Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw1
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
1.4MHz, High-Efficiency, Step-Up Converter for 2 to 8 White LEDs
The APW7213/4 is a current-mode and fixed frequency
boost converter with an integrated N-FET and Schottky
diode to drive up to 8 white LEDs in series.
The series connection allows the LED current to be iden-
tical for uniform brightness. Its low on-resistance of NFET
and low feedback voltage reduce power loss and achieve
high efficiency. Fast switching frequency (1.4MHz typical)
allows using small-size inductor and both of input and
output capacitors. An over-voltage protection function,
which monitors the output voltage via VOUT pin, stops
switching of the IC if the VOUT voltage exceeds the over-
voltage threshold. An internal soft-start circuit eliminates
the inrush current during start-up.
The APW7213/4 also integrates under-voltage lockout,
over-temperature protection, and current-limit circuits to
protect the IC in abnormal conditions.The APW7213/4 is
available in a SOT-23-6, TSOT-23-6A, and TDFN2x2-8
packages.
Features
Wide Input Voltage from 2.5V to 6V
Fixed 1.4MHz Switching Frequency
High Efficiency up to 80%
PWM Brightness Control with Wide Frequency
Range of 100Hz to 200kHz
Build-In Schottky Diode
Open-LED Protection
Under-Voltage Lockout Protection
Over-Temperature Protection
<1µA Quiescent Current During Shutdown
SOT-23-6, TSOT-23-6A, and TDFN2x2-8 Packages
Halogen and Lead Free Available
(RoHS Compliant)
Applications
General Description
White LED Display Backlighting
Cell Phone and Smart Phone
PND
Digital Camera
Simplified Application Circuit
Pin Configuration
APW7213: VOUT OVP with hysteresis to re-start.
APW7214: VOUT OVP Latch up directly until recycle power
supply.
4 EN
6 VIN
GND 2 5 VOUT
FB 3
LX 1
SOT-23-6/TSOT-23-6A
(Top View)
APW7213/4
TDFN2x2-8
(Top View)
APW7213/4
GND
1
6
54
3
28
7LX
FB
NC
GND
VIN
EN
VOUT
GND
GND
VIN
VOUT
EN
LX
FB
VOUT
L1
22µH
C2
0.22µF
C1
2.2µF
R1
VIN
Up to 8
WLEDs
OFF ON APW7213/4
(Option)
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw2
Symbol Parameter Rating Unit
VIN VIN Supply Voltage (VIN to GND) -0.3 ~ 7 V
FB, EN to GND -0.3 ~ VIN V
VLX LX to GND Voltage -0.3 ~ 41 V
VOUT VOUT to GND -0.3 ~ 41 V
PD Power Dissipation Internally Limit W
TJ Maximum Junction Temperature 150 oC
TSTG Storage Temperature -65 ~ 150 oC
TSDR Maximum Lead Soldering Temperature, 10 Seconds 260 oC
Absolute Maximum Ratings (Note 1)
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Ordering and Marking Information
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines Green to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Symbol Parameter Typical Value Unit
θJA
Junction-to-Ambient Resistance in Free Air (Note 2)
SOT-23-6
TSOT-23-6A
TDFN2x2-8
250
220
165
oC/W
θJC
Junction-to-Case Resistance SOT-23-6
TSOT-23-6A
TDFN2x2-8
160
120
20
oC/W
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad
of package is soldered directly on the PCB.
Thermal Characteristics
Package Code
QB : TDFN2x2-8 C : SOT-23-6 CT : TSOT-23-6A
Operating Ambient Temperature Range
I : -40 to 85oC
Handling Code
TR : Tape & Reel
Assembly Material
G: Halogen and Lead Free Device
X - Date Code
APW7213/4
Handling Code
Temperature Range
Package Code
Assembly Material
APW7213/4 QB: W13
X
APW7213/4 C/CT: W13X
W14
X
W14X X - Date Code
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw3
Recommended Operating Conditions (Note 3)
Symbol
Parameter Range Unit
VIN VIN Supply Voltage (VIN to GND) 2.5 ~ 6 V
VOUT VOUT to GND VIN ~ 34 V
CIN Input Capacitor 2.2 ~ µF
COUT Output Capacitor 0.22 ~ µF
L1 Converter Output Inductor 10 ~ 47 µH
TA Ambient Temperature -40 ~ 85 oC
TJ Junction Temperature -40 ~ 125 oC
Note 3: Refer to the application circuit for further information.
Electrical Characteristics
Refer to figure 1 in the “Typical Application Circuits. These specifications apply over VIN = 3.6V, TA = 25°C, unless
otherwise noted.
APW7213/4
Symbol
Parameter Test Conditions Min. Typ. Max.
Unit
SUPPLY CURRENT
VIN Input Voltage Range 2.5 - 6 V
IDD1 VFB = 0.4V, no switching 100 150 200 µA
IDD2 VFB = GND, switching - - 2.5 mA
ISD
Input DC Bias Current
EN=GND - - 1 µA
UNDER-VOLTAGE LOCKOUT
UVLO Threshold Voltage VIN Rising 2.0 2.2 2.4 V
UVLO Hysteresis Voltage 50 100 150 mV
REFERENCE AND OUTPUT VOLTAGE
VIN = 2.5V ~ 6V, TA = 25oC 0.185
0.2 0.215
V
VREF Regulated Feedback Voltage VIN=2.5V~6V, TA=-40~85oC 0.18 - 0.22 V
IFB FB Input Current -50 - 50 nA
INTERNAL POWER SWITCH AND SCHOTTKY DIODE
VIN = 2.5V ~ 6V, TA = 25oC 1.2 1.4 1.6 MHz
FSW Switching Frequency VIN = 2.5V ~ 6V, TA = -40 ~ 85oC -20 - 20 %
RON Power Switch On Resistance VIN = 3.6V - 0.45 -
ILIM Power Switch Current-Limit 1.2 - - A
LX Leakage Current VEN = 0V, VLX = 0V or 6V, VIN = 6V -1 - 1 µA
VF Schottky Diode Forward Voltage IF = 100mA - 0.7 - V
IR Schottky Diode Reversed Leakage
Current VR = 30V - 0.2 0.5 µA
DMAX LX Maximum Duty Cycle 92 95 98 %
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw4
Electrical Characteristics (Cont.)
APW7213/4
Symbol
Parameter Test Conditions Min. Typ. Max.
Unit
OUTPUT OVER-VOLTAGE PROTECTION
Over Voltage Threshold VOUT Rising 34 38 41 V
OVP Hysteresis APW7213 only - 3 - V
ENABLE AND SHUTDOWN
Enable Voltage Threshold VEN Rising 1 - - V
Shutdown Voltage Threshold VEN Falling - - 0.4 V
EN Leakage Current VEN = 0 ~ 6V, VIN = 6V -100 - 100 nA
OVER-TEMPERATURE PROTECTION
TOTP Over-Temperature Protection (Note 4) TJ Rising - 150 - oC
Over-Temperature Protection
Hysteresis (Note 4) TJ Falling - 40 - oC
Refer to figure 1 in the “Typical Application Circuits. These specifications apply over VIN = 3.6V, TA = 25°C, unless
otherwise noted.
Note 4: Guaranteed by design, not production tested.
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw5
Typical Operating Characteristics
(Refer to the application circuit in the section "Typical Application Circuits", VIN=3.6V, TA=25oC, 6WLEDs unless
otherwise specified )
Efficiency vs. WLED Current
Efficiency (%)
WLED Current, ILED (mA)
40
45
50
55
60
65
70
75
80
85
0 5 10 15 20
VIN=3.6V
6 WLEDs 19V@20mA
η=POUT/PIN
WLED Current vs. PWM Duty Cycle
WLED Current, ILED (mA)
PWM Duty Clcle (%)
020 40 60 80 100
0
2
4
6
8
10
12
14
16
18
20
100Hz
100KHz
1KHz
WLED Current, ILED (mA)
WLED Current vs. Supply Voltage
Supply Voltage, VIN (V)
19.0
19.2
19.4
19.6
19.8
20.0
20.2
20.4
20.6
20.8
21.0
2.5 33.5 44.5 55.5 6
Maximum Duty Cycle vs. Supply Voltage
Maximum Duty Cycle, DMAX (%)
Supply Voltage, VIN (V)
40
50
60
70
80
90
100
2.5 33.5 44.5 55.5 6
Switch ON Resistance vs. Supply Voltage
Switch ON Resistance, RON (Ω)
Supply Voltage, VIN (V)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
2.5 33.5 44.5 55.5 6
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw6
Operating Waveforms
(Refer to the application circuit in the section "Typical Application Circuits", VIN=3.6V, TA=25oC, 6WLEDs unless
otherwise specified )
1
3
Start-up
2
VOUT, 5V/Div, DC
IIN, 0.1A/Div
VEN, 2V/Div, DC
6WLEDs, L=22µH, COUT=0.22µF, VIN=3.6V
Time: 0.2ms/Div
Time: 20ms/Div
Open-LED Protection
1
VOUT,10V/Div
APW7213
Open-LED Protection
1
2
3
VEN, 2V/Div, DC
VOUT,10V/Div
IIN, 0.2A/Div APW7214
Time: 10ms/Div
Time: 0.2ms/Div
Start-up
1
2
3
VOUT, 5V/Div, DC
IIN, 0.1A/Div
VEN, 2V/Div, DC
8WLEDs, L=22µH, COUT=0.22µF, VIN=3.6V
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw7
Pin Description
PIN
NO.
TDFN2x2-8 SOT-23-6/
TSOT-23-6A
NAME
FUNCTION
1, 5 2 GND
Power and signal ground pin.
2 6 VIN Main Supply Pin. Must be closely decoupled to GND with a 2.2µF or greater ceramic
capacitor.
3 5 VOUT
Converter Output and Over-Voltage Protection Input Pin.
4 4 EN Enable Control Input. Forcing this pin above 1.0V enables the device, or forcing this
pin below 0.4V to shut it down. In shutdown, all functions are disabled to decrease
the supply current below 1µA. Do not leave this pin floating.
6 3 FB Feedback Pin. Connect this pin to cathode of the lowest LED and current-sense
resistor (R1). Calculate resistor value according to R1=VREF/ILED.
7 - NC No Internal Connection.
8 1 LX Switch pin. Connect this pin to inductor/diode here.
Exposed Pad
- GND
Connecting this pad to GND.
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw8
Block Diagram
Typical Application Circuit
Current Sense
Amplifier
Gate
Driver
VREF
Current-Limit
Comparator
PWM
Comparator
+
+
Slope
Compensation
Logic
Control
VIN LX
GND
Error
Amplifier
FB
VOUT
ICSS
Clock
1.4MHz
Oscillator
VREF
Over-Voltage
Comparator
Q1
RESET
EAMP
ICMP
COMP
EN
Over-Temperature
Protection
VIN UVLO
GND
VIN
VOUT
EN
LX
FB
VOUT
L1
22µH
C2
0.22µF
C1
2.2µF
R1
VIN
Up to 8
WLEDs
OFF ON
Figure 1. Typical 8 WLEDs Application
APW7213/4
(Option)
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw9
Function Description
Main Control Loop
The APW7213/4 is a constant frequency current-mode
switching regulator. During normal operation, the inter-
nal N-channel power MOSFET is turned on each cycle
when the oscillator sets an internal RS latch and turned
off when an internal comparator (ICMP) resets the latch.
The peak inductor current at which ICMP resets the RS
latch is controlled by the voltage on the COMP node, which
is the output of the error amplifier (EAMP). An external
current-sense resistor connected between cathode of the
lowest LED and ground allows the EAMP to receive a
current feedback voltage VFB at FB pin. When the LEDs
voltage decreases to cause the LEDs current to decrease,
it causes a slightly decrease in VFB relative to the refer-
ence voltage, which in turn causes the COMP voltage to
increase until the LEDs current reaches the set point.
VIN Under-Voltage Lockout (UVLO)
The Under-Voltage Lockout (UVLO) circuit compares the
input voltage at VIN with the UVLO threshold (2.2V rising,
typical) to ensure the input voltage is high enough for
reliable operation. The 100mV (typ) hysteresis prevents
supply transients from causing a restart. Once the input
voltage exceeds the UVLO rising threshold, start-up
begins. When the input voltage falls below the UVLO fall-
ing threshold, the controller turns off the converter.
Soft-Start
The APW7213/4 has a built-in soft-start to control the N
channel MOSFET current raises during start-up. During
soft-start, an internal ramp voltage connected to one of
the inverting inputs of the current-limit comparator. The
inductor current-limit is proportional to the voltage. When
the threshold voltage of the internal soft-start comparator
is reached, the full current-limit is released.
Current-Limit Protection
The APW7213/4 monitors the inductor current, flowing
through the N-channel MOSFET, and limits the current
peak at current-limit level to prevent loads and the device
from damages in overload conditions.
Over-Temperature Protection (OTP)
The over-temperature circuit limits the junction tempera-
ture of the APW7213/4. When the junction temperature
exceeds 150oC, a thermal sensor turns off the power
MOSFET, allowing the device to cool. The thermal sen-
sor allows the converter to start a soft-start process and
regulate the LEDs current again after the junction tem-
perature cools by 40oC. The OTP is designed with a 40oC
hysteresis to lower the average Junction Temperature
(TJ) during continuous thermal overload conditions, in-
creasing the lifetime of the device.
Enable/Shutdown
Driving EN to ground places the APW7213/4 in shutdown
mode. When in shutdown, the internal power MOSFET
turns off, all internal circuitry shuts down and the quies-
cent supply current reduces to 1µA maximum. This pin
also could be used as a digital input allowing brightness
controlled by using a PWM signal with frequency from
100Hz to 200kHz. The 0% duty cycle of PWM signal corre-
sponds to zero LEDs current and 100% corresponds to
full one.
Open-LED Protection
In driving LED applications, the feedback voltage on FB
pin falls down if one of the LEDs, in series, is failed.
Meanwhile, the converter unceasingly boosts the output
voltage like an open-loop operation. Therefore, an over-
voltage protection monitoring the output voltage via VOUT
pin is integrated into the chip to prevent the LX and the
output voltages from exceeding their maximum voltage
ratings. When the voltage on the VOUT pin rises above
the OVP threshold (38V, typical), the APW7213 stops
switching and prevents the output voltage from rising.
The converter can work again when the falling OVP volt-
age falls below the OVP voltage threshold. When the
APW7214 detects over-voltage on VOUT pin, latch up the
switch. The APW7214 will initiate a soft-start process until
re-cycle power supply if OVP occurred.
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw10
Application Information
Input Capacitor Selection
The input capacitor (CIN) reduces the ripple of the input
current drawn from the input supply and reduces noise
injection into the IC. The reflected ripple voltage will be
smaller when an input capacitor with larger capacitance
is used. For reliable operation, it is recommended to
select the capacitor with maximum voltage rating at least
1.2 times of the maximum input voltage. The capacitors
should be placed close to the VIN and GND.
Inductor Selection
Selecting an inductor with low dc resistance reduces con-
duction losses and achieves high efficiency. The efficiency
is moderated whilst using small chip inductor which op-
erates with higher inductor core losses. Therefore, it is
necessary to take further consideration while choosing
an adequate inductor. Mainly, the inductor value deter-
mines the inductor ripple current: larger inductor value
results in smaller inductor ripple current and lower con-
duction losses of the converter. However, larger inductor
value generates slower load transient response. A rea-
sonable design rule is to set the ripple current, IL, to be
30% to 50% of the maximum average inductor current,
IL(AVG). The inductor value can be obtained as below,
whereVIN = input voltage
VOUT = output voltage
FSW = switching frequency in MHz
IOUT = maximum output current in amp.
η = Efficiency
IL /IL(AVG) = inductor ripple current/average current
(0.3 to 0.5 typical)
To avoid saturation of the inductor, the inductor should be
rated at least for the maximum input current of the con-
verter plus the inductor ripple current. The maximum in-
put current is calculated as below:
The peak inductor current is calculated as the following
equation:
(
)
SWOUT
INOUTIN
)MAX(INPEAK FLVVVV
2
1
II
+=
Output Capacitor Selection
The current-mode control scheme of the APW7213/4 al-
lows the usage of tiny ceramic capacitors. The higher
capacitor value provides good load transient response.
Ceramic capacitors with low ESR values have the lowest
output voltage ripple and are recommended. If required,
tantalum capacitors may be used as well. The output ripple
is the sum of the voltages across the ESR and the ideal
output capacitor.
where IPEAK is the peak inductor current.
ΔVOUT = ΔVESR + ΔVCOUT
VIN VOUT
IL
N-FET
LX IOUT
ISW
CIN
COUT
IIN D1
ESR
ILIM
IL
IPEAK
IIN
IOUT
ISW
ID
IL
( )
η
×
×
×
AVGL
L
)MAX(OUTSW
INOUT
2
OUT
IN
II
IFVV
V
V
L
×
×SWOUT
INOUT
OUT
OUT
COUT FVVV
C
I
V
η××
=IN
OUT)MAX(OUT
)MAX(IN VVI
I
ESRPEAKESR RIV×
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw11
Application Information (Cont.)
Output Capacitor Selection (Cont.)
For ceramic capacitor application, the output voltage ripple
is dominated by the VCOUT. When choosing the input and
output ceramic capacitors, the X5R or X7R with their
good temperature and voltage characteristics are
recommended.
Diode Selection
To achieve high efficiency, a Schottky diode must be used.
The current rating of the diode must meet the peak cur-
rent rating of the converter.
Setting the LED Current
In figure 1, the converter regulates the voltage on FB pin,
connected with the cathod of the lowest LED and the cur-
rent-sense resistor R1, at 0.2V (typical). Therefore, the
current (ILED), flowing via the LEDs and the R1, is calcu-
lated by the following equation:
Recommended
Inductor
Selection
Designator
Manufacturer
Part Number Inductance (µH)
Max DCR (ohm)
Saturation
Current (A) Dimensions
L x W x H (mm3)
L1 GOTREND
GTSD-53-470 47 0.35 0.62 5 x 5 x 2.8
L1 GOTREND
GTSD-32-220 22 0.59 0.52 3.85 x 3.85 x 1.8
Recommended Capacitor Selection
Designator
Manufacturer
Part Number Capacitance (µF)
TC Code Rated Voltage (V)
Case size
C1 Murata GRM188R60J475KE19
4.7 X5R 6.3 0603
C2 Murata GRM21BR71H105KA12
1.0 X7R 50 0805
Recommended Diode Selection
Designator
Manufacturer
Part Number Maximum average forward
rectified current (A) Maximum repetitive peak
reverse voltage (V) Case size
D1 Zowie MSCD106 1.0 60 0805
1RV2.0
ILED =
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw12
Package Information
TDFN2x2-8
S
Y
M
B
O
LMIN. MAX.
0.80
0.00
0.18 0.30
1.00 1.60
0.05
0.60
A
A1
b
D
D2
E
E2
e
L
MILLIMETERS
A3 0.20 REF
TDFN2x2-8
0.30 0.45
1.00
0.008 REF
MIN. MAX.
INCHES
0.031
0.000
0.007 0.012
0.039 0.063
0.024
0.012 0.018
0.70
0.039
0.028
0.002
0.50 BSC 0.020 BSC
1.90 2.10 0.075 0.083
1.90 2.10 0.075 0.083
Note : 1. Followed from JEDEC MO-229 WCCD-3.
e
LE2
Pin 1 Cornar
D2
E
DA
b
A1
A3
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw13
Package Information
TSOT-23-6A
Note : Dimension D and E1 do not include mold flash, protrusions or gate
burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil
per side.
De
e1
b
E1
E
c
SEE VIEW A
A2A1
A
VIEW A
L
0.25
SEATING PLANE
GAUGE PLANE
0.020
0.008
0.004
0.024
0.035
0.039
MAX.
0.30L
0
E
e
e1
E1
D
c
b
0.08
0.30
0.012
0.60
0.95 BSC
1.90 BSC
0.50
0.20
0.075 BSC
0.037 BSC
0.012
0.003
MILLIMETERS
MIN.
S
Y
M
B
O
L
A1
A2
A
0.01
0.70
TSOT-23-6A
MAX.
0.90
0.10
1.00
MIN.
0.000
0.028
INCHES
2.70 3.10 0.106 0.122
2.60 3.00 0.102 0.118
1.40 1.80 0.055 0.071
0.70 0.028
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw14
Package Information
SOT-23-6
0
L
VIEW A
0.25
GAUGE PLANE
SEATING PLANE
A
A2A1
e
D
E1
SEE VIEW A
bc
e1
E
0
°
8
°
0
°
8
°
0.020
0.009
0.006
0.024
0.051
0.057
MAX.
0.30L
0
E
e
e1
E1
D
c
b
0.08
0.30
0.012
0.60
0.95 BSC
1.90 BSC
0.50
0.22
0.075 BSC
0.037 BSC
0.012
0.003
MILLIMETERS
MIN.
S
Y
M
B
O
L
A1
A2
A
0.00
0.90
SOT-23-6
MAX.
1.30
0.15
1.45
MIN.
0.000
0.035
INCHES
1.40
2.60 3.00
1.80
2.70 3.10
0.118
0.071
0.122
0.102
0.055
0.106
Note : 1. Follow JEDEC TO-178 AB.
2. Dimension D and E1 do not include mold flash, protrusions or
gate burrs. Mold flash, protrusion or gate burrs shall not exceed
10 mil per side.
SEATING PLANE < 4 mils-T-
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw15
Application
A H T1 C d D W E1 F
178.0±2.00
50 MIN.
8.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
8.0±0.20
1.75±0.10
3.50±0.05
P0 P1 P2 D0 D1 T A0 B0 K0
TDFN2x2-8
4.0±0.10
4.0±0.10
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.4 3.35 MIN
3.35 MIN
1.30±0.20
Application
A H T1 C d D W E1 F
178.0±2.00
50 MIN.
8.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
8.0±0.30
1.75±0.10
3.5±0.05
P0 P1 P2 D0 D1 T A0 B0 K0
TSOT-23-6A
4.0±0.10
4.0±0.10
2.0±0.05
1.5+0.10
-0.00
1.0 MIN.
0.6+0.00
-0.40
3.20±0.20
3.10±0.20
1.50±0.20
Application
A H T1 C d D W E1 F
178.0±2.00
50 MIN.
8.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
8.0±0.30
1.75±0.10
3.5±0.05
P0 P1 P2 D0 D1 T A0 B0 K0
SOT-23-6
4.0±0.10
4.0±0.10
2.0±0.05
1.5+0.10
-0.00
1.0 MIN.
0.6+0.00
-0.40
3.20±0.20
3.10±0.20
1.50±0.20
(mm)
Carrier Tape & Reel Dimensions
H
T1
A
d
A
E1
A
B
W
F
T
P0
OD0
BA0
P2
K0
B0
SECTION B-B
SECTION A-A
OD1
P1
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw16
Devices Per Unit
Package Type Unit Quantity
TDFN2x2-8 Tape & Reel 3000
TSOT-23-6A Tape & Reel 3000
SOT-23-6 Tape & Reel 3000
Taping Direction Information
TDFN2x2-8
TSOT-23-6A/SOT-23-6
USER DIRECTION OF FEED
USER DIRECTION OF FEED
AAAX AAAX AAAX AAAX AAAX AAAX AAAX
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw17
Classification Profile
Classification Reflow Profiles
Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
Average ramp-up rate
(Tsmax to TP) 3 °C/second max. 3°C/second max.
Liquidous temperature (TL)
Time at liquidous (tL) 183 °C
60-150 seconds 217 °C
60-150 seconds
Peak package body Temperature
(Tp)* See Classification Temp in table 1 See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc) 20** seconds 30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max. 6 °C/second max.
Time 25°C to peak temperature 6 minutes max. 8 minutes max.
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Supplier TpTc
Supplier tp
User TpTc
User tp
t
tS
Time
Temperature
Tp
TL
tpTC -5oC
25 Time 25oC to Peak
Max. Ramp Up Rate = 3oC/s
Max. Ramp Down Rate = 6oC/s
Preheat Area
Tsmax
Tsmin
TC
TC -5oC
Copyright ANPEC Electronics Corp.
Rev. A.1 - Mar., 2011
APW7213/4
www.anpec.com.tw18
Classification Reflow Profiles (Cont.)
Table 2. Pb-free Process Classification Temperatures (Tc)
Package
Thickness Volume mm3
<350 Volume mm3
350-2000 Volume mm3
>2000
<1.6 mm 260 °C 260 °C 260 °C
1.6 mm 2.5 mm 260 °C 250 °C 245 °C
2.5 mm 250 °C 245 °C 245 °C
Table 1. SnPb Eutectic Process Classification Temperatures (Tc)
Package
Thickness Volume mm3
<350 Volume mm3
350
<2.5 mm 235 °C 220 °C
2.5 mm 220 °C 220 °C
Test item Method Description
SOLDERABILITY JESD-22, B102 5 Sec, 245°C
HOLT JESD-22, A108 1000 Hrs, Bias @ Tj=125°C
PCT JESD-22, A102 168 Hrs, 100%RH, 2atm, 121°C
TCT JESD-22, A104 500 Cycles, -65°C~150°C
HBM MIL-STD-883-3015.7 VHBM2KV
MM JESD-22, A115 VMM200V
Latch-Up JESD 78 10ms, 1tr100mA
Reliability Test Program
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838