3–676 Motorola Bipolar Power Transistor Device Data

 
 
  !  
The MJE13009 is designed for high–voltage, high–speed power switching inductive
circuits where fall time is critical. They are particularly suited for 115 and 220 V
switchmode applications such as Switching Regulators, Inverters, Motor Controls,
Solenoid/Relay drivers and Deflection circuits.
SPECIFICATION FEATURES:
VCEO(sus) 400 V and 300 V
Reverse Bias SOA with Inductive Loads @ TC = 100
_
C
Inductive Switching Matrix 3 to 12 Amp, 25 and 100
_
C
...tc @ 8 A, 100
_
C is 120 ns (Typ).
700 V Blocking Capability
SOA and Switching Applications Information.
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Value
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VCEO(sus)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
400
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VCEV
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
700
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Base Voltage
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VEBO
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
9
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak (1)
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
IC
ICM
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
12
24
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak (1)
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
IB
IBM
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
6
12
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Current Continuous
Peak (1)
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
IE
IEM
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
18
36
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TA = 25
_
C
Derate above 25
_
C
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
PD
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
2
16
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Watts
mW/
_
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TC = 25
_
C
Derate above 25
_
C
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
PD
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
100
800
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Watts
mW/
_
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction Temperature Range
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
65 to +150
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
_
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Max
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Ambient
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
RθJA
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
62.5
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
_
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
RθJC
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
1.25
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
_
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Maximum Lead Temperature for Soldering Purposes:
1/8 from Case for 5 Seconds
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
TL
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
275
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle
v
10%.
Designer’s Data for “W orst Case” Conditions — The Designers Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.

SEMICONDUCTOR TECHNICAL DATA Order this document
by MJE13009/D
Motorola, Inc. 1995

12 AMPERE
NPN SILICON
POWER TRANSISTOR
400 VOLTS
100 WATTS
*Motorola Preferred Device
CASE 221A–06
TO–220AB
REV 2
MJE13009
3–677
Motorola Bipolar Power Transistor Device Data
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25
_
C unless otherwise noted)
Characteristic
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
*OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage
(IC = 10 mA, IB = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCEO(sus)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
400
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ICEV
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1
5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
Emitter Cutoff Current
(VEB = 9 Vdc, IC = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IEBO
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IS/b
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
See Figure 1
See Figure 2
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
S/b
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
See Figure 2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
*ON CHARACTERISTICS
DC Current Gain
(IC = 5 Adc, VCE = 5 Vdc)
(IC = 8 Adc, VCE = 5 Vdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
hFE
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
8
6
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
40
30
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Collector–Emitter Saturation Voltage
(IC = 5 Adc, IB = 1 Adc)
(IC = 8 Adc, IB = 1.6 Adc)
(IC = 12 Adc, IB = 3 Adc)
(IC = 8 Adc, IB = 1.6 Adc, TC = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCE(sat)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1
1.5
3
2
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Base–Emitter Saturation Voltage
(IC = 5 Adc, IB = 1 Adc)
(IC = 8 Adc, IB = 1.6 Adc)
(IC = 8 Adc, IB = 1.6 Adc, TC = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VBE(sat)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.2
1.6
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
Current–Gain — Bandwidth Product
(IC = 500 mAdc, VCE = 10 Vdc, f = 1 MHz)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
fT
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
4
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
MHz
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Cob
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
180
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 1)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 125 Vdc, IC = 8 A,
IB1 = IB2 = 1.6 A, tp = 25 µs,
Duty Cycle
v
1%)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
td
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.06
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Rise Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(VCC = 125 Vdc, IC = 8 A,
IB1 = IB2 = 1.6 A, tp = 25 µs,
Duty Cycle
v
1%)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tr
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.45
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
IB1 = IB2 = 1.6 A, tp = 25 µs,
Duty Cycle
v
1%)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.3
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
3
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
v
1%)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.2
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.7
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load, Clamped (Table 1, Figure 13)
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Voltage Storage Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(I
C = 8 A, Vclamp = 300 Vdc,
IB1 = 1.6 A, VBE(off) = 5 Vdc, TC = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.92
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2.3
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
µs
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
(IC = 8 A, Vclamp = 300 Vdc,
IB1 = 1.6 A, VBE(off) = 5 Vdc, TC = 100
_
C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.12
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
0.7
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
µs
*Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%.
MJE13009
3–678 Motorola Bipolar Power Transistor Device Data
IC, COLLECTOR CURRENT (AMP)
10
µ
s
100
µ
s
1 ms
dc
100
7VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
0.02
10
20
10
50
0.5
0.1
0.05
30 50 70 100
Figure 1. Forward Bias Safe Operating Area Figure 2. Reverse Bias Switching Safe
Operating Area
0.2
0.01 300 5005 20
14
0800
2
100 300
TC
100
°
C
IB1 = 2.5 A
500 700
VBE(off) = 9 V
0
6
VCEV, COLLECTOR–EMITTER CLAMP VOLTAGE (VOLTS)
10
200 400 600
5 V
2
1
5
TC = 25
°
C
12
8
4
3 V 1.5 V
IC, COLLECTOR (AMP)
200
THERMAL LIMIT
BONDING WIRE LIMIT
SECOND BREAKDOWN LIMIT
CURVES APPLY BELOW RATED VCEO
The Safe Operating Area figures shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown.
Figure 3. Forward Bias Power Derating
TC, CASE TEMPERATURE (
°
C)
040 120 160
0.6
POWER DERATING FACTOR
SECOND BREAKDOWN
DERATING
1
0.8
0.4
0.2
60 100 14080
THERMAL
DERATING
20
There are two limitations on the power handling ability of a
transistor: average junction temperature and second break-
down. Safe operating area curves indicate IC – VCE limits of
the transistor that must be observed for reliable operation;
i.e., the transistor must not be subjected to greater dissipa-
tion than the curves indicate.
The data of Figure 1 is based on TC = 25
_
C; TJ(pk) is
variable depending on power level. Second breakdown pulse
limits are valid for duty cycles to 10% but must be derated
when TC 25
_
C. Second breakdown limitations do not der-
ate the same as thermal limitations. Allowable current at the
voltages shown on Figure 1 may be found at any case tem-
perature by using the appropriate curve on Figure 3.
TJ(pk) may be calculated from the data in Figure 4. At high
case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations im-
posed by second breakdown. Use of reverse biased safe op-
erating area data (Figure 2) is discussed in the applications
information section.
t, TIME (ms)
1
0.01
0.01
0.7
0.2
0.1
0.05
0.02
r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED)
0.05 1 2 5 10 20 50 100 200 500
Z
θ
JC(t) = r(t) R
θ
JC
R
θ
JC = 1.25
°
C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) – TC = P(pk) Z
θ
JC(t)
P(pk)
t1t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.02
SINGLE PULSE
0.1
0.1 0.50.2 1.0 k
0.5
0.3
0.07
0.03
0.02
Figure 4. Typical Thermal Response [ZθJC(t)]
0.01
0.05
0.2
MJE13009
3–679
Motorola Bipolar Power Transistor Device Data
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMP)IC, COLLECTOR CURRENT (AMP)
1.2
1.4
0.8
0.4
Figure 5. DC Current Gain
IC, COLLECTOR CURRENT (AMP)
0.5 1 5 7
10
Figure 6. Collector Saturation Region
0.05 IB, BASE CURRENT (AMP)
0.30.07
1.2
0.4
0
50
hFE, DC CURRENT GAIN
0.1 0.2 0.5 5
Figure 7. Base–Emitter Saturation Voltage Figure 8. Collector–Emitter Saturation Voltage
Figure 9. Collector Cutoff Region
2
0.8
0.1
VBE, BASE–EMITTER VOLTAGE (VOLTS)
0
TJ = 25
°
C
0.7 3
Figure 10. Capacitance
4K
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
Cib
Cob
0.1
, COLLECTOR CURRENT ( A)
µ
IC
0.4 0.2
100
80
500
1.6
0.6
IC = 1 A
50.2 2
0.3 1 70.7 100.2 0.5 32 5
30
20
7
600
400
200
40
60
200100510.5
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
+0.6
3 A
0.7 1 2
1
0.5
0.7
0.4
0
0.2
0.6
0.3
VCE = 5 V
TJ = 150
°
C
25
°
C
– 55
°
C
20
0.3
+0.4+0.2
1
10
100
1K
10K
800
1K
2K
10 50
REVERSE FORWARD
VCE = 250 V
10 20
5 A 8 A 12 A
3
TJ = –55
°
C
IC/IB = 3
25
°
C150
°
C
0.3 1 70.7 100.2 0.5 32 5 20
0.1
IC/IB = 3 TJ = 150
°
C
– 55
°
C
25
°
C
TJ = 150
°
C
125
°
C
100
°
C
75
°
C
50
°
C
25
°
C
0.2 2 20
TJ = 25
°
C
MJE13009
3–680 Motorola Bipolar Power Transistor Device Data
t1
REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING RESISTIVE
SWITCHING
OUTPUT WAVEFORMS
TEST CIRCUITS
CIRCUIT
VALUES
TEST WAVEFORMS
NOTE
PW and VCC Adjusted for Desired IC
RB Adjusted for Desired IB1
5 V
PW
DUTY CYCLE
10%
tr, tf
10 ns 68 1 k
0.001
µ
F
0.02
µ
F
1N4933
270
+5 V
1 k 2N2905
47
1/2 W 100
VBE(off)
MJE200
D.U.T.
IB
RB
1N4933
1N4933 33
33
2N2222
1 k
MJE210
VCC
+5 V
L
IC
MR826*
Vclamp
*SELECTED FOR
1 kV
VCE
5.1 k
51
+125 V
RC
SCOPE
4.0 V
D1
RBTUT
t1 ADJUSTED TO
OBTAIN IC
t1
Lcoil (ICM)
VCC
t2
Lcoil (ICM)
Vclamp
+10 V 25
µ
s
0
8 V
Coil Data:
Ferroxcube Core #6656
Full Bobbin (~16 Turns) #16
GAP for 200 µH/20 A
Lcoil = 200 µHVCC = 20 V
Vclamp = 300 Vdc
VCC = 125 V
RC = 15
D1 = 1N5820 or Equiv.
RB =
Test Equipment
Scope–Tektronics
475 or Equivalent
tr, tf < 10 ns
Duty Cycle = 1.0%
RB and RC adjusted
for desired IB and IC
IC
VCE
TIME
ICM
VCEM
t2
t
tf
tf CLAMPED
tf UNCLAMPED
t2
Vclamp
Table 1. Test Conditions for Dynamic Performance
APPLICATIONS INFORMATION FOR SWITCHMODE SPECIFICATIONS
INTRODUCTION
The primary considerations when selecting a power tran-
sistor for SWITCHMODE applications are voltage and cur-
rent ratings, switching speed, and energy handling capability.
In this section, these specifications will be discussed and re-
lated to the circuit examples illustrated in Table 2.(1)
VOLTAGE REQUIREMENTS
Both blocking voltage and sustaining voltage are important
in SWITCHMODE applications.
Circuits B and C in Table 2 illustrate applications that re-
quire high blocking voltage capability. In both circuits the
switching transistor is subjected to voltages substantially
higher than VCC after the device is completely off (see load
line diagrams at IC = Ileakage 0 in Table 2). The blocking ca-
pability at this point depends on the base to emitter condi-
tions and the device junction temperature. Since the highest
device capability occurs when the base to emitter junction is
reverse biased (VCEV), this is the recommended and speci-
fied use condition. Maximum ICEV at rated VCEV is specified
at a relatively low reverse bias (1.5 Volts) both at 25°C and
100
_
C. Increasing the reverse bias will give some improve-
ment in device blocking capability.
The sustaining or active region voltage requirements in
switching applications occur during turn–on and turn–off. If
the load contains a significant capacitive component, high
current and voltage can exist simultaneously during turn–on
and the pulsed forward bias SOA curves (Figure 1) are the
proper design limits.
For inductive loads, high voltage and current must be sus-
tained simultaneously during turn–of f, in most cases, with the
base to emitter junction reverse biased. Under these condi-
tions the collector voltage must be held to a safe level at or
below a specific value of collector current. This can be ac-
complished by several means such as active clamping, RC
snubbing, load line shaping, etc. The safe level for these de-
vices is specified as a Reverse Bias Safe Operating Area
(Figure 2) which represents voltage–current conditions that
can be sustained during reverse biased turn–off. This rating
is verified under clamped conditions so that the device is
never subjected to an avalanche mode.
(1) For detailed information on specific switching applications, see
Motorola Application Notes AN–719, AN–767.
MJE13009
3–681
Motorola Bipolar Power Transistor Device Data
VOLTAGE REQUIREMENTS (continued)
In the four application examples (Table 2) load lines are
shown in relation to the pulsed forward and reverse biased
SOA curves.
In circuits A and D, inductive reactance is clamped by the
diodes shown. In circuits B and C the voltage is clamped by
the output rectifiers, however, the voltage induced in the pri-
mary leakage inductance is not clamped by these diodes and
could be large enough to destroy the device. A snubber net-
work or an additional clamp may be required to keep the
turn–off load line within the Reverse Bias SOA curve.
Load lines that fall within the pulsed forward biased SOA
curve during turn–on and within the reverse bias SOA curve
during turn–off are considered safe, with the following as-
sumptions:
(1) The device thermal limitations are not exceeded.
(2) The turn–on time does not exceed 10 µs (see standard
pulsed forward SOA curves in Figure 1).
(3) The base drive conditions are within the specified limits
shown on the Reverse Bias SOA curve (Figure 2).
CURRENT REQUIREMENTS
An efficient switching transistor must operate at the re-
quired current level with good fall time, high energy handling
capability and low saturation voltage. On this data sheet,
these parameters have been specified at 8 amperes which
represents typical design conditions for these devices. The
current drive requirements are usually dictated by the
VCE(sat) specification because the maximum saturation volt-
age is specified at a forced gain condition which must be du-
plicated or exceeded in the application to control the
saturation voltage.
SWITCHING REQUIREMENTS
In many switching applications, a major portion of the tran-
sistor power dissipation occurs during the fall time ( tfi). For
this reason considerable effort is usually devoted to reducing
the fall time. The recommended way to accomplish this is to
reverse bias the base–emitter junction during turn–off. The
reverse biased switching characteristics for inductive loads
are discussed in Figure 11 and Table 3 and resistive loads in
Figures 13 and 14. Usually the inductive load component will
be the dominant factor in SWITCHMODE applications and
the inductive switching data will more closely represent the
device performance in actual application. The inductive
switching characteristics are derived from the same circuit
used to specify the reverse biased SOA curves, (See Table
1) providing correlation between test procedures and actual
use conditions.
Figure 11. Turn–On Time
IC, COLLECTOR CURRENT (AMP)
tr
td @ VBE(off) = 5 V
100
50
1K
700
500
IC, COLLECTOR CURRENT (AMP)
0.7 31 20.2
VCC = 125 V
IC/IB = 5
TJ = 25
°
C
0.5
200
300
t, TIME (ns)
0.3
Figure 12. Turn–Off Time
200
100
2K
1K
700 VCC = 125 V
IC/IB = 5
TJ = 25
°
C
300
500
t, TIME (ns)
70
75 10 20 0.7 1 20.2 0.50.3 75 10 20
ts
tf
Figure 13. Inductive Switching Measurements
TIME
Figure 14. Typical Inductive Switching Waveforms
(at 300 V and 12 A with IB1 = 2.4 A and VBE(off) = 5 V)
TIME 20 ns/DIV
IC
VCE
IC
VCE
CURRENT 2 A/DIV
VOLTAGE 50 V/DIV
IC
Vclamp
IB90% IB1
10%
VCEM 10%
ICM 2%
IC
Vclamp
90% VCEM 90% IC
tsv trv tfi tti
tc
RESISTIVE SWITCHING PERFORMANCE
MJE13009
3–682 Motorola Bipolar Power Transistor Device Data
CIRCUIT LOAD LINE DIAGRAMS TIME DIAGRAMS
SERIES SWITCHING
REGULATOR
RINGING CHOKE
INVERTER
PUSH–PULL
INVERTER/CONVERTER
SOLENOID DRIVER
VCC VO
VCC VO
N
VCC
VO
VCC
SOLENOID
Collector CurrentCollector CurrentCollector CurrentCollector Current
24 A
12 A
TC = 100
°
C
TURN–ON
TURN–OFF
VCC 400 V 700 V
COLLECTOR VOLTAGE
350 V
TURN–ON (FORWARD BIAS) SOA
ton
10 ms
DUTY CYCLE
10%
PD = 4000 W
TURN–OFF (REVERSE BIAS) SOA
1.5 V
VBE(off)
9.0 V
DUTY CYCLE
10%
1
2
1
IC
VCE
VCC
TIME t
t
24 A
TC = 100
°
C
12 A TURN–OFF
TURN–ON
VCC 400 V 1
VCC + N(Vo)
350 V
PD = 4000 W 2
TURN–ON (FORWARD BIAS) SOA
TURN–ON ton
10 ms
TURN–ON DUTY CYCLE
10%
TURN–OFF (REVERSE BIAS) SOA
TURN–OFF 1.5 V
VBE(off)
9.0 V
TURN–OFF DUTY CYCLE
10%
700 V 1
COLLECTOR VOLTAGE
24 A
12 A
TC = 100
°
C
TURN–OFF
TURN–ON
VCC 400 V 1700 V 1
2 VCC
350 V
PD = 4000 W 2
TURN–ON (FORWARD BIAS) SOA
TURN–ON ton
10 ms
TURN–ON DUTY CYCLE
10%
TURN–OFF (REVERSE BIAS) SOA
TURN–OFF 1.5 V
VBE(off)
9.0 V
TURN–OFF DUTY CYCLE
10%
24 A
12 A
TC = 100
°
C
TURN–OFF
TURN–ON
VCC 400 V 1700 V 1
COLLECTOR VOLTAGE
COLLECTOR VOLTAGE
TURN–OFF (REVERSE BIAS) SOA
TURN–OFF 1.5 V
VBE(off)
9.0 V
TURN–OFF DUTY CYCLE
10%
350 V
PD = 4000 W 2
TURN–ON (FORWARD BIAS) SOA
TURN–ON ton
10 ms
TURN–ON DUTY CYCLE
10%
IC
VCE
VCC
t
t
VCC+
N(Vo)
LEAKAGE SPIKE
TIME
toff
ton
IC
VCE
ton toff
t
t
VCC
2 VCC
IC
VCE
ton toff t
t
VCC
A
B
C
D
Table 2. Applications Examples of Switching Circuits
MJE13009
3–683
Motorola Bipolar Power Transistor Device Data
Table 3. Typical Inductive Switching Performance
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
IC
AMP
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
TC
_
C
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tsv
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
trv
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tfi
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tti
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tc
ns
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
3
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
770
1000
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
100
230
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
150
160
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
200
200
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
240
320
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
630
820
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
72
100
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
26
55
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
10
30
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
100
180
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
8
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
720
920
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
55
70
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
27
50
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2
8
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
77
120
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
12
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
25
100
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
640
800
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
20
32
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
17
24
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2
4
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
41
54
NOTE: All Data recorded In the Inductive Switching Circuit In Table 1.
SWITCHING TIME NOTES
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power supplies
and hammer drivers, current and voltage waveforms are not
in phase. Therefore, separate measurements must be made
on each waveform to determine the total switching time. For
this reason, the following new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% VCEM
trv = Voltage Rise Time, 1090% VCEM
tfi = Current Fall Time, 9010% ICM
tti = Current Tail, 102% ICM
tc = Crossover Time, 10% VCEM to 10% ICM
An enlarged portion of the turn–off waveforms is shown in
Figure 13 to aid in the visual identity of these terms.
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained us-
ing the standard equation from AN–222:
PSWT = 1/2 VCCIC(tc) f
Typical inductive switching waveforms are shown in Fig-
ure 14. In general, trv + t fi
]
tc. However, at lower test cur-
rents this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 25
_
C and has become a benchmark
for designers. However, for designers of high frequency con-
verter circuits, the user oriented specifications which make
this a “SWITCHMODE” transistor are the inductive switching
speeds (tc and tsv) which are guaranteed at 100
_
C.
MJE13009
3–684 Motorola Bipolar Power Transistor Device Data
PACKAGE DIMENSIONS
CASE 221A–06
TO–220AB
ISSUE Y
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.570 0.620 14.48 15.75
B0.380 0.405 9.66 10.28
C0.160 0.190 4.07 4.82
D0.025 0.035 0.64 0.88
F0.142 0.147 3.61 3.73
G0.095 0.105 2.42 2.66
H0.110 0.155 2.80 3.93
J0.018 0.025 0.46 0.64
K0.500 0.562 12.70 14.27
L0.045 0.060 1.15 1.52
N0.190 0.210 4.83 5.33
Q0.100 0.120 2.54 3.04
R0.080 0.110 2.04 2.79
S0.045 0.055 1.15 1.39
T0.235 0.255 5.97 6.47
U0.000 0.050 0.00 1.27
V0.045 ––– 1.15 –––
Z––– 0.080 ––– 2.04
B
Q
H
Z
L
V
G
N
A
K
F
1 2 3
4
D
SEATING
PLANE
–T–
C
S
T
U
R
J
MJE13009
3–685
Motorola Bipolar Power Transistor Device Data
How to reach us:
USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability , including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customers technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer .
MJE13009/D
*MJE13009/D*