INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGS4056DPbF
1www.irf.com
11/07/08
E
G
n-channel
C
VCES = 600V
IC = 12A, TC = 100°C
tSC 5µs, TJ(max) = 175°C
VCE(on) typ. = 1.55V
Features
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 175 °C
5 µS short circuit SOA
Square RBSOA
100% of the parts tested for 4X rated current (ILM)
Positive VCE (ON) Temperature co-efficient
Ultra fast soft Recovery Co-Pak Diode
Tight parameter distribution
Lead Free Package
Benefits
High Efficiency in a wide range of applications
Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
Rugged transient Performance for increased reliability
Excellent Current sharing in parallel operation
Low EMI
GC E
Gate Collector Emitter
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 24
IC @ TC = 100°C Continuous Collector Current 12
ICM Pulse Collector Current 48
ILM Clamped Inductive Load Current
c
48 A
IF @ TC = 25°C Diode Continous Forward Current 24
IF @ TC = 100°C Diode Continous Forward Current 12
IFM Diode Maximum Forward Current
e
48
VGE Continuous Gate-to-Emitter Voltage ±20 V
Transient Gate-to-Emitter Voltage ±30
PD @ TC = 25°C Maximum Power Dissipation 140 W
PD @ TC = 100°C Maximum Power Dissipation 70
TJOperating Junction and -55 to +175
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter Min. Typ. Max. Units
RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) ––– ––– 1.07 °C/W
RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 3.66
RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 –––
RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 80 –––
D2Pak
C
E
C
G
PD - 96197
IRGS4056DPbF
2www.irf.com
Notes:
VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 22.
This is only applied to TO-220AB package.
Pulse width limited by max. junction temperature.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions Ref.Fig
V(BR)CES Collector-to-Emitter Breakdown Voltage 600——V
VGE = 0V, IC = 100µA
f
CT6
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage —0.30—V/°C
VGE = 0V, IC = 1mA (2C-17C) CT6
—1.551.85 IC = 12A, VGE = 15V, TJ = 25°C 5,6,7
VCE(on) Collector-to-Emitter Saturation Voltage 1.90 V IC = 12A, VGE = 15V, TJ = 150°C 9,10,11
—1.97— IC = 12A, VGE = 15V, TJ = 175°C
VGE(th) Gate Threshold Voltage 4.0 6.5 V VCE = VGE, IC = 350µA 9, 10,
VGE(th)/TJ Threshold Voltage temp. coefficient -18 mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) 11, 12
gfe Forward Transconductance 7.7 S VCE = 50V, IC = 12A, PW = 80µs
ICES Collector-to-Emitter Leakage Current 2.0 25 µA VGE = 0V, VCE = 600V
—475— VGE = 0V, VCE = 600V, TJ = 175°C
VFM Diode Forward Voltage Drop 2.10 3.10 V IF = 12A 8
—1.61— IF = 12A, TJ = 17C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Ref.Fig
QgTotal Gate Charge (turn-on) 25 38 IC = 12A 24
Qge Gate-to-Emitter Charge (turn-on) 7.0 11 nC VGE = 15V CT1
Qgc Gate-to-Collector Charge (turn-on) 11 16 VCC = 400V
Eon Turn-On Switching Loss 75 118 IC = 12A, VCC = 400V, VGE = 15V CT4
Eoff Turn-Off Switching Loss 225 273 µJ RG = 22, L = 200µH, LS = 150nH, TJ = 25°C
Etotal Total Switching Loss 300 391 Energy losses include tail & diode reverse recovery
td(on) Turn-On delay time 31 40 IC = 12A, VCC = 400V, VGE = 15V CT4
trRise time 17 24 ns RG = 22, L = 200µH, LS = 150nH, TJ = 25°C
td(off) Turn-Off delay time 83 94
tfFall time 24 31
Eon Turn-On Switching Loss 185 IC = 12A, VCC = 400V, VGE=15V 13, 15
Eoff Turn-Off Switching Loss 355 µJ RG=22, L=10H, LS=150nH, TJ = 175°C
f
CT4
Etotal Total Switching Loss 540 Energy losses include tail & diode reverse recovery WF1, WF2
td(on) Turn-On delay time 30 IC = 12A, VCC = 400V, VGE = 15V 14, 16
trRise time 18 ns RG = 22, L = 200µH, LS = 150nH CT4
td(off) Turn-Off delay time 102 TJ = 17C WF1
tfFall time 41 WF2
Cies Input Capacitance 765 pF VGE = 0V 23
Coes Output Capacitance 52 VCC = 30V
Cres Reverse Transfer Capacitance 23 f = 1.0Mhz
TJ = 175°C, IC = 48A 4
RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2
Rg = 22, VGE = +15V to 0V
SCSOA Short Circuit Safe Operating Area 5 µs VCC = 400V, Vp =600V 22, CT3
Rg = 22, VGE = +15V to 0V WF4
Erec Reverse Recovery Energy of the Diode 280 µJ TJ = 17C 17, 18, 19
trr Diode Reverse Recovery Time 68 ns VCC = 400V, IF = 12A 20, 21
Irr Peak Reverse Recovery Current 19 A VGE = 15V, Rg = 22, L =200µH, Ls = 150nH WF3
Conditions
IRGS4056DPbF
www.irf.com 3
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
Fig. 3 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =15V
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
020 40 60 80 100 120 140 160 180
TC (°C)
0
5
10
15
20
25
IC (A)
0 20 40 60 80 100 120 140 160 180
TC (°C)
0
25
50
75
100
125
150
Ptot (W)
10 100 1000
VCE (V)
1
10
100
IC (A)
012345678
VCE (V)
0
5
10
15
20
25
30
35
40
45
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
012345678
VCE (V)
0
5
10
15
20
25
30
35
40
45
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
1 10 100 1000 10000
VCE (V)
0.1
1
10
100
IC (A)
1msec
10µsec
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse DC
IRGS4056DPbF
4www.irf.com
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
0 1 2 3 4 5 6 7 8
VCE (V)
0
5
10
15
20
25
30
35
40
45
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0.0 1.0 2.0 3.0 4.0
VF (V)
0
10
20
30
40
50
60
70
80
IF (A)
-40°c
25°C
175°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 6.0A
ICE = 12A
ICE = 24A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 6.0A
ICE = 12A
ICE = 24A
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 6.0A
ICE = 12A
ICE = 24A
0 5 10 15
VGE (V)
0
10
20
30
40
50
ICE (A)
TJ = 25°C
TJ = 175°C
IRGS4056DPbF
www.irf.com 5
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 22; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 22; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 12A; VGE = 15V
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 175°C
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 175°C
0 102030
IC (A)
0
100
200
300
400
500
600
700
800
Energy (µJ)
E
OFF
EON
510 15 20 25
IC (A)
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
0 25 50 75 100 125
Rg ()
50
100
150
200
250
300
350
400
450
500
Energy (µJ)
EOFF
E
ON
025 50 75 100 125
RG ()
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
010 20 30
IF (A)
0
5
10
15
20
25
IRR (A)
RG = 10
RG = 22
RG = 47
RG = 100
025 50 75 100 125
RG (Ω)
5
10
15
20
25
IRR (A)
IRGS4056DPbF
6www.irf.com
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 12A; TJ = 175°C
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 175°C
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 12A; L = 600µH
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 175°C
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
0500 1000 1500
diF /dt ( A/µs)
0
5
10
15
20
25
IRR (A)
0 500 1000 1500
diF /dt (A/µs)
200
400
600
800
1000
1200
1400
QRR (µC)
10
22
100
47
12A
24A
6.0A
010 20 30
IF (A)
0
50
100
150
200
250
300
350
400
Energy (µJ)
RG = 10
RG = 22
RG = 47
RG = 100
8 1012141618
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
Time (µs)
20
30
40
50
60
70
80
90
100
110
120
Current (A)
020 40 60 80 100
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 5 10 15 20 25 30
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES
= 300V
VCES
= 400V
IRGS4056DPbF
www.irf.com 7
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.821094 0.000233
1.913817 0.001894
0.926641 0.014711
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.358 0.000171
0.424 0.001361
0.287 0.009475
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
IRGS4056DPbF
8www.irf.com
1K
VC C
DUT
0
L
L
Rg
80 V DUT
480V
DC
4x
DUT
360V
L
Rg
VCC
diode clamp /
DUT
DUT /
DRIVER
- 5V
Rg
VCC
DUT
R =
V
CC
I
CM
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.5 - Resistive Load Circuit
C f orce
400µH
G f orce DUT
D1 10K
C sen se
0.007
E sense
E force
Fig.C.T.6 - BVCES Filter Circuit
IRGS4056DPbF
www.irf.com 9
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
-100
0
100
200
300
400
500
-0.50 0.00 0.50 1.00 1.50 2.00
Time(µs)
V
CE
(V)
-5
0
5
10
15
20
2
5
E
OFF
Loss
5% VCE
5% ICE
90% ICE
tf
-100
0
100
200
300
400
50
0
11.70 11.80 11.90 12.00 12.10
Time (µs)
V
CE
(V)
-10
0
10
20
30
40
5
0
E
ON
TEST
C
90% test
10% test
5% V
CE
tr
-25
-20
-15
-10
-5
0
5
10
15
20
25
-0.05 0.05 0.15
time (µS)
I
RR
(A)
Peak
I
RR
Q
RR
t
RR
10%
Pea k
I
RR
-100
0
100
200
300
400
500
-5.00 0.00 5.00 10.00
time (µS)
V
CE
(V)
-50
0
50
100
150
200
250
I
CE
(A)
V
C
E
I
CE
IRGS4056DPbF
10 www.irf.com
D2Pak (TO-263AB) Part Marking Information
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
'$7(&2'(
<($5 
:((.
$ $66(0%/<6,7(&2'(
5(&7,),(5
,17(51$7,21$/ 3$57180%(5
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
)6
,17+($66(0%/</,1(/
$66(0%/('21::
7+,6,6$1,5)6:,7+
/27&2'( ,17(51$7,21$/
/2*2
5(&7,),(5
/27&2'(
$66(0%/< <($5 
3$57180%(5
'$7(&2'(
/,1(/
:((.
25
)6
/2*2
$66(0%/<
/27&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRGS4056DPbF
www.irf.com 11
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 11/2008
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.