K20P144M120SF3
K20 Sub-Family
Supports the following:
MK20FX512VLQ12,
MK20FN1M0VLQ12,
MK20FX512VMD12,
MK20FN1M0VMD12
Key features
Operating Characteristics
Voltage range: 1.71 to 3.6 V
Flash write voltage range: 1.71 to 3.6 V
Temperature range (ambient): -40 to 105°C
Performance
Up to 120 MHz Arm® Cortex®-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
Memories and memory interfaces
Up to 1024 KB program flash memory on non-
FlexMemory devices
Up to 512 KB program flash memory on
FlexMemory devices
Up to 512 KB FlexNVM on FlexMemory devices
16 KB FlexRAM on FlexMemory devices
Up to 128 KB RAM
Serial programming interface (EzPort)
FlexBus external bus interface
NAND flash controller interface
Clocks
3 to 32 MHz crystal oscillator
32 kHz crystal oscillator
Multi-purpose clock generator
System peripherals
Multiple low-power modes to provide power
optimization based on application requirements
Memory protection unit with multi-master
protection
32-channel DMA controller, supporting up to 128
request sources
External watchdog monitor
Software watchdog
Low-leakage wakeup unit
Security and integrity modules
Hardware CRC module to support fast cyclic
redundancy checks
128-bit unique identification (ID) number per chip
Human-machine interface
Low-power hardware touch sensor interface (TSI)
General-purpose input/output
Analog modules
Four 16-bit SAR ADCs
Programmable gain amplifier (PGA) (up to x64)
integrated into each ADC
Two 12-bit DACs
Four analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
Voltage reference
Timers
Programmable delay block
Two 8-channel motor control/general purpose/PWM
timers
Two 2-channel quadrature decoder/general purpose
timers
Periodic interrupt timers
16-bit low-power timer
Carrier modulator transmitter
Real-time clock
Communication interfaces
USB high-/full-/low-speed On-the-Go controller
with ULPI interface
USB full-/low-speed On-the-Go controller with on-
chip transceiver
USB Device Charger detect (USBDCD)
Two Controller Area Network (CAN) modules
Three SPI modules
Two I2C modules
Six UART modules
Secure Digital Host Controller (SDHC)
Two I2S modules
NXP Semiconductors Document Number K20P144M120SF3
Data Sheet: Technical Data Rev. 7, 02/2018
NXP reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
K20 Sub-Family, Rev. 7, 02/2018
2 NXP Semiconductors
Table of Contents
1 Ordering parts.......................................................................................4
1.1 Determining valid orderable parts............................................... 4
2 Part identification................................................................................. 4
2.1 Description...................................................................................4
2.2 Format..........................................................................................4
2.3 Fields............................................................................................4
2.4 Example....................................................................................... 5
3 Terminology and guidelines.................................................................5
3.1 Definitions................................................................................... 5
3.2 Examples......................................................................................5
3.3 Typical-value conditions..............................................................6
3.4 Relationship between ratings and operating requirements.......... 6
3.5 Guidelines for ratings and operating requirements......................7
4 Ratings..................................................................................................7
4.1 Thermal handling ratings.............................................................7
4.2 Moisture handling ratings............................................................ 8
4.3 ESD handling ratings...................................................................8
4.4 Voltage and current operating ratings..........................................8
5 General................................................................................................. 9
5.1 AC electrical characteristics........................................................ 9
5.2 Nonswitching electrical specifications........................................ 9
5.2.1 Voltage and current operating requirements............... 9
5.2.2 LVD and POR operating requirements....................... 10
5.2.3 Voltage and current operating behaviors.....................11
5.2.4 Power mode transition operating behaviors................ 13
5.2.5 Power consumption operating behaviors.....................14
5.2.6 EMC radiated emissions operating behaviors............. 17
5.2.7 Designing with radiated emissions in mind.................18
5.2.8 Capacitance attributes..................................................18
5.3 Switching specifications.............................................................. 18
5.3.1 Device clock specifications......................................... 18
5.3.2 General switching specifications.................................19
5.4 Thermal specifications.................................................................20
5.4.1 Thermal operating requirements..................................20
5.4.2 Thermal attributes........................................................21
6 Peripheral operating requirements and behaviors................................ 22
6.1 Core modules............................................................................... 22
6.1.1 Debug trace timing specifications............................... 22
6.1.2 JTAG electricals.......................................................... 23
6.2 System modules........................................................................... 26
6.3 Clock modules............................................................................. 26
6.3.1 MCG specifications.....................................................26
6.3.2 Oscillator electrical specifications...............................28
6.3.3 32 kHz oscillator electrical characteristics..................30
6.4 Memories and memory interfaces................................................31
6.4.1 Flash (FTFE) electrical specifications.........................31
6.4.2 EzPort switching specifications...................................35
6.4.3 NAND flash controller specifications......................... 36
6.4.4 Flexbus switching specifications.................................39
6.5 Security and integrity modules.................................................... 42
6.6 Analog..........................................................................................42
6.6.1 ADC electrical specifications......................................42
6.6.2 CMP and 6-bit DAC electrical specifications............. 50
6.6.3 12-bit DAC electrical characteristics...........................52
6.6.4 Voltage reference electrical specifications..................55
6.7 Timers.......................................................................................... 56
6.8 Communication interfaces........................................................... 56
6.8.1 USB electrical specifications.......................................56
6.8.2 USB DCD electrical specifications............................. 57
6.8.3 USB VREG electrical specifications...........................57
6.8.4 ULPI timing specifications..........................................58
6.8.5 CAN switching specifications..................................... 59
6.8.6 DSPI switching specifications (limited voltage
range)...........................................................................59
6.8.7 DSPI switching specifications (full voltage range).....61
6.8.8 Inter-Integrated Circuit Interface (I2C) timing............62
6.8.9 UART switching specifications...................................63
6.8.10 SDHC specifications................................................... 64
6.8.11 I2S/SAI switching specifications................................ 65
6.9 Human-machine interfaces (HMI)...............................................71
6.9.1 TSI electrical specifications........................................ 71
7 Dimensions...........................................................................................72
7.1 Obtaining package dimensions.................................................... 72
8 Pinout................................................................................................... 73
8.1 Pins with active pull control after reset....................................... 73
8.2 K20 Signal Multiplexing and Pin Assignments...........................73
8.3 K20 pinouts..................................................................................80
9 Revision History...................................................................................81
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 3
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to nxp.com and perform a part number search for the
following device numbers: PK20 and MK20
2Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## A M FFF T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field Description Values
Q Qualification status M = Fully qualified, general market flow
P = Prequalification
K## Kinetis family K20
A Key attribute F = Cortex-M4 w/ DSP and FPU
M Flash memory type N = Program flash only
X = Program flash and FlexMemory
FFF Program flash memory size 512 = 512 KB
1M0 = 1 MB
Table continues on the next page...
Ordering parts
K20 Sub-Family, Rev. 7, 02/2018
4 NXP Semiconductors
Field Description Values
T Temperature range (°C) V = –40 to 105
C = –40 to 85
PP Package identifier LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
CC Maximum CPU frequency (MHz) 12 = 120 MHz
N Packaging type R = Tape and reel
(Blank) = Trays
2.4 Example
This is an example part number:
MK20FN1M0VLQ12
3Terminology and guidelines
3.1 Definitions
Key terms are defined in the following table:
Term Definition
Rating A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent
chip failure:
Operating ratings apply during operation of the chip.
Handling ratings apply when the chip is not powered.
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic
begins to exceed one of its operating ratings.
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during
operation to avoid incorrect operation and possibly decreasing the useful life of the chip
Operating behavior A specified value or range of values for a technical characteristic that are guaranteed during
operation if you meet the operating requirements and any other specified conditions
Typical value A specified value for a technical characteristic that:
Lies within the range of values specified by the operating behavior
Is representative of that characteristic during operation when you meet the typical-value
conditions or other specified conditions
NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.
Terminology and guidelines
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 5
3.2 Examples
Operating rating:
Operating requirement:
Operating behavior that includes a typical value:
EXAMPLE
EXAMPLEEXAMPLE
EXAMPLE
3.3 Typical-value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol Description Value Unit
TAAmbient temperature 25 °C
VDD Supply voltage 3.3 V
Terminology and guidelines
K20 Sub-Family, Rev. 7, 02/2018
6 NXP Semiconductors
3.4 Relationship between ratings and operating requirements
- No permanent failure
- Correct operation
Normal operating range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Operating rating (max.)
Operating requirement (max.)
Operating requirement (min.)
Operating rating (min.)
Operating (power on)
Degraded operating range Degraded operating range
No permanent failure
Handling range
Fatal range
Expected permanent failure
Fatal range
Expected permanent failure
Handling rating (max.)
Handling rating (min.)
Handling (power off)
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
3.5 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
Never exceed any of the chip’s ratings.
During normal operation, don’t exceed any of the chip’s operating requirements.
If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
4Ratings
4.1 Thermal handling ratings
Symbol Description Min. Max. Unit Notes
TSTG Storage temperature –55 150 °C 1
TSDR Solder temperature, lead-free 260 °C 2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
Ratings
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 7
4.2 Moisture handling ratings
Symbol Description Min. Max. Unit Notes
MSL Moisture sensitivity level 3 1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol Description Min. Max. Unit Notes
VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1
VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2
ILAT Latch-up current at ambient temperature of 105°C -100 +100 mA 3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.
4.4 Voltage and current operating ratings
Symbol Description Min. Max. Unit
VDD Digital supply voltage1–0.3 3.8 V
IDD Digital supply current 300 mA
VDIO Digital input voltage (except RESET, EXTAL0/XTAL0, and
EXTAL1/XTAL1) 2–0.3 5.5 V
VAIO Analog3, RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1 input
voltage
–0.3 VDD + 0.3 V
IDMaximum current single pin limit (applies to all digital pins) –25 25 mA
VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V
VUSB0_DP USB0_DP input voltage –0.3 3.63 V
VUSB1_DP USB1_DP input voltage –0.3 3.63 V
VUSB0_DM USB0_DM input voltage –0.3 3.63 V
VUSB1_DM USB1_DM input voltage –0.3 3.63 V
VREGIN USB regulator input –0.3 6.0 V
VBAT RTC battery supply voltage –0.3 3.8 V
1. It applies for all port pins.
Ratings
K20 Sub-Family, Rev. 7, 02/2018
8 NXP Semiconductors
2. It covers digital pins.
3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
5 General
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
80%
20%
50%
VIL
Input Signal
VIH
Fall Time
High
Low
Rise Time
Midpoint1
The midpoint is VIL + (VIH - VIL) / 2
Figure 1. Input signal measurement reference
All digital I/O switching characteristics assume:
1. output pins
have CL=30pF loads,
are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
are configured for high drive strength (PORTx_PCRn[DSE]=1)
2. input pins
have their passive filter disabled (PORTx_PCRn[PFE]=0)
5.2 Nonswitching electrical specifications
5.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol Description Min. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
VDDA Analog supply voltage 1.71 3.6 V
Table continues on the next page...
General
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 9
Table 1. Voltage and current operating requirements (continued)
Symbol Description Min. Max. Unit Notes
VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V
VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V
VBAT RTC battery supply voltage 1.71 3.6 V
VIH Input high voltage (digital pins)
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.7 × VDD
0.75 × VDD
V
V
VIL Input low voltage (digital pins)
2.7 V ≤ VDD ≤ 3.6 V
1.7 V ≤ VDD ≤ 2.7 V
0.35 × VDD
0.3 × VDD
V
V
VHYS Input hysteresis (digital pins) 0.06 × VDD V
IICDIO Digital pin negative DC injection current —
single pin
VIN < VSS-0.3V
-5 mA
1
IICAIO Analog2, EXTAL0/XTAL0, and EXTAL1/
XTAL1 pin DC injection current — single pin
VIN < VSS-0.3V (Negative current
injection)
VIN > VDD+0.3V (Positive current
injection)
-5
+5
mA
3
IICcont Contiguous pin DC injection current —
regional limit, includes sum of negative
injection currents or sum of positive injection
currents of 16 contiguous pins
Negative current injection
Positive current injection
-25
+25
mA
VODPU Open drain pullup voltage level VDD VDD V4
VRAM VDD voltage required to retain RAM 1.2 V
VRFVBAT VBAT voltage required to retain the VBAT
register file
VPOR_VBAT V
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode
connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN
(=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection
current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|.
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and
XTAL are analog pins.
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater
than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as
R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the
larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.
4. Open drain outputs must be pulled to VDD.
General
K20 Sub-Family, Rev. 7, 02/2018
10 NXP Semiconductors
5.2.2 LVD and POR operating requirements
Table 2. LVD and POR operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V
VLVDH Falling low-voltage detect threshold — high
range (LVDV=01)
2.48 2.56 2.64 V
VLVW1H
VLVW2H
VLVW3H
VLVW4H
Low-voltage warning thresholds — high range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
2.62
2.72
2.82
2.92
2.70
2.80
2.90
3.00
2.78
2.88
2.98
3.08
V
V
V
V
1
VHYSH Low-voltage inhibit reset/recover hysteresis —
high range
±80 mV
VLVDL Falling low-voltage detect threshold — low range
(LVDV=00)
1.54 1.60 1.66 V
VLVW1L
VLVW2L
VLVW3L
VLVW4L
Low-voltage warning thresholds — low range
Level 1 falling (LVWV=00)
Level 2 falling (LVWV=01)
Level 3 falling (LVWV=10)
Level 4 falling (LVWV=11)
1.74
1.84
1.94
2.04
1.80
1.90
2.00
2.10
1.86
1.96
2.06
2.16
V
V
V
V
1
VHYSL Low-voltage inhibit reset/recover hysteresis —
low range
±60 mV
VBG Bandgap voltage reference 0.97 1.00 1.03 V
tLPO Internal low power oscillator period
factory trimmed
900 1000 1100 μs
1. Rising thresholds are falling threshold + hysteresis voltage
Table 3. VBAT power operating requirements
Symbol Description Min. Typ. Max. Unit Notes
VPOR_VBAT Falling VBAT supply POR detect voltage 0.8 1.1 1.5 V
5.2.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
VOH Output high voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA
VDD – 0.5
VDD – 0.5
V
V
Table continues on the next page...
General
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 11
Table 4. Voltage and current operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
Output high voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA
1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA
VDD – 0.5
VDD – 0.5
V
V
IOHT Output high current total for all ports 100 mA
IOHT_io60 Output high current total for fast digital ports 100 mA
VOL Output low voltage — high drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 5 mA
0.5
0.5
V
V
Output low voltage — low drive strength
2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA
1.71 V ≤ VDD ≤ 2.7 V, IOL = 1 mA
0.5
0.5
V
V
IOLT Output low current total for all ports 100 mA
IOLT_io60 Output low current total for fast digital ports 100 mA
IINA Input leakage current, analog pins and digital
pins configured as analog inputs
VSS ≤ VIN ≤ VDD
All pins except EXTAL32, XTAL32,
EXTAL, XTAL
EXTAL (PTA18) and XTAL (PTA19)
EXTAL32, XTAL32
0.002
0.004
0.075
0.5
1.5
10
μA
μA
μA
1, 2
IIND Input leakage current, digital pins
VSS ≤ VIN ≤ VIL
All digital pins
VIN = VDD
All digital pins except PTD7
PTD7
0.002
0.002
0.004
0.5
0.5
1
μA
μA
μA
2, 3
IIND Input leakage current, digital pins
VIL < VIN < VDD
VDD = 3.6 V
VDD = 3.0 V
VDD = 2.5 V
VDD = 1.7 V
18
12
8
3
26
19
13
6
μA
μA
μA
μA
2, 3, 4
IIND Input leakage current, digital pins
VDD < VIN < 5.5 V
1
50
μA
2, 3
ZIND Input impedance examples, digital pins
48
2, 5
Table continues on the next page...
General
K20 Sub-Family, Rev. 7, 02/2018
12 NXP Semiconductors
Table 4. Voltage and current operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
VDD = 3.6 V
VDD = 3.0 V
VDD = 2.5 V
VDD = 1.7 V
55
57
85
RPU Internal pullup resistors 20 50 6
RPD Internal pulldown resistors 20 50 7
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
2. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.
3. Internal pull-up/pull-down resistors disabled.
4. Characterized, not tested in production.
5. Examples calculated using VIL relation, VDD, and max IIND: ZIND=VIL/IIND. This is the impedance needed to pull a high
signal to a level below VIL due to leakage when VIL < VIN < VDD. These examples assume signal source low = 0 V. See
Figure 2.
6. Measured at VDD supply voltage = VDD min and Vinput = VSS
7. Measured at VDD supply voltage = VDD min and Vinput = VDD
Figure 2. 5 V Tolerant Input IIND Parameter
5.2.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSxRUN recovery times in the following table
assume this clock configuration:
CPU and system clocks = 100 MHz
Bus clock = 50 MHz
FlexBus clock = 50 MHz
Flash clock = 25 MHz
MCG mode: FEI
General
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 13
Table 5. Power mode transition operating behaviors
Symbol Description Min. Max. Unit Notes
tPOR After a POR event, amount of time from the point VDD
reaches 1.71 V to execution of the first instruction
across the operating temperature range of the chip.
VDD slew rate ≥ 5.7 kV/s
VDD slew rate < 5.7 kV/s
300
1.7 V / (VDD
slew rate)
μs
1
VLLS1 RUN 160 μs
VLLS2 RUN 114 μs
VLLS3 RUN 114 μs
LLS RUN 5.0 μs
VLPS RUN 5 μs
STOP RUN 4.8 μs
1. Normal boot (FTFE_FOPT[LPBOOT]=1)
5.2.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA Analog supply current See note mA 1
IDD_RUN Run mode current — all peripheral clocks
disabled, code executing from flash
@ 1.8V
@ 3.0V
49.28
49.08
73.85
73.93
mA
mA
2
IDD_RUN Run mode current — all peripheral clocks
enabled, code executing from flash
@ 1.8V
@ 3.0V
74.43
74.28
99.97
100.41
mA
mA
3
IDD_WAIT Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
34.67 58.5 mA 2
IDD_WAIT Wait mode reduced frequency current at 3.0 V —
all peripheral clocks disabled
18.03 41.91 mA 4
IDD_STOP Stop mode current at 3.0 V
@ –40 to 25°C
1.25
2.93
1.62
4.39
mA
mA
Table continues on the next page...
General
K20 Sub-Family, Rev. 7, 02/2018
14 NXP Semiconductors
Table 6. Power consumption operating behaviors (continued)
Symbol Description Min. Typ. Max. Unit Notes
@ 70°C
@ 105°C
7.08 10.74 mA
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
1.03 4.48 mA 5
IDD_VLPR Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
1.58 4.96 mA 5
IDD_VLPW Very-low-power wait mode current at 3.0 V 0.64 4.29 mA 5
IDD_VLPS Very-low-power stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
0.22
0.78
2.18
0.38
1.33
3.56
mA
mA
mA
IDD_LLS Low leakage stop mode current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
0.22
0.78
2.16
0.37
1.33
3.52
mA
mA
mA
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
4.09
20.98
84.95
5.58
28.93
111.15
μA
μA
μA
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
2.68
8.8
37.28
4.22
10.74
43.61
μA
μA
μA
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
2.46
7.04
30.68
4.02
8.99
37.04
μA
μA
μA
IDD_VBAT Average current when CPU is not accessing
RTC registers at 3.0 V
@ –40 to 25°C
@ 70°C
@ 105°C
0.89
1.28
3.10
1.10
1.85
4.30
μA
μA
μA
6
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks disabled.
3. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE
mode. All peripheral clocks enabled, but peripherals are not in active operation.
4. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode.
General
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 15
5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All
peripheral clocks disabled.
6. Includes 32kHz oscillator current and RTC operation.
5.2.5.1 Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater
than 50 MHz frequencies. MCG in PEE mode at greater than 100 MHz frequencies.
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFE
Figure 3. Run mode supply current vs. core frequency
General
K20 Sub-Family, Rev. 7, 02/2018
16 NXP Semiconductors
Figure 4. VLPR mode supply current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors for 256MAPBGA
Symbol Description Frequency
band (MHz)
Typ. Unit Notes
VRE1 Radiated emissions voltage, band 1 0.15–50 21 dBμV 1, 2, 3
VRE2 Radiated emissions voltage, band 2 50–150 24 dBμV
VRE3 Radiated emissions voltage, band 3 150–500 29 dBμV
VRE4 Radiated emissions voltage, band 4 500–1000 28 dBμV
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 72 MHz, fBUS = 72 MHz
3. Determined according to IEC Standard JESD78, IC Latch-Up Test
General
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 17
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.nxp.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol Description Min. Max. Unit
CIN_A Input capacitance: analog pins 7 pF
CIN_D Input capacitance: digital pins 7 pF
CIN_D_io60 Input capacitance: fast digital pins 9 pF
5.3 Switching specifications
5.3.1 Device clock specifications
Table 9. Device clock specifications
Symbol Description Min. Max. Unit Notes
Normal run mode
fSYS System and core clock 120 MHz
fSYS_USBFS System and core clock when Full Speed USB in
operation
20 MHz
fSYS_USBHS System and core clock when High Speed USB in
operation
60 MHz
fBUS Bus clock 60 MHz
FB_CLK FlexBus clock 50 MHz
fFLASH Flash clock 25 MHz
fLPTMR LPTMR clock 25 MHz
VLPR mode1
fSYS System and core clock 4 MHz
fBUS Bus clock 4 MHz
FB_CLK FlexBus clock 4 MHz
fFLASH Flash clock 0.5 MHz
fLPTMR LPTMR clock 4 MHz
General
K20 Sub-Family, Rev. 7, 02/2018
18 NXP Semiconductors
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any
other module.
5.3.2 General switching specifications
These general purpose specifications apply to all pins configured for:
GPIO signaling
Other peripheral module signaling not explicitly stated elsewhere
Table 10. General switching specifications
Symbol Description Min. Max. Unit Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5 Bus clock
cycles
1, 2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100 ns 3
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
16 ns 3
External reset pulse width (digital glitch filter disabled) 100 ns 3
Mode select (EZP_CS) hold time after reset
deassertion
2 Bus clock
cycles
Port rise and fall time (high drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
14
8
36
24
ns
ns
ns
ns
4
Port rise and fall time (low drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
14
8
36
24
ns
ns
ns
ns
5
tio50 Port rise and fall time (high drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
7
3
28
14
ns
ns
ns
ns
6
Table continues on the next page...
General
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 19
Table 10. General switching specifications (continued)
Symbol Description Min. Max. Unit Notes
tio50 Port rise and fall time (low drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
18
9
48
24
ns
ns
ns
ns
-1
tio60 Port rise and fall time (high drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
6
3
28
14
ns
ns
ns
ns
6
tio60 Port rise and fall time (low drive strength)
Slew disabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
Slew enabled
1.71 ≤ VDD ≤ 2.7V
2.7 ≤ VDD ≤ 3.6V
18
6
48
24
ns
ns
ns
ns
-1
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be
recognized in that case.
2. The greater synchronous and asynchronous timing must be met.
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and
VLLSx modes.
4. 75 pF load
5. 15 pF load
6. 25 pF load
5.4 Thermal specifications
General
K20 Sub-Family, Rev. 7, 02/2018
20 NXP Semiconductors
5.4.1 Thermal operating requirements
Table 11. Thermal operating requirements
Symbol Description Min. Max. Unit
TJDie junction temperature –40 125 °C
TAAmbient temperature1–40 105 °C
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to
determine TJ is:
TJ = TA + RθJA x chip power dissipation
5.4.2 Thermal attributes
Board type Symbol Description 144 LQFP 144 MAPBGA Unit Notes
Single-layer
(1s)
RθJA Thermal
resistance,
junction to
ambient (natural
convection)
45 50 °C/W 1, 2
Four-layer
(2s2p)
RθJA Thermal
resistance,
junction to
ambient (natural
convection)
36 30 °C/W 1,2, 3
Single-layer
(1s)
RθJMA Thermal
resistance,
junction to
ambient (200 ft./
min. air speed)
36 41 °C/W 1,3
Four-layer
(2s2p)
RθJMA Thermal
resistance,
junction to
ambient (200 ft./
min. air speed)
30 27 °C/W 1,3
RθJB Thermal
resistance,
junction to
board
24 17 °C/W 4
RθJC Thermal
resistance,
junction to case
9 10 °C/W 5
ΨJT Thermal
characterization
parameter,
junction to
package top
outside center
(natural
convection)
2 2 °C/W 6
General
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 21
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions
—Natural Convection (Still Air) with the single layer board horizontal. Board meets JESD51-9 specification.
3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions
—Forced Convection (Moving Air) with the board horizontal.
4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions
—Junction-to-Board.
5. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material between
the top of the package and the cold plate.
6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions
—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
6.1 Core modules
6.1.1 Debug trace timing specifications
Table 12. Debug trace operating behaviors
Symbol Description Min. Max. Unit
Tcyc Clock period Frequency dependent MHz
Twl Low pulse width 2 ns
Twh High pulse width 2 ns
TrClock and data rise time 3 ns
TfClock and data fall time 3 ns
TsData setup 3 ns
ThData hold 2 ns
TRACECLK
Tr
Twh
Tf
Tcyc
Twl
Figure 5. TRACE_CLKOUT specifications
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
22 NXP Semiconductors
Th
Ts Ts Th
TRACE_CLKOUT
TRACE_D[3:0]
Figure 6. Trace data specifications
6.1.2 JTAG electricals
Table 13. JTAG limited voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
J1 TCLK frequency of operation
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
25
50
MHz
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
50
20
10
ns
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 2.4 ns
J7 TCLK low to boundary scan output data valid 25 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1 ns
J11 TCLK low to TDO data valid 17 ns
J12 TCLK low to TDO high-Z 17 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
Table 14. JTAG full voltage range electricals
Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
J1 TCLK frequency of operation MHz
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 23
Table 14. JTAG full voltage range electricals (continued)
Symbol Description Min. Max. Unit
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
0
0
0
10
20
40
J2 TCLK cycle period 1/J1 ns
J3 TCLK clock pulse width
Boundary Scan
JTAG and CJTAG
Serial Wire Debug
50
25
12.5
ns
ns
ns
J4 TCLK rise and fall times 3 ns
J5 Boundary scan input data setup time to TCLK rise 20 ns
J6 Boundary scan input data hold time after TCLK rise 2.4 ns
J7 TCLK low to boundary scan output data valid 25 ns
J8 TCLK low to boundary scan output high-Z 25 ns
J9 TMS, TDI input data setup time to TCLK rise 8 ns
J10 TMS, TDI input data hold time after TCLK rise 1.4 ns
J11 TCLK low to TDO data valid 22.1 ns
J12 TCLK low to TDO high-Z 22.1 ns
J13 TRST assert time 100 ns
J14 TRST setup time (negation) to TCLK high 8 ns
J2
J3 J3
J4 J4
TCLK (input)
Figure 7. Test clock input timing
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
24 NXP Semiconductors
J7
J8
J7
J5 J6
Input data valid
Output data valid
Output data valid
TCLK
Data inputs
Data outputs
Data outputs
Data outputs
Figure 8. Boundary scan (JTAG) timing
J11
J12
J11
J9 J10
Input data valid
Output data valid
Output data valid
TCLK
TDI/TMS
TDO
TDO
TDO
Figure 9. Test Access Port timing
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 25
Figure 10. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
6.3.1 MCG specifications
Table 15. MCG specifications
Symbol Description Min. Typ. Max. Unit Notes
fints_ft Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
32.768 kHz
fints_t Internal reference frequency (slow clock) — user
trimmed
31.25 39.0625 kHz
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
± 0.3 ± 0.6 %fdco 1
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM only
± 0.2 ± 0.5 %fdco 1
Δfdco_t Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
± 4.5 %fdco 1
fintf_ft Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
4 MHz
fintf_t Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3 5 MHz
floc_low Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
kHz
floc_high Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
kHz
FLL
ffll_ref FLL reference frequency range 31.25 39.0625 kHz
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
26 NXP Semiconductors
Table 15. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
fdco DCO output
frequency range
Low range (DRS=00)
640 × ffll_ref
20 20.97 25 MHz 2, 3
Mid range (DRS=01)
1280 × ffll_ref
40 41.94 50 MHz
Mid-high range (DRS=10)
1920 × ffll_ref
60 62.91 75 MHz
High range (DRS=11)
2560 × ffll_ref
80 83.89 100 MHz
fdco_t_DMX32 DCO output
frequency
Low range (DRS=00)
732 × ffll_ref
23.99 MHz 4, 5
Mid range (DRS=01)
1464 × ffll_ref
47.97 MHz
Mid-high range (DRS=10)
2197 × ffll_ref
71.99 MHz
High range (DRS=11)
2929 × ffll_ref
95.98 MHz
Jcyc_fll FLL period jitter
fVCO = 48 MHz
fVCO = 98 MHz
180
150
ps
tfll_acquire FLL target frequency acquisition time 1 ms 6
PLL0,1
fpll_ref PLL reference frequency range 8 16 MHz
fvcoclk_2x VCO output frequency 180 360 MHz
fvcoclk PLL output frequency 90 180 MHz
fvcoclk_90 PLL quadrature output frequency 90 180 MHz
Ipll PLL0 operating current
VCO @ 184 MHz (fosc_hi_1 = 32 MHz, fpll_ref
= 8 MHz, VDIV multiplier = 23)
2.8 mA
Ipll PLL0 operating current
VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref
= 8 MHz, VDIV multiplier = 45)
4.7 mA 7
Ipll PLL1 operating current
VCO @ 184 MHz (fosc_hi_1 = 32 MHz, fpll_ref
= 8 MHz, VDIV multiplier = 23)
2.3 mA 7
Ipll PLL1 operating current
VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref
= 8 MHz, VDIV multiplier = 45)
3.6 mA 7
tpll_lock Lock detector detection time 100 × 10-6
+ 1075(1/
fpll_ref)
s8
Jcyc_pll PLL period jitter (RMS) 9
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 27
Table 15. MCG specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
fvco = 180 MHz
fvco = 360 MHz
100
75
ps
ps
Jacc_pll PLL accumulated jitter over 1µs (RMS)
fvco = 180 MHz
fvco = 360 MHz
600
300
ps
ps
10
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature should be considered.
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
10. Accumulated jitter depends on VCO frequency and VDIV.
6.3.2 Oscillator electrical specifications
6.3.2.1 Oscillator DC electrical specifications
Table 16. Oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
VDD Supply voltage 1.71 3.6 V
IDDOSC Supply current — low-power mode (HGO=0)
32 kHz
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
500
200
300
950
1.2
1.5
nA
μA
μA
μA
mA
mA
1
IDDOSC Supply current — high-gain mode (HGO=1)
32 kHz
25
400
μA
μA
1
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
28 NXP Semiconductors
Table 16. Oscillator DC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
4 MHz
8 MHz (RANGE=01)
16 MHz
24 MHz
32 MHz
500
2.5
3
4
μA
mA
mA
mA
CxEXTAL load capacitance 2, 3
CyXTAL load capacitance 2, 3
RFFeedback resistor — low-frequency, low-power
mode (HGO=0)
2, 4
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
10
Feedback resistor — high-frequency, low-power
mode (HGO=0)
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
1
RSSeries resistor — low-frequency, low-power
mode (HGO=0)
Series resistor — low-frequency, high-gain mode
(HGO=1)
200
Series resistor — high-frequency, low-power
mode (HGO=0)
Series resistor — high-frequency, high-gain
mode (HGO=1)
0
Vpp5Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
VDD V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
0.6 V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
VDD V
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx and Cy can be provided by using either integrated capacitors or external components.
4. When low-power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other device.
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 29
6.3.2.2 Oscillator frequency specifications
Table 17. Oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal or resonator frequency — low-
frequency mode (MCG_C2[RANGE]=00)
32 40 kHz
fosc_hi_1 Oscillator crystal or resonator frequency — high-
frequency mode (low range)
(MCG_C2[RANGE]=01)
3 8 MHz 1
fosc_hi_2 Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8 32 MHz
fec_extal Input clock frequency (external clock mode) 60 MHz 2, 3
tdc_extal Input clock duty cycle (external clock mode) 40 50 60 %
tcst Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
1000 ms 4, 5
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
500 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
0.6 ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
1 ms
1. Frequencies less than 8 MHz are not in the PLL range.
2. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
3. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by
FRDIV, it remains within the limits of the DCO input clock frequency.
4. Proper PC board layout procedures must be followed to achieve specifications.
5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register
being set.
NOTE
The 32 kHz oscillator works in low power mode by default and
cannot be moved into high power/gain mode.
6.3.3 32 kHz oscillator electrical characteristics
6.3.3.1 32 kHz oscillator DC electrical specifications
Table 18. 32kHz oscillator DC electrical specifications
Symbol Description Min. Typ. Max. Unit
VBAT Supply voltage 1.71 3.6 V
RFInternal feedback resistor 100
Cpara Parasitical capacitance of EXTAL32 and XTAL32 5 7 pF
Vpp1Peak-to-peak amplitude of oscillation 0.6 V
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
30 NXP Semiconductors
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to
required oscillator components and must not be connected to any other devices.
6.3.3.2 32 kHz oscillator frequency specifications
Table 19. 32 kHz oscillator frequency specifications
Symbol Description Min. Typ. Max. Unit Notes
fosc_lo Oscillator crystal 32.768 kHz
tstart Crystal start-up time 1000 ms 1
vec_extal32 Externally provided input clock amplitude 700 VBAT mV 2, 3
1. Proper PC board layout procedures must be followed to achieve specifications.
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The
oscillator remains enabled and XTAL32 must be left unconnected.
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied
clock must be within the range of VSS to VBAT.
6.4 Memories and memory interfaces
6.4.1 Flash (FTFE) electrical specifications
This section describes the electrical characteristics of the FTFE module.
6.4.1.1 Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 20. NVM program/erase timing specifications
Symbol Description Min. Typ. Max. Unit Notes
thvpgm8 Program Phrase high-voltage time 7.5 18 μs
thversscr Erase Flash Sector high-voltage time 13 113 ms 1
thversblk128k Erase Flash Block high-voltage time for 128 KB 104 1808 ms 1
thversblk256k Erase Flash Block high-voltage time for 256 KB 208 3616 ms 1
1. Maximum time based on expectations at cycling end-of-life.
6.4.1.2 Flash timing specifications — commands
Table 21. Flash command timing specifications
Symbol Description Min. Typ. Max. Unit Notes
Read 1s Block execution time
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 31
Table 21. Flash command timing specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
trd1blk128k
trd1blk256k
128 KB data flash
256 KB program flash
256 KB data flash
0.5
1.0
ms
ms
trd1sec4k Read 1s Section execution time (4 KB flash) 100 μs 1
tpgmchk Program Check execution time 80 μs 1
trdrsrc Read Resource execution time 40 μs 1
tpgm8 Program Phrase execution time 70 150 μs
tersblk128k
tersblk256k
Erase Flash Block execution time
128 KB data flash
256 KB program flash
256 KB data flash
110
220
925
1850
ms
ms
2
tersscr Erase Flash Sector execution time 15 115 ms 2
tpgmsec4k Program Section execution time (4KB flash) 20 ms
trd1allx
trd1alln
Read 1s All Blocks execution time
FlexNVM devices
Program flash only devices
3.4
3.4
ms
ms
trdonce Read Once execution time 30 μs 1
tpgmonce Program Once execution time 70 μs
tersall Erase All Blocks execution time 650 5600 ms 2
tvfykey Verify Backdoor Access Key execution time 30 μs 1
tswapx01
tswapx02
tswapx04
tswapx08
Swap Control execution time
control code 0x01
control code 0x02
control code 0x04
control code 0x08
200
70
70
150
150
30
μs
μs
μs
μs
tpgmpart64k
tpgmpart256k
Program Partition for EEPROM execution time
64 KB EEPROM backup
256 KB EEPROM backup
235
240
ms
ms
tsetramff
tsetram64k
tsetram128k
tsetram256k
Set FlexRAM Function execution time:
Control Code 0xFF
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
205
1.6
2.7
4.8
2.5
3.8
6.2
μs
ms
ms
ms
t eewr8bers Byte-write to erased FlexRAM location execution
time
140 225 μs 3
teewr8b64k
Byte-write to FlexRAM execution time:
400
1700
μs
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
32 NXP Semiconductors
Table 21. Flash command timing specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
teewr8b128k
teewr8b256k
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
450
525
1800
2000
μs
μs
t eewr16bers 16-bit write to erased FlexRAM location
execution time
140 225 μs
teewr16b64k
teewr16b128k
teewr16b256k
16-bit write to FlexRAM execution time:
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
400
450
525
1700
1800
2000
μs
μs
μs
teewr32bers 32-bit write to erased FlexRAM location
execution time
180 275 μs
teewr32b64k
teewr32b128k
teewr32b256k
32-bit write to FlexRAM execution time:
64 KB EEPROM backup
128 KB EEPROM backup
256 KB EEPROM backup
475
525
600
1850
2000
2200
μs
μs
μs
1. Assumes 25MHz or greater flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
6.4.1.3 Flash high voltage current behaviors
Table 22. Flash high voltage current behaviors
Symbol Description Min. Typ. Max. Unit
IDD_PGM Average current adder during high voltage flash
programming operation
3.5 7.5 mA
IDD_ERS Average current adder during high voltage flash
erase operation
1.5 4.0 mA
6.4.1.4 Reliability specifications
Table 23. NVM reliability specifications
Symbol Description Min. Typ.1Max. Unit Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles 5 50 years
tnvmretp1k Data retention after up to 1 K cycles 20 100 years
nnvmcycp Cycling endurance 10 K 50 K cycles 2
Data Flash
tnvmretd10k Data retention after up to 10 K cycles 5 50 years
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 33
Table 23. NVM reliability specifications (continued)
Symbol Description Min. Typ.1Max. Unit Notes
tnvmretd1k Data retention after up to 1 K cycles 20 100 years
nnvmcycd Cycling endurance 10 K 50 K cycles 2
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance 5 50 years
tnvmretee10 Data retention up to 10% of write endurance 20 100 years
nnvmcycee Cycling endurance for EEPROM backup 20 K 50 K cycles 2
nnvmwree16
nnvmwree128
nnvmwree512
nnvmwree2k
Write endurance
EEPROM backup to FlexRAM ratio = 16
EEPROM backup to FlexRAM ratio = 128
EEPROM backup to FlexRAM ratio = 512
EEPROM backup to FlexRAM ratio = 2,048
70 K
630 K
2.5 M
10 M
175 K
1.6 M
6.4 M
25 M
writes
writes
writes
writes
3
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant
25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering
Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling
endurance of the FlexNVM and the allocated EEPROM backup per subsystem. Minimum and typical values assume all 16-
bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.
6.4.1.5 Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size
can be set to any of several non-zero values.
The bytes not assigned to data flash via the FlexNVM partition code are used by the
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that can
be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size is used throughout the
entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
Writes_subsystem = × Write_efficiency × n
EEPROM – 2 × EEESPLIT × EEESIZE
EEESPLIT × EEESIZE nvmcycee
where
Writes_subsystem — minimum number of writes to each FlexRAM location for
subsystem (each subsystem can have different endurance)
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
34 NXP Semiconductors
EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;
entered with the Program Partition command
EEESPLIT — FlexRAM split factor for subsystem; entered with the Program
Partition command
EEESIZE — allocated FlexRAM based on DEPART; entered with the Program
Partition command
Write_efficiency —
0.25 for 8-bit writes to FlexRAM
0.50 for 16-bit or 32-bit writes to FlexRAM
nnvmcycee — EEPROM-backup cycling endurance
Figure 11. EEPROM backup writes to FlexRAM
6.4.2 EzPort switching specifications
Table 24. EzPort switching specifications
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 35
Table 24. EzPort switching specifications (continued)
Num Description Min. Max. Unit
EP1 EZP_CK frequency of operation (all commands except
READ)
fSYS/2 MHz
EP1a EZP_CK frequency of operation (READ command) fSYS/8 MHz
EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK ns
EP3 EZP_CS input valid to EZP_CK high (setup) 5 ns
EP4 EZP_CK high to EZP_CS input invalid (hold) 5 ns
EP5 EZP_D input valid to EZP_CK high (setup) 2 ns
EP6 EZP_CK high to EZP_D input invalid (hold) 5 ns
EP7 EZP_CK low to EZP_Q output valid 16 ns
EP8 EZP_CK low to EZP_Q output invalid (hold) 0 ns
EP9 EZP_CS negation to EZP_Q tri-state 12 ns
EP2
EP3 EP4
EP5 EP6
EP7 EP8
EP9
EZP_CK
EZP_CS
EZP_Q (output)
EZP_D (input)
Figure 12. EzPort Timing Diagram
6.4.3 NAND flash controller specifications
The NAND flash controller (NFC) implements the interface to standard NAND flash
memory devices. This section describes the timing parameters of the NFC.
In the following table:
TH is the flash clock high time and
TL is flash clock low time,
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
36 NXP Semiconductors
which are defined as:
input clock
T
SCALER
=
NFC
T=H
T
L
T+
The SCALER value is derived from the fractional divider specified in the SIM's
CLKDIV4 register:
SCALER =SIM_CLKDIV4[NFCFRAC] + 1
SIM_CLKDIV4[NFCDIV] + 1
In case the reciprocal of SCALER is an integer, the duty cycle of NFC clock is 50%,
means TH = TL. In case the reciprocal of SCALER is not an integer:
(1 + SCALER / 2) x
=
L
TNFC
T
2
(1 – SCALER / 2) x
=
H
TNFC
T
2
For example, if SCALER is 0.2, then TH = TL = TNFC/2.
TNFC
THTL
However, if SCALER is 0.667, then TL = 2/3 x TNFC and TH = 1/3 x TNFC.
TNFC
THTL
NOTE
The reciprocal of SCALER must be a multiple of 0.5. For
example, 1, 1.5, 2, 2.5, etc.
Table 25. NFC specifications
Num Description Min. Max. Unit
tCLS NFC_CLE setup time 2TH + TL – 1 ns
tCLH NFC_CLE hold time TH + TL – 1 ns
tCS NFC_CEn setup time 2TH + TL – 1 ns
tCH NFC_CEn hold time TH + TL ns
tWP NFC_WP pulse width TL – 1 ns
tALS NFC_ALE setup time 2TH + TL ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 37
Table 25. NFC specifications (continued)
Num Description Min. Max. Unit
tALH NFC_ALE hold time TH + TL ns
tDS Data setup time TL – 1 ns
tDH Data hold time TH – 1 ns
tWC Write cycle time TH + TL – 1 ns
tWH NFC_WE hold time TH – 1 ns
tRR Ready to NFC_RE low 4TH + 3TL + 90 ns
tRP NFC_RE pulse width TL + 1 ns
tRC Read cycle time TL + TH – 1 ns
tREH NFC_RE high hold time TH – 1 ns
tIS Data input setup time 11 ns
tCS tCHtWP
tDS tDH
tCLS tCLH
NFC_CLE
NFC_CEn
NFC_WE
NFC_IOn
Figure 13. Command latch cycle timing
tCS tCHtWP
tDS tDH
tALS tALH
address
NFC_ALE
NFC_CEn
NFC_WE
NFC_IOn
Figure 14. Address latch cycle timing
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
38 NXP Semiconductors
tCS tCH
tWP
tDS tDH
data data data
tWC
tWH
NFC_CEn
NFC_WE
NFC_IOn
Figure 15. Write data latch cycle timing
tCH
tRP
data data data
tRC
tREH
tIS
tRR
NFC_CEn
NFC_RE
NFC_IOn
NFC_RB
Figure 16. Read data latch cycle timing in Slow mode
tCH
tRP
data data data
tRC
tREH
tIS
tRR
NFC_CEn
NFC_RE
NFC_IOn
NFC_RB
Figure 17. Read data latch cycle timing in Fast mode and EDO mode
6.4.4 Flexbus switching specifications
All processor bus timings are synchronous; input setup/hold and output delay are given in
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be
the same as the internal system bus frequency or an integer divider of that frequency.
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 39
The following timing numbers indicate when data is latched or driven onto the external
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be
derived from these values.
Table 26. Flexbus limited voltage range switching specifications
Num Description Min. Max. Unit Notes
Operating voltage 2.7 3.6 V
Frequency of operation FB_CLK MHz
FB1 Clock period 20 ns
FB2 Address, data, and control output valid 11.5 ns 1
FB3 Address, data, and control output hold 0.5 ns 1
FB4 Data and FB_TA input setup 8.5 ns 2
FB5 Data and FB_TA input hold 0.5 ns 2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,
and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Table 27. Flexbus full voltage range switching specifications
Num Description Min. Max. Unit Notes
Operating voltage 1.71 3.6 V
Frequency of operation FB_CLK MHz
FB1 Clock period 1/FB_CLK ns
FB2 Address, data, and control output valid 13.5 ns 1
FB3 Address, data, and control output hold 0 ns 1
FB4 Data and FB_TA input setup 13.7 ns 2
FB5 Data and FB_TA input hold 0.5 ns 2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,
and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
40 NXP Semiconductors
Address
Address Data
TSIZ
AA=1
AA=0
AA=1
AA=0
FB3
FB5
FB4
FB4
FB5
FB1
FB_CLK
FB_A[Y]
FB_D[X]
FB_RW
FB_TS
FB_ALE
FB_CSn
FB_OEn
FB_BEn
FB_TA
FB_TSIZ[1:0]
FB2
Read Timing Parameters
electricals_read.svg
S0 S1 S2 S3 S0
S0 S1 S2 S3 S0
Figure 18. FlexBus read timing diagram
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 41
Address
Address Data
TSIZ
AA=1
AA=0
AA=1
AA=0
FB1
FB3
FB4
FB5
FB2
FB_CLK
FB_A[Y]
FB_D[X]
FB_RW
FB_TS
FB_ALE
FB_CSn
FB_OEn
FB_BEn
FB_TA
FB_TSIZ[1:0]
Write Timing Parameters
electricals_write.svg
Figure 19. FlexBus write timing diagram
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
42 NXP Semiconductors
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 28 and Table 29 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are
not direct device pins. Accuracy specifications for these pins are defined in Table 30 and
Table 31.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
6.6.1.1 16-bit ADC operating conditions
Table 28. 16-bit ADC operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
VDDA Supply voltage Absolute 1.71 3.6 V
ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2
ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2
VREFH ADC reference
voltage high
1.13 VDDA VDDA V
VREFL ADC reference
voltage low
VSSA VSSA VSSA V
VADIN Input voltage 16-bit differential mode
All other modes
VREFL
VREFL
31/32 ×
VREFH
VREFH
V
CADIN Input capacitance 16-bit mode
8-bit / 10-bit / 12-bit
modes
8
4
10
5
pF
RADIN Input series
resistance
2 5
RAS Analog source
resistance
(external)
13-bit / 12-bit modes
fADCK < 4 MHz
5
3
fADCK ADC conversion
clock frequency
≤ 13-bit mode 1.0 18.0 MHz 4
fADCK ADC conversion
clock frequency
16-bit mode 2.0 12.0 MHz 4
Crate ADC conversion
rate
≤ 13-bit modes
No ADC hardware averaging
Continuous conversions
enabled, subsequent
conversion time
20.000
818.330
kS/s
5
Crate ADC conversion
rate
16-bit mode
No ADC hardware averaging
37.037
461.467
kS/s
5
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 43
Table 28. 16-bit ADC operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for
reference only, and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS
time constant should be kept to < 1 ns.
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.
RAS
VAS CAS
ZAS
VADIN
ZADIN
RADIN
RADIN
RADIN
RADIN
CADIN
Pad
leakage
INPUT PIN
INPUT PIN
INPUT PIN
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
ADC SAR
ENGINE
Figure 20. ADC input impedance equivalency diagram
6.6.1.2 16-bit ADC electrical characteristics
Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
IDDA_ADC Supply current 0.215 1.7 mA 3
fADACK
ADC asynchronous
clock source
ADLPC = 1, ADHSC = 0
ADLPC = 1, ADHSC = 1
1.2
2.4
2.4
4.0
3.9
6.1
MHz
MHz
tADACK = 1/
fADACK
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
44 NXP Semiconductors
Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
ADLPC = 0, ADHSC = 0
ADLPC = 0, ADHSC = 1
3.0
4.4
5.2
6.2
7.3
9.5
MHz
MHz
Sample Time See Reference Manual chapter for sample times
TUE Total unadjusted
error
12-bit modes
<12-bit modes
±4
±1.4
±6.8
±2.1
LSB45
DNL Differential non-
linearity
12-bit modes
<12-bit modes
±0.7
±0.2
–1.1 to
+1.9
–0.3 to
0.5
LSB45
INL Integral non-linearity 12-bit modes
<12-bit modes
±1.0
±0.5
–2.7 to
+1.9
–0.7 to
+0.5
LSB45
EFS Full-scale error 12-bit modes
<12-bit modes
–4
–1.4
–5.4
–1.8
LSB4VADIN = VDDA5
EQQuantization error 16-bit modes
≤13-bit modes
–1 to 0
±0.5
LSB4
ENOB Effective number of
bits
16-bit differential mode
Avg = 32
Avg = 4
16-bit single-ended mode
Avg = 32
Avg = 4
12.8
11.9
12.2
11.4
14.5
13.8
13.9
13.1
bits
bits
bits
bits
6
SINAD Signal-to-noise plus
distortion
See ENOB 6.02 × ENOB + 1.76 dB
THD Total harmonic
distortion
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
-94
-85
dB
dB
7
SFDR Spurious free
dynamic range
16-bit differential mode
Avg = 32
16-bit single-ended mode
Avg = 32
82
78
95
90
dB
dB
7
EIL Input leakage error IIn × RAS mV IIn = leakage
current
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 45
Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description Conditions1Min. Typ.2Max. Unit Notes
(refer to the
MCU's voltage
and current
operating
ratings)
Temp sensor slope Across the full temperature
range of the device
1.55 1.62 1.69 mV/°C 8
VTEMP25 Temp sensor voltage 25 °C 706 716 726 mV 8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1
MHz ADC conversion clock speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
8. ADC conversion clock < 3 MHz
Typical ADC 16-bit Differential ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
15.00
14.70
14.40
14.10
13.80
13.50
13.20
12.90
12.60
12.30
12.00
1 2 3 4 5 6 7 8 9 10 1211
Hardware Averaging Disabled
Averaging of 4 samples
Averaging of 8 samples
Averaging of 32 samples
Figure 21. Typical ENOB vs. ADC_CLK for 16-bit differential mode
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
46 NXP Semiconductors
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock
100Hz, 90% FS Sine Input
ENOB
ADC Clock Frequency (MHz)
14.00
13.75
13.25
13.00
12.75
12.50
12.00
11.75
11.50
11.25
11.00
1 2 3 4 5 6 7 8 9 10 1211
Averaging of 4 samples
Averaging of 32 samples
13.50
12.25
Figure 22. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
6.6.1.3 16-bit ADC with PGA operating conditions
Table 30. 16-bit ADC with PGA operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
VDDA Supply voltage Absolute 1.71 3.6 V
VREFPGA PGA ref voltage VREF_OU
T
VREF_OU
T
VREF_OU
T
V2, 3
VADIN Input voltage VSSA VDDA V
VCM Input Common
Mode range
VSSA VDDA V
RPGAD Differential input
impedance
Gain = 1, 2, 4, 8
Gain = 16, 32
Gain = 64
128
64
32
IN+ to IN-4
RAS Analog source
resistance
100 Ω 5
TSADC sampling
time
1.25 µs 6
Crate ADC conversion
rate
≤ 13 bit modes
No ADC hardware
averaging
Continuous conversions
enabled
Peripheral clock = 50
MHz
18.484 450 Ksps 7
16 bit modes 37.037 250 Ksps 8
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 47
Table 30. 16-bit ADC with PGA operating conditions
Symbol Description Conditions Min. Typ.1Max. Unit Notes
No ADC hardware
averaging
Continuous conversions
enabled
Peripheral clock = 50
MHz
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. ADC must be configured to use the internal voltage reference (VREF_OUT)
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other
than the output of the VREF module, the VREF module must be disabled.
4. For single ended configurations the input impedance of the driven input is RPGAD/2
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at
8 MHz ADC clock.
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1
6.6.1.4 16-bit ADC with PGA characteristics
Table 31. 16-bit ADC with PGA characteristics
Symbol Description Conditions Min. Typ.1Max. Unit Notes
IDDA_PGA Supply current Low power
(ADC_PGA[PGALPb]=0)
420 644 μA 2
IDC_PGA Input DC current A 3
Gain =1, VREFPGA=1.2V,
VCM=0.5V
1.54 μA
Gain =64, VREFPGA=1.2V,
VCM=0.1V
0.57 μA
G Gain4 PGAG=0
PGAG=1
PGAG=2
PGAG=3
PGAG=4
PGAG=5
PGAG=6
0.95
1.9
3.8
7.6
15.2
30.0
58.8
1
2
4
8
16
31.6
63.3
1.05
2.1
4.2
8.4
16.6
33.2
67.8
RAS < 100Ω
BW Input signal
bandwidth
16-bit modes
< 16-bit modes
4
40
kHz
kHz
PSRR Power supply
rejection ratio
Gain=1 -84 dB VDDA= 3V
±100mV,
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
48 NXP Semiconductors
Table 31. 16-bit ADC with PGA characteristics (continued)
Symbol Description Conditions Min. Typ.1Max. Unit Notes
fVDDA= 50Hz,
60Hz
CMRR Common mode
rejection ratio
Gain=1
Gain=64
-84
-85
dB
dB
VCM=
500mVpp,
fVCM= 50Hz,
100Hz
VOFS Input offset
voltage
Chopping disabled
(ADC_PGA[PGACHPb]
=1)
Chopping enabled
(ADC_PGA[PGACHPb]
=0)
2.4
0.2
mV
mV
Output offset =
VOFS*(Gain+1)
TGSW Gain switching
settling time
10 µs 5
dG/dT Gain drift over full
temperature range
Gain=1
Gain=64
6
31
10
42
ppm/°C
ppm/°C
dG/dVDDA Gain drift over
supply voltage
Gain=1
Gain=64
0.07
0.14
0.21
0.31
%/V
%/V
VDDA from 1.71
to 3.6V
EIL Input leakage
error
All modes IIn × RAS mV IIn = leakage
current
(refer to the
MCU's voltage
and current
operating
ratings)
VPP,DIFF Maximum
differential input
signal swing where VX = VREFPGA × 0.583
V6
SNR Signal-to-noise
ratio
Gain=1
Gain=64
80
52
90
66
dB
dB
16-bit
differential
mode,
Average=32
THD Total harmonic
distortion
Gain=1
Gain=64
85
49
100
95
dB
dB
16-bit
differential
mode,
Average=32,
fin=100Hz
SFDR Spurious free
dynamic range
Gain=1
Gain=64
85
53
105
88
dB
dB
16-bit
differential
mode,
Average=32,
fin=100Hz
ENOB Effective number
of bits
Gain=1, Average=4
Gain=1, Average=8
Gain=64, Average=4
Gain=64, Average=8
11.6
8.0
7.2
6.3
12.8
13.4
13.6
9.6
9.6
14.5
bits
bits
bits
bits
bits
16-bit
differential
mode,fin=100Hz
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 49
Table 31. 16-bit ADC with PGA characteristics (continued)
Symbol Description Conditions Min. Typ.1Max. Unit Notes
Gain=1, Average=32
Gain=2, Average=32
Gain=4, Average=32
Gain=8, Average=32
Gain=16, Average=32
Gain=32, Average=32
Gain=64, Average=32
11.0
7.9
7.3
6.8
6.8
7.5
14.3
13.8
13.1
12.5
11.5
10.6
bits
bits
bits
bits
bits
bits
SINAD Signal-to-noise
plus distortion
ratio
See ENOB 6.02 × ENOB + 1.76 dB
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.
2. This current is a PGA module adder, in addition to ADC conversion currents.
3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong
function of input common mode voltage (VCM) and the PGA gain.
4. Gain = 2PGAG
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the
PGA reference voltage and gain setting.
6.6.2 CMP and 6-bit DAC electrical specifications
Table 32. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
VDD Supply voltage 1.71 3.6 V
IDDHS Supply current, High-speed mode (EN=1, PMODE=1) 200 μA
IDDLS Supply current, low-speed mode (EN=1, PMODE=0) 20 μA
VAIN Analog input voltage VSS – 0.3 VDD V
VAIO Analog input offset voltage 20 mV
VHAnalog comparator hysteresis1
CR0[HYSTCTR] = 00
CR0[HYSTCTR] = 01
CR0[HYSTCTR] = 10
CR0[HYSTCTR] = 11
5
10
20
30
mV
mV
mV
mV
VCMPOh Output high VDD – 0.5 V
VCMPOl Output low 0.5 V
tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns
tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns
Analog comparator initialization delay2 40 μs
IDAC6b 6-bit DAC current adder (enabled) 7 μA
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
50 NXP Semiconductors
Table 32. Comparator and 6-bit DAC electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit
INL 6-bit DAC integral non-linearity –0.5 0.5 LSB3
DNL 6-bit DAC differential non-linearity –0.3 0.3 LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
00
01
10
HYSTCTR
Setting
0.1
10
11
Vin level (V)
CMP Hystereris (V)
3.12.82.5
2.2
1.91.61.3
1
0.70.4
0.05
0
0.01
0.02
0.03
0.08
0.07
0.06
0.04
Figure 23. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 51
00
01
10
HYSTCTR
Setting
10
11
0.1 3.12.82.5
2.2
1.91.61.3
1
0.70.4
0.1
0
0.02
0.04
0.06
0.18
0.14
0.12
0.08
0.16
Vin level (V)
CMP Hysteresis (V)
Figure 24. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
6.6.3 12-bit DAC electrical characteristics
6.6.3.1 12-bit DAC operating requirements
Table 33. 12-bit DAC operating requirements
Symbol Desciption Min. Max. Unit Notes
VDDA Supply voltage 1.71 3.6 V
VDACR Reference voltage 1.13 3.6 V 1
CLOutput load capacitance 100 pF 2
ILOutput load current 1 mA
1. The DAC reference can be selected to be VDDA or VREF_OUT.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
52 NXP Semiconductors
6.6.3.2 12-bit DAC operating behaviors
Table 34. 12-bit DAC operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
IDDA_DACL
P
Supply current — low-power mode 150 μA
IDDA_DACH
P
Supply current — high-speed mode 700 μA
tDACLP Full-scale settling time (0x080 to 0xF7F) —
low-power mode
100 200 μs 1
tDACHP Full-scale settling time (0x080 to 0xF7F) —
high-power mode
15 30 μs 1
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)
— low-power mode and high-speed mode
0.7 1 μs 1
Vdacoutl DAC output voltage range low — high-speed
mode, no load, DAC set to 0x000
100 mV
Vdacouth DAC output voltage range high — high-
speed mode, no load, DAC set to 0xFFF
VDACR
−100
VDACR mV
INL Integral non-linearity error — high speed
mode
±8 LSB 2
DNL Differential non-linearity error — VDACR > 2
V
±1 LSB 3
DNL Differential non-linearity error — VDACR =
VREF_OUT
±1 LSB 4
VOFFSET Offset error ±0.4 ±0.8 %FSR 5
EGGain error ±0.1 ±0.6 %FSR 5
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V 60 90 dB
TCO Temperature coefficient offset voltage 3.7 μV/C 6
TGE Temperature coefficient gain error 0.000421 %FSR/C
Rop Output resistance (load = 3 kΩ) 250 Ω
SR Slew rate -80hF7Fh80h
High power (SPHP)
Low power (SPLP)
1.2
0.05
1.7
0.12
V/μs
CT Channel to channel cross talk -80 dB
BW 3dB bandwidth
High power (SPHP)
Low power (SPLP)
550
40
kHz
1. Settling within ±1 LSB
2. The INL is measured for 0 + 100 mV to VDACR −100 mV
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to
0x800, temperature range is across the full range of the device
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 53
Digital Code
DAC12 INL (LSB)
0
500 1000 1500 2000 2500 3000 3500 4000
2
4
6
8
-2
-4
-6
-8
0
Figure 25. Typical INL error vs. digital code
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
54 NXP Semiconductors
Temperature °C
DAC12 Mid Level Code Voltage
25 55 85 105 125
1.499
-40
1.4985
1.498
1.4975
1.497
1.4965
1.496
Figure 26. Offset at half scale vs. temperature
6.6.4 Voltage reference electrical specifications
Table 35. VREF full-range operating requirements
Symbol Description Min. Max. Unit Notes
VDDA Supply voltage 1.71 3.6 V
TATemperature Operating temperature
range of the device
°C
CLOutput load capacitance 100 nF 1, 2
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external
reference.
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of
the device.
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 55
Table 36. VREF full-range operating behaviors
Symbol Description Min. Typ. Max. Unit Notes
Vout Voltage reference output with factory trim at
nominal VDDA and temperature=25C
1.1915 1.195 1.1977 V 1
Vout Voltage reference output — factory trim 1.1584 1.2376 V 1
Vout Voltage reference output — user trim 1.193 1.197 V 1
Vstep Voltage reference trim step 0.5 mV 1
Vtdrift Temperature drift (Vmax -Vmin across the full
temperature range)
80 mV 1
Ibg Bandgap only current 80 µA 1
Ihp High-power buffer current 1 mA 1
ΔVLOAD Load regulation
current = + 1.0 mA
current = - 1.0 mA
2
5
mV 1, 2
Tstup Buffer startup time 100 µs
Vvdrift Voltage drift (Vmax -Vmin across the full voltage
range)
2 mV 1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load
Table 37. VREF limited-range operating requirements
Symbol Description Min. Max. Unit Notes
TATemperature 0 50 °C
Table 38. VREF limited-range operating behaviors
Symbol Description Min. Max. Unit Notes
Vout Voltage reference output with factory trim 1.173 1.225 V
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
56 NXP Semiconductors
6.8.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit usb.org.
NOTE
The MCGPLLCLK meets the USB jitter and signaling rate
specifications for certification with the use of an external clock/
crystal for both Device and Host modes.
The MCGFLLCLK does not meet the USB jitter or signaling
rate specifications for certification.
6.8.2 USB DCD electrical specifications
Table 39. USB0 DCD electrical specifications
Symbol Description Min. Typ. Max. Unit
VDP_SRC USB_DP source voltage (up to 250 μA) 0.5 0.7 V
VLGC Threshold voltage for logic high 0.8 2.0 V
IDP_SRC USB_DP source current 7 10 13 μA
IDM_SINK USB_DM sink current 50 100 150 μA
RDM_DWN D- pulldown resistance for data pin contact detect 14.25 24.8
VDAT_REF Data detect voltage 0.25 0.325 0.4 V
6.8.3 USB VREG electrical specifications
Table 40. USB VREG electrical specifications
Symbol Description Min. Typ.1Max. Unit Notes
VREGIN Input supply voltage 2.7 5.5 V
IDDon Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
125 186 μA
IDDstby Quiescent current — Standby mode, load current
equal zero
1.1 10 μA
IDDoff Quiescent current — Shutdown mode
VREGIN = 5.0 V and temperature=25 °C
Across operating voltage and temperature
650
4
nA
μA
ILOADrun Maximum load current — Run mode 120 mA
ILOADstby Maximum load current — Standby mode 1 mA
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 57
Table 40. USB VREG electrical specifications
(continued)
Symbol Description Min. Typ.1Max. Unit Notes
VReg33out Regulator output voltage — Input supply
(VREGIN) > 3.6 V
Run mode
Standby mode
3
2.1
3.3
2.8
3.6
3.6
V
V
VReg33out Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
2.1 3.6 V 2
COUT External output capacitor 1.76 2.2 8.16 μF
ESR External output capacitor equivalent series
resistance
1 100
ILIM Short circuit current 290 mA
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
6.8.4 ULPI timing specifications
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin
Interface. Control and data timing requirements for the ULPI pins are given in the
following table. These timings apply to synchronous mode only. All timings are
measured with respect to the clock as seen at the USB_CLKIN pin.
Table 41. ULPI timing specifications
Num Description Min. Typ. Max. Unit
USB_CLKIN
operating
frequency
60 MHz
USB_CLKIN duty
cycle
50 %
U1 USB_CLKIN clock
period
16.67 ns
U2 Input setup (control
and data)
5 ns
U3 Input hold (control
and data)
1 ns
U4 Output valid
(control and data)
9.5 ns
U5 Output hold (control
and data)
1 ns
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
58 NXP Semiconductors
U1
U2 U3
U4 U5
USB_CLKIN
ULPI_DIR/ULPI_NXT
(control input)
ULPI_DATAn (input)
ULPI_STP
(control output)
ULPI_DATAn (output)
Figure 27. ULPI timing diagram
6.8.5 CAN switching specifications
See General switching specifications.
6.8.6 DSPI switching specifications (limited voltage range)
The DMA Serial Peripheral Interface DSPI provides a synchronous serial bus with master
and slave operations. Many of the transfer attributes are programmable. The tables below
provide DSPI timing characteristics for classic DSPI timing modes. Refer to the DSPI
chapter of the Reference Manual for information on the modified transfer formats used
for communicating with slower peripheral devices.
Table 42. Master mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 2.7 3.6 V
Frequency of operation 30 MHz
DS1 DSPI_SCK output cycle time 2 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
2
ns 1
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
2
ns 2
DS5 DSPI_SCK to DSPI_SOUT valid 8.5 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 59
Table 42. Master mode DSPI timing (limited voltage range) (continued)
Num Description Min. Max. Unit Notes
DS6 DSPI_SCK to DSPI_SOUT invalid −2 ns
DS7 DSPI_SIN to DSPI_SCK input setup 15 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
1. The delay is programmable in DSPIx_CTARn[PSSCK] and DSPIx_CTARn[CSSCK].
2. The delay is programmable in DSPIx_CTARn[PASC] and DSPIx_CTARn[ASC].
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
SPI_PCSn
SPI_SCK
(CPOL=0)
SPI_SIN
SPI_SOUT
Figure 28. DSPI classic DSPI timing — master mode
Table 43. Slave mode DSPI timing (limited voltage range)
Num Description Min. Max. Unit
Operating voltage 2.7 3.6 V
Frequency of operation 15 MHz
DS9 DSPI_SCK input cycle time 4 x tBUS ns
DS10 DSPI_SCK input high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns
DS11 DSPI_SCK to DSPI_SOUT valid 10 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7 ns
DS15 DSPI_SS active to DSPI_SOUT driven 14 ns
DS16 DSPI_SS inactive to DSPI_SOUT not driven 14 ns
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
60 NXP Semiconductors
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
SPI_SS
SPI_SCK
(POL=0)
SPI_SOUT
SPI_SIN
Figure 29. DSPI classic DSPI timing — slave mode
6.8.7 DSPI switching specifications (full voltage range)
The DMA Serial Peripheral Interface DSPI provides a synchronous serial bus with master
and slave operations. Many of the transfer attributes are programmable. The tables below
provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI
chapter of the Reference Manual for information on the modified transfer formats used
for communicating with slower peripheral devices.
Table 44. Master mode DSPItiming (full voltage range)
Num Description Min. Max. Unit Notes
Operating voltage 1.71 3.6 V 1
Frequency of operation 15 MHz
DS1 DSPI_SCK output cycle time 4 x tBUS ns
DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS3 DSPI_PCSn valid to DSPI_SCK delay (tBUS x 2) −
4
ns 2
DS4 DSPI_SCK to DSPI_PCSn invalid delay (tBUS x 2) −
4
ns 3
DS5 DSPI_SCK to DSPI_SOUT valid 10 ns
DS6 DSPI_SCK to DSPI_SOUT invalid -4.5 ns
DS7 DSPI_SIN to DSPI_SCK input setup 20.5 ns
DS8 DSPI_SCK to DSPI_SIN input hold 0 ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 61
DS3 DS4
DS1
DS2
DS7 DS8
First data Last data
DS5
First data Data Last data
DS6
Data
SPI_PCSn
SPI_SCK
(CPOL=0)
SPI_SIN
SPI_SOUT
Figure 30. DSPI classic SPI timing — master mode
Table 45. Slave mode DSPI timing (full voltage range)
Num Description Min. Max. Unit
Operating voltage 1.71 3.6 V
Frequency of operation 7.5 MHz
DS9 DSPI_SCK input cycle time 8 x tBUS ns
DS10 DSPI_SCK input high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns
DS11 DSPI_SCK to DSPI_SOUT valid 20 ns
DS12 DSPI_SCK to DSPI_SOUT invalid 0 ns
DS13 DSPI_SIN to DSPI_SCK input setup 2 ns
DS14 DSPI_SCK to DSPI_SIN input hold 7 ns
DS15 DSPI_SS active to DSPI_SOUT driven 19 ns
DS16 DSPI_SS inactive to DSPI_SOUT not driven 19 ns
First data Last data
First data Data Last data
Data
DS15
DS10 DS9
DS16
DS11
DS12
DS14
DS13
SPI_SS
SPI_SCK
(POL=0)
SPI_SOUT
SPI_SIN
Figure 31. DSPI classic SPI timing — slave mode
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
62 NXP Semiconductors
6.8.8 Inter-Integrated Circuit Interface (I2C) timing
Table 46. I 2C timing
Characteristic Symbol Standard Mode Fast Mode Unit
Minimum Maximum Minimum Maximum
SCL Clock Frequency fSCL 0 100 0 400 1kHz
Hold time (repeated) START condition.
After this period, the first clock pulse is
generated.
tHD; STA 4 0.6 µs
LOW period of the SCL clock tLOW 4.7 1.25 µs
HIGH period of the SCL clock tHIGH 4 0.6 µs
Set-up time for a repeated START
condition
tSU; STA 4.7 0.6 µs
Data hold time for I2C bus devices tHD; DAT 023.453040.92µs
Data set-up time tSU; DAT 2505 1003,6 ns
Rise time of SDA and SCL signals tr 1000 20 +0.1Cb7300 ns
Fall time of SDA and SCL signals tf 300 20 +0.1Cb6300 ns
Set-up time for STOP condition tSU; STO 4 0.6 µs
Bus free time between STOP and
START condition
tBUF 4.7 1.3 µs
Pulse width of spikes that must be
suppressed by the input filter
tSP N/A N/A 0 50 ns
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using a pin
configured for high drive across the full voltage range and when using the a pin configured for low drive with VDD ≥ 2.7 V.
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
lines.
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
4. Input signal Slew = 10 ns and Output Load = 50 pF
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must
then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a
device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT
= 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.
7. Cb = total capacitance of the one bus line in pF.
SDA
HD; STA tHD; DAT
tLOW
tSU; DAT
tHIGH
tSU; STA SR PS
S
tHD; STA tSP
tSU; STO
tBUF
tftr
tftr
SCL
Figure 32. Timing definition for fast and standard mode devices on the I2C bus
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 63
6.8.9 UART switching specifications
See General switching specifications.
6.8.10 SDHC specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
Table 47. SDHC switching specifications over a limited operating voltage range
Num Symbol Description Min. Max. Unit
Operating voltage 2.7 3.6 V
Card input clock
SD1 fpp Clock frequency (low speed) 0 400 kHz
fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\40 MHz
fpp Clock frequency (MMC full speed\high speed) 0 25\50 MHz
fOD Clock frequency (identification mode) 0 400 kHz
SD2 tWL Clock low time 7 ns
SD3 tWH Clock high time 7 ns
SD4 tTLH Clock rise time 3 ns
SD5 tTHL Clock fall time 3 ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6 tOD SDHC output delay (output valid) -5 6.5 ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7 tISU SDHC input setup time 5 ns
SD8 tIH SDHC input hold time 0 ns
Table 48. SDHC switching specifications over the full operating voltage range
Num Symbol Description Min. Max. Unit
Operating voltage 1.71 3.6 V
Card input clock
SD1 fpp Clock frequency (low speed) 0 400 kHz
fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\40 MHz
fpp Clock frequency (MMC full speed\high speed) 0 25\50 MHz
fOD Clock frequency (identification mode) 0 400 kHz
SD2 tWL Clock low time 7 ns
SD3 tWH Clock high time 7 ns
SD4 tTLH Clock rise time 3 ns
SD5 tTHL Clock fall time 3 ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
64 NXP Semiconductors
Table 48. SDHC switching specifications over the full operating voltage range (continued)
Num Symbol Description Min. Max. Unit
SD6 tOD SDHC output delay (output valid) -5 6.5 ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7 tISU SDHC input setup time 5 ns
SD8 tIH SDHC input hold time 1.3 ns
SD2SD3 SD1
SD6
SD8
SD7
SDHC_CLK
Output SDHC_CMD
Output SDHC_DAT[3:0]
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 33. SDHC timing
6.8.11 I2S/SAI switching specifications
This section provides the AC timing for the I2S/SAI module in master mode (clocks are
driven) and slave mode (clocks are input). All timing is given for noninverted serial clock
polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]
is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been
inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the
frame sync (FS) signal shown in the following figures.
6.8.11.1 Normal Run, Wait and Stop mode performance over a limited
operating voltage range
This section provides the operating performance over a limited operating voltage for the
device in Normal Run, Wait and Stop modes.
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 65
Table 49. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage
range)
Num. Characteristic Min. Max. Unit
Operating voltage 2.7 3.6 V
S1 I2S_MCLK cycle time 40 ns
S2 I2S_MCLK pulse width high/low 45% 55% MCLK period
S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 ns
S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
15 ns
S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0 ns
S7 I2S_TX_BCLK to I2S_TXD valid 15 ns
S8 I2S_TX_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
15 ns
S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 ns
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_TX_BCLK/
I2S_RX_BCLK (output)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TX_FS/
I2S_RX_FS (input)
I2S_TXD
I2S_RXD
Figure 34. I2S/SAI timing — master modes
Table 50. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage
range)
Num. Characteristic Min. Max. Unit
Operating voltage 2.7 3.6 V
S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 ns
S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45% 55% MCLK period
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
66 NXP Semiconductors
Table 50. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage
range) (continued)
Num. Characteristic Min. Max. Unit
S13 I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
4.5 ns
S14 I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2 ns
S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
Multiple SAI Synchronous mode
All other modes
21
15
ns
S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_RX_BCLK 4.5 ns
S18 I2S_RXD hold after I2S_RX_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid1 25 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TXD
I2S_RXD
I2S_TX_FS/
I2S_RX_FS (input) S19
Figure 35. I2S/SAI timing — slave modes
6.8.11.2 Normal Run, Wait and Stop mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in Normal Run, Wait and Stop modes.
Table 51. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage
range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 67
Table 51. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage
range) (continued)
Num. Characteristic Min. Max. Unit
S1 I2S_MCLK cycle time 40 ns
S2 I2S_MCLK pulse width high/low 45% 55% MCLK period
S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 ns
S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
15 ns
S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
-1.0 ns
S7 I2S_TX_BCLK to I2S_TXD valid 15 ns
S8 I2S_TX_BCLK to I2S_TXD invalid 0 ns
S9 I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
20.5 ns
S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 ns
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_TX_BCLK/
I2S_RX_BCLK (output)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TX_FS/
I2S_RX_FS (input)
I2S_TXD
I2S_RXD
Figure 36. I2S/SAI timing — master modes
Table 52. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage
range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 ns
S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45% 55% MCLK period
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
68 NXP Semiconductors
Table 52. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage
range) (continued)
Num. Characteristic Min. Max. Unit
S13 I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
5.8 ns
S14 I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
2 ns
S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid
Multiple SAI Synchronous mode
All other modes
24
20.6
ns
S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_RX_BCLK 5.8 ns
S18 I2S_RXD hold after I2S_RX_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid1 25 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TXD
I2S_RXD
I2S_TX_FS/
I2S_RX_FS (input) S19
Figure 37. I2S/SAI timing — slave modes
6.8.11.3 VLPR, VLPW, and VLPS mode performance over the full
operating voltage range
This section provides the operating performance over the full operating voltage for the
device in VLPR, VLPW, and VLPS modes.
Table 53. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S1 I2S_MCLK cycle time 62.5 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 69
Table 53. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
(continued)
Num. Characteristic Min. Max. Unit
S2 I2S_MCLK pulse width high/low 45% 55% MCLK period
S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 ns
S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period
S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output valid
45 ns
S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/
I2S_RX_FS output invalid
0 ns
S7 I2S_TX_BCLK to I2S_TXD valid 45 ns
S8 I2S_TX_BCLK to I2S_TXD invalid -1.6 ns
S9 I2S_RXD/I2S_RX_FS input setup before
I2S_RX_BCLK
45 ns
S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 ns
S1 S2 S2
S3
S4
S4
S5
S9
S7
S9 S10
S7
S8
S6
S10
S8
I2S_MCLK (output)
I2S_TX_BCLK/
I2S_RX_BCLK (output)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TX_FS/
I2S_RX_FS (input)
I2S_TXD
I2S_RXD
Figure 38. I2S/SAI timing — master modes
Table 54. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
Num. Characteristic Min. Max. Unit
Operating voltage 1.71 3.6 V
S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 ns
S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low
(input)
45% 55% MCLK period
S13 I2S_TX_FS/I2S_RX_FS input setup before
I2S_TX_BCLK/I2S_RX_BCLK
30 ns
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
70 NXP Semiconductors
Table 54. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)
(continued)
Num. Characteristic Min. Max. Unit
S14 I2S_TX_FS/I2S_RX_FS input hold after
I2S_TX_BCLK/I2S_RX_BCLK
3 ns
S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid 63 ns
S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 ns
S17 I2S_RXD setup before I2S_RX_BCLK 30 ns
S18 I2S_RXD hold after I2S_RX_BCLK 2 ns
S19 I2S_TX_FS input assertion to I2S_TXD output valid1 72 ns
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
S15
S13
S15
S17 S18
S15
S16
S16
S14
S16
S11
S12
S12
I2S_TX_BCLK/
I2S_RX_BCLK (input)
I2S_TX_FS/
I2S_RX_FS (output)
I2S_TXD
I2S_RXD
I2S_TX_FS/
I2S_RX_FS (input) S19
Figure 39. I2S/SAI timing — slave modes
6.9 Human-machine interfaces (HMI)
6.9.1 TSI electrical specifications
Table 55. TSI electrical specifications
Symbol Description Min. Typ. Max. Unit Notes
VDDTSI Operating voltage 1.71 3.6 V
CELE Target electrode capacitance range 1 20 500 pF 1
fREFmax Reference oscillator frequency 8 15 MHz 2, 3
fELEmax Electrode oscillator frequency 1 1.8 MHz 2, 4
CREF Internal reference capacitor 1 pF
VDELTA Oscillator delta voltage 600 mV 2, 5
Table continues on the next page...
Peripheral operating requirements and behaviors
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 71
Table 55. TSI electrical specifications (continued)
Symbol Description Min. Typ. Max. Unit Notes
IREF Reference oscillator current source base current
2 μA setting (REFCHRG = 0)
32 μA setting (REFCHRG = 15)
2
36
3
50
μA 2, 6
IELE Electrode oscillator current source base current
2 μA setting (EXTCHRG = 0)
32 μA setting (EXTCHRG = 15)
2
36
3
50
μA 2, 7
Pres5 Electrode capacitance measurement precision 8.3333 38400 fF/count 8
Pres20 Electrode capacitance measurement precision 8.3333 38400 fF/count 9
Pres100 Electrode capacitance measurement precision 8.3333 38400 fF/count 10
MaxSens Maximum sensitivity 0.008 1.46 fF/count 11
Res Resolution 16 bits
TCon20 Response time @ 20 pF 8 15 25 μs 12
ITSI_RUN Current added in run mode 55 μA
ITSI_LP Low power mode current adder 1.3 2.5 μA 13
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
2. Fixed external capacitance of 20 pF.
3. REFCHRG = 2, EXTCHRG=0.
4. REFCHRG = 0, EXTCHRG = 10.
5. VDD = 3.0 V.
6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.
10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.
11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity
depends on the configuration used. The documented values are provided as examples calculated for a specific
configuration of operating conditions using the following equation: (Cref * Iext)/( Iref * PS * NSCN)
The typical value is calculated with the following configuration:
Iext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, Iref = 16 μA (REFCHRG = 7), Cref = 1.0 pF
The minimum value is calculated with the following configuration:
Iext = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, Iref = 32 μA (REFCHRG = 15), Cref = 0.5 pF
The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be
measured by a single count.
12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1
electrode, EXTCHRG = 7.
13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of
20 pF. Data is captured with an average of 7 periods window.
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
Dimensions
K20 Sub-Family, Rev. 7, 02/2018
72 NXP Semiconductors
To find a package drawing, go to nxp.com and perform a keyword search for the
drawing’s document number:
If you want the drawing for this package Then use this document number
144-pin LQFP 98ASS23177W
144-pin MAPBGA 98ASA00222D
8 Pinout
8.1 Pins with active pull control after reset
The following pins are actively pulled up or down after reset:
Table 56. Pins with active pull control after reset
Pin Active pull direction after reset
PTA0 pulldown
PTA1 pullup
PTA3 pullup
PTA4 pullup
RESET_b pullup
8.2 K20 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
144
LQFP
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
L5 RTC_
WAKEUP_B
RTC_
WAKEUP_B
RTC_
WAKEUP_B
M5 NC NC NC
A10 NC NC NC
B10 NC NC NC
C10 NC NC NC
1 D3 PTE0 ADC1_SE4a ADC1_SE4a PTE0 SPI1_PCS1 UART1_TX SDHC0_D1 I2C1_SDA RTC_
CLKOUT
Pinout
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 73
144
LQFP
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
2 D2 PTE1/
LLWU_P0
ADC1_SE5a ADC1_SE5a PTE1/
LLWU_P0
SPI1_SOUT UART1_RX SDHC0_D0 I2C1_SCL SPI1_SIN
3 D1 PTE2/
LLWU_P1
ADC1_SE6a ADC1_SE6a PTE2/
LLWU_P1
SPI1_SCK UART1_
CTS_b
SDHC0_
DCLK
4 E4 PTE3 ADC1_SE7a ADC1_SE7a PTE3 SPI1_SIN UART1_
RTS_b
SDHC0_CMD SPI1_SOUT
5 E5 VDD VDD VDD
6 F6 VSS VSS VSS
7 E3 PTE4/
LLWU_P2
DISABLED PTE4/
LLWU_P2
SPI1_PCS0 UART3_TX SDHC0_D3
8 E2 PTE5 DISABLED PTE5 SPI1_PCS2 UART3_RX SDHC0_D2 FTM3_CH0
9 E1 PTE6 DISABLED PTE6 SPI1_PCS3 UART3_
CTS_b
I2S0_MCLK FTM3_CH1 USB_SOF_
OUT
10 F4 PTE7 DISABLED PTE7 UART3_
RTS_b
I2S0_RXD0 FTM3_CH2
11 F3 PTE8 ADC2_SE16 ADC2_SE16 PTE8 I2S0_RXD1 UART5_TX I2S0_RX_FS FTM3_CH3
12 F2 PTE9 ADC2_SE17 ADC2_SE17 PTE9 I2S0_TXD1 UART5_RX I2S0_RX_
BCLK
FTM3_CH4
13 F1 PTE10 DISABLED PTE10 UART5_
CTS_b
I2S0_TXD0 FTM3_CH5
14 G4 PTE11 ADC3_SE16 ADC3_SE16 PTE11 UART5_
RTS_b
I2S0_TX_FS FTM3_CH6
15 G3 PTE12 ADC3_SE17 ADC3_SE17 PTE12 I2S0_TX_
BCLK
FTM3_CH7
16 E6 VDD VDD VDD
17 F7 VSS VSS VSS
18 H3 VSS VSS VSS
19 H1 USB0_DP USB0_DP USB0_DP
20 H2 USB0_DM USB0_DM USB0_DM
21 G1 VOUT33 VOUT33 VOUT33
22 G2 VREGIN VREGIN VREGIN
23 J1 PGA2_DP/
ADC2_DP0/
ADC3_DP3/
ADC0_DP1
PGA2_DP/
ADC2_DP0/
ADC3_DP3/
ADC0_DP1
PGA2_DP/
ADC2_DP0/
ADC3_DP3/
ADC0_DP1
24 J2 PGA2_DM/
ADC2_DM0/
ADC3_DM3/
ADC0_DM1
PGA2_DM/
ADC2_DM0/
ADC3_DM3/
ADC0_DM1
PGA2_DM/
ADC2_DM0/
ADC3_DM3/
ADC0_DM1
25 K1 PGA3_DP/
ADC3_DP0/
ADC2_DP3/
ADC1_DP1
PGA3_DP/
ADC3_DP0/
ADC2_DP3/
ADC1_DP1
PGA3_DP/
ADC3_DP0/
ADC2_DP3/
ADC1_DP1
26 K2 PGA3_DM/
ADC3_DM0/
ADC2_DM3/
ADC1_DM1
PGA3_DM/
ADC3_DM0/
ADC2_DM3/
ADC1_DM1
PGA3_DM/
ADC3_DM0/
ADC2_DM3/
ADC1_DM1
Pinout
K20 Sub-Family, Rev. 7, 02/2018
74 NXP Semiconductors
144
LQFP
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
27 L1 PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DP/
ADC0_DP0/
ADC1_DP3
28 L2 PGA0_DM/
ADC0_DM0/
ADC1_DM3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
29 M1 PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DP/
ADC1_DP0/
ADC0_DP3
30 M2 PGA1_DM/
ADC1_DM0/
ADC0_DM3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
31 H5 VDDA VDDA VDDA
32 G5 VREFH VREFH VREFH
33 G6 VREFL VREFL VREFL
34 H6 VSSA VSSA VSSA
35 K3 ADC1_SE16/
CMP2_IN2/
ADC0_SE22
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
36 J3 ADC0_SE16/
CMP1_IN2/
ADC0_SE21
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
37 M3 VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
38 L3 DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
39 L4 DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
DAC1_OUT/
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
40 M7 XTAL32 XTAL32 XTAL32
41 M6 EXTAL32 EXTAL32 EXTAL32
42 L6 VBAT VBAT VBAT
43 VDD VDD VDD
44 VSS VSS VSS
45 M4 PTE24 ADC0_SE17/
EXTAL1
ADC0_SE17/
EXTAL1
PTE24 CAN1_TX UART4_TX I2S1_TX_FS EWM_OUT_b I2S1_RXD1
46 K5 PTE25 ADC0_SE18/
XTAL1
ADC0_SE18/
XTAL1
PTE25 CAN1_RX UART4_RX I2S1_TX_
BCLK
EWM_IN I2S1_TXD1
47 K4 PTE26 ADC3_SE5b ADC3_SE5b PTE26 UART4_
CTS_b
I2S1_TXD0 RTC_
CLKOUT
USB_CLKIN
48 J4 PTE27 ADC3_SE4b ADC3_SE4b PTE27 UART4_
RTS_b
I2S1_MCLK
49 H4 PTE28 ADC3_SE7a ADC3_SE7a PTE28
Pinout
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 75
144
LQFP
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
50 J5 PTA0 JTAG_TCLK/
SWD_CLK/
EZP_CLK
TSI0_CH1 PTA0 UART0_
CTS_b/
UART0_
COL_b
FTM0_CH5 JTAG_TCLK/
SWD_CLK
EZP_CLK
51 J6 PTA1 JTAG_TDI/
EZP_DI
TSI0_CH2 PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI
52 K6 PTA2 JTAG_TDO/
TRACE_
SWO/
EZP_DO
TSI0_CH3 PTA2 UART0_TX FTM0_CH7 JTAG_TDO/
TRACE_
SWO
EZP_DO
53 K7 PTA3 JTAG_TMS/
SWD_DIO
TSI0_CH4 PTA3 UART0_
RTS_b
FTM0_CH0 JTAG_TMS/
SWD_DIO
54 L7 PTA4/
LLWU_P3
NMI_b/
EZP_CS_b
TSI0_CH5 PTA4/
LLWU_P3
FTM0_CH1 NMI_b EZP_CS_b
55 M8 PTA5 DISABLED PTA5 USB_CLKIN FTM0_CH2 CMP2_OUT I2S0_TX_
BCLK
JTAG_TRST_
b
56 E7 VDD VDD VDD
57 G7 VSS VSS VSS
58 J7 PTA6 ADC3_SE6a ADC3_SE6a PTA6 ULPI_CLK FTM0_CH3 I2S1_RXD0 CLKOUT TRACE_
CLKOUT
59 J8 PTA7 ADC0_SE10 ADC0_SE10 PTA7 ULPI_DIR FTM0_CH4 I2S1_RX_
BCLK
TRACE_D3
60 K8 PTA8 ADC0_SE11 ADC0_SE11 PTA8 ULPI_NXT FTM1_CH0 I2S1_RX_FS FTM1_QD_
PHA
TRACE_D2
61 L8 PTA9 ADC3_SE5a ADC3_SE5a PTA9 ULPI_STP FTM1_CH1 FTM1_QD_
PHB
TRACE_D1
62 M9 PTA10 ADC3_SE4a ADC3_SE4a PTA10 ULPI_DATA0 FTM2_CH0 FTM2_QD_
PHA
TRACE_D0
63 L9 PTA11 ADC3_SE15 ADC3_SE15 PTA11 ULPI_DATA1 FTM2_CH1 FTM2_QD_
PHB
64 K9 PTA12 CMP2_IN0 CMP2_IN0 PTA12 CAN0_TX FTM1_CH0 I2S0_TXD0 FTM1_QD_
PHA
65 J9 PTA13/
LLWU_P4
CMP2_IN1 CMP2_IN1 PTA13/
LLWU_P4
CAN0_RX FTM1_CH1 I2S0_TX_FS FTM1_QD_
PHB
66 L10 PTA14 CMP3_IN0 CMP3_IN0 PTA14 SPI0_PCS0 UART0_TX I2S0_RX_
BCLK
I2S0_TXD1
67 L11 PTA15 CMP3_IN1 CMP3_IN1 PTA15 SPI0_SCK UART0_RX I2S0_RXD0
68 K10 PTA16 CMP3_IN2 CMP3_IN2 PTA16 SPI0_SOUT UART0_
CTS_b/
UART0_
COL_b
I2S0_RX_FS I2S0_RXD1
69 K11 PTA17 ADC1_SE17 ADC1_SE17 PTA17 SPI0_SIN UART0_
RTS_b
I2S0_MCLK
70 E8 VDD VDD VDD
71 G8 VSS VSS VSS
72 M12 PTA18 EXTAL0 EXTAL0 PTA18 FTM0_FLT2 FTM_CLKIN0
Pinout
K20 Sub-Family, Rev. 7, 02/2018
76 NXP Semiconductors
144
LQFP
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
73 M11 PTA19 XTAL0 XTAL0 PTA19 FTM1_FLT0 FTM_CLKIN1 LPTMR0_
ALT1
74 L12 RESET_b RESET_b RESET_b
75 K12 PTA24 CMP3_IN4 CMP3_IN4 PTA24 ULPI_DATA2 FB_A29
76 J12 PTA25 CMP3_IN5 CMP3_IN5 PTA25 ULPI_DATA3 FB_A28
77 J11 PTA26 ADC2_SE15 ADC2_SE15 PTA26 ULPI_DATA4 FB_A27
78 J10 PTA27 ADC2_SE14 ADC2_SE14 PTA27 ULPI_DATA5 FB_A26
79 H12 PTA28 ADC2_SE13 ADC2_SE13 PTA28 ULPI_DATA6 FB_A25
80 H11 PTA29 ADC2_SE12 ADC2_SE12 PTA29 ULPI_DATA7 FB_A24
81 H10 PTB0/
LLWU_P5
ADC0_SE8/
ADC1_SE8/
ADC2_SE8/
ADC3_SE8/
TSI0_CH0
ADC0_SE8/
ADC1_SE8/
ADC2_SE8/
ADC3_SE8/
TSI0_CH0
PTB0/
LLWU_P5
I2C0_SCL FTM1_CH0 FTM1_QD_
PHA
82 H9 PTB1 ADC0_SE9/
ADC1_SE9/
ADC2_SE9/
ADC3_SE9/
TSI0_CH6
ADC0_SE9/
ADC1_SE9/
ADC2_SE9/
ADC3_SE9/
TSI0_CH6
PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_
PHB
83 G12 PTB2 ADC0_SE12/
TSI0_CH7
ADC0_SE12/
TSI0_CH7
PTB2 I2C0_SCL UART0_
RTS_b
FTM0_FLT3
84 G11 PTB3 ADC0_SE13/
TSI0_CH8
ADC0_SE13/
TSI0_CH8
PTB3 I2C0_SDA UART0_
CTS_b/
UART0_
COL_b
FTM0_FLT0
85 G10 PTB4 ADC1_SE10 ADC1_SE10 PTB4 FTM1_FLT0
86 G9 PTB5 ADC1_SE11 ADC1_SE11 PTB5 FTM2_FLT0
87 F12 PTB6 ADC1_SE12 ADC1_SE12 PTB6 FB_AD23
88 F11 PTB7 ADC1_SE13 ADC1_SE13 PTB7 FB_AD22
89 F10 PTB8 DISABLED PTB8 UART3_
RTS_b
FB_AD21
90 F9 PTB9 DISABLED PTB9 SPI1_PCS1 UART3_
CTS_b
FB_AD20
91 E12 PTB10 ADC1_SE14 ADC1_SE14 PTB10 SPI1_PCS0 UART3_RX I2S1_TX_
BCLK
FB_AD19 FTM0_FLT1
92 E11 PTB11 ADC1_SE15 ADC1_SE15 PTB11 SPI1_SCK UART3_TX I2S1_TX_FS FB_AD18 FTM0_FLT2
93 H7 VSS VSS VSS
94 F5 VDD VDD VDD
95 E10 PTB16 TSI0_CH9 TSI0_CH9 PTB16 SPI1_SOUT UART0_RX I2S1_TXD0 FB_AD17 EWM_IN
96 E9 PTB17 TSI0_CH10 TSI0_CH10 PTB17 SPI1_SIN UART0_TX I2S1_TXD1 FB_AD16 EWM_OUT_b
97 D12 PTB18 TSI0_CH11 TSI0_CH11 PTB18 CAN0_TX FTM2_CH0 I2S0_TX_
BCLK
FB_AD15 FTM2_QD_
PHA
98 D11 PTB19 TSI0_CH12 TSI0_CH12 PTB19 CAN0_RX FTM2_CH1 I2S0_TX_FS FB_OE_b FTM2_QD_
PHB
Pinout
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 77
144
LQFP
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
99 D10 PTB20 ADC2_SE4a ADC2_SE4a PTB20 SPI2_PCS0 FB_AD31/
NFC_
DATA15
CMP0_OUT
100 D9 PTB21 ADC2_SE5a ADC2_SE5a PTB21 SPI2_SCK FB_AD30/
NFC_
DATA14
CMP1_OUT
101 C12 PTB22 DISABLED PTB22 SPI2_SOUT FB_AD29/
NFC_
DATA13
CMP2_OUT
102 C11 PTB23 DISABLED PTB23 SPI2_SIN SPI0_PCS5 FB_AD28/
NFC_
DATA12
CMP3_OUT
103 B12 PTC0 ADC0_SE14/
TSI0_CH13
ADC0_SE14/
TSI0_CH13
PTC0 SPI0_PCS4 PDB0_
EXTRG
FB_AD14/
NFC_
DATA11
I2S0_TXD1
104 B11 PTC1/
LLWU_P6
ADC0_SE15/
TSI0_CH14
ADC0_SE15/
TSI0_CH14
PTC1/
LLWU_P6
SPI0_PCS3 UART1_
RTS_b
FTM0_CH0 FB_AD13/
NFC_
DATA10
I2S0_TXD0
105 A12 PTC2 ADC0_SE4b/
CMP1_IN0/
TSI0_CH15
ADC0_SE4b/
CMP1_IN0/
TSI0_CH15
PTC2 SPI0_PCS2 UART1_
CTS_b
FTM0_CH1 FB_AD12/
NFC_DATA9
I2S0_TX_FS
106 A11 PTC3/
LLWU_P7
CMP1_IN1 CMP1_IN1 PTC3/
LLWU_P7
SPI0_PCS1 UART1_RX FTM0_CH2 CLKOUT I2S0_TX_
BCLK
107 H8 VSS VSS VSS
108 VDD VDD VDD
109 A9 PTC4/
LLWU_P8
DISABLED PTC4/
LLWU_P8
SPI0_PCS0 UART1_TX FTM0_CH3 FB_AD11/
NFC_DATA8
CMP1_OUT I2S1_TX_
BCLK
110 D8 PTC5/
LLWU_P9
DISABLED PTC5/
LLWU_P9
SPI0_SCK LPTMR0_
ALT2
I2S0_RXD0 FB_AD10/
NFC_DATA7
CMP0_OUT I2S1_TX_FS
111 C8 PTC6/
LLWU_P10
CMP0_IN0 CMP0_IN0 PTC6/
LLWU_P10
SPI0_SOUT PDB0_
EXTRG
I2S0_RX_
BCLK
FB_AD9/
NFC_DATA6
I2S0_MCLK
112 B8 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_SIN USB_SOF_
OUT
I2S0_RX_FS FB_AD8/
NFC_DATA5
113 A8 PTC8 ADC1_SE4b/
CMP0_IN2
ADC1_SE4b/
CMP0_IN2
PTC8 FTM3_CH4 I2S0_MCLK FB_AD7/
NFC_DATA4
114 D7 PTC9 ADC1_SE5b/
CMP0_IN3
ADC1_SE5b/
CMP0_IN3
PTC9 FTM3_CH5 I2S0_RX_
BCLK
FB_AD6/
NFC_DATA3
FTM2_FLT0
115 C7 PTC10 ADC1_SE6b ADC1_SE6b PTC10 I2C1_SCL FTM3_CH6 I2S0_RX_FS FB_AD5/
NFC_DATA2
I2S1_MCLK
116 B7 PTC11/
LLWU_P11
ADC1_SE7b ADC1_SE7b PTC11/
LLWU_P11
I2C1_SDA FTM3_CH7 I2S0_RXD1 FB_RW_b/
NFC_WE
117 A7 PTC12 DISABLED PTC12 UART4_
RTS_b
FB_AD27 FTM3_FLT0
118 D6 PTC13 DISABLED PTC13 UART4_
CTS_b
FB_AD26
119 C6 PTC14 DISABLED PTC14 UART4_RX FB_AD25
120 B6 PTC15 DISABLED PTC15 UART4_TX FB_AD24
121 VSS VSS VSS
Pinout
K20 Sub-Family, Rev. 7, 02/2018
78 NXP Semiconductors
144
LQFP
144
MAP
BGA
Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort
122 VDD VDD VDD
123 A6 PTC16 DISABLED PTC16 CAN1_RX UART3_RX FB_CS5_b/
FB_TSIZ1/
FB_BE23_
16_b
NFC_RB
124 D5 PTC17 DISABLED PTC17 CAN1_TX UART3_TX FB_CS4_b/
FB_TSIZ0/
FB_BE31_
24_b
NFC_CE0_b
125 C5 PTC18 DISABLED PTC18 UART3_
RTS_b
FB_TBST_b/
FB_CS2_b/
FB_BE15_8_
b
NFC_CE1_b
126 B5 PTC19 DISABLED PTC19 UART3_
CTS_b
FB_CS3_b/
FB_BE7_0_b
FB_TA_b
127 A5 PTD0/
LLWU_P12
DISABLED PTD0/
LLWU_P12
SPI0_PCS0 UART2_
RTS_b
FTM3_CH0 FB_ALE/
FB_CS1_b/
FB_TS_b
I2S1_RXD1
128 D4 PTD1 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK UART2_
CTS_b
FTM3_CH1 FB_CS0_b I2S1_RXD0
129 C4 PTD2/
LLWU_P13
DISABLED PTD2/
LLWU_P13
SPI0_SOUT UART2_RX FTM3_CH2 FB_AD4 I2S1_RX_FS
130 B4 PTD3 DISABLED PTD3 SPI0_SIN UART2_TX FTM3_CH3 FB_AD3 I2S1_RX_
BCLK
131 A4 PTD4/
LLWU_P14
DISABLED PTD4/
LLWU_P14
SPI0_PCS1 UART0_
RTS_b
FTM0_CH4 FB_AD2/
NFC_DATA1
EWM_IN
132 A3 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI0_PCS2 UART0_
CTS_b/
UART0_
COL_b
FTM0_CH5 FB_AD1/
NFC_DATA0
EWM_OUT_b
133 A2 PTD6/
LLWU_P15
ADC0_SE7b ADC0_SE7b PTD6/
LLWU_P15
SPI0_PCS3 UART0_RX FTM0_CH6 FB_AD0 FTM0_FLT0
134 M10 VSS VSS VSS
135 F8 VDD VDD VDD
136 A1 PTD7 DISABLED PTD7 CMT_IRO UART0_TX FTM0_CH7 FTM0_FLT1
137 C9 PTD8 DISABLED PTD8 I2C0_SCL UART5_RX FB_A16/
NFC_CLE
138 B9 PTD9 DISABLED PTD9 I2C0_SDA UART5_TX FB_A17/
NFC_ALE
139 B3 PTD10 DISABLED PTD10 UART5_
RTS_b
FB_A18/
NFC_RE
140 B2 PTD11 DISABLED PTD11 SPI2_PCS0 UART5_
CTS_b
SDHC0_
CLKIN
FB_A19
141 B1 PTD12 DISABLED PTD12 SPI2_SCK FTM3_FLT0 SDHC0_D4 FB_A20
142 C3 PTD13 DISABLED PTD13 SPI2_SOUT SDHC0_D5 FB_A21
143 C2 PTD14 DISABLED PTD14 SPI2_SIN SDHC0_D6 FB_A22
144 C1 PTD15 DISABLED PTD15 SPI2_PCS1 SDHC0_D7 FB_A23
Pinout
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 79
8.3 K20 pinouts
The figure below shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
75
74
73
60
59
58
57
56
55
54
53
52
51
72
71
70
69
68
67
66
65
64
63
62
61
25
24
23
22
21
40
39
38
37
50
49
48
47
46
45
44
43
42
41
36
35
34
33
32
31
30
29
28
27
26
99
79
78
77
76
98
97
96
95
94
93
92
91
90
89
88
80
81
82
83
84
85
86
87
100
108 VDD
107
106
105
104
103
102
101
VSS
PTC3/LLWU_P7
PTC2
PTC1/LLWU_P6
PTC0
PTB23
PTB22
116 PTC11/LLWU_P11
115
114
113
112
111
110
109
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
124 PTC17
123
122
121
120
119
118
117
PTC16
VDD
VSS
PTC15
PTC14
PTC13
PTC12
132 PTD5
131
130
129
128
127
126
125
PTD4/LLWU_P14
PTD3
PTD2/LLWU_P13
PTD1
PTD0/LLWU_P12
PTC19
PTC18
140 PTD11
139
138
137
136
135
134
133
PTD10
PTD9
PTD8
PTD7
VDD
VSS
PTD6/LLWU_P15
144
143
142
141
PTD15
PTD14
PTD13
PTD12
PTB20
PTA28
PTA27
PTA26
PTA25
PTB19
PTB18
PTB17
PTB16
VDD
VSS
PTB11
PTB10
PTB9
PTB8
PTB7
PTA29
PTB0/LLWU_P5
PTB1
PTB2
PTB3
PTB4
PTB5
PTB6
PTB21
PTA24
RESET_b
PTA19
PTA18
VSS
VDD
PTA17
PTA16
PTA15
PTA14
PTA13/LLWU_P4
PTA12
PTA11
PTA10
PTA9
PTA8
PTA7
PTA6
VSS
VDD
PTA5
PTA4/LLWU_P3
PTA3
PTA2
PTA1
PTA0
PTE28
PTE27
PTE26
PTE25
PTE24
VSS
VDD
VBAT
EXTAL32
XTAL32
DAC1_OUT/CMP0_IN4/CMP2_IN3/ADC1_SE23
DAC0_OUT/CMP1_IN3/ADC0_SE23
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
USB0_DM
USB0_DP
VSS
VSS
VDD
PTE12
PTE11
PTE10
PTE9
PTE8
PTE7
PTE6
PTE5
PTE4/LLWU_P2
VSS
VDD
PTE3
PTE2/LLWU_P1
PTE1/LLWU_P0
PTE0
PGA3_DP/ADC3_DP0/ADC2_DP3/ADC1_DP1
PGA2_DM/ADC2_DM0/ADC3_DM3/ADC0_DM1
PGA2_DP/ADC2_DP0/ADC3_DP3/ADC0_DP1
VREGIN
VOUT33
ADC0_SE16/CMP1_IN2/ADC0_SE21
ADC1_SE16/CMP2_IN2/ADC0_SE22
VSSA
VREFL
VREFH
VDDA
PGA1_DM/ADC1_DM0/ADC0_DM3
PGA1_DP/ADC1_DP0/ADC0_DP3
PGA0_DM/ADC0_DM0/ADC1_DM3
PGA0_DP/ADC0_DP0/ADC1_DP3
PGA3_DM/ADC3_DM0/ADC2_DM3/ADC1_DM1
Figure 40. K20 144 LQFP Pinout Diagram
Pinout
K20 Sub-Family, Rev. 7, 02/2018
80 NXP Semiconductors
1 2 3456789
123456789
A
B
C
D
E
F
G
H
J
A
B
C
D
E
F
G
H
J
10
K
K
10
11
11
LL
12
12
M
MPTA18
PTC8 LLWU_P8 NC LLWU_P7 PTC2
PTA1 PTA6PTA0PTE27
ADC0_SE16/
ADC1_SE16/ PTE26 PTE25 PTA2 PTA3 PTA8
PTA7
VSSVSSVSSAVDDAPTE28VSSUSB0_DM
PGA2_DM/
PGA3_DM/
PGA0_DM/ DAC0_OUT/ DAC1_OUT/
WAKEUP_B VBAT LLWU_P3 PTA9 PTA11
PTA12
LLWU_P4
PTB1
PTA27
LLWU_P5
PTB4PTB5VSSVSSVREFLVREFHPTE11PTE12VREGINVOUT33
USB0_DP
PGA2_DP/
PGA3_DP/
PGA0_DP/
PGA1_DP/ PGA1_DM/ VREF_OUT/
PTE24 NC EXTAL32 XTAL32 PTA5 PTA10 VSS
PTA16
PTA14
PTB3
PTA29
PTA26
PTA17
PTA15
PTA19
RESET_b
PTA24
PTA25
PTA28
PTB2
PTB6PTB7PTB8PTB9VDD
VDD PTB17 PTB16 PTB10PTB11
PTB19 PTB18
PTB22PTB23NC
PTB20PTB21
LLWU_P9
PTD8
LLWU_P10
PTC7 PTD9 NC LLWU_P6 PTC0
VSS VSS
VDDVDD
PTC13 PTC9
LLWU_P11
PTC10
PTC19 PTC15
PTC14PTC18
LLWU_P13
PTD3PTD10
PTD13
PTE0 PTD1 PTC17
VDD
VDDPTE7
PTE3
LLWU_P2
PTE8PTE9PTE10
PTE6 PTE5
LLWU_P0LLWU_P1
PTD15 PTD14
PTD11PTD12
PTC12PTC16
LLWU_P12LLWU_P14
PTD5
LLWU_P15
PTD7
ADC1_DP0/
ADC0_DP3 ADC1_DM0/
ADC0_DM3
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
ADC0_DP0/
ADC1_DP3 ADC0_DM0/
ADC1_DM3 CMP1_IN3/
ADC0_SE23
CMP0_IN4/
CMP2_IN3/
ADC1_SE23
RTC_ PTA4/
ADC3_DP0/
ADC2_DP3/
ADC1_DP1
ADC3_DM0/
ADC2_DM3/
ADC1_DM1
CMP2_IN2/
ADC0_SE22
ADC2_DP0/
ADC3_DP3/
ADC0_DP1
ADC2_DM0/
ADC3_DM3/
ADC0_DM1
CMP1_IN2/
ADC0_SE21
PTA13/
PTB0/
PTE4/
PTE2/ PTE1/ PTC5/
PTC6/PTD2/
PTC11/ PTC1/
PTC3/PTC4/
PTD0/PTD4/PTD6/
Figure 41. K20 144 MAPBGA Pinout Diagram
9Revision History
The following table provides a revision history for this document.
Table 57. Revision History
Rev. No. Date Substantial Changes
3 3/2012 Initial public release
Table continues on the next page...
Revision History
K20 Sub-Family, Rev. 7, 02/2018
NXP Semiconductors 81
Table 57. Revision History (continued)
Rev. No. Date Substantial Changes
4 10/2012 Replaced TBDs throughout.
5 10/2013 Changes for 4N96B mask set:
Min VDD operating requirement specification updated to support operation down to
1.71V.
New specifications:
Updated Vdd_ddr min specification.
Added Vodpu specification.
Removed Ioz, Ioz_ddr, and Ioz_tamper Hi-Z leakage specfications. They have been
replaced by new Iina, Iind, and Zind specifications.
Fpll_ref_acc specification has been added.
I2C module was previously covered by the general switching specifications. To provide
more detail on I2C operation a dedicated Inter-Integrated Circuit Interface (I2C) timing
section has been added.
Modified specifications:
Vref_ddr max spec has been updated.
Tpor spec has been split into two specifications based on VDD slew rate.
Trd1allx and Trd1alln max have been updated.
16-bit ADC Temp sensor slope and Temp sensor voltage (Vtemp25) have been
modified. The typical values that were listed previously have been updated, and min
and max specifications have been added.
Corrections:
Some versions of the datasheets listed incorrect clock mode information in the
"Diagram: Typical IDD_RUN operating behavior section." These errors have been
corrected.
Fintf_ft specification was previously shown as a max value. It has been corrected to be
shown as a typical value as originally intended.
Corrected DDR write and read timing diagrams to show the correct location of the Tcmv
specification.
SDHC peripheral 50MHz high speed mode options were left out of the last datasheet.
These have been added to the SDHC specifications section.
609/2015 Updated the footnotes of Thermal Attributes table
Removed Power Sequencing section
Added footnote to ambient temperature specification of Thermal Operating
requirements
Removed "USB HS/LS/FS on-the-go controller with on-chip high speed transceiver"
from features section
Updated Terminology and guidelines section
Updated the footnotes and the values of Power consumption operating behaviors table
Added Notes in USB electrical specification section
Updated I2C timing table
7 02/2018 Updated maximum SDHC frequency in SDHC specifications
Revision History
K20 Sub-Family, Rev. 7, 02/2018
82 NXP Semiconductors
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.
NXP, the NXP logo,NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
Freescale, the Freescale logo, the Energy Efficient Solutions logo, and Kinetis
are trademarks of NXP B.V. All other product or service names are the property
of their respective owners. Arm and Cortex are registered trademarks of Arm
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
© 2012–2018 NXP B.V.
Document Number K20P144M120SF3
Revision 7, 02/2018