Rev.3.0_00
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR S-817 Series
Seiko Instruments Inc. 1
The S-817 Series is a 3-terminal positive voltage
regulator, developed using CMOS technology. Small
ceramic capacitors can be used as the output
capacitor, and the S-817 series provides stable
operation with low loads down to 1 µA.
Compared with the conventional voltage regulator, it is
of low current consumption, and with a lineup of the
super small package (SNT-4A:1.2 x 1.6mm). It is
optimal as a power supply of small portable device.
Features
Ultra-low current consumption: Operating current: Typ. 1.2 µA, Max. 2.5 µA
Output voltage: 1.1 to 6.0 V, selectable in 0.1 V steps.
Output voltage accuracy: ±2.0%
Output current: 50 mA capable (3.0 V output product, VIN=5 V) *1
75 mA capable (5.0 V output product, VIN=7 V) *1
Dropout voltage: Typ. 160 mV (VOUT = 5.0 V, IOUT = 10 mA)
Low ESR capacitor (e.g. A ceramic capacitor of 0.1 µF or more) can be used as an output capacitor.
Short circuit protection for: Series A
Excellent Line Regulation: Stable operation at light load of 1 µA
*1. Attention should be paid to the power dissipation of the package when the load is large.
Applications
Power source for battery-powered devices
Power source for personal communication devices
Power source for home electric/electronic appliances
Packages
Package name Drawing code
Package Tape Reel Zigzag
SNT-4A PF004-A PF004-A PF004-A
SC-82AB NP004-A NP004-A NP004-A
SOT-23-5 MP005-A MP005-A MP005-A
SOT-89-3 UP003-A UP003-A UP003-A
TO-92 (Bulk) YS003-B
TO-92 (Tape and reel) YF003-A YF003-A YF003-A
TO-92 (Tape and ammo) YF003-A YZ003-C YZ003-C
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
2
Block Diagrams
1. S-817A Series
*1
VIN
VSS
VOUT
Short circuit
protection
Reference
voltage circuit
+
*1. Parasitic diode
Figure 1
2. S-817B Series
*1
VIN
VSS
VOUT
Reference
voltage circuit
+
*1. Parasitic diode
Figure 2
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 3
Product Name Structure
The product types and output voltage for the S-817 Series can be selected at the user’s request. Refer
to the “Product name” for the meanings of the characters in the product name and “Product name list” for
the full product names
1. Product name
1. 1 S-817A series
1. 1. 1 SNT-4A package
S-817 A xx A PF - xxx TF G
Fixed
IC direction in tape specifications*1
Product name (abbreviation)
Package name (abbreviation)*2
PF : SNT-4A
Output voltage
11 to 60
(e.g. When the output voltage is
1.5 V, it is expressed 15)
Short circuit protection
A : Yes
*1. Refer to the specifications at the end of this book.
*2. Refer to the “2. Product name list”.
1. 1. 2 SC-82AB and SOT-23-5 package
S-817 A xx A xx - xxx T2
IC direction in tape specifications*1
Product name (abbreviation)
Package name (abbreviation)*2
NB : SC-82AB
MC : SOT-23-5
Output voltage
11 to 60
(e.g. When the output voltage is
1.5 V, it is expressed 15)
Short circuit protection
A : Yes
*1. Refer to the specifications at the end of this book.
*2. Refer to the “2. Product name list”.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
4
1. 2 S-817B series
1. 2. 1 SOT-23-5 and SOT-89-3 package
S-817 B xx A xx - xxx T2
IC direction in tape specifications*1
Product name (abbreviation)
Package name (abbreviation)*2
MC : SOT-23-5
UA : SOT-89-3
Output voltage
11 to 60
(e.g. When the output voltage is
1.5 V, it is expressed 15)
Short circuit protection
B : No
*1. Refer to the specifications at the end of this book.
*2. Refer to the “2. Product name list”.
1. 2. 2 TO-92 package
S-817 B xx A Y - x
Packing form
B : Bulk
T : Tape and reel
Z : Tape and ammo
Package name (abbreviation)*1
Y : TO-92
Output voltage
11 to 60
(e.g. When the output voltage is
1.5 V, it is expressed 15)
Short circuit protection
B : No
*1. Refer to the “2. Product name list”.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 5
2. Product name list
2. 1 S-817A series
Table 1
Output voltage SNT-4A SC-82AB SOT-23-5
1.1 V ± 2.0 % S-817A11APF-CUATFG S-817A11ANB-CUA-T2
1.2 V ± 2.0 % S-817A12APF-CUBTFG S-817A12ANB-CUB-T2
1.3 V ± 2.0 % S-817A13APF-CUCTFG S-817A13ANB-CUC-T2
1.4 V ± 2.0 % S-817A14APF-CUDTFG S-817A14ANB-CUD-T2 S-817A14AMC-T2
1.5 V ± 2.0 % S-817A15APF-CUETFG S-817A15ANB-CUE-T2
1.6 V ± 2.0 % S-817A16APF-CUFTFG S-817A16ANB-CUF-T2 S-817A16AMC-T2
1.7 V ± 2.0 % S-817A17APF-CUGTFG S-817A17ANB-CUG-T2
1.8 V ± 2.0 % S-817A18APF-CUHTFG S-817A18ANB-CUH-T2
1.9 V ± 2.0 % S-817A19APF-CUITFG S-817A19ANB-CUI-T2
2.0 V ± 2.0 % S-817A20APF-CUJTFG S-817A20ANB-CUJ-T2
2.1 V ± 2.0 % S-817A21APF-CUKTFG S-817A21ANB-CUK-T2
2.2 V ± 2.0 % S-817A22APF-CULTFG S-817A22ANB-CUL-T2
2.3 V ± 2.0 % S-817A23APF-CUMTFG S-817A23ANB-CUM-T2
2.4 V ± 2.0 % S-817A24APF-CUNTFG S-817A24ANB-CUN-T2
2.5 V ± 2.0 % S-817A25APF-CUOTFG S-817A25ANB-CUO-T2
2.6 V ± 2.0 % S-817A26APF-CUPTFG S-817A26ANB-CUP-T2
2.7 V ± 2.0 % S-817A27APF-CUQTFG S-817A27ANB-CUQ-T2
2.8 V ± 2.0 % S-817A28APF-CURTFG S-817A28ANB-CUR-T2
2.9 V ± 2.0 % S-817A29APF-CUSTFG S-817A29ANB-CUS-T2
3.0 V ± 2.0 % S-817A30APF-CUTTFG S-817A30ANB-CUT-T2
3.1 V ± 2.0 % S-817A31APF-CUUTFG S-817A31ANB-CUU-T2
3.2 V ± 2.0 % S-817A32APF-CUVTFG S-817A32ANB-CUV-T2
3.3 V ± 2.0 % S-817A33APF-CUWTFG S-817A33ANB-CUW-T2
3.4 V ± 2.0 % S-817A34APF-CUXTFG S-817A34ANB-CUX-T2
3.5 V ± 2.0 % S-817A35APF-CUYTFG S-817A35ANB-CUY-T2
3.6 V ± 2.0 % S-817A36APF-CUZTFG S-817A36ANB-CUZ-T2
3.7 V ± 2.0 % S-817A37APF-CVATFG S-817A37ANB-CVA-T2
3.8 V ± 2.0 % S-817A38APF-CVBTFG S-817A38ANB-CVB-T2
3.9 V ± 2.0 % S-817A39APF-CVCTFG S-817A39ANB-CVC-T2
4.0 V ± 2.0 % S-817A40APF-CVDTFG S-817A40ANB-CVD-T2
4.1 V ± 2.0 % S-817A41APF-CVETFG S-817A41ANB-CVE-T2
4.2 V ± 2.0 % S-817A42APF-CVFTFG S-817A42ANB-CVF-T2
4.3 V ± 2.0 % S-817A43APF-CVGTFG S-817A43ANB-CVG-T2
4.4 V ± 2.0 % S-817A44APF-CVHTFG S-817A44ANB-CVH-T2
4.5 V ± 2.0 % S-817A45APF-CVITFG S-817A45ANB-CVI-T2
4.6 V ± 2.0 % S-817A46APF-CVJTFG S-817A46ANB-CVJ-T2
4.7 V ± 2.0 % S-817A47APF-CVKTFG S-817A47ANB-CVK-T2
4.8 V ± 2.0 % S-817A48APF-CVLTFG S-817A48ANB-CVL-T2
4.9 V ± 2.0 % S-817A49APF-CVMTFG S-817A49ANB-CVM-T2
5.0 V ± 2.0 % S-817A50APF-CVNTFG S-817A50ANB-CVN-T2
5.1 V ± 2.0 % S-817A51APF-CVOTFG S-817A51ANB-CVO-T2
5.2 V ± 2.0 % S-817A52APF-CVPTFG S-817A52ANB-CVP-T2
5.3 V ± 2.0 % S-817A53APF-CVQTFG S-817A53ANB-CVQ-T2
5.4 V ± 2.0 % S-817A54APF-CVRTFG S-817A54ANB-CVR-T2
5.5 V ± 2.0 % S-817A55APF-CVSTFG S-817A55ANB-CVS-T2
5.6 V ± 2.0 % S-817A56APF-CVTTFG S-817A56ANB-CVT-T2
5.7 V ± 2.0 % S-817A57APF-CVUTFG S-817A57ANB-CVU-T2
5.8 V ± 2.0 % S-817A58APF-CVVTFG S-817A58ANB-CVV-T2
5.9 V ± 2.0 % S-817A59APF-CVWTFG S-817A59ANB-CVW-T2
6.0 V ± 2.0 % S-817A60APF-CVXTFG S-817A60ANB-CVX-T2
Remark Please contact the SII marketing department for products with an output voltage over than those
specified above.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
6
2. 2 S-817B series
Table 2
Output voltage SOT-23-5 SOT-89-3 TO-92*1
1.1 V ± 2.0 % S-817B11AMC-CWA-T2 S-817B11AUA-CWA-T2 S-817B11AY-X
1.2 V ± 2.0 % S-817B12AMC-CWB-T2 S-817B12AUA-CWB-T2 S-817B12AY-X
1.3 V ± 2.0 % S-817B13AMC-CWC-T2 S-817B13AUA-CWC-T2 S-817B13AY-X
1.4 V ± 2.0 % S-817B14AMC-CWD-T2 S-817B14AUA-CWD-T2 S-817B14AY-X
1.5 V ± 2.0 % S-817B15AMC-CWE-T2 S-817B15AUA-CWE-T2 S-817B15AY-X
1.6 V ± 2.0 % S-817B16AMC-CWF-T2 S-817B16AUA-CWF-T2 S-817B16AY-X
1.7 V ± 2.0 % S-817B17AMC-CWG-T2 S-817B17AUA-CWG-T2 S-817B17AY-X
1.8 V ± 2.0 % S-817B18AMC-CWH-T2 S-817B18AUA-CWH-T2 S-817B18AY-X
1.9 V ± 2.0 % S-817B19AMC-CWI-T2 S-817B19AUA-CWI-T2 S-817B19AY-X
2.0 V ± 2.0 % S-817B20AMC-CWJ-T2 S-817B20AUA-CWJ-T2 S-817B20AY-X
2.1 V ± 2.0 % S-817B21AMC-CWK-T2 S-817B21AUA-CWK-T2 S-817B21AY-X
2.2 V ± 2.0 % S-817B22AMC-CWL-T2 S-817B22AUA-CWL-T2 S-817B22AY-X
2.3 V ± 2.0 % S-817B23AMC-CWM-T2 S-817B23AUA-CWM-T2 S-817B23AY-X
2.4 V ± 2.0 % S-817B24AMC-CWN-T2 S-817B24AUA-CWN-T2 S-817B24AY-X
2.5 V ± 2.0 % S-817B25AMC-CWO-T2 S-817B25AUA-CWO-T2 S-817B25AY-X
2.6 V ± 2.0 % S-817B26AMC-CWP-T2 S-817B26AUA-CWP-T2 S-817B26AY-X
2.7 V ± 2.0 % S-817B27AMC-CWQ-T2 S-817B27AUA-CWQ-T2 S-817B27AY-X
2.8 V ± 2.0 % S-817B28AMC-CWR-T2 S-817B28AUA-CWR-T2 S-817B28AY-X
2.9 V ± 2.0 % S-817B29AMC-CWS-T2 S-817B29AUA-CWS-T2 S-817B29AY-X
3.0 V ± 2.0 % S-817B30AMC-CWT-T2 S-817B30AUA-CWT-T2 S-817B30AY-X
3.1 V ± 2.0 % S-817B31AMC-CWU-T2 S-817B31AUA-CWU-T2 S-817B31AY-X
3.2 V ± 2.0 % S-817B32AMC-CWV-T2 S-817B32AUA-CWV-T2 S-817B32AY-X
3.3 V ± 2.0 % S-817B33AMC-CWW-T2 S-817B33AUA-CWW-T2 S-817B33AY-X
3.4 V ± 2.0 % S-817B34AMC-CWX-T2 S-817B34AUA-CWX-T2 S-817B34AY-X
3.5 V ± 2.0 % S-817B35AMC-CWY-T2 S-817B35AUA-CWY-T2 S-817B35AY-X
3.6 V ± 2.0 % S-817B36AMC-CWZ-T2 S-817B36AUA-CWZ-T2 S-817B36AY-X
3.7 V ± 2.0 % S-817B37AMC-CXA-T2 S-817B37AUA-CXA-T2 S-817B37AY-X
3.8 V ± 2.0 % S-817B38AMC-CXB-T2 S-817B38AUA-CXB-T2 S-817B38AY-X
3.9 V ± 2.0 % S-817B39AMC-CXC-T2 S-817B39AUA-CXC-T2 S-817B39AY-X
4.0 V ± 2.0 % S-817B40AMC-CXD-T2 S-817B40AUA-CXD-T2 S-817B40AY-X
4.1 V ± 2.0 % S-817B41AMC-CXE-T2 S-817B41AUA-CXE-T2 S-817B41AY-X
4.2 V ± 2.0 % S-817B42AMC-CXF-T2 S-817B42AUA-CXF-T2 S-817B42AY-X
4.3 V ± 2.0 % S-817B43AMC-CXG-T2 S-817B43AUA-CXG-T2 S-817B43AY-X
4.4 V ± 2.0 % S-817B44AMC-CXH-T2 S-817B44AUA-CXH-T2 S-817B44AY-X
4.5 V ± 2.0 % S-817B45AMC-CXI-T2 S-817B45AUA-CXI-T2 S-817B45AY-X
4.6 V ± 2.0 % S-817B46AMC-CXJ-T2 S-817B46AUA-CXJ-T2 S-817B46AY-X
4.7 V ± 2.0 % S-817B47AMC-CXK-T2 S-817B47AUA-CXK-T2 S-817B47AY-X
4.8 V ± 2.0 % S-817B48AMC-CXL-T2 S-817B48AUA-CXL-T2 S-817B48AY-X
4.9 V ± 2.0 % S-817B49AMC-CXM-T2 S-817B49AUA-CXM-T2 S-817B49AY-X
5.0 V ± 2.0 % S-817B50AMC-CXN-T2 S-817B50AUA-CXN-T2 S-817B50AY-X
5.1 V ± 2.0 % S-817B51AMC-CXO-T2 S-817B51AUA-CXO-T2 S-817B51AY-X
5.2 V ± 2.0 % S-817B52AMC-CXP-T2 S-817B52AUA-CXP-T2 S-817B52AY-X
5.3 V ± 2.0 % S-817B53AMC-CXQ-T2 S-817B53AUA-CXQ-T2 S-817B53AY-X
5.4 V ± 2.0 % S-817B54AMC-CXR-T2 S-817B54AUA-CXR-T2 S-817B54AY-X
5.5 V ± 2.0 % S-817B55AMC-CXS-T2 S-817B55AUA-CXS-T2 S-817B55AY-X
5.6 V ± 2.0 % S-817B56AMC-CXT-T2 S-817B56AUA-CXT-T2 S-817B56AY-X
5.7 V ± 2.0 % S-817B57AMC-CXU-T2 S-817B57AUA-CXU-T2 S-817B57AY-X
5.8 V ± 2.0 % S-817B58AMC-CXV-T2 S-817B58AUA-CXV-T2 S-817B58AY-X
5.9 V ± 2.0 % S-817B59AMC-CXW-T2 S-817B59AUA-CXW-T2 S-817B59AY-X
6.0 V ± 2.0 % S-817B60AMC-CXX-T2 S-817B60AUA-CXX-T2 S-817B60AY-X
*1. X changes according to the packing form in TO-92.
B: Bulk, T: Tape and Reel, Z: Tape and ammo.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 7
Pin Configurations
Table 3
Pin No. Symbol Description
1 VOUT Output voltage pin
2 VIN Input voltage pin
3 VSS GND pin
4 NC*1 No connection
SNT-4A
Top view
1 4
2 3
*
1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 3
Table 4
Pin No. Symbol Description
1 VSS GND pin
2 VIN Input voltage pin
3 VOUT Output voltage pin
4 NC*1 No connection
4 3
1 2
SC-82AB
Top view
*
1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 4
Table 5
Pin No. Symbol Description
1 VSS GND pin
2 VIN Input voltage pin
3 VOUT Output voltage pin
4 NC*1 No connection
5 NC*1 No connection
SOT-23-5
Top view
5
4
3
2
1
*
1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 5
Table 6
Pin No. Symbol Description
1 VSS GND pin
2 VIN Input voltage pin
3 VOUT Output voltage pin
SOT-89-3
Top view
3
2
1
Figure 6
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
8
Table 7
Pin No. Symbol Description
1 VSS GND pin
2 VIN Input voltage pin
3 VOUT Output voltage pin
TO-92
Bottom view
1 3 2
Figure 7
Absolute Maximum Ratings
Table 8
(Ta=25°C unless otherwise specified)
Item Symbol Absolute Maximum Rating Units
Input voltage VIN VSS0.3 to VSS+12 V
Output voltage VOUT VSS0.3 to VIN+0.3 V
Power dissipation PD SNT-4A 300*1 mW
SC-82AB 150
SOT-23-5 250
SOT-89-3 500
TO-92 400
Operating temperature range Topr 40 to +85 °C
Storage temperature Tstg 40 to +125 °C
*1. At mounted on JEDEC high heat dissipation printed circuit board
Caution The absolute maximum ratings are rated values exceeding which the product could suffer
physical damage. These values must therefore not be exceeded under any conditions.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 9
Electrical Characteristics
1. S-817A series
Table 9
(Ta=25°C unless otherwise specified)
Item Symbol Conditions Min. Typ. Max. Units
Measur-
ement
circuits
Output voltage
*1
V
OUT(E)
V
IN
=
V
OUT(S)
+
2 V, I
OUT
=
10 mA V
OUT(S)
×
0.98 V
OUT(S)
V
OUT(S)
×
1.02 V 1
Output current
*2
I
OUT
V
OUT(S)
+
2 V 1.1 V
V
OUT(S)
1.9 V 20
mA 3
V
IN
10 V 2.0 V
V
OUT(S)
2.9 V 35
3.0 V
V
OUT(S)
3.9 V 50
4.0 V
V
OUT(S)
4.9 V 65
5.0 V
V
OUT(S)
6.0 V 75
Dropout voltage
*3
V
drop
I
OUT
=
10 mA1.1 V
V
OUT(S)
1.4 V
0.92 1.58 V 1
1.5 V
V
OUT(S)
1.9 V
0.58 0.99
2.0 V
V
OUT(S)
2.4 V
0.40 0.67
2.5 V
V
OUT(S)
2.9 V
0.31 0.51
3.0 V
V
OUT(S)
3.4 V
0.25 0.41
3.5 V
V
OUT(S)
3.9 V
0.22 0.35
4.0 V
V
OUT(S)
4.4 V
0.19 0.30
4.5 V
V
OUT(S)
4.9 V
0.18 0.27
5.0 V
V
OUT(S)
5.4 V
0.16 0.25
5.5 V
V
OUT(S)
6.0 V
0.15 0.23
Line regulation 1
V
OUT1
V
OUT(S)
+
1 V
V
IN
10 V,
I
OUT
=
1 mA
5 20 mV
Line regulation 2
V
OUT2
V
OUT(S)
+
1 V
V
IN
10 V,
I
OUT
=
1
µ
A
5 20
Load regulation
V
OUT3
V
IN
=
V
OUT(S)
+
2 V
1.1 V
V
OUT(S)
1.9 V,
1
µ
A
I
OUT
10 mA
5 20
2.0 V
V
OUT(S)
2.9 V,
1
µ
A
I
OUT
20 mA
10 30
3.0 V
V
OUT(S)
3.9 V,
1
µ
A
I
OUT
30 mA
20 45
4.0 V
V
OUT(S)
4.9 V,
1
µ
A
I
OUT
40 mA
25 65
5.0 V
V
OUT(S)
6.0 V,
1
µ
A
I
OUT
50 mA
35 80
Output voltage
temperature coefficient
*4
OUT
OUT
VTa
V
V
IN
=
V
OUT(S)
+
1 V, I
OUT
=
10 mA,
40
°
C
Ta
85
°
C
±
100
ppm
/
°
C
Current consumption I
SS
V
IN
=
V
OUT(S)
+
2 V, no load
1.2 2.5
µ
A 2
Input voltage V
IN
10 V 1
Short current limit I
OS
V
IN
=
V
OUT(S)
+
2 V, V
OUT
pin
=
0 V
40
mA 3
*1. V
OUT(S): Specified output voltage
V
OUT(E): Effective output voltage
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
*3. V
drop = VIN1(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E)
after gradually decreasing input voltage.
*4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
[] [] []
1000Cppm/
VTa
V
VVCmV/
Ta
V
OUT
OUT
OUT(S)
OUT ÷°
×=°
3*2*1*
*1. Temperature change ratio of the output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
10
2. S-817B series
Table 10
(Ta=25°C unless otherwise specified)
Item Symbol Conditions Min. Typ. Max. Units
Measur-
ement
circuits
Output voltage
*1
V
OUT(E)
V
IN
=
V
OUT(S)
+
2 V, I
OUT
=
10 mA V
OUT(S)
×
0.98 V
OUT(S)
V
OUT(S)
×
1.02 V 1
Output current
*2
I
OUT
V
OUT(S)
+
2 V 1.1 V
V
OUT(S)
1.9 V 20
mA 3
V
IN
10 V 2.0 V
V
OUT(S)
2.9 V 35
3.0 V
V
OUT(S)
3.9 V 50
4.0 V
V
OUT(S)
4.9 V 65
5.0 V
V
OUT(S)
6.0 V 75
Dropout voltage
*3
V
drop
I
OUT
=
10
mA 1.1 V
V
OUT(S)
1.4 V
0.92 1.58 V 1
1.5 V
V
OUT(S)
1.9 V
0.58 0.99
2.0 V
V
OUT(S)
2.4 V
0.40 0.67
2.5 V
V
OUT(S)
2.9 V
0.31 0.51
3.0 V
V
OUT(S)
3.4 V
0.25 0.41
3.5 V
V
OUT(S)
3.9 V
0.22 0.35
4.0 V
V
OUT(S)
4.4 V
0.19 0.30
4.5 V
V
OUT(S)
4.9 V
0.18 0.27
5.0 V
V
OUT(S)
5.4 V
0.16 0.25
5.5 V
V
OUT(S)
6.0 V
0.15 0.23
Line regulation 1
V
OUT1
V
OUT(S)
+
1 V
V
IN
10 V,
I
OUT
=
1 mA
5 20 mV
Line regulation 2
V
OUT2
V
OUT(S)
+
1 V
V
IN
10 V, I
OUT
=
1
µ
A
5 20
Load regulation
V
OUT3
V
IN
=
V
OUT(S)
+
2 V
1.1 V
V
OUT(S)
1.9 V,
1
µ
A
I
OUT
10 mA
5 20
2.0 V
V
OUT(S)
2.9 V,
1
µ
A
I
OUT
20 mA
10 30
3.0 V
V
OUT(S)
3.9 V,
1
µ
A
I
OUT
30 mA
20 45
4.0 V
V
OUT(S)
4.9 V,
1
µ
A
I
OUT
40 mA
25 65
5.0 V
V
OUT(S)
6.0 V,
1
µ
A
I
OUT
50 mA
35 80
Output voltage
temperature coefficient
*4
OUT
OUT
VTa
V
V
IN
=
V
OUT(S)
+
1 V, I
OUT
=
10 mA,
40
°
C
Ta
85
°
C
±
100
ppm
/
°
C
Current consumption I
SS
V
IN
=
V
OUT(S)
+
2 V, no load
1.2 2.5
µ
A 2
Input voltage V
IN
10 V 1
*1. V
OUT(S): Specified output voltage
V
OUT(E): Effective output voltage
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
*3. V
drop = VIN1(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E)
after gradually decreasing input voltage.
*4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
[] [] []
1000Cppm/
VTa
V
VVCmV/
Ta
V
OUT
OUT
OUT(S)
OUT ÷°
×=°
3*2*1*
*1. Temperature change ratio of the output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 11
Measurement Circuits
1.
VSS
VOUTVIN
V
A
+
+
Figure 8
2.
VSS
VOUT
VIN
A
Figure 9
3.
VSS
VOUT
VIN
V
A
+
+
Figure 10
Standard Circuit
VSS
VOUT VIN
CIN
*1
CL
*2
INPUT OUTPUT
GND
Single GND
*
1. CIN is a capacitor used to stabilize input.
*
2. A ceramic capacitor of 0.1 µF or more can be used for CL.
Figure 11
Caution The above connection diagram and constant will not guarantee successful operation.
Perform through evaluation using the actual application to set the constant.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
12
Explanation of Terms
1. Low ESR
ESR is the abbreviation for Equivalent Series Resistance.
Low ESR output capacitors (CL) can be used in the S-817 Series.
2. Output voltage (VOUT)
The accuracy of the output voltage is ±2.0% guaranteed under the specified conditions for input voltage,
which differs depending upon the product items, output current, and temperature.
Caution If the above conditions change, the output voltage value may vary and go out of the
accuracy range of the output voltage. See the electrical characteristics and
characteristics data for details.
3. Line regulations 1 and 2 (VOUT1, VOUT2)
Indicate the input voltage dependencies of output voltage. That is, the values show how much the output
voltage changes due to a change in the input voltage with the output current remained unchanged.
4. Load regulation (VOUT3)
Indicates the output current dependencies of output voltage. That is, the values show how much the
output voltage changes due to a change in the output current with the input voltage remained unchanged.
5. Dropout voltage (Vdrop)
Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98% of
VOUT(E) by gradually decreasing the input voltage (VIN).
Vdrop = VIN1[VOUT(E) × 0.98]
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 13
6. Temperature coefficient of output voltage
OUT
OUT
VTa
V
The shadowed area in Figure 12 is the range where VOUT varies in the operating temperature range
when the temperature coefficient of the output voltage is ±100 ppm/°C.
VOUT
(
E
)
*1
Ex. S-817A15 Typ.
40 25
+0.15 mV / °C
VOUT
[V]
*1. VOUT(E) is the value of the output voltage measured at 25°C.
85 Ta [°C]
0.15 mV / °C
Figure 12
A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.
[] [] []
1000Cppm/
VTa
V
VVCmV/
Ta
V
OUT
OUT
OUT(S)
OUT ÷°
×=°
3*2**1
*1. Change in temperature of output voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
14
Operation
1. Basic Operation
Figure 13 shows the block diagram of the S-817 Series.
The error amplifier compares the reference voltage (Vref) with Vfb, which is the output voltage resistance-
divided by feedback resistors Rs and Rf. It supplies the output transistor with the gate voltage necessary
to ensure a certain output voltage free of any fluctuations of input voltage and temperature.
Reference voltage
circuit
VOUT
*1
VSS
VIN
Rs
Rf
Error
amplifier
Current
supply
Vref
+
Vfb
*1. Parasitic diode
Figure 13
2. Output Transistor
The S-817 series uses a P-channel MOS FET as the output transistor.
Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being damaged due to
inverse current flowing from VOUT pin through a parastic diode to VIN pin.
3. Short Circuit Protection
The S-817A series incorporates a short circuit protection to protect the output transistor against short
circuit between VOUT pin and VSS pin. Installation of the short-circuit protection which protects the
output transistor against short-circuit between VOUT and VSS can be selected in the S-817A series. The
short-circuit protection controls output current as shown in the “Typical Characteristics 1.”. Output
Voltage versus Output Current, and suppresses output current at about 40 mA even if VOUT and VSS
pins are short-circuited.
The short-circuit protection can not be a thermal protection at the same time. Attention should be paid to
the Input voltage and the load current under the actual condition so as not to exceed the power
dissipation of the package including the case for short-circuit.
When the output current is large and the difference between input and output voltage is large even if not
shorted, the short-circuit protection may work and the output current is suppressed to the specified value.
In addition, S-817B series is removing a short-circuit protection, and is the product which enabled it to
pass large current.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 15
Selection of Output Capacitor (CL)
To stabilize operation against variation in output load, a capacitor (CL) must be mounted between VOUT
and VSS in the S-817 series because the phase is compensated with the help of the internal phase
compensation circuit and the ESR of the output capacitor.
When selecting a ceramic or an OS capacitor, capacitance should be 0.1 µF or more, and when selecting a
tantalum or an aluminum electrolytic capacitor, capacitance should be 0.1 µF or more and ESR 30 or
less.
When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the
aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large.
Sufficient evaluation including temperature characteristics is indispensable. Overshoot and undershoot
characteristics differ depending upon the type of the output capacitor. Refer to CL dependencies in “
Reference Data 1. Transient Response Characteristics”.
Application Circuits
1. Output Current Boosting Circuit
R2
R1
Tr1
GND
VOUT
VIN
VSS
VIN
VOUT
CL
S-817
series
CIN
Figure 14
As shown in Figure 14, the output current can be boosted by externally attaching a PNP transistor. The
base current of the PNP transistor is controlled so that output voltage (VOUT) goes the voltage specified
in the S-817 Series when base-emitter voltage (VBE) necessary to turn on the PNP transistor is obtained
between input voltage (VIN) and S-817 Series power source pin (VIN).
The following are tips and hints for selecting and ensuring optimum use of external parts
PNP transistor (Tr1):
1. Set hFE to approx. 100 to 400.
2. Confirm that no problem occurs due to power dissipation under normal operation conditions.
Resistor (R1):
Generally set R1 to 1 k ÷ VOUT (S) (the voltage specified in the S-817 Series) or more.
Output capacitor (CL):
Output capacitor (CL) is effective in minimizing output fluctuation at powering on or due to power
or load fluctuation, but oscillation might occur. Always connect resistor R2 in series to output
capacitor CL.
Resistor (R2): Set R2 to 2 × VOUT(S) or more.
DO NOT attach a capacitor between the S-817 Series power source (VIN) and GND pins or
between base and emitter of the PNP transistor to avoid oscillation.
To improve transient response characteristics of the output current boosting circuit shown in
Figure 14, check that no problem occurs due to output fluctuation at powering on or due to
power or load fluctuation under normal operating conditions.
Pay attention to the short current limit circuit incorporated into the S-817 Series because it does
not function as a shortcircuiting protection circuit for this boosting circuit.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
16
The following graphs show the examples of input-output voltage characteristics (Ta=25°C, typ.) in the
output current boosting circuit:
1. 1 S-817A11ANB/S-817B11AMC 1. 2 S-817A50ANB/S-817B50AMC
Tr1 : 2SA1213Y, R1 : 1 k, CL : 10 µF,
R2 : 2
Tr1 : 2SA1213Y, R1 : 200 , CL : 10 µF,
R2 : 10
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
VIN (V)
VOUT (V)
800 mA
600 mA
400 mA
200 mA
10 mA
50 mA
100 mA
1 mA
4.60
4.70
4.80
4.90
5.00
5.10
5.20
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
VIN (V)
VOUT (V)
100 mA
50 mA
10 mA
5 mA
800 mA
600 mA
400 mA
200 mA
2. Constant Current Circuit
2. 1 Constant Current Circuit
GND
RL
VOUT
VIN
V
IN
V0
V
O
I
O
C
IN
VSS
S-817
Series
Device
Figure 15
2. 2 Constant Current Boosting Circuit
I
O
R1
GND
RL
VOUT
V
IN
V0
C
IN
VSS
S-817
Tr1
V
O
Series
Device
Figure 16
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 17
The S-817 Series can be configured as a constant current circuit. Refer to Figure 15 and 16.
Constant amperage (IO) is calculated using the following equation (VOUT(E): Effective output voltage):
IO = (VOUT(E) ÷ RL) +ISS.
Please note that it is impossible to set constant amperage IO in case of circuit (1) of Figure 15 to the
value exceeding the drive ability of the S-817.
However, circuit (2) of Figure 16 is an example to set constant amperage to the value exceeding the
drive ability of the S-817. Circuit (2) incorporates a current boosting circuit. The maximum input voltage
of the constant current circuit is the value obtained by adding 10 V to voltage of the device (VO). It is not
recommended to attach a capacitor between the S-817 power source VIN and VSS pin or between
output VOUT and VSS pin because rush current flows at powering on. An example of input voltage
between VIN and VO in circuit (2) vs. IO current characteristics
V
IN, VO pins, Input voltage - IO current
S-817A11ANB, S-817B11AMC, Tr : 2SK1213Y, R1 : 1 k, VO=2 V
0.00
0.10
0.20
0.30
0.40
0.50
0.60
1.4 1.6 1.8 2 2.2 2.4
VINVO(V)
IO(A)
RL=1.83
2.2
2.75
3.67
5.5
11
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
18
3. Output Voltage Adjustment Circuit (Only for S817B Series (Product without short circuit protection))
GND
V0
R2
R1
VOUT
VIN VIN
CL
C1
CIN
VSS
S-817
Series
Figure 17
The output voltage can be boosted by using the configuration shown in Figure 17. The output Voltage
(VO) can be calculated using the following equation (VOUT(E):Effective output voltage):
V
O = VOUT(E) × (R1 + R2) ÷ R1 + R2 × ISS
Set R1 and R2 to high values of resistance so as not to be affected by current consumption (ISS).
Capacitor C1 is effective in minimizing output fluctuation at powering on or due to power or load
fluctuation. Determine the optimum value on your actual device. But it is not also recommended to
attach a capacitor between the S-817 Series power source VIN and VSS pin or between output VOUT
and VSS pin because output fluctuation or oscillation at powering on might occur. As shown in Figure
17, a capacitor must be mounted between VIN and GND, and between VOUT and GND.
Precautions
Wiring patterns for the VIN, VOUT and GND pins should be designed so that the impedance is low.
When mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing
the input between VIN and VSS pins (CIN), the distance from the capacitors to these pins should be as
short as possible.
Note that the output voltage may increase when a series regulator is used at low load current (1.0 µA or
less).
Generally a series regulator may cause oscillation, depending on the selection of external parts. The
following conditions are recommended for this IC. However, be sure to perform sufficient evaluation
under the actual usage conditions for selection, including evaluation of temperature characteristics.
Output capacitor (CL) : 0.1 µF or more
Equivalent Series Resistance (ESR) : 30 or less
Input series resistance (RIN) : 10 or less
The voltage regulator may oscillate when the impedance of the power supply is high and the input
capacitor is small or an input capacitor is not connected.
The application conditions for the input voltage, output voltage, and load current should not exceed the
package power dissipation.
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
SII claims no responsibility for any disputes arising out of or in connection with any infringement by
products including this IC of patents owned by a third party.
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 19
Typical Characteristics
1. Output Voltage vs. Output Current (when load current increases)
(a) S-817A Series
S-817A11A (Ta=25 ° C)
0.0
0.3
0.6
0.9
1.2
0 20 40 60 80
I
OUT (mA)
V
OUT
(V)
V
IN
=
1.5V
2.1V
3.1V
4.1V
8V
S-817A20A (Ta=25° C)
0.0
0.5
1.0
1.5
2.0
2.5
0 30 60 90 120
I
OUT (mA)
V
IN=
2.4V
3V
10V
5V
4V
V
OUT
(V)
S-817A30A (Ta=25 ° C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0 30 60 90 120 150
IOUT (mA)
4V
V
IN
=
3.4V
5V
6V
10V
V
OUT
(V)
S-817A50A (Ta=25 ° C)
0.0
1.0
2.0
3.0
4.0
5.0
0 40 80 120 160 200
IOUT (mA)
V
IN
=5.4V
6V
7V
8V
10V
V
OUT
(V)
(b) S-817B series
S-817B11A (Ta=25°C)
0.0
0.3
0.6
0.9
1.2
0 50 100 150 200 250
IOUT (mA)
VOUT
(V)
VIN=
1.5V
2.1V
3.1V
4.1V
8V
S-817B20A (Ta=25°C)
0.0
0.5
1.0
1.5
2.0
2.5
0 50 100 150 200 250 300
IOUT (mA)
VOUT
(V)
V
IN
=2.4V
3V 4V
5V
10V
S-817B30A (Ta=25°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 50 100 150 200 250 300
IOUT (mA)
VOUT
(V)
VIN=
3.4V
4V
5V 6V
10V
S-817B50A (Ta=25°C)
0.0
1.0
2.0
3.0
4.0
5.0
0 50 100 150 200 250 300
IOUT (mA)
VOUT
(V)
VIN =5.4V
6V
7V 8V
10V
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
20
2. Output Voltage vs. Input Voltage
S-817A11A/S-817B11A (Ta=25°C)
0.0
0.5
1.0
1.5
0 2 4 6 8 10
V
IN (V)
I
OUT
1mA
10mA
20mA
=1
µ
A
V
OUT
(V)
S-817A20A/S-817B20A (Ta=25°C)
0.0
0.5
1.0
1.5
2.0
2.5
0 2 4 6 8 10
V
IN (V)
I
OUT =1
µ
A
1mA
10mA
20mA
50mA
V
OUT
(V)
S-817A30A/S-817B30A (Ta=25°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 2 4 6 8 10
V
IN (V)
I
OUT =1
µ
A
1mA
20mA
50mA
10mA
V
OUT
(V)
S-817A50A/S-817B50A (Ta=25°C)
0.0
1.0
2.0
3.0
4.0
5.0
0 2 4 6 8 10
V
IN (V)
I
OUT =1
µ
A
1mA
10mA
20mA
50mA
V
OUT
(V)
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 21
3. Maximum Output Current vs. Input Voltage
(a) S-817A Series
S-817A11A
0
20
40
60
80
100
0 2 4 6 8 10
V
IN (V)
I OUT
max.(mA)
Ta=-40 ° C 25 ° C
85 ° C
S-817A20A
0
20
40
60
80
100
120
1 3 5 7 9
V
IN (V)
Ta=-40 ° C
25 ° C
85 ° C
I OUT
max.(mA)
S-817A30A
0
30
60
90
120
150
180
2 4 6 8 10
V
IN (V)
Ta=-40 ° C
25 ° C
85 ° C
I OUT
max.(mA)
S-817A50A
0
50
100
150
200
250
4 6 8 10
V
IN (V)
Ta=-40 ° C
25 ° C
85 ° C
I OUT
max.(mA)
(b) S-817B Series
S-817B11A
0
50
100
150
200
250
300
0 2 4 6 8 10
VIN (V)
IOUT
max.(mA)
Ta=-40°C
25°C
85°C
S-817B20A
0
50
100
150
200
250
300
0 2 4 6 8 10
VIN (V)
IOUT
max.(mA)
Ta=-40°C
25°C
85°C
S-817B30A
0
50
100
150
200
250
300
2 4 6 8 10
VIN (V)
IOUT
max.(mA)
Ta=-40°C
25°C
85°C
S-817B50A
0
50
100
150
200
250
300
4 6 8 10
VIN (V)
IOUT
max.(mA)
Ta=-4C
25°C
85°C
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
22
4
. Dropout Voltage vs. Output Current
S-817A11A/S-817B11A
0
500
1000
1500
2000
0 5 10 15 20
IOUT (mA)
Vdro
(mV)
Ta=-40°C
25°C
85°C
S-817A20A/S-817B20A
0
500
1000
1500
2000
0 10 20 30 40
IOUT (mA)
Vdro
(mV)
Ta=-40°C
25°C
85°C
S-817A30A/S-817B30A
0
400
800
1200
1600
0 10 20 30 40 50
IOUT (mA)
Vdro
(mV)
Ta=-40°C
25°C
85°C
S-817A50A/S-817B50A
0
200
400
600
800
1000
0 10 20 30 40 50
IOUT (mA)
Vdro
(mV)
Ta=-40°C
25°C
85°C
5. Output Voltage vs. Ambient Temperature
S-817A11A/S-817B11A
1.08
1.09
1.10
1.11
1.12
-50 0 50 100
Ta (°C)
(V)
VOUT
VIN=3.1V, IOUT=10mA
S-817A20A/S-817B20A
1.96
1.98
2.00
2.02
2.04
-50 0 50 100
Ta (°C)
(V)
VIN=4V, IOUT=10mA
VOUT
S-817A30A/S-817B30A
2.94
2.97
3.00
3.03
3.06
-50 0 50 100
Ta (°C)
(V)
VIN=5V, IOUT=10mA
VOUT
S-817A50A/S-817B50A
4.90
4.95
5.00
5.05
5.10
-50 0 50 100
Ta (°C)
(V)
VIN=7V, IOUT=10mA
V
OUT
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 23
6. Line Regulation 1 vs. Ambient Temperature 7. Line Regulation 2 vs. Ambient Temperature
S-817B11/20/30/50A
S-817A11/20/30/50A
0
5
10
15
20
25
30
-50 -25 0 25 50 75 100
Ta (°C)
VOUT1
(
mV
)
3V
2V
VOUT=1.1V 5V
VIN=VOUT(S)+1V10V, IOUT=1mA
S-817B11/20/30/50A
S-817A11/20/30/50A
0
5
10
15
20
25
30
-50 -25 0 25 50 75 100
Ta (°C)
VOUT2
(
mV
)
3V
2V
VOUT=1.1V 5V
VIN=VOUT(S)+1V10V, IOUT=1µA
8. Load Regulation vs. Ambient Temperature
S-817B11/20/30/50A
S-817A11/20/30/50A
0
10
20
30
40
50
60
70
80
-50 -25 0 25 50 75 100
Ta (°C)
VOUT3
(
mV
)
2V(IOUT=20mA)
VOUT=1.1V(IOUT=10mA)
3V(IOUT=30mA)
5V(IOUT=50mA)
VIN=V
OU
T
(S)
+2V, I
OU
T=1
µ
AI
OU
T
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
24
9. Current Consumption vs. Input Voltage
S-817A11A/S-817B11A
0
0.4
0.8
1.2
1.6
0 2 4 6 8 10
VIN (V)
ISS1
(
µ
A
)
85°C
Ta=-40°C
25°C
S-817A20A/S-817B20A
0
0.4
0.8
1.2
1.6
0 2 4 6 8 10
VIN (V)
ISS1
(
µ
A
)
Ta=-40°C
25°C
85°C
S-817A30A/S-817B30A
0
0.4
0.8
1.2
1.6
0 2 4 6 8 10
VIN (V)
ISS1
(
µ
A
)
Ta=-40°C
25°C
85°C
S-817A50A/S-817B50A
0
0.4
0.8
1.2
1.6
0 2 4 6 8 10
VIN (V)
ISS1 (uA)
Ta=-40°C
25°C
85°C
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 25
Reference Data
1. Transient Response Characteristics (Typical data: Ta=25 °C)
Overshoot
Input voltage
O utput voltage
or
Load current
Undershoot
1. 1 At powering on S-817A30A (when using a ceramic capacitor, CL=1 µF)
TIME(100
µ
s/div)
VOUT
(0.5 V/div)
10 V
0 V
3 V
VIN=0 V10 V, IOUT=10 mA, CL=1 µF
Load dependencies of overshoot at powering on CL dependencies of overshoot at powering on
0
0.01
0.02
0.03
0.04
0.05
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
IOUT(A)
Over Shoot(V)
2V
3V
5V
VOUT=0 VVOUT(S)+2 V, CL=1
µ
F
0
0.01
0.02
0.03
0.04
0.05
0.01 0.1 1 10
CL(
µ
F)
Over Shoot(V)
2V
3V
5V
VIN=0 VVOUT(S)+2 V, IOUT=10 m
A
VDD dependencies of overshoot at powering on “Ta” dependencies of overshoot at powering on
0
0.01
0.02
0.03
0.04
0.05
0 2 4 6 8 10
VDD(V)
Over Shoot(V)
2V
3V
5V
VIN=0 VVDD, IOUT=10 mA, CL=1 µF
0
0.01
0.02
0.03
0.04
0.05
-50 050 100
Ta ( ° C )
Over Shoot(V)
2V
3V
5V
VIN=0 VVOUT(S)+2 V, IOUT=10 mA, CL=1 µF
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
26
1. 2 At powering on S-817B30A (when using a ceramic capacitor, CL=1 µF)
VIN=0 V10 V, IOUT=10 mA, CL=1 µF
TIME(100 µs/div)
VOUT
(0.5 V/div)
10 V
0 V
3 V
Load dependencies of overshoot at powering on CL dependencies of overshoot at powering on
0
0.01
0.02
0.03
0.04
0.05
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
IOUT(A)
Over Shoot(V)
2V
3V
5V
VIN=0 VVOUT(S)+2 V, CL=1 µF
0
0.01
0.02
0.03
0.04
0.05
0.01 0.1 1 10
CL(
µ
F)
Over Shoot(V)
2V3V
5V
VIN=0 VVOUT(S)+2 V, IOUT=10 m
A
VDD dependencies of overshoot at powering on “Ta” dependencies of overshoot at powering on
0
0.01
0.02
0.03
0.04
0.05
0 2 4 6 8 10
VDD(V)
Over Shoot(V)
2V 3V
5V
VIN=0 VVDD, IOUT=10 mA, CL=1
µ
F
0
0.01
0.02
0.03
0.04
0.05
-50 050 100
Ta ( ° C )
Over Shoot(V)
2V 3V 5V
VIN=0 VVOUT(S)+2 V, IOUT=10 mA, CL=1
µ
F
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 27
1. 3 Power fluctuation S-817A30A / S-817B30A (when using a ceramic capacitor, CL=1 µF)
VIN=4 V10 V,IOUT=1 mA, CL=1 µF
TIME(200
µ
s/div)
V
OUT
(0.2 V/div)
10 V
4 V
3 V
Load dependencies of overshoot at power fluctuation CL dependencies of overshoot at power fluctuation
0
0.1
0.2
0.3
0.4
0.5
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
IOUT(A)
Over Shoot(V)
2 V
3 V
5 V
VIN=VOUT(S)+1 V VOUT(S)+2 V, CL=1 µF
0
0.2
0.4
0.6
0.8
1
0.01 0.1 1 10
CL(µF)
Over Shoot(V)
2 V
3 V
5 V
VIN=VOUT(S)+1 VVOUT(S)+2 V, IOUT=1 m
A
VDD dependencies of overshoot at power fluctuation “Ta” dependencies of overshoot at power fluctuation
0
0.2
0.4
0.6
0.8
1
0 2 4 6 8 10
VDD(V)
Over Shoot(V)
2V
3V
5V
VIN=VOUT(S)+1 VVDD, IOUT=1 mA, CL=1
µ
F
0
0.2
0.4
0.6
0.8
1
-50 050 100
Ta ( ° C )
Over Shoot(V)
2V
3V
5V
VIN=VOUT(S)+1 VVOUT(S)+2 V, IOUT=1 mA, CL=1
µ
F
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
28
VIN=10 V4 V,IOUT=1 mA, CL=1
µ
F
TIME(50
µ
s/div)
V
OUT
(0.02 V/div)
10 V
3 V
4 V
Load dependencies of undershoot at power fluctuation CL dependencies of undershoot at power fluctuation
0
0.1
0.2
0.3
0.4
0.5
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
IOUT(A)
Under Shoot(V)
2V
3V
5V
VIN=VOUT(S)+2 VVOUT(S)1 V, CL=1
µ
F
0
0.2
0.4
0.6
0.8
1
0.01 0.1 1 10
CL(
µ
F)
Under Shoot(V)
2V
3V
5V
VIN=VOUT(S)+2 VVOUT(S)+1 V, IOUT=1 mA
VDD dependencies of undershoot at power fluctuation “Ta” dependencies of undershoot at power fluctuation
0
0.02
0.04
0.06
0.08
0.1
0 2 4 6 8 10
VDD(V)
Under Shoot(V)
2V
3V 5V
VIN=VDDVOUT(S)+1 V, IOUT=1 mA, CL=1
µ
F
0
0.02
0.04
0.06
0.08
0.1
-50 050 100
Ta ( ° C )
Under Shoot(V)
2V
3V
5V
VIN=VOUT(S)+2 VVOUT(S)+1 V, IOUT=1 mA, CL=1
µ
F
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
Rev.3.0_00 S-817 Series
Seiko Instruments Inc. 29
1. 4 Load fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1 µF)
IOUT=30 mA10
µ
A,V IN=5 V, CL=1
µ
F
TIME(20 ms/div)
V
OUT
(0.2 V/div)
10
µ
A
3 V
30 mA
Load current dependencies of overshoot at load
fluctuation
CL dependencies of overshoot at load fluctuation
0
0.5
1
1.5
2
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
IOUT(A)
Over Shoot(V)
2V 3V
5V
VIN=VOUT(S)+2 V, IOUT=IL 10
µ
A, CL=1
µ
F
0
0.2
0.4
0.6
0.8
1
0.01 0.1 1 10
CL(
µ
F)
Over Shoot(V)
2V
3V
5V
VIN=VOUT(S)+2 V, IOUT=10 mA10
µ
A
VDD dependencies of overshoot at load fluctuation “Ta” dependencies of overshoot at load fluctuation
0
0.05
0.1
0.15
0.2
0 2 4 6 8 10
VDD(V)
Over Shoot(V)
2V 3V
5V
VIN=VDD, IOUT=10 mA,10
µ
A, CL=1
µ
F
0
0.05
0.1
0.15
0.2
-50 050 100
Ta ( ° C )
Over Shoot(V)
2V
3V
5V
VIN=VOUT(S)+2 V, IOUT=10 mA10
µ
A, CL=1
µ
F
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
S-817 Series Rev.3.0_00
Seiko Instruments Inc.
30
IOUT=10
µ
A
30mA, VIN=5V, CL=1
µ
F
TIME(50 ms/div)
VOUT
(0.2V/div)
30mA
3V
10
µ
A
Load current dependencies of undershoot at load
fluctuation
CL dependencies of undershoot at load fluctuation
0
0.5
1
1.5
2
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
IOUT(A)
Under Shoot(V)
2V
3V
5V
VIN=VOUT(S)+2 V, IOUT=10
µ
AIL, CL=1
µ
A
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0.01 0.1 1 10
CL(
µ
F)
Under Shoot(V)
2V
3V
5V
VIN=VOUT(S)+2 V, IOUT=10
µ
A10 m
A
VDD dependencies of undershoot at load fluctuation “Ta” dependencies of undershoot at load fluctuation
0
0.1
0.2
0.3
0.4
0.5
0 2 4 6 8 10
VDD(V)
Under Shoot(V)
2V
3V 5V
VIN=VDD, IOUT=10
µ
A10 mA, CL=1
µ
F
0
0.1
0.2
0.3
0.4
0.5
-50 050 100
Ta ( ° C )
Under Shoot(V)
2V
3V
5V
VIN=VOUT(S)+2 V, IOUT=10
µ
A 10 mA, CL=1
µ
F
1.2±0.04
0.65
0.2±0.05
0.48±0.02
0.08
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
SNT-4A-A-PKG Dimensions
PF004-A-P-SD-3.0
No. PF004-A-P-SD-3.0
+0.05
-0.02
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
PF004-A-C-SD-1.0
SNT-4A-A-Carrier Tape
Feed direction
TF type
4.0±0.1
2.0±0.05
4.0±0.1
ø1.5 +0.1
-0
ø0.5
1.45±0.1 0.65±0.05
0.25±0.05
1
2
34
No. PF004-A-C-SD-1.0
+0.1
-0
12.5max.
9.0±0.3
ø13±0.2
(60°) (60°)
QTY. 5,000
No. PF004-A-R-SD-1.0
PF004-A-R-SD-1.0
Enlarged drawing in the central part
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
SNT-4A-A-Reel
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
0.3 +0.1
-0.05
0.4 +0.1
-0.05
0.05
12
43
0.16+0.1
-0.06
1.3±0.2
2.0±0.2
No. NP004-A-P-SD-1.1
SC82AB-A-PKG Dimensions
NP004-A-P-SD-1.1
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
1.1±0.1
0.2±0.05
4.0±0.1
2.0±0.05
4.0±0.1
1.5
1.05±0.1
+0.1
-0.05
2.2±0.2
(0.7)
No. NP004-A-C-SD-2.1
NP004-A-C-SD-2.1
SC82AB-A-Carrier Tape
Feed direction
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
QTY. 3,000
(60°)
(60°)
ø13±0.2
12.5max.
9.0±0.3
No. NP004-A-R-SD-1.1
NP004-A-R-SD-1.1
SC82AB-A-Reel
Enlarged drawing in the central part
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
2.9±0.2
1.9±0.2
0.95±0.1
0.4±0.1
0.16 +0.1
-0.06
123
4
5
No. MP005-A-P-SD-1.2
MP005-A-P-SD-1.2
SOT235-A-PKG Dimensions
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
ø1.5 +0.1
-0 2.0±0.05
ø1.0 +0.2
-0 4.0±0.1
1.4±0.2
0.25±0.1
3.2±0.2
123
45
No. MP005-A-C-SD-2.1
MP005-A-C-SD-2.1
SOT235-A-Carrier Tape
Feed direction
4.0±0.1(10 pitches:40.0±0.2)
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
ø13±0.2
(60°) (60°)
QTY. 3,000
No. MP005-A-R-SD-1.1
MP005-A-R-SD-1.1
SOT235-A-Reel
Enlarged drawing in the central part
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
0.4±0.05
1.5±0.1
4.5±0.1
1.6±0.2
1.5±0.1 1.5±0.1
0.45±0.1
0.4±0.1
0.4±0.1
45°
312
No. UP003-A-P-SD-1.1
UP003-A-P-SD-1.1
SOT893-A-PKG Dimensions
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
2.0±0.1
0.3±0.05
8.0±0.1
ø1.5+0.1
-0
2.0±0.05
ø1.5+0.1
-0
4.75±0.1
5° max.
No. UP003-A-C-SD-1.1
UP003-A-C-SD-1.1
SOT893-A-Carrier Tape
Feed direction
4.0±0.1(10 pitches : 40.0±0.2)
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
13.0±0.3
16.5max.
(60°)
(60°)
QTY. 1,000
No. UP003-A-R-SD-1.1
UP003-A-R-SD-1.1
SOT893-A-Reel
Enlarged drawing in the central part
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
5.2max. 4.2max.
0.6max.
0.45±0.1 0.45±0.1
1.27
No. YS003-B-P-SD-1.1
YS003-B-P-SD-1.1
TO92-B-PKG Dimensions
Marked side
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
4.2max.
0.45±0.1
Marked side
1.27
5.2max.
0.45±0.1
0.6max.
2.5 +0.4
-0.1
No. YF003-A-P-SD-1.1
YF003-A-P-SD-1.1
TO92-A-PKG Dimensions
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
12.7±1.0
6.35±0.4 ø4.0±0.2
0.5max. 1#pin 3#pin
1.0max. 1.0max.
0.7±0.2
1.45max.
No. YF003-A-C-SD-4.1
YF003-A-C-SD-4.1
TO92-A-Radial Tape
Marked side
12.7±0.3(20 pitches : 254.0±1.0)
Feed direction
Feed direction
Marked side
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
ø358±2
43±0.5
53±0.5
5±0.5
2±0.5
QTY. 2,000
No. YF003-A-R-SD-2.1
YF003-A-R-SD-2.1
TO92-A-Reel
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
4.2max.
0.45±0.1
Marked side
1.27
5.2max.
0.45±0.1
0.6max.
2.5 +0.4
-0.1
No. YF003-A-P-SD-1.1
YF003-A-P-SD-1.1
TO92-A-PKG Dimensions
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
12.7±1.0
6.35±0.4 ø4.0±0.2
0.5max. 1#pin 3#pin
1.0max. 1.0max.
0.7±0.2
1.45max.
Feed direction
12.7±0.3(20 pitches : 254.0±1.0)
Marked side
No. YZ003-C-C-SD-3.1
YZ003-C-C-SD-3.1
TO92-C-Radial Tape
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
330
47
262
Spacer
320
40
60
165
320
QTY. 2,500
No. YZ003-C-Z-SD-2.1
YZ003-C-Z-SD-2.1
Side spacer placed in front side
Space more than 4 strokes
TO92-C-Ammo Packing
The information described herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the appropriate governmental authority.
Use of the information described herein for other purposes and/or reproduction or copying without the
express permission of Seiko Instruments Inc. is strictly prohibited.
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.