f = 100 MHz 400 MHz 1000 MHz -35 1.5 Figure 7. Transducer Gain vs. Gate 1 Source Voltage 14 700 MHz -25 1300 MHz -40 -0.5 12 20 mA -20 V G2S = -0.8 V V G1S - Gate 1 Source Voltage ( V ) 6 8 10 Re (y11) ( mS ) 5 1V -10 4 Figure 9. Short Circuit Input Admittance 4V 3V 2V f = 800 MHz 2 12820 Figure 6. Output Capacitance vs. Drain Source Voltage - Transducer Gain ( dB ) 12 18 V G2S = 4 V f = 1 MHz 2.5 S 21 8 I D - Drain Current ( mA ) 20 0.0 4 4 Figure 8. Forward Transadmittance vs. Drain Current 3.0 12818 V G2S = 4 V 24 12819 Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage Coss - Output Capacitance ( pF ) V DS = 8 V f = 1 MHz 28 1.5 V G1S - Gate 1 Source Voltage ( V ) 12863 32 0 12821 4 8 12 16 20 24 Re (y21) ( mS ) 28 32 Figure 10. Short Circuit Forward Transfer Admittance Document Number 85011 Rev. 1.5, 24-Nov-04 BF998 / BF998R / BF998RW VISHAY Vishay Semiconductors 9 f = 1300 MHz 8 7 Im ( y22) ( mS ) 6 1000 MHz 5 700 MHz 4 3 V DS = 15 V V G2S = 4 V I D =10 mA f = 100...1300 MHz 400 MHz 2 1 100 MHz 0 0.00 0.25 12822 0.50 0.75 1.00 Re (y22) ( mS ) 1.25 1.50 Figure 11. Short Circuit Output Admittance VDS = 8 V, ID = 10 mA, VG2S = 4 V, Z0 = 50 S11 S21 90 j 120 j0.5 j2 60 700 1000 400 150 j0.2 30 1300 MHz j5 100 0 0.2 0.5 1 2 180 5 1 2 0 100 -j0.2 -j5 1300 MHz 1000 -j0.5 -150 -j2 12960 -30 -120 -60 12962 -j Figure 12. Input Reflection Coefficient S12 -90 Figure 14. Forward Transmission Coefficient S22 j 90 120 60 150 j0.5 j2 30 j0.2 1200 1300 MHz j5 200 100 180 0.08 0.16 0 0 0.2 0.5 1 2 5 100 -j0.2 -150 -j5 -30 1300 MHz -j2 -j0.5 -120 -60 -90 12973 Figure 13. Reverse Transmission Coefficient Document Number 85011 Rev. 1.5, 24-Nov-04 12963 -j Figure 15. Output Reflection Coefficient www.vishay.com 5 BF998 / BF998R / BF998RW VISHAY Vishay Semiconductors Package Dimensions of SOT143 in mm 0.50(0.020) 0.35 (0.014) 0.15 (0.006) 0.08 (0.003) 1.1 (0.043) 0.9 (0.035) 1.4 (0.055) 1.2 (0.047) 2.6 (0.101) 2.4 (0.094) 0.9 (0.035) 0.75 (0.029) 3.0 (0.117) 2.8 (0.109) 0...0.1 (0...0.004) Mounting Pad Layout 1.8 (0.070) 1.6 (0.062) 0.65 (0.025) 1.17 (0.046) 2.0 (0.078) 1.8 (0.070) ISO Method E 96 12240 Package Dimensions of SOT143R in mm 96 12239 www.vishay.com 6 Document Number 85011 Rev. 1.5, 24-Nov-04 VISHAY BF998 / BF998R / BF998RW Vishay Semiconductors Package Dimensions of SOT343R in mm 96 12238 Document Number 85011 Rev. 1.5, 24-Nov-04 www.vishay.com 7 BF998 / BF998R / BF998RW VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 www.vishay.com 8 Document Number 85011 Rev. 1.5, 24-Nov-04