This is information on a product in full production.
April 2015 DocID15962 Rev 14 1/142
STM8L151x4, STM8L151x6,
STM8L152x4, STM8L152x6
8-bit ultra-low-power MCU, up to 32 KB Flash, 1 KB Data EEPROM,
RTC, LCD, timers, USART, I2C, SPI, ADC, DAC, comparators
Datasheet - production data
Features
Operating conditions
Operating power supply range 1.8 V to
3.6 V (down to 1.65 V at power down)
Temp. range: - 40 °C to 85, 105 or 125 °C
Low power features
5 low power modes: Wait, Low power run
(5.1 µA), Low power wait (3 µA), Active-halt
with full RTC (1.3 µA), Halt (350 nA)
Consumption: 195 µA/MHz + 440 µA
Ultra-low leakage per I/0: 50 nA
Fast wakeup from Halt: 4.7 µs
Advanced STM8 core
Harvard archite ctu r e an d 3- sta g e pip eline
Max freq. 16 MHz, 16 CISC MIPS peak
Up to 40 external interrupt sources
Reset and supply management
Low power, ultra-safe BOR reset with 5
selectable thresholds
Ultra-low-power POR/PDR
Programmable voltage de tector (PVD)
Clock management
1 to 16 MHz crystal oscillator
32 kHz crystal oscillator
Internal 16 MHz factory-trimmed RC
Internal 38 kHz low consumption RC
Clock security system
Low power RTC
BCD calendar with alarm interrupt
Auto-wakeup from Halt w/ periodic interrupt
LCD: up to 4x28 segments w/ step-up
converter
Memories
Up to 32 KB of Fla sh program m emory and
1 Kbyte of data EEPROM with ECC, RWW
Flexible write and read protection modes
Up to 2 Kbyte of RA M
DMA
4 channels; supported peripherals: ADC,
DAC, SPI, I2C, USART, timers
1 channel for memory-to-memory
12-bit DAC with output buffer
12-bit ADC up to 1 Msps/25 channels
T. sensor and internal reference voltage
2 ultra-low-power comparators
1 with fixed thresh ol d and 1 rail to rail
Wakeup capability
Timers
Two 16-bit timers with 2 channels (used as
IC, OC, PWM), quadrature encoder
One 16-bit advanced control timer with 3
channels, supporting motor control
One 8-bit timer with 7-bit prescaler
2 watchdogs: 1 Window, 1 Independent
Beeper timer with 1, 2 or 4 kHz frequencies
Communication interfaces
Synchronous serial interface (SPI)
Fast I2C 400 kHz SMBus and PMBus
USART (ISO 7816 interface and IrDA)
Up to 41 I/Os, all mappable on interrupt vectors
Up to 16 capacitive sensing channels
supporting touchkey, proximity, linear touch
and rotary touch sensors
Development su pp or t
Fast on-chip programming and non
intrusive debugging with SWIM
Bootloader using USART
96-bit unique ID
Table 1. Device summary
Reference Part number
STM8L151xx
(without LCD) STM8L151C4, STM8L151C6, STM8L151 K4,
STM8L151K6, STM8L151G4, STM8L 151G6
STM8L152xx
(with LCD) STM8L152C4, STM8L152C6, STM8L152 K4,
STM8L152K6
LQFP48
7x7 mm UFQFPN48 LQFP32
7x7 mm
UFQFPN32 (5x5 mm)
7x7 mm
UFQFPN28 (4x4 mm) WLCSP28
#30
www.st.com
Contents STM8L151x4/6, STM8L152x4/6
2/142 DocID15962 Rev 14
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Ultra-low-power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11 Ultra-low-power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 System configuration controller and routing interface . . . . . . . . . . . . . . . 21
3.13 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.1 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.2 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.3 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID15962 Rev 14 3/142
STM8L151x4/6, STM8L152x4/6 Contents
4
3.16 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.2 I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.18 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8 Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.3.2 Embedde d reset an d po we r co ntr o l bloc k characteristics . . . . . . . . . . . 67
9.3.3 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.3.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.3.6 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.3.7 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Contents STM8L151x4/6, STM8L152x4/6
4/142 DocID15962 Rev 14
9.3.8 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.3.9 LCD controller (STM8L152xx only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.3.10 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.3.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.3.12 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.3.13 12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.3.14 12-bit ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.1 ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
10.2 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
10.3 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.4 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.5 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.6 UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.7 WLCSP28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
DocID15962 Rev 14 5/142
STM8L151x4/6, STM8L152x4/6 List of tables
6
List of tables
Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Medium-density STM8L151x4/6 and STM8L152x4/6 low-power device features and
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Timer feature compariso n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 4. Legend/abbreviation for table 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description. . . . . . . . . . . . . . . . . . . . 29
Table 6. Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 7. Factory conversion registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 8. I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 9. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 10. CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 11. Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 12. Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 13. Option byte description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 14. Unique ID registers (96 bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 15. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 16. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 17. Therm a l char a cte ris tics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 18. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 20. Total current consumption in Run mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 21. Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 22. Total current consumption and timing in Low power run mode
at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 23. Total cu rrent consumption in Low power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . 76
Table 24. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V. . . . . 78
Table 25. Typical current consump tion in Active-halt mode, RTC clocked by LSE external crystal. . 80
Table 26. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V . . . . . . . . . . . 80
Table 27. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 28. Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 29. HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 30. LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 31. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 32. LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 33. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 34. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 35. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 36. Flash program and data EEPROM memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 37. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 38. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 39. Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 40. Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 41. Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 93
Table 42. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 43. SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 44. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 45. LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 46. Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
List of tables STM8L151x4/6, STM8L152x4/6
6/142 DocID15962 Rev 14
Table 47. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 48. Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 49. Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 50. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 51. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 52. DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 53. ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 54. ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 55. ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 56. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 57. RAIN max for fADC = 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 58. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 59. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 60. ESD absolute ma xim u m ra tin gs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 61. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 62. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 63. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 64. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 65. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 66. UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 67. WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 68. Therm a l char a cte ris tics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 69. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
DocID15962 Rev 14 7/142
STM8L151x4 /6 , STM 8 L 152x4/6 List of figures
8
List of figures
Figure 1. Medium-density STM8L151x4/6 and STM8L152x4/6 device block diagram . . . . . . . . . . . 14
Figure 2. Medium-density STM8L151x4/6 and STM8L152x4/6 clock tree diagram . . . . . . . . . . . . . 19
Figure 3. STM8L151C4, STM8L151C6 48-pin pinout (without LCD). . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4. STM8L151K4, STM8L151K6 32-pin package pinout (without LCD). . . . . . . . . . . . . . . . . . 26
Figure 5. STM8L151Gx UFQFPN28 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 6. STM8L151G4, STM8L151G6 WLCSP28 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 7. STM8L152C4, STM8L152C6 48-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. STM8L152K4, STM8L152K6 32-pin package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . 28
Figure 9. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 12. POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 13. Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 14. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 15. Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 16. Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 17. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 18. LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 19. Typical HSI frequency vs VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 20. Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 21. Typical VIL and VIH vs VDD (high sink I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 22. Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 23. Typical pull-up resistance RPU vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 24. Typical pull-up current Ipu vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 25. Typ. VOL @ VDD = 3.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 26. Typ. VOL @ VDD = 1.8 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 27. Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 28. Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 29. Typ. VDD - VOH @ VDD = 3.0 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 30. Typ. VDD - VOH @ VDD = 1.8 V (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 31. Typical NRST pull-up resistance RPU vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 32. Typical NRST pull-up curr ent Ipu vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 33. Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 34. SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 35. SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 36. SPI1 timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 37. Typica l application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 38. ADC1 accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 39. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 40. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 41. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 113
Figure 42. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . 113
Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 116
Figure 44. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 45. LQFP48 mar kin g example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 46. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
List of figures STM8L151x4/6, STM8L152x4/6
8/142 DocID15962 Rev 14
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 47. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package reco m me n de d fo ot pr int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 48. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 49. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 123
Figure 50. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 51. LQFP32 mar kin g example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 52. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 53. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package reco m me n de d fo ot pr int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 54. UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 55. UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 56. UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package reco m me n de d fo ot pr int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 57. UFQFPN28 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 58. WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 59. WLCSP28 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 60. Medium-d ensity STM8L15x ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . 136
DocID15962 Rev 14 9/142
STM8L151x4/6, STM8L152x4/6 Introduction
58
1 Introduction
This document describes the features, pinout, mechanical data and ordering information of
the medium-density STM8L151x4/6 and STM8L152 x4/6 devices (STM8L151Cx/Kx/Gx,
STM8L152Cx/Kx microcontrollers with a 16-Kbyte or 32-Kbyte Flash memory density).
These devices are re ferred to as medium -dens ity device s in the STM8L15x and STM8L16x
reference manual (RM0031) and in the STM8L Flash programming manual (PM0054).
For more details on the whole STMicroelectronics ultra-low-power family please refer to
Section 2.2: Ultra-low-power continuum on page 13.
For information on the debug module and SWIM (single wire interface module), refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470 ).For
information on the STM8 core, please refer to the STM8 CPU pr ogramming manual
(PM0044).
The medium-density devices provide the following benefits:
Integrated system
Up to 32 Kbyte of medium-density embedded Flash program memory
1 Kbyte of data EEPROM
Internal high speed and low-power low speed RC
Embedded reset
Ultra-low power consumption
195 µA/MHZ + 440 µA (consumption)
0.9 µA with LSI in Active-halt mode
Clock gated system and optimized power management
Capability to execute from RAM for Low power wait mode and Low power run
mode
Advanced features
Up to 16 MIPS at 16 MHz CPU clock frequency
Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access
Short development cycles
Application scalability acro ss a common family product architecture with
compatible pinout, memory map and modular periphera ls
Wide choice of development tools
All devices offer 12-bit ADC, DAC, two comparators, Real-time clock three 16-bit timers, one
8-bit timer as well as st andard communication interface such as SPI, I2C and USART. A
4x28-segment LCD is available on the medium-density STM8L152xx line. Table 2: Medium-
density STM8L151x4/6 and STM8L1 52x4/6 low-power device features and peripheral
counts and Section 3: Functional overview give an overview of the complete range of
peripherals proposed in this family.
Figure 1 on page 14 shows the gene ral block diagram of the device family.
Introduction STM8L151x4/6, STM8L152x4/6
10/142 DocID15962 Rev 14
The medium-density STM8L15x microcontroller family is suitable for a wide range of
applications:
Medical and hand-held equipment
Application control and user interface
PC peripherals, gaming, GPS and sport equipment
Alarm systems, wired and wireless sensors
DocID15962 Rev 14 11/142
STM8L151x4/6, STM8L152x4/6 Description
58
2 Description
The medium-density STM8L151x4/6 and STM8L152x4/6 devices are members of the
STM8L ultra-low-power 8-bi t family. The medium-density STM8L15x family operates from
1.8 V to 3.6 V (down to 1.65 V at power down) and is available in the -40 to +85 °C and -40
to +125 °C temperature ranges.
The medium-density STM8L15x ultra-low-power family features the enhanced STM8 CPU
core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the
advantages of a CISC architecture with improved code density, a 24-bit linear addressing
space and an optimized architecture for low power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which
allows non-intrusive In-Application debugging and ultra-fast Flash programming.
All medium-density STM8L15x microcontrollers feature embedded data EEPROM and low-
power, low-voltage, single-supply program Flash memory.
They incorporate an extensive range of enhanced I/Os and peripherals.
The modular design of th e peripheral set allows the same peripherals to be found in
different ST microcontroller families including 32-bit families. This makes any transition to a
different family very easy, and sim plified even more by the use of a common set of
development to ols .
Six different packages are proposed from 28 to 48 pins. Depending on the device chosen,
different sets of peripherals are included.
All STM8L ultra-low-power products are based on the same architecture with the same
memory mapping and a coherent pinout.
Description STM8L151x4/6, STM8L152x4/6
12/142 DocID15962 Rev 14
2.1 Device overview
Table 2. Medium-density STM8L151x4/6 and STM8L152x4/6 low-power device features and
peripheral counts
Features STM8L151Gx STM8L15xKx STM8L15xCx
Flash (Kbyte) 16 32 16 32 16 32
Data EEPROM (Kbyte) 1
RAM (Kbyte) 2
LCD No 4x17 (1) 4x28 (1)
Timers
Basic 1
(8-bit)
General purpose 2
(16-bit)
Advanced control 1
(16-bit)
Communication
interfaces
SPI 1
I2C 1
USART 1
GPIOs 26(3) 30 (2)(3) or 29 (1)(3) 41(3)
12-bit synchronized ADC
(number of channels) 1
(18) 1
(22 (2) or 21 (1))1
(25)
12-Bit DAC
(number of channels) 1
(1)
Comparators COMP1/COMP2 2
Others RTC, window watchdog, independent watchdog,
16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator
CPU frequency 16 MHz
Operating voltage 1.8 V to 3.6 V (down to 1.65 V at power down)
Operating temperature -40 to +85 °C/ -40 to +105 °C / -40 to +125 °C
Packages UFQFPN28 (4x4;
0.6 mm thickness)
WLCSP28
LQFP32(7x7)
UFQFPN32 (5x5;
0.6 mm thickness)
LQFP48
UFQFPN48 (4x4;
0.6 mm thickness)
1. STM8L152xx versions only
2. STM8L151xx versions only
3. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as
general purpose output only (PA1).
DocID15962 Rev 14 13/142
STM8L151x4/6, STM8L152x4/6 Description
58
2.2 Ultra-low-power continuum
The ultra-low-power medium-densitySTM8L151x4/6 and ST M8L152x4/6 devices are fully
pin-to-pin, software and feature compatible. Besides the full compatibility within the family,
the devices are part of STMicro e lectronics microcon tr olle rs ultra-low-po we r str at eg y whic h
also includes STM8L101xx and STM8L15xxx. The STM8L and STM32L families allow a
continuum of pe rf or m an ce , pe riphe ra ls, system architectu re , an d feat ur es .
They are all based on STMicroelectronics 0.13 µm ultra-low leakage process.
Note: 1 The STM8L151xx and STM8L152xx are pin-to-pin compatible with STM8L101xx devices.
2 The STM32L family is pin-to-pin compatible with the general purpose STM32F family.
Please refer to STM32L15x documentation for more information on these devices.
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM® Cortex®-M3 core
for STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.
Shared peripherals
STM8L151xx/152xx and STM8L15xxx share iden tical peripherals which en sure a very easy
migration from one family to another:
Analog peripherals: ADC1, DAC, and comparators COMP1/COMP2
Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L151xx/152xx and STM8L15xxx
devices use a comm o n ar ch itecture:
Same power supply range from 1.8 to 3.6 V, down to 1.65 V at power down
Architecture optimized to reach ultra-low consumption both in low power mod es and
Run mode
Fast startup strategy from low power modes
Flexible system clock
Ultra-safe rese t: same reset strategy for both STM8L15x and STM32L15xxx including
power-on reset, power-down reset, brownout reset and programmable voltage
detector.
Features
ST ultra-low-power continuum also lies in feature compatibility:
More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm
Memory density ranging from 4 to 128 Kbyte
Functional overview STM8L151x4/6, STM8L152x4/6
14/142 DocID15962 Rev 14
3 Functional overview
Figure 1. Medium-density STM8L151x4/6 and STM8L152x4/6 device block diagram
1. Legend:
ADC: Analog-to-digital converter
BOR: Brownout reset
DMA: Direct memory access
DAC: Digital-to-analog converter
I²C: Inter-integrated circuit multi master interface
0+]LQWHUQDO5&
&ORFN
&ORFNV
$GGUHVVFRQWURODQGGDWDEXVHV
'HEXJPRGXOH
63,
,QWHUUXSWFRQWUROOHU
.E\WH5$0
WRFRUHDQG
SHULSKHUDOV
,:'*
N+]FORFN
6:,0
3RUW$
3RUW%
3RUW&
,ð&
86$57
3RZHU
92/75(*
3RUW)
0+]RVFLOODWRU
N+]RVFLOODWRU
N+]LQWHUQDO5&
/&'GULYHU
[
::'*
670&RUH
FRQWUROOHU
DQG
&66
3RUW'
3RUW(
%HHSHU
57&
#9''
9''
966
6:,0
6&/6'$60%
026,0,62
6&.166
5;7;&.
$'&B,1[
'$&B287
&203B,13 &203
&203
&203B,13
7HPSVHQVRU
ELW$'&
ELW'$&
ELW'$&
1567
3$>@
3%>@
3&>@
3'>@
3(>@
3)
%((3
$/$50&$/,%
6(*[&20[
3253'5
26&B,1
26&B287
26&B,1
26&B287
%25
39' 39'B,1
5(6(7
'0$
ELW7LPHU
ELW7LPHU
ELW7LPHU
ELW7LPHU
FKDQQHOV
FKDQQHOV
FKDQQHOV
FKDQQHOV
&203B,10
/&'ERRVWHU
,QWHUQDOUHIHUHQFH
YROWDJH
95(),17RXW
,QIUDUHGLQWHUIDFH
,5B7,0
.E\WH
SURJUDPPHPRU\
.E\WH
GDWD((3520
#9''$966$
9''$
966$
95()
95()
95()
9/&' 9
WR9
9'' 9
WR9
069
DocID15962 Rev 14 15/142
STM8L151x4/6, STM8L152x4/6 Functional overview
58
IWDG: Independent watchdog
LCD: Liquid crystal display
POR/PDR: Power on reset / power down reset
RTC: Real-time clock
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
WWDG: Window watchdog
3.1 Low-power modes
The medium-density STM8L151x4/6 and STM8L152x4/6 devices support five low power
modes to achie ve the best compro mise betwee n low power consump tion, short st artup time
and available wakeup sources:
Wait mode: The CPU clock is stopped, but selected peripherals keep running. An
internal or external interrupt, event or a Reset can be used to exit the microcontroller
from Wait mode (WFE or WFI mode). Wait consumptio n: re fer to Table 21.
Low power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM
are stopped and th e voltage regulator is configured in ultra-low-power mod e. The
microcontroller enters Low power run mode by software and can exit from this mode by
software or by a reset.
All interrupt s must be masked. They cannot be u sed to exit the microcontroller from this
mode. Low power run mode consumption: refer to Table 22.
Low power wait mode: This mode is entered when executing a Wait for event in Low
power run mode. It is similar to Low power run mode except that the CPU clock is
stopped. The wakeup from this mode is triggered by a Reset or by an internal or
external event (peripheral event generated by the timers, serial interfaces, DMA
controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an
event, the system goes back to Low power run mode.
All interrupt s must be masked. They cannot be u sed to exit the microcontroller from this
mode. Low power wait mode consumption: refer to Table 23.
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
can be triggered by RTC interrupts, external interrupts or reset. Active-halt
consumption: refer to Table 24 and Table 25.
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The RAM content is preserved. The wakeup is triggered by an external interrupt or
reset. A few peripherals have also a wakeup from Halt capability. Switching off the
internal reference volt age reduces power consumption. Through sof tware configuration
it is also possible to wake up the device without waiting for the internal reference
voltage wakeup time to have a fast wakeup time of 5 µs. Halt cons ump tio n: re fe r to
Table 26.
Functional overview STM8L151x4/6, STM8L152x4/6
16/142 DocID15962 Rev 14
3.2 Central processing unit STM8
3.2.1 Advanced STM8 Core
The 8-bit STM8 core is designed for code ef ficiency and performance with an Harvard
architecture and a 3-stage pipeline.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers
Harvard arch ite ctu re
3-stage pipeline
32-bit wide program memory bus - single cycle fetching most instructions
X and Y 16-bit index registers - enablin g indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter - 16 Mbyte linear memory space
16-bit stack pointer - access to a 64 Kbyte level st ack
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
20 addressing modes
Indexed indirect addressing mode for lookup tables located anywhere in the address
space
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct mem ory-to-memory transfers
3.2.2 Interrupt controller
The medium-density STM8L151x4/6 and STM8L152x4/6 feature a nested vectored
interrupt controller:
Nested interrupts with 3 software priority levels
32 interrupt vectors with hardware priority
Up to 40 external interrupt sources on 11 vectors
Trap and reset interrupts
DocID15962 Rev 14 17/142
STM8L151x4/6, STM8L152x4/6 Functional overview
58
3.3 Reset and supply management
3.3.1 Power supply scheme
The device requires a 1.65 V to 3.6 V operating supply voltage (VDD). The external power
supply pins must be connected as follows:
VSS1; VDD1 = 1.8 to 3.6 V, down to 1.65 V at power down: exter nal power supply for
I/Os and for the internal regulator. Provided externally through VDD1 pins, the
corresponding ground pin is VSS1.
VSSA; VDDA = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for
analog peripherals (minimum voltage to be applied to VDDA is 1.8 V when the ADC1 is
used). VDDA and VSSA must be conn ected to VDD1 and VSS1, respectively.
VSS2; VDD2 = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for
I/Os. VDD2 and VSS2 must be connected to VDD1 and VSS1, respectively.
VREF+; VREF- (for ADC1): external reference voltage for ADC1. Must be provided
externally through VREF+ and VREF- pin.
VREF+ (for DAC): external voltage reference for DAC must be provided externally
through VREF+.
3.3.2 Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active,
and ensures proper operation st arting fro m 1.8 V. After the 1.8 V BOR threshold is r eached,
the option byte loading process starts, either to confirm or modify default thresholds, or to
disable BOR permanently (in which case, the VDD min value at power down is 1.65 V).
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Halt mode, it is possible to automatically switch off the
internal reference voltage (and consequently the BOR) in Halt mode. The device remains
under reset when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need
for any external reset circuit.
The device features an embedded programmable voltag e detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 diff erent
levels between 1.85 V and 3.05 V, chosen by software, with a step aroun d 20 0 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than th e VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.3.3 Voltage regulator
The medium-density STM8L151x4/6 and STM8L152x4/6 embeds an internal voltage
regulator for generating the 1.8 V power supply for the core and peripherals.
This regulator has two different modes:
Main voltage regula tor mode (MVR) for Run, W ait for interr upt (WFI) and Wait for event
(WFE) mod es.
Low power voltage regulator mode (LPVR) for Halt, Active- halt, Low power run and
Low power wait modes.
When entering Halt or Active-halt modes, the system automatically switches from the MVR
to the LPVR in order to reduce current consumption.
Functional overview STM8L151x4/6, STM8L152x4/6
18/142 DocID15962 Rev 14
3.4 Clock management
The clock controller distributes the system clock (SYSCLK) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low power modes and
ensures clock robustness.
Features
Clock prescaler: to get the best compromise betwee n speed and current consu mption
the clock frequen cy to th e CPU an d pe rip h er als can be adj ust ed by a pr og ra m ma b le
prescaler
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configura tion register.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock sources: 4 different clock sources can be used to drive the system
clock:
1-16 MHz High speed external crystal (HSE)
16 MHz High speed internal RC oscillator (HSI)
32.768 kHz Low speed external crystal (LSE)
38 kHz Low speed internal RC (LSI)
RTC and LCD clock sources: the abo ve four sources can be chosen to clock the R TC
and the LCD, whatever the system clock.
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts .
Clock security system (CSS): This feature can be enabled by software. If a HSE
clock failure occurs, the system clock is automatically switched to HSI.
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
DocID15962 Rev 14 19/142
STM8L151x4/6, STM8L152x4/6 Functional overview
58
Figure 2. Medium-density STM8L151x 4/6 and STM8L152x4/6 clock tree diagr am
1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE
bypass). Refer to Section HSE clock in the STM8L15x and STM8L16x reference manual (RM0031).
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE
bypass). Refer to Section LSE clock in the STM8L15x and STM8L16x refer ence manual (RM0031).
3.5 Low power real-time clock
The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hou r (12/24 hour), week day, date, month,
year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31
day months are made automatically.
It provides a programmable alarm and programmable periodic interrupts with wakeup from
Halt capability.
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a di fferent resolution, the wakeup time can reach
36 hours
Periodic alarms based on the calendar can also be generated from every second to
every year

+DOW
DLJ
26&B,1
26&B287
26&B,1
26&B287
&&2
FRQILJXUDEOH
FORFNRXWSXW &&2
SUHVFDOHU

+6,
/6,
+6(
/6(


57&
SUHVFDOHU

/6(26&
N+]
57&6(/>@
57&&/.
6<6&/.
/&'SHULSKHUDO
FORFNHQDEOHELW
/&'SHULSKHUDO
FORFNHQDEOHELW
57&&/.
WR/&'
WR/&'
WR57&
/&'&/.
57&&/.
WR,:'*
WR%((3
,:'*&/.
%((3&/.
&/.%((36(/>@
/6,
/6( 
/6(
/6,
+6,
+6(
&66
6<6&/.
SUHVFDOHU

3HULSKHUDO
FORFNHQDEOHELW
3&/.
WRSHULSKHUDOV
6<6&/.WRFRUHDQGPHPRU\
+6(26&
0+]
+6,5&
0+]
/6,5&
N+]
Functional overview STM8L151x4/6, STM8L152x4/6
20/142 DocID15962 Rev 14
3.6 LCD (Liquid crystal display)
The liquid crystal display drives up to 4 common terminals and up to 28 segment terminals
to drive up to 112 pixels.
Internal step-up converter to guarantee contrast control whatever VDD.
Static 1/2, 1/3, 1/4 duty supported.
Static 1/2, 1/ 3 bia s sup p or te d.
Phase inversion to reduce power consumption and EMI.
Up to 4 pixels which can programmed to blink.
The LCD controller can oper ate in Halt mode.
Note: Unnecessary segments and common pins can be used as general I/O pins.
3.7 Memories
The medium-density STM8L151x4/6 and STM8L152x4/6 devices have the following main
features:
Up to 2 Kbyte of RAM
The non-volatile memory is divided into three arrays:
Up to 32 Kbyte of medium-density embedded Flash program memory
1 Kbyte of data EEPROM
Option byt es .
The EEPROM embeds the error correction code (ECC) feature. It supports the read-while-
write (RWW): it is possible to execute the code from the program matrix while
programm ing /e ra sin g th e da ta matrix.
The option byte protects part of the Fla sh program memory from write and readout piracy.
3.8 DMA
A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and
peripherals-from/to-memory transfer capability. The 4 channels are shared between the
following IPs with DMA capability: ADC1, DAC, I2C1, SPI1, USART1, the four Timers.
3.9 Analog-to-digital converter
12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel),
temperature sensor and internal reference voltage
Conversion time down to 1 µs with fSYSCLK= 16 MHz
Programm abl e re so lut ion
Programmab le sa mp lin g tim e
Single and continuous mode of conversion
Scan capability: automatic conversion performed on a selected group of analog inputs
Analog watchdog
Triggered by timer
DocID15962 Rev 14 21/142
STM8L151x4/6, STM8L152x4/6 Functional overview
58
Note: ADC1 can be served by DMA1.
3.10 Digital-to-analog converter (DAC)
12-bit DAC with output buffer
Synchronized update capability using TIM4
DMA capability
External triggers for conversion
Input reference voltage VREF+ for better resolution
Note: DAC can be serv ed by DM A1.
3.11 Ultra-low-power comparators
The medium-density STM 8L151x4 /6 an d STM8L 152x4 /6 embed two com p arato rs (COMP1
and COMP2) sharing the same current bias and voltage refer ence. The voltage reference
can be internal or exte r nal (coming from an I/O).
One comparator with fixed threshold (COMP1).
One compar ator rail to rail with fast or slow mod e (COMP2 ). The th re sh old can be on e
of the following:
DAC output
External I/O
Internal refere nce voltage or internal reference voltage sub multiple (1/4, 1/2, 3/4)
The two comparators can be used together to offer a window function. They can wake up
from Halt mode.
3.12 System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface allows application software to control the routing of
diff erent I/Os to the TIM1 timer input captures. It also controls the routing of internal analog
signals to ADC1, COMP1, COMP2, DAC and the internal reference voltage VREFINT. It also
provides a set of registers for efficiently managing the charge transfer acquisition sequence
(Section 3.13: Touch sensing).
3.13 Touch sensing
Medium-density STM8L151x4/6 and STM8L152x4/6 devices provide a simple solution for
adding capacitive sensing functionality to any application. Capacitive sensing technology is
able to detect finger pr esence near an electrode which is protected from direct touch by a
dielectric (example, glass, plastic). The capacitive variation introduced by a finger (or any
conductive object) is measured using a proven implementation based on a surface charge
transfer acquisition principle. It consists of charging the electrode capacitance and then
transferring a part of the accumulated charges into a sampling capacitor until the voltage
across this capacitor has reached a specific threshold. In medium-density STM8L151x4/6
Functional overview STM8L151x4/6, STM8L152x4/6
22/142 DocID15962 Rev 14
and STM8L152x4/6 devices, the acquisition sequence is managed by softwar e and it
involves analog I/O groups and the routing interface.
Reliable touch sensing solutions can be quickly and easily implem ented using the free
STM8 Touch Sensing Library.
3.14 Timers
Medium-density STM8L151x4/6 and STM8L152x4/6devices contain one advanced control
timer (TIM1) , t wo 16 -b it ge n er al pu rp o se tim ers (TIM2 and TIM3) and one 8-bit basic timer
(TIM4).
All the timers can be served by DMA1.
Table 3 compares the features of the advanced control, general-purpose an d basic timers.
3.14.1 TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver.
16-bit up, down and up/down autoreload counter with 16-bit prescaler
3 independent capture/compare channels (CAPCOM) configurable as input capture ,
output compare, PWM generation (edge and center align ed mode) and single pulse
mode output
1 additional capture/compare channel which is not connected to an external I/O
Synchronization module to control the timer with external signals
Break input to force timer outputs into a defined state
3 complementary outputs with adjustable dead time
Encoder mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)
Table 3. Timer feature comparison
Timer Counter
resolution Counter
type Prescaler factor DMA1
request
generation
Capture/compare
channels Complementary
outputs
TIM1
16-bit up/down
Any integer
from 1 to 65536
Yes
3 + 1 3
TIM2 Any power of 2
from 1 to 128 2None
TIM3
TIM4 8-bit up Any po wer of 2
from 1 to 32768 0
DocID15962 Rev 14 23/142
STM8L151x4/6, STM8L152x4/6 Functional overview
58
3.14.2 16-bit general purpose timers
16-bit autoreload (AR) up/down-counter
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)
2 individually config urable capture/co mpare ch annels
PWM mode
Interrupt capability on various events (capture, compare, overflow, break, trigger)
Synchronization with other timers or external signals (external clock, reset, trigger and
enable)
3.14.3 8-bit basic timer
The 8-bit timer consists of an 8-bit up auto-reload counter driven b y a programmable
prescaler. It can be used for timebase gen eration with interr upt generation on timer overflow
or for DAC trigger generation.
3.15 Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the application s.
3.15.1 Window watchdog timer
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
3.15.2 Independent watchdog timer
The independent watchdog peripheral (IWDG) can be used to resolve processor
malfunctions due to hardware or software failures.
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a
CPU clock failure.
3.16 Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
Functional overview STM8L151x4/6, STM8L152x4/6
24/142 DocID15962 Rev 14
3.17 Communication interfaces
3.17.1 SPI
The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial
communicat ion with ex te rn al de vices.
Maximum speed: 8 M bit/s (fSYSCLK/2) both for master and slave
Full duplex synchronous transfers
Simplex synchronous transfers on 2 lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
Hardware CRC calculation
Slave/master selection input pin
Note: SPI1 can be served by the DMA1 Controller.
3.17.2 I²C
The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C bus-
specific sequencing, protocol, arbitratio n and timing.
Master, slave and multi-master capability
Standard mode up to 100 kHz and fast speed modes up to 400 kHz.
7-bit and 10-bit addressing modes.
SMBus 2.0 and PMBus support
Hardware CRC calculation
Note: I2C1 can be served by the DMA1 Controller.
3.17.3 USART
The USART interface (USART1) allows full duplex, asynchronous communications with
external devices requiring an industry standard NRZ asynchronou s ser ial data format. It
offers a very wide range of baud ra te s.
1 Mbit/s full duplex SCI
SPI1 emulation
High precision baud rate generator
SmartCard emul at ion
IrDA SIR encoder deco d er
Single wire half duplex mode
Note: USART1 can be served by the DMA1 Controller.
3.18 Infrared (IR) interface
The medium-density STM8L151x4/6 and STM8L152x4/6 devices contain an infrared
interface which can be used with an IR LED for remote control functions. Two timer output
compare channe ls are used to generate the infrared re mote control signals.
DocID15962 Rev 14 25/142
STM8L151x4/6, STM8L152x4/6 Functional overview
58
3.19 Development support
Development tools
Development tools for the STM8 microcontrollers include:
The STice emulation system offering tracing and code profiling
The STVD high-level lan guage debugger including C compiler, assembler and
integrated developm ent environment
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit
debugging/prog ramming tools.
Single wire data interface (SWIM) and debug module
The debug modu le with its single wire dat a in terface (SWIM) perm it s no n-intrusive real-t ime
in-circuit debugging and fast memory programming.
The single-wire interface is used for direct access to the debugging module and memory
programming. The interface can be activated in all device operation modes.
The non-intrusive debu gging module features a performance close to a full-featured
emulator. Beside memory and peripherals, CPU operation can also be monito red in real-
time by means of shadow registers.
Bootloader
A bootloader is available to reprog ram the Flash memory using the USART1 interface. The
reference document for the bootloader is UM0560: STM8 bootloader user manual.
Pinout and pin description STM8L151x4/6, STM8L152x4/6
26/142 DocID15962 Rev 14
4 Pinout and pin description
Figure 3. STM8L151C4, STM8L151C6 48-pin pinout (without LCD)
1. Reserved. Must be tied to VDD.
Figure 4. STM8L 151 K4 , ST M8L1 51 K6 32- pin package pinout (without L CD)
1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.
Figure 5. STM8L151Gx UFQFPN28 package pinout
       















         


   
3$
9
66
9
66$
9
5()
15673$
3$
3$
3$
3$
5HV

3(
3(
3'
3'
3'
3%
3(
3'
3(
3(
3$
9
''
9
''$
9
5()
3(
3%
3%
3&
3&
9
''
9
66
3&
3&
3&
3&
3&
3&
3(
3(
3%
3%
3%
3%
3%
3)
3'
3'
3'
3'
3$
069
DLE
 








       
3$
966
15673$
3$
3$
3$
3$
9''
3'
3%
3%
3'
3'
3'
3%
3%
3%
3%
3'
3%
3%
3'
3'
3'
3&
3&
3&
3&
3&
3&
3&
3$
3'
3%
3%
3%
3'
3'
3'
3$
9
66
9
66$
9
5()
9
''
9
''$
9
5()
15673$
3$
3$ 3%
3%
3%
3%
3&
3'
3%
3&
3&
3&
3&
3$
3&
3&








     
3$
DLE
DocID15962 Rev 14 27/142
STM8L151x4/6, STM8L152x4/6 Pinout and pin description
58
Figure 6. STM8L151G4, STM8L151G6 WLCSP28 package pinout
Figure 7. STM8L152C4, STM8L152C6 48 -pin pinout (with LCD)
3$
3$
3$
3$
3'
95()
95() 3'
3'
3%
3$
3$
3&
3& 3&
3&
3&
3%
3%
3%
3' 3%
3%
3%
3%
3'
3&
3&
$
&
%
'
(
)
*
DLE
       















         


   
0!
633633!62%&
.2340!
0!
0!
0!
0!
6,#$
0%
0%
0$
0$
0$
0"
0%
0$
0%
0%
0!
6$$
6$$!
62%&
0%
0"
0"
0#
0#
6$$
633
0#
0#
0#
0#
0#
0#
0%
0%
0"
0"
0"
0"
0"
0&
0$
0$
0$
0$
0!
.47
Pinout and pin description STM8L151x4/6, STM8L152x4/6
28/142 DocID15962 Rev 14
Figure 8. STM8L152K4, STM8L152K6 32-pin package pinout (with LCD)
1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.
3$
966
15673$
3$
3$
3$
3$
9''
3'
3%
3%
9/&'
3'
3'
3%
3%
3%
3%
3'
3%
3%
3'
3'
3'
3&
3&
3&
3&
3&
3&
3&
3$









       
DLE
DocID15962 Rev 14 29/142
STM8L151x4/6, STM8L152x4/6 Pinout and pin description
58
Table 4. Legend/abbreviation for table 5
Type I= input, O = output, S = power supply
Level
FT Five-volt tolerant
TT 3.6 V tolerant
Output HS = high sink/source (20 mA)
Port and control
configuration Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drai n, PP = push pull
Reset state Bold X (pin state after reset release).
Unless otherwise specified, the pin state is the same during the reset phase (i.e.
“under reset”) and after internal reset release (i.e. at reset state).
Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description
Pin
number
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate
function
LQFP48/UFQFPN48
LQFP32/UFQFPN32
UFQFPN28
WLCSP28
floating
wpu
Ext. interrupt
High sink/source
OD
PP
2 1 1 C3 NRST/PA1(1) I/O XHS X Reset PA1
322B4
PA2/OSC_IN/
[USART1_TX](4)/
[SPI1_MISO] (4) I/O XXXHSXXPort A2
HSE oscillator input /
[USART1 transmit] /
[SPI1 master in- slave
out] /
433C4
PA3/OSC_OUT/[USART1
_RX](4)/[SPI1_MOSI](4) I/O XXXHSXXPort A3 HSE oscillator output /
[USART1 receive]/ [SPI1
master out/slave in]/
5---
PA4/TIM2_BKIN/
LCD_COM0(2)/ADC1_IN2/
COMP1_INP I/O TT
(3) XXXHSXXPort A4
Timer 2 - break input /
LCD COM 0 / ADC1
input 2 / Comparator 1
positive input
-44D3
PA4/TIM2_BKIN/
[TIM2_ETR](4)/
LCD_COM0(2)/
ADC1_IN2/COMP1_INP
I/O TT
(3) XXXHSXXPort A4
Timer 2 - break input /
[Timer 2 - external
trigger] / LCD_COM 0 /
ADC1 input 2 /
Comparator 1 positive
input
6---
PA5/TIM3_BKIN/
LCD_COM1(2)/ADC1_IN1/
COMP1_INP I/O TT
(3) XXXHSXXPort A5
Timer 3 - break input /
LCD_COM 1 / ADC1
input 1/
Comparator 1 positive
input
Pinout and pin description STM8L151x4/6, STM8L152x4/6
30/142 DocID15962 Rev 14
-55D4
PA5/TIM3_BKIN/
[TIM3_ETR](4)/
LCD_COM1(2)/ADC1_IN1/
COMP1_INP
I/O TT
(3) XXXHSXXPort A5
Timer 3 - break input /
[Timer 3 - external
trigger] / LCD_COM 1 /
ADC1 input 1 /
Comparator 1 positive
input
76--
PA6/[ADC1_TRIG](4)/
LCD_COM2(2)/ADC1_IN0/
COMP1_INP I/O TT
(3) XXXHSXXPort A6
[ADC1 - trigger] /
LCD_COM2 /
ADC1 input 0 /
Comparator 1 positive
input
8 - - - PA7/LCD_SEG0(2)(5) I/O FT XXXHSXXPort A7 LCD segment 0
24 13 12 E3 PB0(6)/TIM2_CH1/
LCD_SEG10(2)/
ADC1_IN18/COMP1_INP I/O TT
(3) X(6) X(6) XHSX XPort B0
Timer 2 - channel 1 /
LCD segmen t 10 /
ADC1_IN18 /
Comparator 1 positive
input
25 14 13 G1 PB1/TIM3_CH1/
LCD_SEG11(2)/
ADC1_IN17/COMP1_INP I/O TT
(3) XXXHSXXPort B1
Timer 3 - channel 1 /
LCD segment 11 /
ADC1_IN17 /
Comparator 1 positive
input
26 15 14 F2 PB2/ TIM2_CH2/
LCD_SEG12(2)/
ADC1_IN16/COMP1_INP I/O TT
(3) XXXHSXXPort B2
Timer 2 - channel 2 /
LCD segmen t 12 /
ADC1_IN16/
Comparator 1 positive
input
27 - - - PB3/TIM2_ETR/
LCD_SEG13(2)/
ADC1_IN15/COMP1_INP I/O TT
(3) XXXHSXXPort B3
T imer 2 - external trigger
/ LCD segment 13
/ADC1_IN15 /
Comparator 1 positive
input
Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)
Pin
number
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate
function
LQFP48/UFQFPN48
LQFP32/UFQFPN32
UFQFPN28
WLCSP28
floating
wpu
Ext. interrupt
High sink/so urce
OD
PP
DocID15962 Rev 14 31/142
STM8L151x4/6, STM8L152x4/6 Pinout and pin description
58
-16- -
PB3/[TIM2_ETR](4)/
TIM1_CH2N/LCD_SEG13
(2)/ADC1_IN15/
COMP1_INP
I/O TT
(3) XXXHSXXPort B3
[Timer 2 - external
trigger] / Timer 1 inverted
channel 2 / LCD
segment 13 /
ADC1_IN15 /
Comparator 1 positive
input
--15E2
PB3/[TIM2_ETR](4)/
TIM1_CH1N/
LCD_SEG13(2)/
ADC1_IN15/RTC_ALARM
/COMP1_INP
I/O TT
(3) XXXHSXXPort B3
[Timer 2 - external
trigger] / Timer 1 inverted
channel 1/ LCD segment
13 / ADC1_IN15 /
RTC alarm/ Comparator
1 positive input
28 - - - PB4(6)/[SPI1_NSS](4)/
LCD_SEG14(2)/
ADC1_IN14/COMP1_INP I/O TT
(3) X(6) X(6) XHSX XPort B4
[SPI1 master/slave
select] / LCD segment
14 / ADC1_IN14 /
Comparator 1 positive
input
-1716D2
PB4(6)/[SPI1_NSS](4)/
LCD_SEG14(2)/
ADC1_IN14/
COMP1_INP/DAC_OUT
I/O TT
(3) X(6) X(6) XHSX XPort B4
[SPI1 master/slave
select] / LCD segment
14 / ADC1_IN14 /
DAC output /
Comparator 1 positive
input
29 - - - PB5/[SPI1_SCK](4)/
LCD_SEG15(2)/
ADC1_IN13/COMP1_INP I/O TT
(3) XXXHSXXPort B5
[SPI1 clock] / LCD
segment 15 /
ADC1_IN13 /
Comparator 1 positive
input
-1817D1
PB5/[SPI1_SCK](4)/
LCD_SEG15(2)/
ADC1_IN13/DAC_OUT/
COMP1_INP
I/O TT
(3) XXXHSXXPort B5
[SPI1 clock] / LCD
segment 15 /
ADC1_IN13 / DAC
output/
Comparator 1 positive
input
Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)
Pin
number
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate
function
LQFP48/UFQFPN48
LQFP32/UFQFPN32
UFQFPN28
WLCSP28
floating
wpu
Ext. interrupt
High sink/so urce
OD
PP
Pinout and pin description STM8L151x4/6, STM8L152x4/6
32/142 DocID15962 Rev 14
30 - - - PB6/[SPI1_MOSI](4)/
LCD_SEG16(2)/
ADC1_IN12/COMP1_INP I/O TT
(3) XXXHSXXPort B6
[SPI1 master out/slave
in]/
LCD segmen t 16 /
ADC1_IN12 /
Comparator 1 positive
input
-1918F1
PB6/[SPI1_MOSI](4)/
LCD_SEG16(2)/
ADC1_IN12/COMP1_INP/
DAC_OUT
I/O TT
(3) XXXHSXXPort B6
[SPI1 master out]/
slave in / LCD segment
16 / ADC1_IN12 / DAC
output / Comparator 1
positive input
31 20 19 E1 PB7/[SPI1_MISO](4)/
LCD_SEG17(2)/
ADC1_IN11/COMP1_INP I/O TT
(3) XXXHSXXPort B7
[SPI1 master in- slave
out] /
LCD segmen t 17 /
ADC1_IN11 /
Comparator 1 positive
input
37 25 21 B1 PC0(5)/I2C1_SDA I/O FT XXT
(7) Port C0 I2C1 data
38 26 22 A1 PC1(5)/I2C1_SCL I/O FT XXT
(7) Port C1 I2C1 clock
41 27 23 B2 PC2/USART1_RX/
LCD_SEG22/ADC1_IN6/
COMP1_INP/VREFINT I/O TT
(3) XXXHSXXPort C2
USART1 receive /
LCD segmen t 22 /
ADC1_IN6 / Comparator
1 positive input / Internal
voltage reference output
42 28 24 A2
PC3/USART1_TX/
LCD_SEG23(2)/
ADC1_IN5/COMP1_INP/
COMP2_INM
I/O TT
(3) XXXHSXXPort C3
USART1 transmit /
LCD segmen t 23 /
ADC1_IN5 / Comparator
1 positive input /
Comparator 2 negative
input
43 29 25 C2
PC4/USART1_CK/
I2C1_SMB/CCO/
LCD_SEG24(2)/
ADC1_IN4/COMP2_INM/
COMP1_INP
I/O TT
(3) XXXHSXXPort C4
USART1 synchronous
clock / I2C1_SMB /
Configurable clock
output / LCD segment 24
/ ADC1_IN4 /
Comparator 2 negative
input / Comparator 1
positive input
Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)
Pin
number
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate
function
LQFP48/UFQFPN48
LQFP32/UFQFPN32
UFQFPN28
WLCSP28
floating
wpu
Ext. interrupt
High sink/so urce
OD
PP
DocID15962 Rev 14 33/142
STM8L151x4/6, STM8L152x4/6 Pinout and pin description
58
44 30 26 A3 PC5/OSC32_IN
/[SPI1_NSS](4)/
[USART1_TX](4) I/O XXXHSXXPort C5
LSE oscillator input /
[SPI1 master/slave
select] / [USART1
transmit]
45 31 27 B3 PC6/OSC32_OUT/
[SPI1_SCK](4)/
[USART1_RX](4) I/O XXXHSXXPort C6 LSE oscillator output /
[SPI1 clock] / [USART1
receive]
46 - - - PC7/LCD_SEG25(2)/
ADC1_IN3/COMP2_INM/
COMP1_INP I/O TT
(3) XXXHSXXPort C7
LCD segmen t 25
/ADC1_IN3/ Comparator
negative input /
Comparator 1 positive
input
20 - 8 G3
PD0/TIM3_CH2/
[ADC1_TRIG](4)/
LCD_SEG7(2)/ADC1_IN2
2/COMP2_INP/
COMP1_INP
I/O TT
(3) XXXHSXXPort D0
Timer 3 - channel 2 /
[ADC1_Trigger] / LCD
segment 7 / ADC1_IN22
/ Comparator 2 positive
input / Comparator 1
positive input
-9--
PD0/TIM3_CH2/
[ADC1_TRIG](4)/
ADC1_IN22/COMP2_INP/
COMP1_INP
I/O TT
(3) XXXHSXX
Port
D0(8)
Timer 3 - channel 2 /
[ADC1_Trigger] /
ADC1_IN22 /
Comparator 2 positive
input / Comparator 1
positive input
21 - - -
PD1/TIM3_ETR/
LCD_COM3(2)/
ADC1_IN21/COMP2_INP/
COMP1_INP
I/O TT
(3) XXXHSXXPort D1
T imer 3 - external trigger
/ LCD_COM3 /
ADC1_IN21 /
comparator 2 positive
input / Comparator 1
positive input
-10- -
PD1/TIM1_CH3N/[TIM3_
ETR](4)/ LCD_COM3(2)/
ADC1_IN21/COMP2_INP/
COMP1_INP
I/O TT
(3) XXXHSXXPort D1
[Timer 3 - external
trigger]/ TIM1 inverted
channel 3 / LCD_COM3/
ADC1_IN21 /
Comparator 2 positive
input / Comparator 1
positive input
Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)
Pin
number
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate
function
LQFP48/UFQFPN48
LQFP32/UFQFPN32
UFQFPN28
WLCSP28
floating
wpu
Ext. interrupt
High sink/so urce
OD
PP
Pinout and pin description STM8L151x4/6, STM8L152x4/6
34/142 DocID15962 Rev 14
--9G2
PD1/TIM1_CH3/[TIM3_ET
R](4)/LCD_COM3(2)/
ADC1_IN21/COMP2_INP/
COMP1_INP
I/O TT
(3) XXXHSXXPort D1
Timer 1 channel 3 /
[Timer 3 - external
trigger] / LCD_COM3/
ADC1_IN21 /
Comparator 2 positive
input / Comparator 1
positive input
22 11 10 E4 PD2/TIM1_CH1
/LCD_SEG8(2)/
ADC1_IN20/COMP1_INP I/O TT
(3) XXXHSXXPort D2
Timer 1 - channel 1 /
LCD segmen t 8 /
ADC1_IN20 /
Comparator 1 positive
input
23 12 - - PD3/ TIM1_ETR/
LCD_SEG9(2)/ADC1_IN1
9/COMP1_INP I/O TT
(3) XXXHSXXPort D3
T imer 1 - external trigger
/ LCD segment 9 /
ADC1_IN19 /
Comparator 1 positive
input
--11F3
PD3/ TIM1_ETR/
LCD_SEG9(2)/
ADC1_IN19/TIM1_BKIN/
COMP1_INP/
RTC_CALIB
I/O TT
(3) XXXHSXXPort D3
T imer 1 - external trigger
/ LCD segment 9 /
ADC1_IN19 / Timer 1
break input / RTC
calibration / Comparator
1 positive input
33 21 20 C1 PD4/TIM1_CH2
/LCD_SEG18(2)/
ADC1_IN10/COMP1_INP I/O TT
(3) XXXHSXXPort D4
Timer 1 - channel 2 /
LCD segmen t 18 /
ADC1_IN10/
Comparator 1 positive
input
34 22 - - PD5/TIM1_CH3
/LCD_SEG19(2)/
ADC1_IN9/COMP1_INP I/O TT
(3) XXXHSXXPort D5
Timer 1 - channel 3 /
LCD segmen t 19 /
ADC1_IN9/ Comparator
1 positive input
35 23 - -
PD6/TIM1_BKIN
/LCD_SEG20(2)/
ADC1_IN8/RTC_CALIB/
/VREFINT/
COMP1_INP
I/O TT
(3) XXXHSXXPort D6
Timer 1 - break input /
LCD segmen t 20 /
ADC1_IN8 / RTC
calibration / Internal
voltage reference output
/ Comparator 1 positive
input
Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)
Pin
number
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate
function
LQFP48/UFQFPN48
LQFP32/UFQFPN32
UFQFPN28
WLCSP28
floating
wpu
Ext. interrupt
High sink/so urce
OD
PP
DocID15962 Rev 14 35/142
STM8L151x4/6, STM8L152x4/6 Pinout and pin description
58
36 24 - -
PD7/TIM1_CH1N
/LCD_SEG21(2)/
ADC1_IN7/RTC_ALARM/
VREFINT/
COMP1_INP
I/O TT
(3) XXXHSXXPort D7
Timer 1 - inverted
channel 1/ LCD segment
21 / ADC1_IN7 / RTC
alarm / Internal voltage
reference ou tp u t
/Comparator 1 positive
input
14 - - - PE0(5)/LCD_SEG1(2) I/O FT XXXHSXXPort E0 LCD segment 1
15 - - - PE1/TIM1_CH2N
/LCD_SEG2(2) I/O TT
(3) XXXHSXXPort E1 Timer 1 - inverted
channel 2 / LCD
segment 2
16 - - - PE2/TIM1_CH3N
/LCD_SEG3(2) I/O TT
(3) XXXHSXXPort E2 Timer 1 - inverted
channel 3 / LCD
segment 3
17 - - - PE3/LCD_SEG4(2) I/O TT
(3) XXXHSXXPort E3 LCD segment 4
18 - - - PE4/LCD_SEG5(2) I/O TT
(3) XXXHSXXPort E4 LCD segment 5
19 - - - PE5/LCD_SEG6(2)/
ADC1_IN23/COMP2_INP/
COMP1_INP I/O TT
(3) XXXHSXXPort E5
LCD segmen t 6 /
ADC1_IN23
/ Comparator 2 positive
input / Comparator 1
positive input
47 - - - PE6/LCD_SEG26(2)/
PVD_IN I/O TT
(3) XXXHSXXPort E6 LCD segment
26/PVD_IN
48 - - - PE7/LCD_SEG27(2) I/O TT
(3) XXXHSXXPort E7 LCD segment 27
32 - - - PF0/ADC1_IN24/
DAC_OUT I/O TT
(3) XXXHSXXPort F0 ADC1_IN24 / DAC_OUT
13 9 - - VLCD(2) S- ------LCD booster external capacitor
13 - - - Reserved(8) --------Reserved. Must be tied to VDD
10 - - - VDD S- -- - - - - Digital power supply
11 - - - VDDA S- -- - - - - Analog supply voltage
12 - - - VREF+ S- ------
ADC1 and DAC positive voltage
reference
Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)
Pin
number
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate
function
LQFP48/UFQFPN48
LQFP32/UFQFPN32
UFQFPN28
WLCSP28
floating
wpu
Ext. interrupt
High sink/so urce
OD
PP
Pinout and pin description STM8L151x4/6, STM8L152x4/6
36/142 DocID15962 Rev 14
Note: The slope control of all GPIO pins, except true open drain pins, can be programmed. By
default, the slope control is limited to 2 MHz.
-87G4V
DD1/VDDA/VREF+ S- ------
Digital power supply / Analog
supply voltage / ADC1 positive
voltage reference
976F4V
SS1/VSSA/VREF- S- ------
I/O ground / Analog ground voltage
/
ADC1 negative voltage reference
39 - - - VDD2 S- -- - - - - IOs supply voltage
40 - - - VSS2 S- -- - - - - IOs ground voltage
13228A4
PA0(9)/[USART1_CK](4)/
SWIM/BEEP/IR_TIM (10) I/O X X(9) XHS
(10) XXPort A0
[USART1 synchronous
clock](4) / SWIM input
and output /
Beep output / Infrared
Timer output
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be
configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1
pin as general purpose output in the STM8L15x and STM8L16x reference manual (RM0031).
2. Available on STM8L152xx devices only.
3. In the 3.6 V tolerant I/Os, protection diode to VDD is not implemented.
4. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a
duplication of the function).
5. In the 5 V tolerant I/Os, protection diode to VDD is not implemented.
6. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
7. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are
not implemented).
8. Available on STM8L151xx devices only.
9. The PA0 pin is in input pull-up during the reset phase and after reset release.
10. High Sink LED driver capability available on PA0.
Table 5. Medium-density STM8L151x4/6, STM8L152x4/6 pin description (continued)
Pin
number
Pin name
Type
I/O level
Input Output
Main function
(after reset)
Default alternate
function
LQFP48/UFQFPN48
LQFP32/UFQFPN32
UFQFPN28
WLCSP28
floating
wpu
Ext. interrupt
High sink/so urce
OD
PP
DocID15962 Rev 14 37/142
STM8L151x4/6, STM8L152x4/6 Pinout and pin description
58
4.1 System configuration options
As shown in Table 5: Medium-density STM8L151x4/6, STM8 L152x4/6 pin description, some
alternate functions can be remapped on differe nt I/O ports by programming one of the two
remapping registers described in the “Routing interface (RI) and system configuration
controller” section in the STM8L15xxx and STM8L16xxx reference manual (RM0031).
Memory and register map STM8L151x4/6, STM8L152x4/6
38/142 DocID15962 Rev 14
5 Memory and register map
5.1 Memory mapping
The memory map is shown in Figure 9.
Figure 9. Memory map
1. Table 6 lists the boundary addresses for each memory size. The top of the stack is at the RAM end
address.
2. The VREFINT_Factory_CONV byte represents the LSB of the VREFINT 12-bit ADC conversion result. The
MSB have a fixed value: 0x6.
3. The TS_Factory_CONV_V90 byte represents the LSB of the V90 12-bit ADC conversion result. The MSB
*3,2DQGSHULSKHUDOUHJLVWHUV
[
5HVHUYHG
0HGLXPGHQVLW\
XSWR.E\WHV
5HVHWDQGLQWHUUXSWYHFWRUV
[
[))
5$0
[))
.E\WHV
 E\WHV
[
'DWD((3520
[
[))
[
[)))
[
[))))
[
[)))
[))
[())
[
[)
[)
5HVHUYHG
5HVHUYHG
LQFOXGLQJ
6WDFN
.E\WH
2SWLRQE\WHV
[)))
[
[))
[
5HVHUYHG
[)))
%RRW520
[
[)) .E\WHV
[
5HVHUYHG
&386:,0'HEXJ,7&
5HJLVWHUV
[ *3,23RUWV
[ )ODVK
[&
,7&(;7,
['
567
[(
&/.
[)
::'*
[
,:'*
[
%((3
[
57&
[
63,
[%
,&
[(
86$57
7,0
7,0
7,0
7,0
,57,0
$'&
[ '0$
6<6&)*
'$&
/&'
5,
[(
[$
[%
[
[
[))
[
[
[
[
[ &203
)ODVKSURJUDPPHPRU\
:)(
[$
[% 3:5
[
[
[
[
[
[
[
95(),17B)DFWRU\B&219
76B)DFWRU\B&219B9
[
5HVHUYHG
8QLTXH,'
5HVHUYHG
069
DocID15962 Rev 14 39/142
STM8L151x4/6, STM8L152x4/6 Memory and register map
58
have a fixed value: 0x3.
4. Refer to Table 9 for an overview of hardware register mapping, to Table 8 for details on I/O port hardware
registers, and to Table 10 for information on CPU/SWIM/debug module controller registers.
5.2 Register map
Table 6. Flash and RAM boundary addresses
Memory area Size Start address End address
RAM 2 Kbyte 0x00 0000 0x00 07FF
Flash program memory 16 Kbyte 0x00 8000 0x00 BFFF
32 Kbyte 0x00 8000 0x00 FF FF
Table 7. Factory conversion registers
Address Block Register label Register name Reset
status
0x00 4910 - VREFINT_Factory_
CONV(1) Internal reference voltage factory
conversion 0xXX
0x00 4911 - TS_Factory_CONV_
V90(2) Temperature sensor output voltage 0xXX
1. The VREFINT_Factory_CONV byte represents the 8 LSB of the result of the VREFINT 12-bit ADC conversion performed in
factory. The MSB have a fixed value: 0x6.
2. The TS_Factory_CONV_V90 byte represents the 8 LSB of the result of the V90 12-bit ADC conversion performed in factory .
The 2 MSB have a fixed value: 0x3.
Table 8. I/O port hardware register map
Address Block Register label Register name Reset
status
0x00 5000
Port A
PA_ODR Port A data output latch register 0x00
0x00 5001 PA_IDR Port A input pin value register 0xXX
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_CR1 Port A control register 1 0x01
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
Port B
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0xXX
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
Memory and register map STM8L151x4/6, STM8L152x4/6
40/142 DocID15962 Rev 14
0x00 500A
Port C
PC_ODR Port C data output latch register 0x00
0x00 500B PC_IDR Port C input pin value register 0xXX
0x00 500C PC_DDR Port C data direction register 0x00
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
Port D
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xXX
0x00 5011 PD_DDR Port D data direction register 0x00
0x00 5012 PD_CR1 Port D control register 1 0x00
0x00 5013 PD_CR2 Port D control register 2 0x00
0x00 5014
Port E
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0xXX
0x00 5016 PE_DDR Port E data direction register 0x00
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
0x00 5019
Port F
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0xXX
0x00 501B PF_DDR Port F data direction register 0x00
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
Table 8. I/O port hardware register map (continued)
Address Block Register label Register name Reset
status
Table 9. General hardware register map
Address Block Register label Register name Reset
status
0x00 501E
to
0x00 5049 Reserved area (28 bytes)
0x00 5050
Flash
FLASH_CR1 Flash control register 1 0x00
0x00 5051 FLASH_CR2 Flash control register 2 0x00
0x00 5052 FLASH _PUKR Flash program memory unprotection key
register 0x00
0x00 5053 FLASH _DUKR Data EEPROM unprotection key register 0x00
0x00 5054 FLASH _IAPSR Flash in-application programming status
register 0x00
DocID15962 Rev 14 41/142
STM8L151x4/6, STM8L152x4/6 Memory and register map
58
0x00 5055
to
0x00 506F Reserved area (27 bytes)
0x00 5070
DMA1
DMA1_GCSR DMA1 global configuration & status
register 0xFC
0x00 5071 DMA1_GIR1 DMA1 global interrupt register 1 0x00
0x00 5072 to
0x00 5074 Reserved area (3 bytes)
0x00 5075 DMA1_C0CR DMA1 channel 0 configuration register 0x00
0x00 5076 DMA1_C0SPR DMA1 channel 0 status & priority register 0x00
0x00 5077 DMA1_C 0NDTR DMA1 number of data to transfer register
(channel 0) 0x00
0x00 5078 DMA1_C0PARH DMA1 peripheral address high register
(channel 0) 0x52
0x00 5079 DMA1_C0PARL DMA1 peripheral address low register
(channel 0) 0x00
0x00 507A Reserved area (1 byte)
0x00 507B DMA1_C0M0ARH DMA1 memory 0 address high register
(channel 0) 0x00
0x00 507C DMA1_C0M0ARL DMA1 memory 0 address low register
(channel 0) 0x00
0x00 507D to
0x00 507E Reserved area (2 bytes)
0x00 507F DMA1_C1CR DMA1 channel 1 configurati on register 0x00
0x00 5080 DMA1_C1SPR DMA1 channel 1 status & priority register 0x00
0x00 5081 DMA1_C 1NDTR DMA1 number of data to transfer register
(channel 1) 0x00
0x00 5082 DMA1_C1PARH DMA1 peripheral address high register
(channel 1) 0x52
0x00 5083 DMA1_C1PARL DMA1 peripheral address low register
(channel 1) 0x00
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L151x4/6, STM8L152x4/6
42/142 DocID15962 Rev 14
0x00 5084
DMA1
Reserved area (1 byte)
0x00 5085 DMA1_C1M0ARH DMA1 memory 0 address high register
(channel 1) 0x00
0x00 5086 DMA1_C1M0ARL DMA1 memory 0 address low register
(channel 1) 0x00
0x00 5087
0x00 5088 Reserved area (2 bytes)
0x00 5089 DMA1_C2CR DMA1 channel 2 configuration register 0x00
0x00 508A DMA1_C2SPR DMA1 channel 2 status & priority register 0x00
0x00 508B DMA1_C2NDTR DMA1 number of data to transfer register
(channel 2) 0x00
0x00 508C DMA1_C2PARH DMA1 peripheral address high register
(channel 2) 0x52
0x00 508D DMA1_C2PARL DMA1 peripheral address low register
(channel 2) 0x00
0x00 508E Reserved area (1 byte)
0x00 508F DMA1_C2M0ARH DMA1 memory 0 address high register
(channel 2) 0x00
0x00 5090 DMA1_C2M0ARL DMA1 memory 0 address low register
(channel 2) 0x00
0x00 5091
0x00 5092 Reserved area (2 bytes)
0x00 5093 DMA1_C3CR DMA1 channel 3 configuration register 0x00
0x00 5094 DMA1_C3SPR DMA1 channel 3 status & priority register 0x00
0x00 5095 DMA1_C 3NDTR DMA1 number of data to transfer register
(channel 3) 0x00
0x00 5096 DMA1_C3PARH_
C3M1ARH DMA1 peripheral address high register
(channel 3) 0x40
0x00 5097 DMA1_C3PARL_
C3M1ARL DMA1 peripheral address low registe r
(channel 3) 0x00
0x00 5098 Reserved area (1 byte)
0x00 5099 DMA1_C3M0ARH DMA1 memory 0 address high register
(channel 3) 0x00
0x00 509A DMA1_C3M0ARL DMA1 memory 0 address low register
(channel 3) 0x00
0x00 509B to
0x00 509D Reserved area (3 bytes)
0x00 509E SYSCFG SYSCFG_RMPCR1 Remapping register 1 0x00
0x00 509F SYSCFG_RMPCR2 Remapping register 2 0x00
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15962 Rev 14 43/142
STM8L151x4/6, STM8L152x4/6 Memory and register map
58
0x00 50A0
ITC - EXTI
EXTI_CR1 External interrupt control register 1 0x00
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
0x00 50A2 EXTI_CR3 External interrupt control register 3 0x00
0x00 50A3 EXTI_SR1 External interrupt status register 1 0x00
0x00 50A4 EXTI_SR2 External interrupt status register 2 0x00
0x00 50A5 EXTI_CONF1 External interrupt port select register 1 0x00
0x00 50A6
WFE
WFE_CR1 WFE control register 1 0x00
0x00 50A7 WFE_CR2 WFE control register 2 0x00
0x00 50A8 WFE_CR3 WFE control register 3 0x00
0x00 50A9
to
0x00 50AF Reserved area (7 bytes)
0x00 50B0 RST RST_CR Reset control register 0x00
0x00 50B1 RST_SR Reset status register 0x01
0x00 50B2 PWR PWR_CSR1 Power control and status register 1 0x00
0x00 50B3 PWR_CSR2 Power control and status register 2 0x00
0x00 50B4
to
0x00 50BF Reserved area (12 bytes)
0x00 50C0
CLK
CLK_DIVR Clock master divider register 0x03
0x00 50C1 CLK_CRTCR Clock RTC register 0x00
0x00 50C2 CLK_ICKR Internal clock control register 0x11
0x00 50C3 CLK_PCKENR1 Peripheral clock gating register 1 0x00
0x00 50C4 CLK_PCKENR2 Peripheral clock gating register 2 0x80
0x00 50C5 CLK_CCOR Configurable clock control register 0x00
0x00 50C6 CLK_ECKR External clock control register 0x00
0x00 50C7 CLK_SCSR System clock status register 0x01
0x00 50C8 CLK_SWR System clock switch register 0x01
0x00 50C9 CLK_SWCR Clock switch control register 0bxxxx0000
0x00 50CA CLK_CSSR Clock security system register 0x00
0x00 50CB CLK_CBEEPR Clock BEEP register 0x00
0x00 50CC CLK_HSICALR HSI calibration register 0xxx
0x00 50CD CLK_ HSITRIMR HSI clock calibration trimming register 0x00
0x00 50CE CLK_HSIUNLCKR HSI unlock register 0x00
0x00 50CF CLK_REGCSR Main regulator control status register 0bxx11100x
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L151x4/6, STM8L152x4/6
44/142 DocID15962 Rev 14
0x00 50D0
to
0x00 50D2 Reserved area (3 bytes)
0x00 50D3 WWDG WWDG_CR WWDG control registe r 0x7F
0x00 50D4 WWDG_WR WWDR window register 0x7F
0x00 50D5
to
00 50DF Reserved area (11 bytes)
0x00 50E0
IWDG
IWDG_KR IWDG key register 0xXX
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3
to
0x00 50EF Reserved area (13 bytes)
0x00 50F0
BEEP
BEEP_CSR1 BEEP control/status register 1 0x00
0x00 50F1
0x00 50F2 Reserved area (2 bytes)
0x00 50F3 BEEP_CSR2 BEEP control/status register 2 0x1F
0x00 50F4
to
0x00 513F Reserved area (76 bytes)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15962 Rev 14 45/142
STM8L151x4/6, STM8L152x4/6 Memory and register map
58
0x00 5140
RTC
RTC_TR1 Time register 1 0x00
0x00 5141 RTC_TR2 Time register 2 0x00
0x00 5142 RTC_TR3 Time register 3 0x00
0x00 5143 Reserved area (1 byte)
0x00 5144 RTC_DR1 Date register 1 0x01
0x00 5145 RTC_DR2 Date register 2 0x21
0x00 5146 RTC_DR3 Date register 3 0x00
0x00 5147 Reserved area (1 byte)
0x00 5148 RTC_CR1 Control register 1 0x00
0x00 5149 RTC_CR2 Control register 2 0x00
0x00 514A RTC_CR3 Control register 3 0x00
0x00 514B Reserved area (1 byte)
0x00 514C RTC_ISR1 Initialization and status register 1 0x00
0x00 514D RTC_ISR2 Initialization and Status register 2 0x00
0x00 514E
0x00 514F Reserved area (2 bytes)
0x00 5150 RTC_SPRERH(1) Synchronous prescaler register high 0x00(1)
0x00 5151 RTC_SPRERL(1) Synchronous prescaler register low 0xFF(1)
0x00 5152 RTC_APRER(1) Asynchronous prescaler register 0x7F(1)
0x00 5153 Reserved area (1 byte)
0x00 5154 RTC_WUTRH(1) Wakeup timer register high 0xFF(1)
0x00 5155 RTC_WUTRL(1) Wakeup timer register low 0xFF(1)
0x00 5156 to
0x00 5158 Reserved area (3 bytes)
0x00 5159 RTC_WPR Write protection register 0x00
0x00 515A
0x00 515B Reserved area (2 bytes)
0x00 515C RTC_ALRMAR1 Alarm A register 1 0x00
0x00 515D RTC_ALRMAR2 Alarm A register 2 0x00
0x00 515E RTC_ALRMAR3 Alarm A register 3 0x00
0x00 515F RTC_ALRMAR4 Alarm A register 4 0x00
0x00 5160 to
0x00 51FF Reserved area (160 bytes)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L151x4/6, STM8L152x4/6
46/142 DocID15962 Rev 14
0x00 5200
SPI1
SPI1_CR1 SPI1 control register 1 0x00
0x00 5201 SPI1_CR2 SPI1 control registe r 2 0x00
0x00 5202 SPI1_ICR SPI1 interrupt control register 0x00
0x00 5203 SPI1_SR SPI1 status register 0x02
0x00 5204 SPI1_DR SPI1 data register 0x00
0x00 5205 SPI1_CRCPR SPI1 CRC polynomial register 0x07
0x00 5206 SPI1_RXCRCR SPI1 Rx CRC register 0x00
0x00 5207 SPI1_TXCRCR SPI1 Tx CRC register 0x00
0x00 5208
to
0x00 520F Reserved area (8 bytes)
0x00 5210
I2C1
I2C1_CR1 I2C1 control register 1 0x00
0x00 5211 I2C1_CR2 I2C1 control register 2 0x00
0x00 5212 I2C1_FREQR I2C1 frequency register 0x00
0x00 5213 I2C1_OARL I2C1 own address register low 0x00
0x00 5214 I2C1_OARH I2C1 own address register hi gh 0x00
0x00 5215 Reserved (1 byte)
0x00 5216 I2C1_DR I2C1 data register 0x00
0x00 5217 I2C1_SR1 I2C1 status register 1 0x00
0x00 5218 I2C1_SR2 I2C1 status register 2 0x00
0x00 5219 I2C1_SR3 I2C1 status register 3 0x0x
0x00 521A I2C1_ITR I2C1 interrupt control register 0x00
0x00 521B I2C1_C CRL I2C1 clock control register low 0x00
0x00 521C I2C1_CCRH I2C1 clock control register high 0x00
0x00 521D I2C1_TRISER I2C1 TRISE register 0x02
0x00 521E I2C1_PECR I2C1 packet error checking register 0x00
0x00 521F
to
0x00 522F Reserved area (17 bytes)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15962 Rev 14 47/142
STM8L151x4/6, STM8L152x4/6 Memory and register map
58
0x00 5230
USART1
USART1_SR USART1 status register 0xC0
0x00 5231 USART1_DR USART1 data register undefined
0x00 5232 USART1_BRR1 USART1 baud rate register 1 0x00
0x00 5233 USART1_BRR2 USART1 baud rate register 2 0x00
0x00 5234 USART1_CR1 USART1 control register 1 0x00
0x00 5235 USART1_CR2 USART1 control register 2 0x00
0x00 5236 USART1_CR3 USART1 control register 3 0x00
0x00 5237 USART1_CR4 USART1 control register 4 0x00
0x00 5238 USART1_CR5 USART1 control register 5 0x00
0x00 5239 USART1_GTR USART1 guard time register 0x00
0x00 523A USART1_PSCR USART1 prescaler register 0x00
0x00 523B
to
0x00 524F Reserved area (21 bytes)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L151x4/6, STM8L152x4/6
48/142 DocID15962 Rev 14
0x00 5250
TIM2
TIM2_CR1 TIM2 control register 1 0x00
0x00 5251 TIM2_CR2 TIM2 control register 2 0x00
0x00 5252 TIM2_SMCR TIM2 Slave mode control register 0x00
0x00 5253 TIM2_ETR TIM2 external trigger register 0x00
0x00 5254 TIM2_DER TIM2 DMA1 request enable register 0x00
0x00 5255 TIM2_IER TIM2 in terrupt enable register 0x00
0x00 5256 TIM2_SR1 TIM2 status register 1 0x00
0x00 5257 TIM2_SR2 TIM2 status register 2 0x00
0x00 5258 TIM2_EGR TIM2 event generation register 0x00
0x00 5259 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 525A TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 525B TIM2_CCER1 TIM2 capture/compare enable register 1 0x00
0x00 525C TIM2_CNTRH TIM2 counter high 0x00
0x00 525D TIM2_CNTRL TIM2 counter low 0x00
0x00 525E TIM2_PSCR TIM2 prescaler register 0x00
0x00 525F TIM2_AR RH TIM2 auto-reload re gister high 0xFF
0x00 5260 TIM2_ARRL TIM2 auto-reload register low 0xFF
0x00 5261 TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5262 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5263 TIM2_CCR2H TIM2 capture/compare register 2 high 0x00
0x00 5264 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5265 TIM2_BKR TIM2 break register 0x00
0x00 5266 TIM2_OISR TIM2 output idle state register 0x00
0x00 5267 to
0x00 527F Reserved area (25 bytes)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15962 Rev 14 49/142
STM8L151x4/6, STM8L152x4/6 Memory and register map
58
0x00 5280
TIM3
TIM3_CR1 TIM3 control register 1 0x00
0x00 5281 TIM3_CR2 TIM3 control register 2 0x00
0x00 5282 TIM3_SMCR TIM3 Slave mode control register 0x00
0x00 5283 TI M3_ETR TIM3 external trigger register 0x00
0x00 5284 TIM3_DER TIM3 DMA1 request enable register 0x00
0x00 5285 TIM3_IER TIM3 in terrupt enable register 0x00
0x00 5286 TIM3_SR1 TIM3 status register 1 0x00
0x00 5287 TIM3_SR2 TIM3 status register 2 0x00
0x00 5288 TIM3_EGR TIM3 event generation register 0x00
0x00 5289 TIM3_CCMR1 TIM3 Capture/Compare mode register 1 0x00
0x00 528A TIM3_CCMR2 TIM3 Capture/Compare mode register 2 0x00
0x00 528B TIM3_CCER1 TIM3 Capture/Compare enable register 1 0x00
0x00 528C TIM3_CNTRH TIM3 counter high 0x00
0x00 528D TIM3_CNTRL TIM3 counter low 0x00
0x00 528E TIM3_PSCR TIM3 prescaler register 0x00
0x00 528F TIM3_ARRH TIM3 Auto-reload register high 0xFF
0x00 5290 TIM3_ARRL TIM3 Auto-reload register low 0xFF
0x00 5291 TIM3_CCR1H TIM3 Capture/Compare register 1 high 0x00
0x00 5292 TIM3_CCR 1L TIM3 Capture/Compare register 1 low 0x00
0x00 5293 TIM3_CCR2H TIM3 Capture/Compare register 2 high 0x00
0x00 5294 TIM3_CCR 2L TIM3 Capture/Compare register 2 low 0x00
0x00 5295 TIM3_BKR TIM3 break register 0x00
0x00 5296 TIM3_OISR TIM3 output idle state register 0x00
0x00 5297 to
0x00 52AF Reserved area (25 bytes)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L151x4/6, STM8L152x4/6
50/142 DocID15962 Rev 14
0x00 52B0
TIM1
TIM1_CR1 TIM1 control register 1 0x00
0x00 52B1 TIM1_CR2 TIM1 control regi ste r 2 0x00
0x00 52B2 TIM1_SMCR TIM1 Slave mode control registe r 0x00
0x00 52B3 TIM1_ETR TIM1 external trigger register 0x00
0x00 52B4 TIM1_DER TIM1 DMA1 request enable register 0x00
0x00 52B5 TIM1_IER TIM1 Interrupt enable register 0x00
0x00 52B6 TIM1_SR1 TIM1 status register 1 0x00
0x00 52B7 TIM1_SR2 TIM1 status register 2 0x00
0x00 52B8 TIM1_EGR TIM1 event generation reg iste r 0x00
0x00 52B9 TIM1_CCMR1 TIM1 Capture/Compare mode register 1 0x00
0x00 52BA TIM1_CCMR2 TIM1 Capture/Compare mode register 2 0x00
0x00 52BB TIM1_CCMR3 TIM1 Capture/Compare mode register 3 0x00
0x00 52BC TIM1_CCMR4 TIM1 Capture/Compare mode regi ster 4 0x00
0x00 52BD TIM1_CCER1 TIM1 Capture/Compare enable register 1 0x00
0x00 52BE TIM1_CCER2 TIM1 Capture/Compare enable register 2 0x00
0x00 52BF TIM1_CNTRH TIM1 counter high 0x00
0x00 52C0 TIM1_CNTRL TIM1 counter low 0x00
0x00 52C1 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 52C2 T IM1_PSCRL TIM1 prescaler regi ster low 0x00
0x00 52C3 TIM1_ARRH TIM1 Auto-reload register high 0xFF
0x00 52C4 TIM1_ARRL TIM1 Auto-reload register low 0xFF
0x00 52C5 TIM1_RCR TIM1 Repetition counter register 0x00
0x00 52C6 TIM1_CCR1H TIM1 Capture/Compare register 1 high 0x00
0x00 52C7 TIM1_CCR1L TIM1 Capture/Co mpare register 1 low 0x00
0x00 52C8 TIM1_CCR2H TIM1 Capture/Compare register 2 high 0x00
0x00 52C9 TIM1_CCR2L TIM1 Capture/Co mpare register 2 low 0x00
0x00 52CA TIM1_CCR3H TIM1 Capture/Comp are register 3 high 0x00
0x00 52CB TIM1_CCR3L TIM1 Capture/Compare register 3 low 0x00
0x00 52CC TIM1_CCR4H TIM1 Capture/Compare register 4 high 0x00
0x00 52CD TIM1_CCR4L TIM1 Capture/Compare register 4 low 0x00
0x00 52CE TIM1_BKR TIM1 break register 0x00
0x00 52CF TIM1_DTR TIM1 dead-time register 0x00
0x00 52D0 TIM1_OISR TIM1 output idle state register 0x00
0x00 52D1 T IM1_DCR1 DMA1 control register 1 0x00
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15962 Rev 14 51/142
STM8L151x4/6, STM8L152x4/6 Memory and register map
58
0x00 52D2 TIM1 TIM1_DCR2 TIM1 DMA1 control register 2 0x00
0x00 52D3 TIM1_DMA1R TIM1 DMA1 address for burst mode 0x00
0x00 52D4
to
0x00 52D F Reserved area (12 bytes)
0x00 52E0
TIM4
TIM4_CR1 TIM4 control register 1 0x00
0x00 52E1 TIM4_CR2 TIM4 control regi ste r 2 0x00
0x00 52E2 TIM4_SMCR TIM4 Slave mode control registe r 0x00
0x00 52E3 TIM4_DER TIM4 DMA1 request enable register 0x00
0x00 52E4 TIM4_IER TIM4 Interrupt enable register 0x00
0x00 52E5 TIM4_SR1 TIM4 status register 1 0x00
0x00 52E6 TIM4_EGR TIM4 Event generation register 0x00
0x00 52E7 TIM4_CNTR TIM4 counter 0x00
0x00 52E8 TIM4_ PSCR TIM4 prescaler register 0x00
0x00 52E9 TIM4_ARR TIM4 Auto-reload register 0x00
0x00 52EA
to
0x00 52FE Reserved area (21 bytes)
0x00 52FF IRTIM IR_CR Infrared control register 0x00
0x00 5300
to
0x00 533F Reserved area (64 bytes)
0x00 5340
ADC1
ADC1_CR1 ADC1 configuration re gister 1 0x00
0x00 5341 ADC1_CR2 ADC1 configuration re gister 2 0x00
0x00 5342 ADC1_CR3 ADC1 configuration re gister 3 0x1F
0x00 5343 ADC1_SR ADC1 status register 0x00
0x00 5344 ADC1_DRH ADC1 data register high 0x00
0x00 5345 ADC1_DRL ADC1 data register low 0x00
0x00 5346 ADC1_HTRH ADC1 high threshold register high 0x0F
0x00 5347 ADC1_HTRL ADC1 high th reshold register low 0xFF
0x00 5348 ADC1_LTRH ADC1 low threshold register high 0x00
0x00 5349 ADC1_LTRL ADC1 low threshold register low 0x00
0x00 534A ADC1_SQR1 ADC1 channel sequence 1 register 0x00
0x00 534B ADC1_SQR2 ADC1 channel sequence 2 register 0x00
0x00 534C ADC1_SQR3 ADC1 channe l sequence 3 register 0x00
0x00 534D ADC1_SQR4 ADC1 channe l sequence 4 register 0x00
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L151x4/6, STM8L152x4/6
52/142 DocID15962 Rev 14
0x00 534E
ADC1
ADC1_TRIGR1 ADC1 trigger disable 1 0x00
0x00 534F ADC1_TRIGR2 ADC1 trigger disable 2 0x00
0x00 5350 ADC1_TRIGR3 ADC1 trigger disable 3 0x00
0x00 5351 ADC1_TRIGR4 ADC1 trigger disable 4 0x00
0x00 5352 to
0x00 537F Reserved area (46 bytes)
0x00 5380
DAC
DAC_CR1 DAC control register 1 0x00
0x00 5381 DAC_CR2 DAC control register 2 0x00
0x00 5382
to 0x00 5383 Reserved area (2 bytes)
0x00 5384 DAC_SWTRIGR DAC software trigger register 0x00
0x00 5385DAC_SR DAC status register 0x00
0x00 5386 to
0x00 5387 Reserved area (2 bytes)
0x00 5388 DAC_RDHRH DAC right aligned data holding register
high 0x00
0x00 5389 DAC_RDHRL DAC right aligned data holding register low 0x00
0x00 538A to
0x00 538B Reserved area (2 bytes)
0x00 538C DAC_LDHRH DAC left aligned data holding register high 0x00
0x00 538D DAC_LDHRL DAC left aligned data holding register low 0x00
0x00 538E
to 0x00 538F Reserved area (2 bytes)
0x00 5390 DAC_DHR8 DAC 8-bit data holding register 0x00
0x00 5391 to
0x00 53AB Reserved area (27 bytes)
0x00 53AC DAC_DORH DAC data output register high 0x00
0x00 53AD DAC_DORL DAC data output register low 0x00
0x00 53AE to
0x00 53FF Reserved area (82 bytes)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15962 Rev 14 53/142
STM8L151x4/6, STM8L152x4/6 Memory and register map
58
0x00 5400
LCD
LCD_CR1 LCD control register 1 0x00
0x00 5401 LCD_CR2 LCD control register 2 0x00
0x00 5402 LCD_CR3 LCD control register 3 0x00
0x00 5403 LCD_FRQ LCD frequency selection register 0x00
0x00 5404 LCD_PM0 LCD Port mask register 0 0x00
0x00 5405 LCD_PM1 LCD Port mask register 1 0x00
0x00 5406 LCD_PM2 LCD Port mask register 2 0x00
0x00 5407 LCD_PM3 LCD Port mask register 3 0x00
0x00 5408 to
0x00 540B
LCD
Reserved area (4 bytes)
0x00 540C LCD_RAM0 LCD display memory 0 0x00
0x00 540D LCD_RAM1 LCD display memory 1 0x00
0x00 540E LCD_RAM2 LCD display memory 2 0x00
0x00 540F LCD_RAM3 LCD display memory 3 0x00
0x00 5410 LCD_RAM4 LCD display memory 4 0x00
0x00 5411 LCD_RAM5 LCD display memory 5 0x00
0x00 5412 LCD_RAM6 LCD display memory 6 0x00
0x00 5413 LCD_RAM7 LCD display memory 7 0x00
0x00 5414 LCD_RAM8 LCD display memory 8 0x00
0x00 5415 LCD_RAM9 LCD display memory 9 0x00
0x00 5416 LCD_RAM10 LCD display memory 10 0x00
0x00 5417 LCD_RAM11 LCD display memory 11 0x00
0x00 5418 LCD_RAM12 LCD display memory 12 0x00
0x00 5419 LCD_RAM13 LCD display memory 13 0x00
0x00 541A to
0x00 542F Reserved area (22 bytes)
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8L151x4/6, STM8L152x4/6
54/142 DocID15962 Rev 14
0x00 5430
RI
Reserved area (1 byte) 0x00
0x00 5431 RI_ICR1 Timer input capture routing register 1 0x00
0x00 5432 RI_ICR2 Timer input capture routing register 2 0x00
0x00 5433 RI_IOIR1 I/O input register 1 undefined
0x00 5434 RI_IOIR2 I/O input register 2 undefined
0x00 5435 RI_IOIR3 I/O input register 3 undefined
0x00 5436 RI_IOCMR1 I/O control mode register 1 0x00
0x00 5437 RI_IOCMR2 I/O control mode register 2 0x00
0x00 5438 RI_IOCMR3 I/O control mode register 3 0x00
0x00 5439 RI_IOSR1 I/O switch register 1 0x00
0x00 543A RI_IOSR2 I/O switch register 2 0x00
0x00 543B RI_IOSR3 I/O switch register 3 0x00
0x00 543C RI_IOGCR I/O group control register 0x3F
0x00 543D RI_ASCR1 Analog switch register 1 0x00
0x00 543E RI_ASCR2 Analog switch register 2 0x00
0x00 543F RI_RCR Resistor control register 1 0x00
0x00 5440
COMP
COMP_CSR1 Comparator control and status register 1 0x00
0x00 5441 COMP_CSR2 Comparator control and status register 2 0x00
0x00 5442 COMP_CSR3 Comparator control and status register 3 0x00
0x00 5443 COMP_CSR4 Comparator control and status register 4 0x00
0x00 5444 COMP_CSR5 Comparator control and status register 5 0x00
1. These registers are not impacted by a system reset. They are reset at power-on.
Table 9. General hardware register map (continued)
Address Block Register label Register name Reset
status
DocID15962 Rev 14 55/142
STM8L151x4/6, STM8L152x4/6 Memory and register map
58
Table 10. CPU/SWIM/d ebug module/interrupt controller registers
Address Block Register Label Register Name Reset
Status
0x00 7F00
CPU(1)
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x00
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
0x00 7F05 XL X index register low 0x00
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x03
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CCR Condition code register 0x28
0x00 7F0B to
0x00 7F5F CPU Reserved area (85 byte)
0x00 7F60 CFG_GCR Global configuration register 0x0 0
0x00 7F70
ITC-SPR
ITC_SPR1 Interrupt Software priority register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt Software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt Software priority register 3 0xFF
0x00 7F73 ITC_SPR4 Interrupt Software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt Software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt Software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt Software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt Software priority register 8 0xFF
0x00 7F78
to
0x00 7F79 Reserved area (2 byte)
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
0x00 7F81
to
0x00 7F8F Reserved area (15 byte)
Memory and register map STM8L151x4/6, STM8L152x4/6
56/142 DocID15962 Rev 14
0x00 7F90
DM
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF
0x00 7F96 DM_CR1 DM Debug module control register 1 0x00
0x00 7F97 DM_CR2 DM Debug module control register 2 0x00
0x00 7F98 DM_CSR1 DM Debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 DM Debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B
to
0x00 7F9F Reserved area (5 byte)
1. Accessible by debug module only
Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register Label Register Name Reset
Status
DocID15962 Rev 14 57/142
STM8L151x4/6, STM8L152x4/6 Interrupt vector mapping
58
6 Interrupt vector mapping
Table 11. Interrupt mapping
IRQ
No. Source
block Description Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from W ait
(WFE
mode)(1)
Vector
address
- RESET Reset Yes Yes Yes Yes 0x00 8000
- TRAP Software interrupt - - - - 0x00 8004
0 Reserved 0x00 8008
1 FLASH FLASH end of programing/
write attempted to
protected page interrupt - - Yes Yes 0x00 800C
2 DMA1 0/1 DMA1 channels 0/1 half
transaction/transaction
complete interrupt - - Yes Yes 0x00 8010
3 DMA1 2/3 DMA1 channels 2/3 half
transaction/transaction
complete interrupt - - Yes Yes 0x00 8014
4RTC
RTC alarm A/
wakeup Yes Yes Ye s Yes 0x00 8018
5EXTI E/F/
PVD(2) External interrupt port E/F
PVD interrupt Yes Yes Yes Yes 0x00 801C
6 EXTIB/G External interrupt port B/G Yes Yes Yes Yes 0x00 8020
7 EXTID/H External interrupt port D/H Yes Yes Yes Yes 0x00 8024
8 EXTI0 External interrupt 0 Yes Yes Yes Yes 0x00 8028
9 EXTI1 External interrupt 1 Yes Yes Yes Yes 0x00 802C
10 EXTI2 External interrupt 2 Yes Yes Yes Yes 0x00 8030
11 EXTI3 External interrupt 3 Yes Yes Yes Yes 0x00 8034
12 EXTI4 External interrupt 4 Yes Yes Yes Yes 0x00 8038
13 EXTI5 External interrupt 5 Yes Yes Yes Yes 0x00 803C
14 EXTI6 External interrupt 6 Yes Yes Yes Yes 0x00 8040
15 EXTI7 External interrupt 7 Yes Yes Yes Yes 0x00 8044
16 LCD LCD interrupt - - Yes Yes 0x00 8048
17 CLK/TIM1/
DAC
CLK system clock switch/
CSS interrupt/
TIM 1 break/DAC - - Yes Yes 0x00 804C
18 COMP1/
COMP2/
ADC1
COMP1 interrupt
COMP2 interrupt
ACD1 end of conversion/
analog watchdog/
overrun interrupt
Yes Yes Ye s Yes 0x00 8050
Interrupt vector mapping STM8L151x4/6, STM8L152x4/6
58/142 DocID15962 Rev 14
19 TIM2 TIM2 upd ate/overflow/
trigger/break interrupt - - Yes Yes 0x00 8054
20 TIM2 TIM2 capture/
compare interrupt - - Yes Yes 0x00 8058
21 TIM3 TIM3 upd ate/overflow/
trigger/break interrupt - - Yes Yes 0x00 805C
22 TIM3 TIM3 capture/
compare interrupt - - Yes Yes 0x00 8060
23 TIM1 Update /overflow/trigger/
COM - - - Yes 0x00 8064
24 T IM1 Capture/compare - - - Yes 0x00 8068
25 TIM4 TIM4 upd ate/overflow/
trigger in terrupt - - Yes Yes 0x00 806C
26 SPI1 SPI1 TX buffer empty/
RX buffer not empty/
error/wakeup interrupt Yes Yes Yes Yes 0x00 8070
27 USART1
USART1 transmit data
register empty/
transmission complete
interrupt
- - Yes Yes 0x00 8074
28 USART1
USART1 received data
ready/overrun error/
idle line detected/parity
error/global error interrupt
- - Yes Yes 0x00 8078
29 I2C1 I2C1 interrupt(3) Yes Yes Yes Yes 0x00 807C
1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode. In WFE mode, the
interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode.
When the interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.
2. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port
E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031).
3. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
Table 11. Interrupt mapping (continued)
IRQ
No. Source
block Description Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from W ait
(WFE
mode)(1)
Vector
address
DocID15962 Rev 14 59/142
STM8L151x4/6, STM8L152x4/6 Option bytes
61
7 Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated memory block.
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM
address. See Table 12 for details on option byte addresses.
The option bytes can also be modified ‘on the fly’ by the ap plication in IAP mode, except for
the ROP and UBC values which can only be taken into account when they are modified in
ICP mode (with the SWIM).
Refer to the STM8L1 5x Flash programmin g manual (PM005 4) and STM8 SWIM and Debug
Manual (UM0470) for information on SWIM programming procedures.
Table 12. Option byte addresses
Addr. Option name Option
byte
No.
Option bits Factory
default
setting
76543210
0x00 4800 Read-out
protection
(ROP) OPT0 ROP[7:0] 0xAA
0x00 4802 UBC (User
Boot code size) OPT1 UBC[7:0] 0x00
0x00 4807 Reserved 0x00
0x00 4808 Independent
watchdog
option
OPT3
[3:0] Reserved WWDG
_HALT WWDG
_HW IWDG
_HALT IWDG
_HW 0x00
0x00 4809
Number of
stabilization
clock cycles for
HSE and LSE
oscillators
OPT4 Reserved LSECNT[1:0] HSECNT[1:0] 0x00
0x00 480A Brownout reset
(BOR) OPT5
[3:0] Reserved BOR_TH BOR_
ON 0x00
0x00 480B Bootloader
option bytes
(OPTBL)
OPTBL
[15:0] OPTBL[15:0]
0x00
0x00 480C 0x00
Option bytes STM8L151x4/6, STM8L152x4/6
60/142 DocID15962 Rev 14
Table 13. Option byte description
Option
byte
No. Option description
OPT0 ROP[7:0] Memory readout protection (ROP)
0xAA: Disable readout protection (write access via SWIM protocol)
Refer to Readout protection section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT1
UBC[7:0] Size of the user boot code area
0x00: no UBC
0x01: the UBC contains only the interrupt vectors.
0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt
vectors.
0x03 - Page 0 to 2 reserved for UBC, memory write-protected
0xFF - Page 0 to 254 reserved for UBC, memory write-protected
Refer to User boot code section in the STM8L15x and STM8L16x reference manual (RM0031).
OPT2 Reserved
OPT3
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software
1: Independent watchdog activated by hardware
IWDG_HALT: Independe nt window watchdog off on Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode
1: Independent watchdog stopped in Halt/Activ e-halt mode
WWDG_HW: Window watchdog
0: Window watchdog activated by software
1: Window watchdog activated by hardware
WWDG_HALT: Window window watchdog reset on Halt/Active-halt
0: Window watchdog stopped in Halt mode
1: Window watchdog generates a reset when MCU enters Halt mo de
OPT4
HSECNT: Number of HSE oscillato r stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
LSECNT: Number of LSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
Refer to Table 32: LSE oscillator characteristics on page 84.
DocID15962 Rev 14 61/142
STM8L151x4/6, STM8L152x4/6 Option bytes
61
OPT5
BOR_ON:
0: Brownout reset off
1: Brownout reset on
BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 23 for details on the thresholds according to
the value of BOR_TH bits.
OPTBL
OPTBL[15:0]:
This option is checked by the boot ROM code after reset. Depending on
content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the
CPU jumps to the bootloader or to the reset vector .
Refer to the UM0560 bootloader user manual for more details.
Table 13. Option byte description (continued)
Option
byte
No. Option description
Unique ID STM8L151x4/6, STM8L152x4/6
62/142 DocID15962 Rev 14
8 Unique ID
STM8 devices feature a 96-bit un ique device identifier which provides a reference number
that is unique for any device and in any context. The 96 bits of the identifier can never be
altered by the user.
The unique device identifier can be read in single bytes and may then be concatenated
using a custom algorithm.
The unique device identifier is ideally suited:
For use as serial numbers
For use as security keys to increase th e code security in the program memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal memory.
To activate secure boot processes
Table 14. Unique ID registers (96 bits)
Address Content
description
Unique ID bits
76543 2 1 0
0x4926 X co-ordinate on
the wafer
U_ID[7:0]
0x4927 U_ID[15:8]
0x4928 Y co-ordinate on
the wafer
U_ID[23:16]
0x4929 U_ID[31:24]
0x492A W a fer number U_ID[39:32]
0x492B
Lot number
U_ID[47:40]
0x492C U_ID[55:48]
0x492D U_ID[63:56]
0x492E U_ID[71:64]
0x492F U_ID[79:72]
0x4930 U_ID[87:80]
0x4931 U_ID[95:88]
DocID15962 Rev 14 63/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
9 Electrical parameters
9.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
9.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature , supply voltage and fre quencies by tests in productio n on
100% of the devices with an ambient temperature at TA= 25 °C and TA = TA max (given by
the selected tem p er at ur e range).
Data base d on chara cte rization re su lts, design simulation a nd/or techno log y characteristics
is indicated in the table footnotes and are not tested in production. Based on
characterization, th e minimum and maximu m values refer to sample test s and represent the
mean value plus or minus thr ee times the standard deviation (mean±3Σ).
9.1.2 Typical values
Unless otherwise specified, typical dat a is based on TA = 25 °C, VDD = 3 V. It is given only as
design guidelines and is not tested.
T ypi cal ADC accuracy values are d etermined by characterization of a batch of samples fr om
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
9.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
9.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
Figure 10. Pin loading conditions
670$/3,1
S)
06Y9
Electrical parameters STM8L151x4/6, STM8L152x4/6
64/142 DocID15962 Rev 14
9.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 11. Pin input voltage
9.2 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended per iods m ay
affect device reliability.
67063,1
06Y9
9,1
Table 15. Voltage characteristics
Symbol Ratings Min Max Unit
VDD- VSS External supply voltage (including VDDA
and VDD2)(1)
1. All power (VDD1, VDD2, VDDA) and ground (VSS1, VSS2, VSSA) pins must always be connected to the
external power supply.
- 0.3 4.0 V
VIN(2)
2. VIN maximum must always be respected. Refer to Table 16. for maximum allowed injected current values.
Input voltage on true open-drain pins
(PC0 and PC1) VSS - 0.3 VDD + 4.0
V
Input voltage on five-volt tolerant (FT)
pins (PA7 and PE0) VSS - 0.3 VDD + 4.0
Input voltage on 3.6 V tolerant (TT) pins VSS - 0.3 4.0
Input voltage on any other pin VSS - 0.3 4.0
VESD Electrostatic discharge voltage see Absolute maximum
ratings (electrical sensitivity)
on page 115
DocID15962 Rev 14 65/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Table 16. Current characteristics
Symbol Ratings Max. Unit
IVDD Total current into VDD power line (source) 80
mA
IVSS Total current out of VSS ground line (sink) 80
IIO
Output current sunk by IR_TIM pin (with high sink LED driver
capability) 80
Output current sunk by any other I/O and con trol pin 25
Output current sourced by any I/Os and control pin - 25
IINJ(PIN)
Injected current on true open-drain pins (PC0 and PC1)(1) - 5 / +0
mA
Injected current on five-volt tolerant (FT) pins (PA7 and PE0) (1)
1. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 15. for maximum allowed input voltage values.
- 5 / +0
Injected current on 3.6 V tolerant (TT) pins (1) - 5 / +0
Injected current on a ny ot he r pi n (2)
2. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 15. for maximum allowed input voltage values.
- 5 / +5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins) (3)
3. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
± 25
Table 17. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range -65 to +150 ° C
TJMaximum junction temperature 150
Electrical parameters STM8L151x4/6, STM8L152x4/6
66/142 DocID15962 Rev 14
9.3 Operating conditions
Subject to general operating conditions for VDD and TA.
9.3.1 General operating conditions
Table 18. General operating conditions
Symbol Parameter Conditions Min. Max. Unit
fSYSCLK(1) System clock
frequency 1.65 V VDD < 3.6 V 0 16 MHz
VDD St andard operating
voltage -1.65
(2) 3.6 V
VDDA Analog operating
voltage
ADC and DAC
not used Must be at the same
potential as VDD
1.65(2) 3.6 V
ADC or DAC
used 1.8 3.6 V
PD(3)
Power dissipation at
TA= 85 °C for suffix 6
devices
LQFP48 - 288
mW
UFQFPN48 - 169
LQFP32 - 288
UFQFPN32 - 169
UFQFPN28 - 169
WLCSP28 - 286
Power dissipation at
TA= 125 °C for suffix 3
devices and at
TA= 105 °C for suffix 7
devices
LQFP48 - 77
UFQFPN48 - 156
LQFP32 - 85
UFQFPN32 - 131
UFQFPN28 - 42
WLCSP28 - 71
TATemperature ran g e
1.65 V VDD < 3.6 V (6 suffix version) -40 85
°C1.65 V VDD < 3.6 V (7 suffix version) -40 105
1.65 V VDD < 3.6 V (3 suffix version) -40 125
TJJunction temperature
range
-40 °C TA < 85 °C
(6 suffix version) -40 105(4)
°C
-40 °C TA < 105 °C
(7 suffix version) -40 110(4)
-40 °C TA < 125 °C
(3 suffix version) -40 130
1. fSYSCLK = fCPU
2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled
3. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/Θ
JA with TJmax in this table and Θ
JA in “Thermal characteristics”
table.
4. TJmax is given by the test limit. Above this value the product behavior is not guaranteed.
DocID15962 Rev 14 67/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
9.3.2 Embedded reset and power control block characteristics
Table 19. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
tVDD
VDD rise time rate BOR detector
enabled 0(1) - (1)
µs/V
VDD fall time rate BOR detector
enabled 20(1) - (1)
tTEMP Reset release delay
VDD rising
BOR detector
enabled -3-
ms
VDD rising
BOR detector
disabled -1-
VPDR Power-down reset threshold Falling edge 1.30(2) 1.50 1.65 V
VBOR0 Brown-out reset threshold 0
(BOR_TH[2:0]=000) Falling edge 1.67 1.70 1.74
V
Rising edge 1.69 1.75 1.80
VBOR1 Brown-out reset threshold 1
(BOR_TH[2:0]=001) Falling edge 1.87 1 .93 1.97
Rising edge 1.96 2.04 2.07
VBOR2 Brown-out reset threshold 2
(BOR_TH[2:0]=010) Falling edge 2.22 2.3 2.35
Rising edge 2.31 2.41 2.44
VBOR3 Brown-out reset threshold 3
(BOR_TH[2:0]=011) Falling edge 2.45 2.55 2.60
Rising edge 2.54 2.66 2.7
VBOR4 Brown-out reset threshold 4
(BOR_TH[2:0]=100) Falling edge 2.68 2 .80 2.85
Rising edge 2.78 2.90 2.95
VPVD0 PVD threshold 0 Falling edge 1.80 1.84 1.88
V
Rising edge 1.88 1.94 1.99
VPVD1 PVD threshold 1 Falling edge 1.98 2.04 2.09
Rising edge 2.08 2.14 2.18
VPVD2 PVD threshold 2 Falling edge 2.2 2.24 2.28
Rising edge 2.28 2.34 2.38
VPVD3 PVD threshold 3 Falling edge 2.39 2.44 2.48
Rising edge 2.47 2.54 2.58
VPVD4 PVD threshold 4 Falling edge 2.57 2.64 2.69
Rising edge 2.68 2.74 2.79
VPVD5 PVD threshold 5 Falling edge 2.77 2.83 2.88
Rising edge 2.87 2.94 2.99
VPVD6 PVD threshold 6 Falling edge 2.97 3.05 3.09
Rising edge 3.08 3.15 3.20
Electrical parameters STM8L151x4/6, STM8L152x4/6
68/142 DocID15962 Rev 14
Figure 12. POR/BOR thresholds
9.3.3 Supply current characteristics
Total curre nt consumption
The MCU is placed under the following conditions:
l All I/O pins in input mode with a static value at VDD or VSS (no load)
l All peripherals are disabled except if explicitly mentioned.
In the following table, data is based on characterization results, unless otherwise specified.
Subject to general operating conditions for VDD and TA.
1. Data guaranteed by design, not tested in production.
2. Data based on characterization results, not tested in production.
9
9
''
,QWHUQDO1567
9%25
%25WKUHVKROG
%25WKUHVKROGB
3'5WKUHVKROG
ZLWK
%25
ZLWKRXW
%25
7LPH
ZLWK
%25
6DIHUHVHW
5HVHW
%25DFWLYDWHGE\XVHU
IRUSRZHUGRZQGHWHFWLRQ
2SHUDWLQJ SRZHUVXSSO\
9
ZLWKRXW%25 EDWWHU\OLIHH[WHQVLRQ

93'5
%25DOZD\VDFWLYH
DWSRZHUXS
6DIHUHVHWUHOHDVH
DLE
9'' 9''
DocID15962 Rev 14 69/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Table 20. Total current consumption in Run mode
Symbol Para
meter Conditions(1) Typ Max Unit
55 °C 85 °C(2) 105°C(3) 125 °C(4)
IDD(RUN)
Supply
current
in run
mode(5)
All
peripherals
OFF,
code
executed
from RAM,
VDD from
1.65 V to
3.6 V
HSI RC osc.
(16 MHz)(6)
fCPU = 125 kHz 0.39 0.47 0.49 0.52 0.55
mA
fCPU = 1 MHz 0.48 0.56 0.58 0.61 0.65
fCPU = 4 MHz 0.75 0.84 0.86 0.91 0.99
fCPU = 8 MHz 1.10 1.20 1.25 1.31 1.40
fCPU = 16 MHz 1.85 1.93 2.12(8) 2.29(8) 2.36(8)
HSE external
clock
(fCPU=fHSE)(7)
fCPU = 125 kHz 0.05 0.06 0.09 0.11 0.12
fCPU = 1 MHz 0.18 0.19 0.20 0.22 0.23
fCPU = 4 MHz 0.55 0.62 0.64 0.71 0.77
fCPU = 8 MHz 0.99 1.20 1.21 1.22 1.24
fCPU = 16 MHz 1.90 2.22 2.23(8) 2.24(8) 2.28(8)
LSI RC osc.
(typ. 38 kHz) fCPU = fLSI 0.040 0.045 0.046 0.048 0.050
LSE external
clock
(32.768 kHz) fCPU = fLSE 0.035 0.040 0.048(8) 0.050 0.062
IDD(RUN)
Supply
current
in Run
mode
All
peripherals
OFF, code
executed
from Flash,
VDD from
1.65 V to
3.6 V
HSI RC
osc.(9)
fCPU = 125 kHz 0.43 0.55 0.56 0.58 0.62
mA
fCPU = 1 MHz 0.60 0.77 0.80 0.82 0.87
fCPU = 4 MHz 1.11 1.34 1.37 1.39 1.43
fCPU = 8 MHz 1.90 2.20 2.23 2.31 2.40
fCPU = 16 MHz 3.8 4.60 4.75 4.87 4.88
HSE external
clock
(fCPU=fHSE)
(7)
fCPU = 125 kHz 0.30 0.36 0.39 0.44 0.47
fCPU = 1 MHz 0.40 0.50 0.52 0.55 0.56
fCPU = 4 MHz 1.15 1.31 1.40 1.45 1.48
fCPU = 8 MHz 2.17 2.33 2.44 2.56 2.77
fCPU = 16 MHz 4.0 4.46 4.52 4.59 4.77
LSI RC osc. fCPU = fLSI 0.110 0.123 0.130 0.140 0.150
LSE ext.
clock
(32.768
kHz)(10)
fCPU = fLSE 0.100 0.101 0.104 0.119 0.122
1. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc., fCPU=fSYSCLK
2. For devices with suffix 6
3. For devices with suffix 7
4. For devices with suffix 3
Electrical parameters STM8L151x4/6, STM8L152x4/6
70/142 DocID15962 Rev 14
Figure 13. Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz
1. Typical current consumption measured with code executed from RAM
5. CPU executing typical data processing
6. The run from RAM consumption can be approximated with the linear formula:
IDD(run_from_RAM) = Freq * 90 µA/MHz + 380 µA
7. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption
(IDD HSE) must be added. Refer to Table 31.
8. Tested in production.
9. The run from Flash consumption can be approximated with the linear formula:
IDD(run_from_Flash) = Freq * 195 µA/MHz + 440 µA
10. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 32.







    
9''>9@
&
&
&
DLE
,''581+6,>P$@
DocID15962 Rev 14 71/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
In the following table, data is based on characterization results, unless otherwise specified.
Table 21. Total current cons umption in Wait mode
Symbol Parameter Conditions(1) Typ
Max
Unit
55°C 85
°C(2) 105 °C
(3) 125 °C
(4)
IDD(Wait)
Supply
current in
Wait mode
CPU not
clocked,
all periphera ls
OFF,
code executed
from RAM
with Flash in
IDDQ mode(5),
VDD from
1.65 V to 3.6 V
HSI
fCPU = 125 kHz 0.33 0.39 0.41 0.43 0.45
mA
fCPU = 1 MHz 0.35 0.41 0.44 0.45 0.48
fCPU = 4 MHz 0.42 0.51 0.52 0.54 0.58
fCPU = 8 MHz 0.52 0.57 0.58 0.59 0.62
fCPU = 16 MHz 0.68 0.76 0.79 0.82
(7) 0.85
(7)
HSE external
clock
(fCPU=fHSE)
(6)
fCPU = 125 kHz 0.032 0.056 0.068 0.072 0.093
fCPU = 1 MHz 0.078 0.121 0.144 0.163 0.197
fCPU = 4 MHz 0.218 0.26 0.30 0.36 0.40
fCPU = 8 MHz 0.40 0.52 0.57 0.62 0.66
fCPU = 16 MHz 0.760 1.01 1.05 1.09
(7) 1.16
(7)
LSI fCPU = fLSI 0.035 0.044 0.046 0.049 0.054
LSE(8)
external
clock
(32.768
kHz)
fCPU = fLSE 0.032 0.036 0.038 0.044 0.051
Electrical parameters STM8L151x4/6, STM8L152x4/6
72/142 DocID15962 Rev 14
IDD(Wait)
Supply
current in
Wait
mode
CPU not
clocked,
all periphera ls
OFF,
code executed
from Flash,
VDD from
1.65 V to 3.6 V
HSI
fCPU = 125 kHz 0.38 0.48 0.49 0.50 0.56
mA
fCPU = 1 MHz 0.41 0.49 0.51 0.53 0.59
fCPU = 4 MHz 0.50 0.57 0.58 0.62 0.66
fCPU = 8 MHz 0.60 0.66 0.68 0.72 0.74
fCPU = 16 MHz 0.79 0.84 0.86 0.87 0.90
HSE(6)
external
clock
(fCPU=HSE)
fCPU = 125 kHz 0.06 0.08 0.09 0.10 0.12
fCPU = 1 MHz 0.10 0.17 0.18 0.19 0.22
fCPU = 4 MHz 0.24 0.36 0.39 0.41 0.44
fCPU = 8 MHz 0.50 0.58 0.61 0.62 0.64
fCPU = 16 MHz 1.00 1.08 1.14 1.16 1.18
LSI fCPU = fLSI 0.055 0.058 0.065 0.073 0.080
LSE(8)
external
clock
(32.768 kHz)
fCPU = fLSE 0.051 0.056 0.060 0.065 0.073
1. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc., fCPU = fSYSCLK
2. For temperature range 6.
3. For temperature range 7.
4. For temperature range 3.
5. Flash is configured in IDDQ mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.
6. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption
(IDD HSE) must be added. Refer to Table 31.
7. Tested in production.
8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD HSE) must be added. Refer to Table 32.
Table 21. Total current consumption in Wait mode (continued)
Symbol Parameter Conditions(1) Typ
Max
Unit
55°C 85
°C(2) 105 °C
(3) 125 °C
(4)
DocID15962 Rev 14 73/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 14. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1)
1. Typical current consumption measured with code executed from Flash memory.











    
9''>9@
,'':$,7+6,
>$@
&
&
&
DLE
Electrical parameters STM8L151x4/6, STM8L152x4/6
74/142 DocID15962 Rev 14
In the following table, data is based on characterization results, unless otherwise specified.
Table 22. Total current consumption and timing in Low power run mode
at VDD = 1.65 V to 3.6 V
Symbol Parameter Conditions(1) Typ Max Unit
IDD(LPR) Supply current in Low
power run mode
LSI RC osc.
(at 38 kHz)
all peripherals OFF
TA = -40 °C
to 25 °C 5.1 5.4
μA
TA = 55 °C 5.7 6
TA = 85 °C 6.8 7.5
TA = 105 °C 9.2 10.4
TA = 125 °C 13.4 16.6
with TIM2 active(2)
TA = -40 °C
to 25 °C 5.4 5.7
TA = 55 °C 6.0 6.3
TA = 85 °C 7.2 7.8
TA = 105 °C 9.4 10.7
TA = 125 °C 13.8 17
LSE (3) external
clock
(32.768 kHz)
all peripherals OFF
TA = -40 °C
to 25 °C 5.25 5.6
TA = 55 °C 5.67 6.1
TA = 85 °C 5.85 6.3
TA = 105 °C 7.11 7.6
TA = 125 °C 9.84 12
with TIM2 active (2)
TA = -40 °C
to 25 °C 5.59 6
TA = 55 °C 6.10 6.4
TA = 85 °C 6.30 7
TA = 105 °C 7.55 8.4
TA = 125 °C 10.1 15
1. No floating I/Os
2. Timer 2 clock enabled and counter running
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 32
DocID15962 Rev 14 75/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 15. Typ. IDD(LPR) vs. VDD (LSI clock source)
Electrical parameters STM8L151x4/6, STM8L152x4/6
76/142 DocID15962 Rev 14
In the following table, data is based on characterization results, unless otherwise specified.
Table 23. Total current consumption in Low powe r wait mode at VDD = 1.65 V to 3.6 V
Symbol Parameter Conditions(1) Typ Max Unit
IDD(LPW) Supp ly current in
Low power wait
mode
LSI RC osc.
(at 38 kHz)
all peripherals OFF
TA = -40 °C to 25 °C 33.3
μA
TA = 55 °C 3.3 3.6
TA = 85 °C 4.4 5
TA = 105 °C 6.7 8
TA = 125 °C 11 14
with TIM2 active(2)
TA = -40 °C to 25 °C 3.4 3.7
TA = 55 °C 3.7 4
TA = 85 °C 4.8 5.4
TA = 105 °C 7 8.3
TA = 125 °C 11.3 14.5
LSE external
clock(3)
(32.768 kHz)
all peripherals OFF
TA = -40 °C to 25 °C 2.35 2.7
TA = 55 °C 2.42 2.82
TA = 85 °C 3.10 3.71
TA = 105 °C 4.36 5.7
TA = 125 °C 7.20 11
with TIM2 active (2)
TA = -40 °C to 25 °C 2.46 2.75
TA = 55 °C 2.50 2.81
TA = 85 °C 3.16 3.82
TA = 105 °C 4.51 5.9
TA = 125 °C 7.28 11
1. No floating I/Os.
2. Timer 2 clock enabled and counter is running.
3. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 32.
DocID15962 Rev 14 77/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 16. Typ. IDD(LPW) vs. VDD (LSI clock source)









,''/3:/ 6,
>$@
&
&
&
   
9''>9@
DLE
Electrical parameters STM8L151x4/6, STM8L152x4/6
78/142 DocID15962 Rev 14
In the following table, data is based on characterization results, unless otherwise specified.
Table 24. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V
Symbol Parameter Conditions (1) Typ Max Unit
IDD(AH) Supply current in
Active-halt mode LSI RC
(at 38 kHz)
LCD OFF(2)
TA = -40 °C to 25 °C 0.9 2.1
μA
TA = 55 °C 1.2 3
TA = 85 °C 1.5 3.4
TA = 105 °C 2.6 6.6
TA = 125 °C 5.1 12
LCD ON
(static duty/
external
VLCD) (3)
TA = -40 °C to 25 °C 1.4 3.1
TA = 55 °C 1.5 3.3
TA = 85 °C 1.9 4.3
TA = 105 °C 2.9 6.8
TA = 125 °C 5.5 13
LCD ON
(1/4 duty/
external
VLCD) (4)
TA = -40 °C to 25 °C 1.9 4.3
TA = 55 °C 1.95 4.4
TA = 85 °C 2.4 5.4
TA = 105 °C 3.4 7.6
TA = 125 °C 6.0 15
LCD ON
(1/4 duty/
internal
VLCD) (5)
TA = -40 °C to 25 °C 3.9 8.75
TA = 55 °C 4.15 9.3
TA = 85 °C 4.5 10.2
TA = 105 °C 5.6 13.5
TA = 125 °C 6.8 16.3
DocID15962 Rev 14 79/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
IDD(AH) Supply current in
Active-halt mode
LSE external
clock
(32.768 kHz)
(6)
LCD OFF(7)
TA = -40 °C to 25 °C 0.5 1.2
μA
TA = 55 °C 0.62 1.4
TA = 85 °C 0.88 2.1
TA = 105 °C 2.1 4.85
TA = 125 °C 4.8 11
LCD ON
(static duty/
external
VLCD) (3)
TA = -40 °C to 25 °C 0.85 1.9
TA = 55 °C 0.95 2.2
TA = 85 °C 1.3 3.2
TA = 105 °C 2.3 5.3
TA = 125 °C 5.0 12
LCD ON
(1/4 duty/
external
VLCD) (4)
TA = -40 °C to 25 °C 1.5 2.5
TA = 55 °C 1.6 3.8
TA = 85 °C 1.8 4.2
TA = 105 °C 2.9 7.0
TA = 125 °C 5.7 14
LCD ON
(1/4 duty/
internal
VLCD) (5)
TA = -40 °C to 25 °C 3.4 7.6
TA = 55 °C 3.7 8.3
TA = 85 °C 3.9 9.2
TA = 105 °C 5.0 14.5
TA = 125 °C 6.3 15.2
IDD(WUFAH)
Supply current during
wakeup time from
Active-halt mode
(using HSI)
--2.4-mA
tWU_HSI(AH)(8)(9) Wakeup time from
Active-halt mode to
Run mode (using HSI) --4.77μs
tWU_LSI(AH)(8)
(9)
Wakeup time from
Active-halt mode to
Run mode (using LSI) - - 150 - μs
1. No floating I/O, unless otherwise specified.
2. RTC enabled. Clock source = LSI
3. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.
4. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
5. LCD enabled with internal LCD booster VLCD = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD
connected.
6. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 32.
7. RTC enabled. Clock source = LSE.
8. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after tWU.
9. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
Table 24. Total current consumption and timing in Active-halt mode at VDD = 1.65 V to 3.6 V
Symbol Parameter Conditions (1) Typ Max Unit
Electrical parameters STM8L151x4/6, STM8L152x4/6
80/142 DocID15962 Rev 14
In the following table, data is based on characterization results, unless otherwise specified.
Table 25. Typical current consumption in Active-halt mode, RTC clocked by LSE
external crystal
Symbol Parameter Condition(1) Typ Unit
IDD(AH) (2) Supply current in Active-halt
mode
VDD = 1.8 V LSE 1.15
µA
LSE/32(3) 1.05
VDD = 3 V LSE 1.30
LSE/32(3) 1.20
VDD = 3.6 V LSE 1.45
LSE/32(3) 1.35
1. No floating I/O, unless otherwise specified.
2. Based on measurements on bench with 32.768 kHz external crystal oscillator.
3. RTC clock is LSE divided by 32.
Table 26. Total current consumption and timing in Halt mode at VDD = 1.65 to 3.6 V
Symbol Parameter Condition(1) Typ Max Unit
IDD(Halt)
Supply current in Halt mode
(Ultra-low-power ULP bit =1 in
the PWR_CSR2 register)
TA = -40 °C to 25 °C 350 1400(2)
nA
TA = 55 °C 580 2000
TA = 85 °C 1160 2800(2)
TA = 105 °C 2560 6700(2)
TA = 125 °C 4.4 13(2) µA
IDD(WUHalt) Supply current during wakeup
time from Halt mode (using
HSI) -2.4-mA
tWU_HSI(Halt)(3)(4) Wakeup time from Halt to Run
mode (using HSI) -4.77µs
tWU_LSI(Halt) (3)(4) Wakeup time from Halt mode
to Run mode (using LSI) -150-µs
1. TA = -40 to 125 °C, no floating I/O, unless otherwise specified.
2. Tested in production.
3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
4. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after tWU.
DocID15962 Rev 14 81/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Current consumption of on-chip peripherals
Table 27. Peripheral current consumption
Symbol Parameter Typ.
VDD = 3.0 V Unit
IDD(TIM1) TIM1 supply current(1) 13
µA/MHz
IDD(TIM2) TIM2 supply current (1) 8
IDD(TIM3) TIM3 supply current (1) 8
IDD(TIM4) TIM4 timer supply current (1) 3
IDD(USART1) USART1 supply current (2) 6
IDD(SPI1) SPI1 supply current (2) 3
IDD(I2C1) I2C1 supply current (2) 5
IDD(DMA1) DMA1 supply current(2) 3
IDD(WWDG) WWDG supply current(2) 2
IDD(ALL) Pe ripherals ON(3) 44 µA/MHz
IDD(ADC1) ADC1 supply current(4) 1500 µA
IDD(DAC) DAC supply current(5) 370 µA
IDD(COMP1) Comparator 1 supply current(6) 0.160
µA
IDD(COMP2) Comparator 2 supply current(6) Slow mode 2
Fast mode 5
IDD(PVD/BOR) Power voltage detector and br ownout Reset unit supply
current (7) 2.6
IDD(BOR) Brownout Reset unit supply current (7) 2.4
IDD(IDWDG) Indepen dent watchdog supply current
including LSI supply
current 0.45
excluding LSI
supply current 0.05
1. Data based on a differential IDD measurement betw een all peripherals OFF and a timer counter running at 16 MHz. The
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.
2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins toggling.
Not tested in production.
3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion.
5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of
VDD /2. Floating DAC output.
6. Data based on a differential IDD measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2
enabled with static inputs. Supply current of internal reference voltage excluded.
7. Including supply current of internal reference voltage.
Electrical parameters STM8L151x4/6, STM8L152x4/6
82/142 DocID15962 Rev 14
9.3.4 Clock and timing characteristics
HSE external clock (HSEBYP = 1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
LSE external clock (LSEBYP=1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
Table 28. Current consumption under external reset
Symbol Parameter Conditions Typ Unit
IDD(RST) Supply current under
external reset (1) All pins are externall y
tied to VDD
VDD = 1.8 V 48
µAVDD = 3 V 76
VDD = 3.6 V 91
1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.
Table 29. HSE external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext External clock source
frequency(1)
1. Data guaranteed by Design, not tested in production.
-
1-16MHz
VHSEH OSC_IN input pin high level
voltage 0.7 x VDD -V
DD V
VHSEL OSC_IN input pin low level
voltage VSS - 0.3 x VDD
Cin(HSE) OSC_IN input
capacitance(1) - - 2.6 - pF
ILEAK_HSE OSC_IN input leakage
current VSS < VIN < VDD --±1µA
Table 30. LSE external clock characteristics
Symbol Parameter Min Typ Max Unit
fLSE_ext External clock source frequency(1) - 32.768 - kHz
VLSEH(2) OSC32_IN input pin high level voltage 0.7 x VDD -V
DD V
VLSEL(2) OSC32_IN input pin low level voltage VSS - 0.3 x VDD
Cin(LSE) OSC32_IN input capacitance(1) -0.6-pF
ILEAK_LSE OSC32_IN input leakage current - - ±1 µA
1. Data guaranteed by Design, not tested in production.
2. Data based on characterization results, not tested in production.
DocID15962 Rev 14 83/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterizatio n results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Figure 17. HSE oscillator circuit diagram
Table 31. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE High speed external oscillator
frequency -1-16MHz
RFFeedback resistor - - 200 - kΩ
C(1) Recommended load capacitance (2) --20-pF
IDD(HSE) HSE oscillator power consumption
C = 20 pF,
fOSC = 16 MHz --
2.5 (startup)
0.7 (stabilized)(3) mA
C = 10 pF,
fOSC =16 MHz --
2.5 (startup)
0.46 (stabilized)(3)
gmOscillator transconductance - 3.5(3) --mA/V
tSU(HSE)(4) Startup time VDD is stabilized - 1 - ms
1. C=
C
L1
=
C
L2
is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Data guaranteed by Design. Not tested in production.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This
value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
069
26&287
26&,1
I+6(WRFRUH
&/
5)
670
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
JP
5P
&P
/P
5HVRQDWRU
&/
&2
Electrical parameters STM8L151x4/6, STM8L152x4/6
84/142 DocID15962 Rev 14
HSE oscillator critical gm formula
Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification),
Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification),
CL1=CL2=C: Grounded external capacitance
gm >> gmcrit
LSE crystal/ceramic resonator oscillator
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterizatio n results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 32. LSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE Low speed external oscillator
frequency - - 32.768 - kHz
RFFeedback resistor ΔV = 200 mV - 1.2 - MΩ
C(1)
1. C=
C
L1
=
C
L2
is approximately equivalent to 2 x crystal CLOAD.
Recommended load capacitance (2)
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a
small Rm value. Refer to crystal manufacturer for more details.
--8-pF
IDD(LSE) LSE oscillator power consumption
---1.4
(3)
3. Data guaranteed by Design. Not tested in production.
µA
VDD = 1.8 V - 450 -
nAVDD = 3 V - 600 -
VDD = 3.6 V - 750 -
gmOscillator transconductance - 3(3) --µA/V
tSU(LSE)(4)
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
Startup time VDD is stabilized - 1 - s
gmcrit 2Π× fHSE
×()
2Rm
×2Co C+()
2
=
DocID15962 Rev 14 85/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 18. LSE oscillator circuit diagram
Internal clock sources
Subject to general operating conditions for VDD, and TA.
High speed internal RC oscillator (HSI)
In the following table, data is based on characterization results, not tested in production,
unless otherwise specified.
06Y9
26&287
26&,1
I/6(
&/
5)
670
5HVRQDWRU
&RQVXPSWLRQ
FRQWURO
JP
5P
&P
/P
5HVRQDWRU
&/
&2
Table 33. HSI oscillator characteristics
Symbol Parameter Conditions(1) Min Typ Max Unit
fHSI Frequency VDD = 3.0 V - 16 - MH z
ACCHSI
Accuracy of HSI
oscillator (factory
calibrated)
VDD = 3.0 V, TA = 25 °C -1 (2) -1
(2) %
VDD = 3.0 V, 0 °C TA 55 °C -1.5 - 1.5 %
VDD = 3.0 V, -10 °C TA 70 °C -2 - 2 %
VDD = 3.0 V, -10 °C TA 85 °C -2.5 - 2 %
VDD = 3.0 V, -10 °C TA 125 °C -4.5 - 2 %
1.65 V VDD 3.6 V,
-40 °C TA 125 °C -4.5 - 3 %
TRIM HSI user trimming
step(3) Trimming code multiple of 16 - 0.4 0.7 %
Trimming code = multiple of 16 - ± 1.5 %
tsu(HSI) HSI oscillator setup
time (wakeup time) --3.76
(4) µs
IDD(HSI) HSI oscillator power
consumption - - 100 140(4) µA
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. Tested in production.
3. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16
(0x00, 0x10, 0x20, 0x30...0xE0). Refer to the AN3101 “STM8L15x internal RC oscillator calibration” application note for
more details.
4. Guaranteed by design, not tested in production.
Electrical parameters STM8L151x4/6, STM8L152x4/6
86/142 DocID15962 Rev 14
Figure 19. Typical HSI frequency vs VDD
Low speed internal RC oscilla tor (LSI)
In the following table, data is based on characterization results, not tested in production.
Table 34. LSI oscillator characteristics
Symbol Parameter (1)
1. VDD = 1.65 V to 3.6 V, TA = -40 to 125 °C unless otherwise specified.
Conditions(1) Min Typ Max Unit
fLSI Frequency - 26 38 56 kHz
tsu(LSI) LSI oscillator wakeu p time - - - 200 (2)
2. Guaranteed by design, not tested in production.
µs
IDD(LSI) LSI oscillator frequency
drift(3)
3. This is a deviation for an individual part, once the initial frequency has been measured.
0 °C TA 85 °C -12 - 11 %











&
&
&
9''>9@
+6,IUHTXHQF\>0+]@
           
DLF
DocID15962 Rev 14 87/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 20. Typical LSI frequency vs. VDD











    
&
&
&
DLE
9''>9@
/6,IUHTXHQF\>N+]@
Electrical parameters STM8L151x4/6, STM8L152x4/6
88/142 DocID15962 Rev 14
9.3.5 Memory characteristics
TA = -40 to 125 °C unless otherwise sp ec ified .
Flash memory
Table 35. RAM and hardware registers
Symbol Parameter Conditions Min Typ Max Unit
VRM Data retention mode (1)
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware
registers (only in Halt mode). Guaranteed by characterization, not tested in production.
Halt mode (or Reset) 1.65 - - V
Table 36. Flash program and data EEPROM memory
Symbol Parameter Conditions Min Typ Max
(1) Unit
VDD Operating voltage
(all modes, read/write/erase) fSYSCLK = 16 MHz 1.65 - 3.6 V
tprog
Programming time for 1 or 64 bytes (block)
erase/write cycles (on programmed byte) --6-ms
Programming time for 1 to 64 bytes (block)
write cycles (on erased byte) --3-ms
Iprog Programming/ erasing consumption TA=+25 °C, VDD = 3.0 V - 0.7 - mA
TA=+25 °C, VDD = 1.8 V - 0.7 -
tRET(2)
Data retention (program memory) after 10000
erase/write cycles at TA= –40 to +85 °C
(6 suffix) TRET = +85 °C 30(1) --
years
Data retention (program memory) after 10000
erase/write cycles at TA= –40 to +125 °C
(3 suffix) TRET = +125 °C 5(1) --
Data retention (data memory) after 300000
erase/write cycles at TA= –40 to +85 °C
(6 suffix) TRET = +85 °C 30(1) --
Data retention (data memory) after 300000
erase/write cycles at TA= –40 to +125 °C
(3 suffix) TRET = +125 °C 5(1) --
NRW (3) Erase/write cycles (program memory) TA = –40 to +85 °C
(6 suffix),
TA = –40 to +125 °C
(3 suffix)
10(1) --
kcycles
Erase/write cycles (data memory) 300(1)
(4) --
1. Data based on characterization results, not tested in production.
2. Conforming to JEDEC JESD22a117
3. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation
addresses a single byte.
4. Data based on characterization performed on the whole data memory.
DocID15962 Rev 14 89/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
9.3.6 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation.
However, in order to give an indica tion of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current
injection on adjacent pins or other functional failure (for example reset, oscillator frequency
deviation, LCD levels, etc.).
The test results are given in the following table.
9.3.7 I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be ke pt at a fixed volta ge: using the output mode of the I/O for example or
an external pull-up or pull-down r esistor.
Table 37. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection Positive
injection
IINJ
Injected current on true open-drain pins (PC0 and
PC1) -5 +0
mA
Injected current on all five-volt tolerant (FT) pins -5 +0
Injected current on all 3.6 V tolerant (TT) pins -5 +0
Injected current on any other pin -5 +5
Electrical parameters STM8L151x4/6, STM8L152x4/6
90/142 DocID15962 Rev 14
Table 38. I/O static characteristics
Symbol Parameter Conditions(1) Min Typ Max Unit
VIL Input low level voltage(2)
Input voltage on true open-drain
pins (PC0 and PC1) VSS-0.3 -0.3 x VDD
V
Input voltage on five-volt
tolerant (FT) pins (PA7 and
PE0) VSS-0.3 -0.3 x VDD
Input voltage on 3.6 V tolerant
(TT) pins VSS-0.3 -0.3 x VDD
Input voltage on any other pin VSS-0.3 -0.3 x VDD
VIH Input high level voltage (2)
Input voltage on true open-drain
pins (PC0 and PC1)
with VDD < 2 V 0.70 x VDD
-5.2
V
Input voltage on true open-drain
pins (PC0 and PC1)
with VDD 2 V -5.5
Input voltage on five-volt
tolerant (FT) pins (PA7 and
PE0)
with VDD < 2 V
0.70 x VDD
-5.2
Input voltage on five-volt
tolerant (FT) pins (PA7 and
PE0)
with VDD 2 V
-5.5
Input voltage on 3.6 V tolerant
(TT) pins -3.6
Input voltage on any other pin 0.70 x VDD -VDD+0.3
Vhys Schmitt trigger voltage
hysteresis (3) I/Os - 200 - mV
True open drain I/Os - 200 -
Ilkg Input leakage current (4)
VSS VIN VDD
High sink I/Os - - 50 (5)
nA
VSS VIN VDD
True open drain I/Os - - 200(5)
VSS VIN VDD
PA0 with high sink LED driver
capability - - 200(5)
RPU Weak pull-up eq u ivalent
resistor(2)(6) VIN=VSS 30 45 60 kΩ
CIO I/O pin capacitance - - 5 - pF
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. Data based on characterization results, not tested in production.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Not tested in production.
DocID15962 Rev 14 91/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 21. Typical VIL and VIH vs VDD (high sink I/Os)
Figure 22 . Typi ca l VIL and VIH vs VDD (true open drain I/Os)
6. RPU pull-up equivalent resistor based on a resistive transistor (corresponding IPU current characteristics described in
Figure 24).



    
&
&
&
DLF
9,/DQG9,+>9@
9''>9@



    
&
&
&
DLE
9,/DQG9,+>9@
9''>9@
Electrical parameters STM8L151x4/6, STM8L152x4/6
92/142 DocID15962 Rev 14
Figure 23. Typical pull-up resist ance RPU vs VDD with VIN=VSS
Figure 24. Typical pull-up current Ipu vs VDD with VIN=VSS







&
&
&
DLE
3XOOXSUHVLVWDQFH>N@
       
9''>9@






           
&
&
&
DLE
3XOOXSFXUUHQW>$@
9''>9@
DocID15962 Rev 14 93/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Output driving current
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 39. Output driving current (high sink ports)
I/O
Type Symbol Parameter Conditions Min Max Unit
High sink
VOL (1)
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
IIO = +2 mA,
VDD = 3.0 V -0.45V
IIO = +2 mA,
VDD = 1.8 V -0.45V
IIO = +10 mA,
VDD = 3.0 V -0.7V
VOH (2)
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 16 and the
sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
IIO = -2 mA,
VDD = 3.0 V VDD-0.45 -V
IIO = -1 mA,
VDD = 1.8 V VDD-0.45 -V
IIO = -10 mA,
VDD = 3.0 V VDD-0.7 - V
Table 40. Output driving current (true open drain ports)
I/O
Type Symbol Parameter Conditions Min Max Unit
Open drain
VOL (1)
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
IIO = +3 mA,
VDD = 3.0 V -0.45
V
IIO = +1 mA,
VDD = 1.8 V -0.45
Table 41. Output driving current (PA0 with high sink LED driver capability)
I/O
Type Symbol Parameter Conditions Min Max Unit
IR
VOL (1)
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 16 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin IIO = +20 mA,
VDD = 2.0 V -0.45V
Electrical parameters STM8L151x4/6, STM8L152x4/6
94/142 DocID15962 Rev 14
Figure 25. Typ. VOL @ VDD = 3.0 V (high sink
ports) Figure 26. Typ. VOL @ VDD = 1.8 V (high sink
ports)




)
/,;M
!=
6
/,;
6=
#
#
#
#
AI








)/,;M!=
6/,;6=
#
#
#
#
AI
Figure 27. Typ. VOL @ VDD = 3.0 V (true open
drain ports) Figure 28. Typ. VOL @ VDD = 1.8 V (true open
drain ports)
AI






)
/,;M
!=
6
/,;
6=
#
#
#
#






)/,;M!=
6/,;6=
#
#
#
#
BJ
Figure 29. Typ. VDD - VOH @ VDD = 3.0 V (high
sink ports) Figure 30. Typ. VDD - VOH @ VDD = 1.8 V (high
sink ports)






     
)/(;M!=
6$$6/(;6=
#
#
#
#
AI






)
/(
;M!=
6
$$
6
/(
;6=
#
#
#
#
BJ
DocID15962 Rev 14 95/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
NRST pin
Subject to general operating conditions for VDD and TA unless otherwise specified.
Figure 31. Typical NRST pull-up resistance RPU vs VDD
Table 42. NRST pin ch a rac teristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST input low level voltage (1) -VSS -0.8
V
VIH(NRST) NRST input high level voltage (1) -1.4-
VDD
VOL(NRST) NRST output low level voltage (1)
IOL = 2 mA
for 2.7 V VDD 3.6 V --
0.4
IOL = 1.5 mA
for VDD < 2.7 V --
VHYST NRST input hysteresis(3) -10%VDD
(2) --mV
RPU(NRST) NRST pull-up equivalent resistor
(1) -304560kΩ
VF(NRST) NRST input filtered pulse (3) ---50
ns
VNF(NRST) NRST input not filtered pulse (3 ) - 300 - -
1. Data based on characterization results, not tested in production.
2. 200 mV min.
3. Data guaranteed by design, not tested in production.







       
9''>9@
&
&
&
DLE
3XOOXSUHVLVWDQFH>N@
Electrical parameters STM8L151x4/6, STM8L152x4/6
96/142 DocID15962 Rev 14
Figure 32. Typical NRST pull-up current Ipu vs VDD
The reset network shown in Figure 33 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below the VIL(NRST) max. level specified
in Table 42. Otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discha rge current. If the NRST signal is used to reset the
external circuitry, at ten tio n mus t be paid to the char ge /d isch a rg e tim e of the ex te rn al
capacitor to fulfill the external devices reset timing conditions. The minimum recommended
capacity is 10 nF.
Figure 33. Recommended NRST pin configuration
           
3XOOXSFXUUHQW>$@






9''>9@
&
&
&
DLE
538
1567
([WHUQDO
UHVHW
FLUFXLW
2SWLRQDO X)
)LOWHU ,QWHUQDOUHVHW
670
069
9''
DocID15962 Rev 14 97/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
9.3.8 Communication interfaces
SPI1 - Serial peripheral interface
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under ambient temperature, fSYSCLK frequency and VDD supply voltage
conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 43. SPI1 characteristics
Symbol Parameter Conditions(1) Min Max Unit
fSCK
1/tc(SCK) SPI1 clock frequency Master mode 0 8 MHz
Slave mode 0 8
tr(SCK)
tf(SCK)
SPI1 clock rise and fall
time Capacitive load: C = 30 pF - 30
ns
tsu(NSS)(2) NSS setup time Slave mode 4 x 1/fSYSCLK -
th(NSS)(2) NSS hold time Slave mode 80 -
tw(SCKH)(2)
tw(SCKL)(2) SCK high and low time Master mode,
fMASTER = 8 MHz, fSCK= 4 MHz 105 145
tsu(MI) (2)
tsu(SI)(2) Data input setup time Master mode 30 -
Slave mode 3 -
th(MI) (2)
th(SI)(2) Data input ho ld time Master mode 15 -
Slave mode 0 -
ta(SO)(2)(3) Data output access time Slave mode - 3x 1/fSYSCLK
tdis(SO)(2)(4) Data output disable time Slave mode 30 -
tv(SO) (2) Data output valid time Slave mode (after enable edge) - 60
tv(MO)(2) Data output valid time Master mode (after enable
edge) -20
th(SO)(2)
Data output hold time Slave mode (after enable edge) 15 -
th(MO)(2) Master mode (after enable
edge) 1-
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.
Electrical parameters STM8L151x4/6, STM8L152x4/6
98/142 DocID15962 Rev 14
Figure 34. SPI1 timing diagram - slave mode and CPHA=0
Figure 35. SPI1 timing diagram - slave mode and CPHA=1(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DLF
^</ŶƉƵƚ
W,сϬ
DK^/
/EWhd
D/^K
KhdW hd
W,сϬ
D^ K hd
D^ /E
/ Khd
>^ /E
>^ Khd
WK>сϬ
WK>сϭ
/ /E
E^^ŝŶƉƵƚ
ƚ^h;E^^Ϳ
ƚĐ;^<Ϳ
ƚŚ;E^^Ϳ
ƚĂ;^KͿ
ƚǁ;^<,Ϳ
ƚǁ;^<>Ϳ
ƚǀ;^KͿ ƚŚ;^KͿ ƚƌ;^<Ϳ
ƚĨ;^<Ϳ
ƚĚŝƐ;^KͿ
ƚƐƵ;^/Ϳ
ƚŚ;^/Ϳ
DL
6&.,QSXW
&3+$
026,
,1387
0,62
287 3 87
&3+$
06 % 2 8 7
06% ,1
%, 7 28 7
/6% ,1
/6% 287
&32/ 
&32/ 
%,7 ,1
W68166 WF6&. WK166
WD62
WZ6&.+
WZ6&./
WY62 WK62 WU6&.
WI6&.
WGLV62
WVX6, WK6,
166LQSXW
DocID15962 Rev 14 99/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 36. SPI1 timing diagram - master mode(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
AI6
3#+/UTPUT
#0(!
-/3)
/54054
-)3/
).0 54
#0(!
-3 ").
- 3"/54
") 4).
,3"/54
,3").
#0/,
#0/,
" ) 4/54
.33INPUT
TC3#+
TW3#+(
TW3#+,
TR3#+
TF3#+
TH-)
(IGH
3#+/UTPUT
#0(!
#0(!
#0/,
#0/,
TSU-)
TV-/ TH-/
Electrical parameters STM8L151x4/6, STM8L152x4/6
100/142 DocID15962 Rev 14
I2C - Inter IC control interface
Subject to general operatin g conditions fo r VDD, fSYSCLK, and TA unless otherwise specified.
The STM8L I2C interface (I2C1) meets the re quirements of th e S ta ndard I2C communication
protocol described in the following table with the restriction mentioned below:
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
Note: For speeds around 200 kHz, the achieved speed can have a± 5% toleran ce
For other speed ranges, the achieved speed can have a± 2% tolerance
The above variations depend on the accuracy of the external components used.
Table 44. I2C characteristics
Symbol Parameter
Standard mode
I2CFast mode I2C(1)
1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).
Unit
Min(2)
2. Data based on standard I2C protocol requirement, not tested in production.
Max (2) Min (2) Max (2)
tw(SCLL) SCL clock low time 4.7 - 1.3 - μs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0 - 0 900
tr(SDA)
tr(SCL) SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL) SDA and SCL fall time - 300 - 300
th(STA) START condition hold time 4.0 - 0.6 -
μs
tsu(STA) Repeated START condition setup
time 4.7 - 0.6 -
tsu(STO) STOP condition setup time 4.0 - 0.6 - μs
tw(STO:STA) STOP to START condition time (bus
free) 4.7 - 1.3 - μs
CbCapacitive load for each bus line - 400 400 pF
DocID15962 Rev 14 101/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 37. Typical application with I2C bus and timing diagram 1)
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD
670/
069
5HSHDWHGVWDUW
6WDUW
6WRS
,&%86
6'$
6&/
9'' 9''
6'$
6&/
N N 

6WDUW
WI6'$ WU6'$ WVX6'$ WK6'$
WVX67$ WZ67267$
WVX672WK67$ WZ6&/+ WZ6&// WU6&/ WI6&/
Electrical parameters STM8L151x4/6, STM8L152x4/6
102/142 DocID15962 Rev 14
9.3.9 LCD controller (STM8L152xx only)
In the following table, data is guaranteed by design. Not tested in production.
VLCD external capacitor (STM8L152xx only)
The application can achieve a stabilized LCD reference voltage by connecting an external
capacitor CEXT to the VLCD pin. CEXT is specified in Table 45.
Table 45. LCD characteristics
Symbol Parameter Min Typ Max. Unit
VLCD LCD external voltage - - 3.6 V
VLCD0 LCD internal reference voltage 0 - 2.6 - V
VLCD1 LCD internal reference voltage 1 - 2.7 - V
VLCD2 LCD internal reference voltage 2 - 2.8 - V
VLCD3 LCD internal reference voltage 3 - 2.9 - V
VLCD4 LCD internal reference voltage 4 - 3.0 - V
VLCD5 LCD internal reference voltage 5 - 3.1 - V
VLCD6 LCD internal reference voltage 6 - 3.2 - V
VLCD7 LCD internal reference voltage 7 - 3.3 - V
CEXT VLCD external capacitance 0.1 - 2 µF
IDD Supply current(1) at VDD = 1.8 V
1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels
active, no LCD connected.
-3 -µA
Supply current(1) at VDD = 3 V - 3 - µA
RHN (2)
2. RHN is the total high value resistive network.
High value resistive network (low drive) - 6.6 - MΩ
RLN (3)
3. RLN is the total low value resistive network.
Low value resistive network (high drive) - 360 - kΩ
V33 Segment/Common higher level voltage - - VLCDx V
V23 Segment/Common 2/3 level voltage - 2/3VLCDx -V
V12 Segment/Common 1/2 level voltage - 1/2VLCDx -V
V13 Segment/Common 1/3 level voltage - 1/3VLCDx -V
V0Segment/Common lowest level voltage 0 - - V
DocID15962 Rev 14 103/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
9.3.10 Embedded reference voltage
In the following table, data is based on characterization results, not tested in production,
unless otherwise specified.
Table 46. Reference volt age characteristics
Symbol Parameter Conditions Min Typ Max. Unit
IREFINT Internal reference voltage
consumption - - 1.4 - µA
TS_VREFINT(1)(2) ADC sampling time when reading
the internal reference voltage --510µs
IBUF(2) Internal reference voltage buffer
consumption (used for ADC) - - 13.5 25 µA
VREFINT out Reference voltage output - 1.202(3) 1.224 1.242(3) V
ILPBUF(2) Internal reference voltage low
power buffer consumption (used for
comparators or output) - - 730 1200 nA
IREFOUT(2) Buffer output current(4) ---1µA
CREFOUT Reference voltage output load - - - 50 pF
tVREFINT Internal reference voltage startup
time --23ms
tBUFEN(2) Internal reference voltage buffer
startup time once enabled (1) ---10µs
ACCVREFINT Accuracy of VREFINT stored in the
VREFINT_Factory_CONV byte(5) ---± 5mV
STABVREFINT
Stability of VREFINT over
temperature -40 °C TA
125 °C -20 50 ppm/°C
Stability of VREFINT over
temperature 0 °C TA 50 °C --20ppm/°C
STABVREFINT Stability of VREFINT after 1000
hours ---TBD ppm
1. Defined when ADC output reaches its final value ±1/2LSB
2. Data guaranteed by Design. Not tested in production.
3. Tested in production at VDD = 3 V ±10 mV.
4. To guaranty less than 1% VREFOUT deviation.
5. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy.
Electrical parameters STM8L151x4/6, STM8L152x4/6
104/142 DocID15962 Rev 14
9.3.11 Temperature sensor
In the following table, data is based on characterization results, not tested in production,
unless otherwise specified.
9.3.12 Comparator characteristics
In the following tab le, data is guaranteed by design, not tested in production, unless
otherwise specified.
Table 47. TS characteristics
Symbol Parameter Min Typ Max. Unit
V125(1)
1. Tested in production at VDD = 3 V ±10 mV. The 8 LSB of the V90 ADC conversion result are stored in the
TS_Factory_CONV_V90 byte.
Sensor reference voltage at 90°C ±5 °C, 0.640 0.660 0.680 V
TLVSENSOR linearity with temperature - ±1 ±2 °C
Avg_slope (2) Average slope 1.59 1.62 1.65 mV/°C
IDD(TEMP)(2) Consumption - 3.4 6 µA
TSTART(2)(3)
2. Data guaranteed by design, not tested in production.
3. Defined for ADC output reaching its final value ±1/2LSB.
Tempe ratu re sensor startup time - - 10 µs
TS_TEMP(2) ADC sampling time when reading the
temperature sensor 10 - - µs
Table 48. Comparator 1 characteristics
Symbol Parameter Min Typ Max(1)
1. Based on characterization, not tested in production.
Unit
VDDA Analog supply voltage 1.6 5 - 3.6 V
TATemperature range -40 - 125 °C
R400K R400K value 300 400 500 kΩ
R10K R10K value 7.5 10 12.5
VIN Comparator 1 input voltage range 0.6 - VDDA V
VREFINT Internal reference voltage(2)
2. Tested in production at VDD = 3 V ±10 mV.
1.202 1.224 1.242
tSTART Comparator startup time - 7 10 µs
tdPropagation delay(3)
3. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-
inverting input set to the reference.
-310
Voffset Comparator offset error - ±3 ±10 mV
ICOMP1 Current consumption(4)
4. Comparator consumption only. Internal reference voltage not included.
- 160 260 nA
DocID15962 Rev 14 105/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
In the following table, data is guaranteed by design, not tested in production.
Table 49. Comparator 2 characteristics
Symbol Parameter Conditions Min Typ Max(1)
1. Based on characterization, not tested in production.
Unit
VDDA Analog supply voltage - 1.65 - 3.6 V
TATemperature range - -40 - 125 °C
VIN Comparator 2 input voltage range - 0 - VDDA V
tSTART Comparator startup time Fast mode - 15 20
µs
Slow mode - 20 25
td slow Propagation de l a y in slow mo de(2)
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-
inverting input set to the reference.
1.65 V VDDA
2.7 V -1.83.5
2.7 V VDDA
3.6 V -2.5 6
td fast Propaga ti o n de l a y in fa st mo de (2)
1.65 V VDDA
2.7 V -0.8 2
2.7 V VDDA
3.6 V -1.2 4
Voffset Comparator offset error - - ±4 ±20 mV
ICOMP2 Current consumption(3)
3. Comparator consumption only. Internal reference voltage not included.
Fast mode - 3.5 5 µA
Slow mode - 0.5 2
Electrical parameters STM8L151x4/6, STM8L152x4/6
106/142 DocID15962 Rev 14
9.3.13 12-bit DAC characteristics
In the following table, data is guaranteed by design, not tested in production.
Table 50. DAC characteristics
Symbol Parame ter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.8 - 3.6 V
VREF+ Reference supply voltage - 1.8 - VDDA
IVREF Current consumption on VREF+
supply
VREF+ = 3.3 V, no
load, middle code
(0x800) - 130 220
µA
VREF+ = 3.3 V, no
load, worst code
(0x000) - 220 350
IVDDA Current consumption on VDDA
supply
VDDA = 3.3 V, no
load, middle code
(0x800) - 210 320
VDDA = 3.3 V, no
load, worst code
(0x000) - 320 520
TATemperature range - -40 - 125 °C
RLResistive load(1) (2) DACOUT buffer ON 5 - - kΩ
ROOutput impedance DACOUT buffer OFF - 8 10 kΩ
CLCapacitive load(3) ---50pF
DAC_OUT DAC_OUT vo ltage(4) DACOUT buffer ON 0.2 - VDDA-0.2 V
DACOUT buffer OFF 0 - VREF+ -1 LSB V
tsettling
Settling time (full scale: for a 12-
bit input code transition between
the lowest and the highest input
codes when DAC_OUT reaches
the final value ±1LSB)
RL 5 kΩ, CL 50 pF - 7 12 µs
Update rate
Max frequency for a correct
DAC_OUT (@95%) change
when small variation of the input
code (from code i to i+1LSB).
RL 5 kΩ, CL 50 pF -1Msps
tWAKEUP
Wakeup time from OFF state.
Input code between lowest and
highest possible codes. RL 5 kΩ, CL 50 pF - 9 15 µs
PSRR+ Power supply rejection ratio (to
VDDA) (static DC measurement)RL5 kΩ, CL 50 pF --60 -35 dB
1. Resistive load between DACOUT and GNDA.
2. Output on PF0 (48-pin package only).
3. Capacitive load at DACOUT pin.
4. It gives the output excursion of the DAC.
DocID15962 Rev 14 107/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
In the following table, data is based on characterization results, not tested in production.
In the following table, data is guaranteed by design, not tested in production.
Table 51. DAC accuracy
Symbol Parameter Conditions Typ Max Unit
DNL Differential non linearity(1)
RL 5 kΩ, CL 50 pF
DACOUT buffer ON(2) 1.5 3
12-bit
LSB
No load
DACOUT buffer OFF 1.5 3
INL Integral no n linearity(3)
RL 5 kΩ, CL 50 pF
DACOUT buffer ON(2) 24
No load
DACOUT buffer OFF 24
Offset Offset error(4)
RL 5 kΩ, CL 50 pF
DACOUT buffer ON(2) ±10 ±25
No load
DACOUT buffer OFF ±5 ±8
Offs e t1 Offset error at Code 1 (5) DACOUT buffer OFF ±1.5 ± 5
Gain error Gain error(6)
RL 5 kΩ, CL 50 pF
DACOUT buffer ON(2) +0.1/-0.2 +0.2/-0.5 %
No load
DACOUT buffer OFF +0/-0.2 +0/-0.4
TUE Total unadjusted error
RL 5 kΩ, CL 50 pF
DACOUT buffer ON(2) 12 30 12-bit
LSB
No load
DACOUT buffer OFF 812
1. Difference between two consecutive codes - 1 LSB.
2. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be
applied.
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023.
4. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.
5. Difference between the value measured at Code (0x001) and the ideal value.
6. Difference between the ideal slope of the transfer function and the measured slope computed from Code 0x000 and 0xFFF
when buffer is ON, and from Code giving 0.2 V and (VDDA -0.2) V when buffer is OFF.
Table 52. DAC output on PB4-PB5-PB6(1)
1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing
interface I/O switch registers.
Symbol Parameter Conditions Max Unit
Rint Internal resistance
between DAC output and
PB4-PB5-PB6 output
2.7 V < VDD < 3.6 V 1.4
kΩ
2.4 V < VDD < 3.6 V 1.6
2.0 V < VDD < 3.6 V 3.2
1.8 V < VDD < 3.6 V 8.2
Electrical parameters STM8L151x4/6, STM8L152x4/6
108/142 DocID15962 Rev 14
9.3.14 12-bit ADC1 characteristics
In the following table, data is guaranteed by design, not tested in production.
Table 53. ADC1 characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.8 - 3.6 V
VREF+ Reference suppl y
voltage
2.4 V VDDA 3.6 V 2.4 - VDDA V
1.8 V VDDA 2.4 V VDDA V
VREF- Lower reference voltage - VSSA V
IVDDA Current on the VDDA
input pin - - 1000 1450 µA
IVREF+ Current on the VREF+
input pin
--
400
700
(peak)(1) µA
-- 450
(average)(1) µA
VAIN Conversi on voltage
range -0(2) -VREF+ V
TATemperature range - -40 - 125 °C
RAIN External resistance on
VAIN on PF0 fa st channel - - 50(3) kΩ
on all other channels - -
CADC Internal sample and hold
capacitor on PF0 fast channel - 16 -pF
on all other channels - -
fADC ADC sampling clock
frequency
2.4 V VDDA 3.6 V
without zooming 0.320 - 16 MHz
1.8 V VDDA 2.4 V
with zooming 0.320 - 8 MHz
fCONV 12-bit conversi on rate
VAIN on PF0 fast
channel --
1(4)(5) MHz
VAIN on all other
channels --
760(4)(5) kHz
fTRIG External trigger
frequency ---
tconv 1/fADC
tLAT External trigger latency - - - 3.5 1/fSYSCLK
DocID15962 Rev 14 109/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
tSSampling time
VAIN on PF0 fast
channel
VDDA < 2.4 V 0.43(4)(5) --µs
VAIN on PF0 fast
channel
2.4 V VDDA 3.6 V 0.22(4)(5) --µs
VAIN on slow channels
VDDA < 2.4 V 0.86(4)(5) --µs
VAIN on slow channels
2.4 V VDDA 3.6 V 0.41(4)(5) --µs
tconv 12-bit conversion time - 12 + tS 1/fADC
16 MHz 1(4) µs
tWKUP Wakeup time from OFF
state ---3µs
tIDLE(6) Time before a new
conversion
TA = +25 °C - - 1(7) s
TA = +70 °C - - 20(7) ms
TA = +125 °C - - 2(7) ms
tVREFINT Internal reference
voltage startup time ---
refer to
Table 46 ms
1. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at
1Msps
2. VREF- or VDDA must be tied to ground.
3. Guaranteed by design, not tested in production.
4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ.
5. Value obtained for continuous conversion on fast channel.
6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE.
7. The tIDLE maximum value is on the “Z” revision code of the device.
Table 53. ADC1 chara ct eris t ic s (con t in ue d )
Symbol Parameter Conditions Min Typ Max Unit
Electrical parameters STM8L151x4/6, STM8L152x4/6
110/142 DocID15962 Rev 14
In the following three tables, data is guaranteed by char ac te rization result, not tested in
production.
Table 54. ADC1 accuracy with VDDA = 3.3 V to 2.5 V
Symbol Parameter Conditions Typ Max Unit
DNL Differential non linearity
fADC = 16 MHz 1 1.6
LSB
fADC = 8 MHz 1 1.6
fADC = 4 MHz 1 1.5
INL Integral non linearity
fADC = 16 MHz 1.2 2
fADC = 8 MHz 1.2 1.8
fADC = 4 MHz 1.2 1.7
TUE Total unadjusted error
fADC = 16 MHz 2.2 3.0
fADC = 8 MHz 1.8 2.5
fADC = 4 MHz 1.8 2.3
Offset Offset error
fADC = 16 MHz 1.5 2
LSB
fADC = 8 MHz 1 1.5
fADC = 4 MHz 0.7 1.2
Gain Gain error
fADC = 16 MHz
11.5fADC = 8 MHz
fADC = 4 MHz
Table 55. ADC1 accuracy with VDDA = 2.4 V to 3.6 V
Symbol Parameter Typ Max Unit
DNL Differential non linearity 1 2 LSB
INL Integral non linearity 1.7 3 LSB
TUE Total unadjusted error 24LSB
Offset Offset error 1 2 LSB
Gain Gain error 1.5 3 LSB
Table 56. ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V
Symbol Parameter Typ Max Unit
DNL Differential non linearity 1 2 LSB
INL Integral non linearity 23LSB
TUE Total unadjusted error 35LSB
Offset Offset error 2 3 LSB
Gain Gain error 2 3 LSB
DocID15962 Rev 14 111/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 38. ADC1 accuracy characteristics
Figure 39. Typical connection diagram using the ADC
1. Refer to Table 53 for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
EO
EG
1LSB
IDEAL
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567 4093 4094 4095 4096
(1)
(2)
ET
ED
EL
(3)
VDDA
VSSA
ai14395b
VREF+
4096 (or depending on package)]
VDDA
4096
[1LSBIDEAL =
DLI
670
,/ Q$
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
9
$,1
5
$,1

$,1[
9
''
9
7
9
9
7
9
&
SDUDVLWLF

5
$'&
&
$'&
Electrical parameters STM8L151x4/6, STM8L152x4/6
112/142 DocID15962 Rev 14
Figure 40. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 41 or Figure 42,
depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF
capacitors should be used. They should be placed as close as possible to the chip.
ADC clock
Sampling (n cycles) Conversion (12 cycles)
Iref+
300µA
700µA
Ta bl e 57 . R AIN max for fADC = 16 MHz(1)
Ts
(cycles) Ts
(µs)
RAIN max (kohm)
Slow channels Fast channels
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V 1.8 V < VDDA < 2.4 V
4 0.25 Not allowed Not allowed 0.7 Not allowed
9 0.5625 0.8 Not allowed 2.0 1.0
16 1 2.0 0.8 4.0 3.0
24 1.5 3.0 1.8 6.0 4.5
48 3 6.8 4.0 15.0 10.0
96 6 15.0 10.0 30.0 20.0
192 12 32.0 25.0 50.0 40.0
384 24 50.0 50.0 50.0 50.0
1. Guaranteed by design, not tested in production.
DocID15962 Rev 14 113/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Figure 41. Power supply and reference decoupling (VREF+ not connected to VDDA)
Figure 42. Power supply and reference decoupling (VREF+ connected to VDDA)
6XSSO\
([WHUQDO
UHIHUHQFH
670/
95()
9''$
966$95()
)Q)
)Q)
DLF
670/
6XSSO\
DLF
)Q)
95()9''$
95()9''$
Electrical parameters STM8L151x4/6, STM8L152x4/6
114/142 DocID15962 Rev 14
9.3.15 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two el ectromagnetic event s until a failure o ccurs (indica ted by the
LEDs).
ESD: Electrostatic discharge (p ositive and n egati ve) is applie d on all pins of the device
until a functional disturbance oc curs. This test conforms with the IEC 61000 standard.
FTB: A burst of fa st transient volt age (positive and negative) is a pplied to V DD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table be low based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that go od EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials
Most of the common failures (unexpected reset and pr ogram counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpe cted beh avior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC61967-2 which specifies the board and the loading of each pin.
Tab le 58 . EMS data
Symbol Parameter Conditions Level/
Class
VFESD Vol tage limits to be applied on
any I/O pin to induce a functional
disturbance
VDD = 3.3 V, TA = +25 °C,
fCPU= 16 MHz,
conforms to IEC 61000 3B
VEFTB
Fast transient voltage burst limits
to be applied through 100 pF on
VDD and VSS pins to induce a
functiona l disturbance
VDD = 3.3 V, T A = +25 °C,
fCPU = 16 MHz,
conforms to IEC 61000
Using HSI 4A
Using HSE 2B
DocID15962 Rev 14 115/142
STM8L151x4/6, STM8L152x4/6 Electrical parameters
115
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on th e number of su pply pin s in the device (3 p a rts*(n+1) supply pin). Two models
can be simulated: human body model and charge device model. This test conforms to the
JESD22-A114A/A115A standard.
Static latch-up
LU: 3 complementary static tests are required on 6 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output a nd configurable I/O pi n) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more det ails,
refer to the application note AN1181.
Ta ble 59 . EMI data (1)
1. Not tested in production.
Symbol Parameter Conditions Monitored
frequency band
Max vs. Unit
16 MHz
SEMI Peak level
VDD = 3.6 V,
TA = +25 °C,
LQFP32
conforming to
IEC61967-2
0.1 MHz to 30 MHz -3
dBμV30 MHz to 130 MHz 9
130 MHz to 1 GHz 4
SAE EMI Level 2 -
Tabl e 60 . ESD ab so lu t e maximu m ra ti ng s
Symbol Ratings Conditions Maximum
value (1)
1. Data based on characterization results, not tested in production.
Unit
VESD(HBM) Electrostatic discharge voltage
(human body model) TA = +25 °C 2000 V
VESD(CDM) Electrostatic discharge voltage
(charge device model) 500
Table 61. Electrical sensitivities
Symbol Parameter Class
LU Static latch-up cla s s II
Package information STM8L151x4/6, STM8L152x4/6
116/142 DocID15962 Rev 14
10 Package information
10.1 ECOPACK
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environment al compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
10.2 LQFP48 package information
Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
"?-%?6
0).
)$%.4)&)#!4)/.
CCC #
#
$
MM
'!5'%0,!.%
B
!
!
!
C
!
,
,
$
$
%
%
%
E







3%!4).'
0,!.%
+
DocID15962 Rev 14 117/142
STM8L151x4/6, STM8L152x4/6 Package information
136
Table 62. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
Package information STM8L151x4/6, STM8L152x4/6
118/142 DocID15962 Rev 14
Figure 44. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
  













AID

DocID15962 Rev 14 119/142
STM8L151x4/6, STM8L152x4/6 Package information
136
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 45. LQFP48 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
069
3URGXFW
LGHQWLILFDWLRQ
3LQLGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
45.-
$5
Package information STM8L151x4/6, STM8L152x4/6
120/142 DocID15962 Rev 14
10.3 UFQFPN48 package information
Figure 46. UFQFPN48 - 48 -lea d, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pit ch quad flat
package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
$%B0(B9
'
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
((
'<
'
(
([SRVHGSDG
DUHD
=

'HWDLO=
5W\S

/
&[
SLQFRUQHU
$
6HDWLQJ
SODQH
$
E
H
GGG
'HWDLO<
7
DocID15962 Rev 14 121/142
STM8L151x4/6, STM8L152x4/6 Package information
136
Figure 47. UFQFPN48 - 48 -lea d, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pit ch quad flat
package recommended footprint
1. Dimensions are expressed in millimeters.
Table 63. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031




 







!"?&0?6


 



Package information STM8L151x4/6, STM8L152x4/6
122/142 DocID15962 Rev 14
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 48. UFQFPN48 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
069
3URGXFW
LGHQWLILFDWLRQ 
3LQLGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
-
$6
DocID15962 Rev 14 123/142
STM8L151x4/6, STM8L152x4/6 Package information
136
10.4 LQFP32 package information
Figure 49. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
1. Drawing is not to scale.
$
$
$
%
%
%





!
,
,
+
!
!
!
C
B
'!5'%0,!.%
MM
3%!4).'
0,!.%
#
0).
)$%.4)&)#!4)/.
CCC #
7@.&@7
E
Package information STM8L151x4/6, STM8L152x4/6
124/142 DocID15962 Rev 14
Table 64. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0 .0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.100 - - 0.0039
DocID15962 Rev 14 125/142
STM8L151x4/6, STM8L152x4/6 Package information
136
Figure 50. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 51. LQFP32 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
6?&0?6
















069
3URGXFW
LGHQWLILFDWLRQ 
3LQLGHQWLILHU 5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
45.-
,5
Package information STM8L151x4/6, STM8L152x4/6
126/142 DocID15962 Rev 14
10.5 UFQFPN32 package information
Figure 52. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline
1. Drawing is not to scale.
!"?-%?6

3,1,GHQWLILHU
6($7,1*
3/$1(
&
&
GGG
$
$
$
H
E
'
E
(
/
H
( (
' /
'
DocID15962 Rev 14 127/142
STM8L151x4/6, STM8L152x4/6 Package information
136
Figure 53. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint
1. Dimensions are expressed in millimeters.
Table 65. UFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
A3 - 0.152 - - 0.0060 -
b 0.180 0.230 0.280 0.0071 0.0091 0.0110
D 4.900 5.000 5.100 0.1929 0.1969 0.2008
D1 3.400 3.500 3.600 0.1339 0.1378 0.1417
D2 3.400 3.500 3.600 0.1339 0.1378 0.1417
E 4.900 5.000 5.100 0.1929 0.1969 0.2008
E1 3.400 3.500 3.600 0.1339 0.1378 0.1417
E2 3.400 3.500 3.600 0.1339 0.1378 0.1417
e - 0.500 - - 0.0197 -
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd - - 0.080 - - 0.0031
$%B)3B9
















Package information STM8L151x4/6, STM8L152x4/6
128/142 DocID15962 Rev 14
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 54. UFQFPN32 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
069
3URGXFW
LGHQWLILFDWLRQ
'RWSLQ
5HYLVLRQFRGH
'DWHFRGH
:88
3
6WDQGDUG67ORJR
-,
DocID15962 Rev 14 129/142
STM8L151x4/6, STM8L152x4/6 Package information
136
10.6 UFQFPN28 package information
Figure 55. UFQFPN28 - 28 -lea d, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pit ch quad flat
package outline
1. Drawing is not to scale.
Table 66. UFQFPN28 - 28-lead, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechan ical data(1)
Symbol millimeters inches
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 - 0.000 0.050 - 0.0000 0.0020
D 3.900 4.000 4.100 0.1535 0.1575 0.1614
D1 2.900 3.000 3.100 0.1142 0.1181 0.1220
E 3.900 4.000 4.100 0.1535 0.1575 0.1614
E1 2.900 3.000 3.100 0.1142 0.1181 0.1220
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
L1 0.250 0.350 0.450 0.0098 0.0138 0.0177
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
!"?-%?6
'
(
'
(
'HWDLO=
'HWDLO<
'
Package information STM8L151x4/6, STM8L152x4/6
130/142 DocID15962 Rev 14
Figure 56. UFQFPN28 - 28 -lea d, 4 x 4 mm, 0.5 mm pitch, ultra thin fine pit ch quad flat
package recommended footprint
1. Dimensions are expressed in millimeters.
1. Values in inches are converted from mm and rounded to 4 decimal digits.






 


!"?&0?6
DocID15962 Rev 14 131/142
STM8L151x4/6, STM8L152x4/6 Package information
136
Device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Figure 57. UFQFPN28 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
069
3URGXFW
LGHQWLILFDWLRQ
'RWSLQ
5HYLVLRQFRGH
'DWHFRGH
:88 3
(
Package information STM8L151x4/6, STM8L152x4/6
132/142 DocID15962 Rev 14
10.7 WLCSP28 package information
Figure 58. W LC SP2 8 - 28 -pin , 1.7 0 3 x 2.8 4 1 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
$$0B0(B9
%XPSVLGH
'LH,'
1RWFK
6LGHYLHZ
'HWDLO$
:DIHUEDFNVLGH
$EDOO
ORFDWLRQ
%XPS
HHH= $
'HWDLO$
URWDWHGE\
DDD
'
6HDWLQJSODQH
$
$
;<
;
=
=EEE
E[
(
H
H
H
H
*
)
$
$
)URQWYLHZ
FFF
GGG
=
=
;<
DocID15962 Rev 14 133/142
STM8L151x4/6, STM8L152x4/6 Package information
136
Device marking
The following figu re gives an example of topside marking orienta tion versus ball A1 identifier
location.
Table 67. WLCSP28 - 28-pin, 1.703 x 2.841 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.540 0.570 0.600 0.0213 0.0224 0.0236
A1 - 0.190 - - 0.0075 -
A2 - 0.380 - - 0.0150 -
b(2)
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.240 0.270 0.300 0.0094 0.0106 0.0118
D 1.668 1.703 1.738 0.0657 0.0670 0.0684
E 2.806 2.841 2.876 0.1105 0.1119 0.1132
e - 0.400 - - 0.0157 -
e1 - 1.200 - - 0.0472 -
e2 - 2.400 - - 0.0945 -
F - 0.251 - - 0.0099 -
G - 0.222 - - 0.0087 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
Package information STM8L151x4/6, STM8L152x4/6
134/142 DocID15962 Rev 14
Figure 59. WLCSP28 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
Samples to run qualification activity.
069
5HYLVLRQFRGH
'DWHFRGH
3URGXFW
LGHQWLILFDWLRQ
:88 3
-
'RWEDOO

DocID15962 Rev 14 135/142
STM8L151x4/6, STM8L152x4/6 Package information
136
10.8 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 18: General operating conditions on page 66.
The maximum chip-junction temperature, TJmax, in degree Celsius, may b e calculated using
the following equation:
TJmax = TAmax + (PDmax x Θ
JA)
Where:
TAmax is the maximum ambient temperature in °C
•Θ
JA is the package junction-to-ambient thermal resistance in °C/W
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/Omax represents the maximum power dissipation on output pins
Where:
PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*I OH),
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in
the application.
Table 68. Thermal characteristics(1)
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
Symbol Parameter Value Unit
Θ
JA Thermal resistance junction-ambient
LQFP 48- 7 x 7 mm 65 °C/W
Θ
JA Thermal resistance junction-ambient
UFQFPN 48- 7 x 7mm 32 °C/W
Θ
JA Thermal resistance junction-ambient
LQFP 32 - 7 x 7 mm 59 °C/W
Θ
JA Thermal resistance junction-ambient
UFQFPN 32 - 5 x 5 mm 38 °C/W
Θ
JA Thermal resistance junction-ambient
UFQFPN28 - 4 x 4 mm 118 °C/W
Θ
JA Thermal resistance junction-ambient
WLCSP28 70 °C/W
Part numbering STM8L151x4/6, STM8L152x4/6
136/142 DocID15962 Rev 14
11 Part numbering
For a list of available o ptions (memory, package, and so on) or for fu rther information on any
aspect of this device , ple as e contact your nearest ST sales office.
Figure 60. Medium-density STM8L15x ordering information scheme
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further
information on any aspect of this device, please contact the ST sales office nearest to you.
STM8 L 151 C 4 U 6 TR
Product class
STM8 microcontroller
Pin count
C = 48 pins
K = 32 pins
G = 28 pins
Example:
Sub-family type
151 = Ultra-low-power
152 = Ultra-low-power with LCD
Family type
L = Low power
Temperatu re range
3 = - 40 °C to 125 °C
7 = - 40 °C to 105 °C
6 = - 40 °C to 85 °C
Program memory size
4 = 16 Kbyte
6 = 32 Kbyte
Package
U = UFQFPN
T = LQFP
Y = WLCSP
Delivery
TR = Tape & Reel
DocID15962 Rev 14 137/142
STM8L151x4/6, STM8L152x4/6 Revision history
141
12 Revision history
Table 69. Document revision history
Date Revision Changes
06-Aug-2009 1 Initial release
10-Sep-2009 2
Updated peripheral naming throughout document.
Added Figure: STM8L151Cx 48-pin pinout (without
LCD).
Added capacitive sensing channels in Features.
Updated PA7, PC0 and PC1 in Table: Medium density
STM8L15x pin description.
Changed CLK and REMAP register names.
Changed descripti on of WDGHALT.
Added typical power consumption values in Table 18 to
Table 26.
Corrected VIH max value.
11-Dec-2009 3
Added WLCSP28 package
Modified Figure: Memory map and added 2 notes.
Modified Low power run mode in Section: Low power
modes.
Added Section: Unique ID.
Modified Table: Interrupt mapping (added reserved area
at address 0x00 8008)
Modified OPT4 option bits in Table: Option byte
addresses.
Table: Option byte description: modified OPT0
description (“disable” instead of “enable”) and OPT1
description
Added OPTBL option bytes
Modified Section: Electrical parameters.
02-Apr-2010 4
Changed title of the document (STM8L151x4,
STM8L151x6, STM8L152x4, STM8L152x6)
Changed pinout (VSS1, VDD1, VSS2, VDD 2 instead of
VSS, VDD, VSSIO, VDDIO
Changed packages
Changed first page
Modified note 1 in Table: Medium density STM8L15x pin
description.
Added note to PA7, PC0, PC1 and PE0 in Table:
Medium density STM8L15x pin description.
Modified Figure: Memory map.
Modified Table: WLCSP28 – 28-pin wafer leve l chip
scale package, package mechanical data (min and max
columns swapped)
Modified Figure: WLCSP28 – 28-p in wafer level chip
scale package, package outline (A1 ball location)
Renamed Rm, Lm and Cm
EXTI_CONF replaced with EXTI_CONF1 in Table:
General hardware register map.
Updated Section: Electrical parameters.
Revision history STM8L151x4/6, STM8L152 x4/6
138/142 DocID15962 Rev 14
23-Jul-2010 5
Modified Introduction and Description.
Modified Table: Legend/abbreviation for table 5 and
Table: Medium den sity STM8L15x pin description (for
PA0, PA1, PB0 and PB4 and for reset states in the
floating input column)
Modified Figure: Low density STM8L151xx device block
diagram, Figure: Low density STM8L15x clock tree
diagram, Figure: Low power modes and Figure : Low
power real-time clock.
Modified CLK_PCKENR2 and CLK_HSICALR reset
values in Table: General hardware register map.
Modified notes below Figure: Memory map.
Modified PA_CR1 reset value.
Modified reset values for Px_IDR registers.
Modified Table: V o lt age characteristics and Table:
Current characteristics.
Modified VIH in Table: I/O static characteristics.
Modified Table: Total current consumption in Wait mode.
Modified Figure Ty pical application with I2C bus and
timing diagram 1).
Modified IL value in Figure: Typica l connection diagram
using the ADC1.
Modified RH and RL in Ta ble: LCD characteristics.
Added graphs in Section: Electrical parameters.
Modified note 3 below Table: Reference voltage
characteristics.
Modified note 1 below Table: TS characteristics.
Changed VESD(CDM) value in Table: ESD absol ute
maximum ratings.
Updated notes for UFQFPN32 and UFQFPN48
packages.
11-Mar-2011 6
Modified note on true open dra in I/Os and I/O level
columns in Table: Medium density STM8L15x pin
description.
Remapping option removed for USART1_TX,
USART1_RX, and USART1_CK on PC2, PC3 and PC4
in Table: Medium density STM8L15x pin description.
Modified IDWDG_KR reset value in Table: General
hardware register map.
Replaced VREF_OUT with VREFINT and TIMx_TRIG
with TIMx_ETR.
Added Table: Factory conversion registers. Modified
reset values for TIM1_DCR1, IWDG_ K R, RTC_DR1,
RTC_DR2, RTC_SPRERH, RTC_SPRERL,
RTC_APRER, RT C_WUTRH, and R TC_WUTRL in
Table: General hardware register map.
Added notes to certain values in Section: Embedded
reference voltage and Section: Temperature sensor.
Table 69. Document revision history (continued)
Date Revision Changes
DocID15962 Rev 14 139/142
STM8L151x4/6, STM8L152x4/6 Revision history
141
11-Mar-2011 6 cont’d
Modified OPT1 and OPT4 description in Table: Option
byte description.
Updated Section: Electrical parameters “standard I/Os”
replaced with “high sink I//Os”.
Updated RHN and RHN descriptions in Table: LCD
characteristics.
Added Tape & Reel option to Figure: Medium density
STM8L15x ordering information scheme.
06-Sep-2011 7
Features: updated bullet point concerning capacitive
sensing channels.
Section: Low power mo de s: updated Wait mode and
Halt mode definitions.
Section: Clock management: added ‘kHz’ to 32.768 in
the ‘System clock sources bullet point’.
Section: System configuration controller and routing
interface: replaced last sentence concerning
management of charge transfer acquisition sequence.
Added Section: Touchsensing
Section Development support: updated the Bootloader.
Table: Medium den sity STM8L15x pin description:
added LQFP32 to second column (same pinout as
UFQFPN32); “Timer X - trigger” replaced by “Timer X -
external trigger”; added note at the end of this table
concerning the slope control of all GPIO pins.
Table: Interrupt mapping: merged footnotes 1 and 2;
updated some of the source blocks an d descriptions.
Section: Option bytes: replaced PM0051 by PM0054
and UM0320 by UM0470.
Table: Option byte description: replaced the factory
default setting (0xAA) for OPT0.
NRST pin: updated text above the Figure; updated
Figure: Recommended NRST pin confi guration.
Table: TS characteristics: removed typ and max values
for the parameter TS_TEMP; added min value for same.
Table: Comparator 1 characteristics: added typ value for
‘Comparator offset error’; added footnote 1.
Table: Comparator 2 characteristics: updated tSTART,
tdslow, tdfast, Voffset, ICOMP2; added footnotes 1. and 3.
Table: DAC characteristics: updated max value for
DAC_OUT voltage (DACOUT buffer ON).
Section: 12-bit ADC1 characteristics: updated.
Replaced Figure: UFQFPN48 7 x 7 mm, 0.5 mm pitch,
packag e outline and Figure: UFQFPN48 7 x 7 mm
recommended fo ot print (dimen si on s in m m) .
Figure: Medium density STM8L15x ordering information
scheme: removed ‘TR = Tape & Reel”.
Table 69. Document revision history (continued)
Date Revision Changes
Revision history STM8L151x4/6, STM8L152 x4/6
140/142 DocID15962 Rev 14
10-Feb-2012 8
Features: replaced “’Dynamic consumption’ with
‘Consumption’.
Table: Medium den sity STM8L15x pin description:
updated OD column of NRST/PA1 pin.
Table: Interrupt mapping: removed tamper 1, tamper 2
and tamper 3.
Figure: UFQFPN48 package outline: replaced.
Table: UFQFPN48 package mechanical data: updated
title.
Figure: UFQFPN32 - 32-lead ultra thin fine pitch quad
flat no-lead package outline (5 x 5): removed the line
over A1.
Figure: UFQFPN28 package outline: replaced to
improve readability of UFQFPN28 package dimensions
A, L, and L1.
Figure: Recommended UFQFPN28 footprint
(dimensions in mm): updated title.
Figure: WLCSP28 package outline: updated title.
Table: WLCSP28 package mechanical data: updated
title.
02-Mar-2012 9
Updated Table: UFQFPN48 package mechanical data.
Updated Figure: UFQFPN28 package outline, Figure:
Recommended UFQFPN28 footprint (d imensions in
mm) and Table: UFQFPN28 package mechanical data.
Table: WLCSP28 package mechanical data: Min and
Max values removed for e1, e2, e3, e4, F and G
dimensions.
30-Mar-2012 10
Figure: SPI1 timing diagram - master mode(1): changed
SCK signals to ‘output’ instead of ‘input’.
Figure: Medium density STM8L15x ordering information
scheme: added ‘Tape & reel’ to package section.
26-Apr-2012 11 Updated Table: WLCSP28 package mechanical data.
12-Nov-2013 12
Updated Table: WLCSP28 package mechanical data.
Updated Table: Medium-density STM8L15x pin
description.
Updated Table 2: Medium density STM8L15x low power
device features and peripheral counts.
Added Figure: Recommended LQFP48 fo otprint and
Figure: Recommended LQFP32 footprint.
Table 69. Document revision history (continued)
Date Revision Changes
DocID15962 Rev 14 141/142
STM8L151x4/6, STM8L152x4/6 Revision history
141
12-Aug-2013 13
Changed the default setting value of OPT5 to 0x00 in
Table: Option byte addresses.
Added tTEMP ‘BOR detector enable d’ and ‘disabled’
characteristics in Table: Embedde d reset and power
control block characteristics.
Updated E2, D2 and ddd in Table: UFQFPN48 package
mechanica l data
21-Apr-2015 14
Added:
Figure 45: LQFP48 marking example (package top
view),
Figure 48: UFQFPN48 marking example (package top
view),
Figure 51: LQFP32 marking example (package top
view),
Figure 54: UFQFPN32 marking example (package top
view),
Figure 57: UFQFPN28 marking example (package top
view),
Figure 59: WLCSP28 marking example (package top
view).
Table 69. Document revision history (continued)
Date Revision Changes
STM8L151x4/6, STM8L152x4/6
142/142 DocID15962 Rev 14
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelec tronics NV and its subs idiaries (“ST”) reserve th e right to make changes, corrections, enha ncements, modifica tions, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST produ cts are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchaser s’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different fr om the information set forth herein shall void any warranty granted by ST for such produ ct.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replac es information previously supplied in any prior versions of th is document.
© 2015 STMicroelectronics – All rights reserved