

General Description
The MAX15012/MAX15013 high-frequency, 175V halfbridge, n-channel MOSFET drivers drive high- and lowside MOSFETs in high-voltage applications. These drivers are independently controlled and their 35ns typical propagation delay, from input to output, are matched to within 2 ns (typ). The high-voltage operation with very low and matched propagation delay between drivers, and high source/sink current capabilities make these devices suitable for the high-power, high-frequency telecom power converters. A reliable on-chip bootstrap diode connected between VDD and BST eliminates the need for an external discrete diode.
The MAX15012A/C and MAX15013A/C offer both noninverting drivers (see the Selector Guide). The MAX15012B/D and MAX15013B/D offer a noninverting high-side driver and an inverting low-side driver. The MAX15012A/B/C/D feature CMOS (VDD/2) logic inputs. The MAX15013A/B/C/D feature TTL logic inputs. The drivers are available in the industry-standard 8-pin SO footprint and pin configuration and a thermally enhanced 8-pin SO package. All devices operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

Applications

Telecom Half-Bridge Power Supplies
Two-Switch Forward Converters
Full-Bridge Converters
Active-Clamp Forward Converters
Power-Supply Modules
Motor Control

Pin Configurations and Typical Operating Circuit appear at the end of data sheet.

Features

- HIP2100/HIP2101 Pin Compatible (MAX15012A/C and MAX15013A/C)
- Up to 175V Input Operation
- 8 V to 12.6 V VDD Input Voltage Range
- 2A Peak Source and Sink Current Drive Capability
- 35ns Typical Propagation Delay
- Guaranteed 8ns Propagation Delay Matching Between Drivers
- Up to 500 kHz Switching Frequency
- Available in CMOS (Vdd/2) or TTL Logic-Level Inputs with Hysteresis
- Up to 14V Logic Inputs Independent of Input Voltage
- Low 2.5pF Input Capacitance
- Low 70ヶA Supply Current
- Versions Available with Combination of Noninverting and Inverting Drivers (MAX15012B/D and MAX15013B/D)
- Available in Industry-Standard 8-Pin SO and Thermally Enhanced SO Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX15012AASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	S8-5
MAX15012BASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	S8-5
MAX15012CASA $+^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO-EP**	S8E +14
MAX15012DASA $+^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO-EP**	S8E +14

Ordering Information continued at end of data sheet.
+Denotes lead-free package.
*Future product-contact factory for availability.
**EP = Exposed pad.

Selector Guide

PART	HIGH-SIDE DRIVER	LOW-SIDE DRIVER	LOGIC LEVELS	PIN COMPATIBLE
MAX15012AASA+	Noninverting	Noninverting	CMOS (VDD/2)	HIP 2100IB
MAX15012BASA+	Noninverting	Inverting	CMOS (VDD/2)	-
MAX15012CASA+	Noninverting	Noninverting	CMOS (VDD/2)	HIP 2100IB
MAX15012DASA+	Noninverting	Inverting	CMOS (VDD/2)	-
MAX15013AASA+	Noninverting	Noninverting	TTL	HIP 2101IB
MAX15013BASA+	Noninverting	Inverting	TTL	-
MAX15013CASA+	Noninverting	Noninverting	TTL	HIP 2101IB
MAX15013DASA+	Noninverting	Inverting	TTL	-

/ 1 /XI/V

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)
VDD, IN_H, IN_L...-0.3V to +14V
DL. HS -0.3 V to $(\mathrm{VDD}+0.3 \mathrm{~V})$

DH to HS $\ldots-5 \mathrm{~V}$ to +180 V
DH to HS . $-0.3 V$ to (VDD $+0.3 V)$
BST to HS
\qquad $(V D D+0.3 V)$
$-0.3 V$ to $+14 V$
dV/dt at HS \qquad $.50 \mathrm{~V} / \mathrm{ns}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .470 .6 mW 8-Pin SO-EP (derate $19.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . .1538 .5 \mathrm{~mW}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JE5D51-7, using a fourlayer board. For detailed information on package thermal considerations, see www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BST}}=+8 \mathrm{~V}\right.$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{HS}}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=$ $\mathrm{V}_{\text {BST }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) $($ Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Operating Supply Voltage	VDD	(Notes 3 and 4)	8.0		12.6	V
VDD Quiescent Supply Current (No Switching)	IDD	IN_H = IN_L = GND (for A/C versions), IN_H = GND, IN_L = VDD (for B/D versions)		70	140	$\mu \mathrm{A}$
VDD Operating Supply Current	IDDO	fSw $=500 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=+12 \mathrm{~V}$			3	mA
BST Quiescent Supply Current	IBST	IN_H = IN_L = GND (for A/C versions), IN_H = GND, IN_L = VDD (for B/D versions)		15	40	$\mu \mathrm{A}$
BST Operating Supply Current	IBSTO	$\mathrm{fSW}=500 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {BST }}=+12 \mathrm{~V}$			3	mA
UVLO (VDD to GND)	UVLOVdd	VDD rising	6.5	7.3	8.0	V
UVLO (BST to HS)	UVLOBST	BST rising	6.0	6.9	7.8	V
UVLO Hysteresis				0.5		V
LOGIC INPUT						
Input-Logic High	VIH_{-}	MAX15012_, CMOS (VDD/2) version	$\begin{gathered} 0.67 x \\ V_{D D} \end{gathered}$	$\begin{gathered} 0.55 x \\ V_{D D} \end{gathered}$		V
		MAX15013_, TTL version	2	1.65		
Input-Logic Low	VIL_	MAX15012_, CMOS (VDD/2) version		$\begin{aligned} & 0.4 x \\ & V_{D D} \end{aligned}$	$\begin{gathered} 0.33 x \\ V_{D D} \end{gathered}$	V
		MAX15013_, TTL version		1.4	0.8	
Logic-Input Hysteresis	VHYS	MAX15012_, CMOS (VDD/2) version		1.6		V
		MAX15013, TTL version		0.25		

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BST}}=+8 \mathrm{~V}\right.$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{HS}}=\mathrm{GND}=\mathrm{VV}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=$ $V_{\text {BST }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Logic-Input Current	I_IN	VIN_L = VDD for MAX15012B/MAX15012D/ MAX15013B/MAX15013D		-1	+0.001	+1	$\mu \mathrm{A}$
		VIN_H $=0 \mathrm{~V}$					
		VIN_L = OV for MAX15012A/MAX15012C/ MAX15013A/MAX15013C					
Input Resistance	RIN	IN_H to GND			1		$\mathrm{M} \Omega$
		IN_L to VDD for MAX15012B/MAX15012D/ MAX15013B/MAX15013D					
		IN_L to GND for MAX15012A/MAX15012C/ MAX15013A/MAX15013C					
Input Capacitance	CIN				2.5		pF
HIGH-SIDE GATE DRIVER							
HS Maximum Voltage	V $\mathrm{HS}^{\text {d }}$ MAX	$\mathrm{V}_{\mathrm{DD}} \leq 10.5 \mathrm{~V}$ (Note 4)		175			V
BST Maximum Voltage	VBST_MAX	$V_{D D} \leq 10.5 \mathrm{~V}$ (Note 4)		189			V
Driver Output Resistance (Sourcing)	Ron_HP	$V_{D D}=12 \mathrm{~V}, \mathrm{IDH}=100 \mathrm{~mA}$ (sourcing)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	3.3	Ω
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		3.5	4.6	
Driver Output Resistance (Sinking)	Ron_hn	$V_{D D}=12 \mathrm{~V}, I_{D H}=100 \mathrm{~mA}$ (sinking)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.1	2.8	Ω
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		3.2	4.2	
DH Reverse Current (Latchup Protection)		(Note 5)		400			mA
Power-Off Pulldown Clamp Voltage		$\mathrm{V}_{\text {BST }}=0 \mathrm{~V}$ or floating, IDH	1mA (sinking)		0.94	1.16	V
Peak Output Current (Sourcing)	IDH_PEAK	$C_{L}=10 n F, V_{D H}=0 \mathrm{~V}$			2		A
Peak Output Current (Sinking)		$C_{L}=10 \mathrm{nF}, \mathrm{V} \mathrm{VH}=12 \mathrm{~V}$			2		A
LOW-SIDE GATE DRIVER							
Driver Output Resistance (Sourcing)	Ron_LP	$\begin{aligned} & V_{D D}=12 \mathrm{~V}, I_{D L}=100 \mathrm{~mA} \\ & \text { (sourcing) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	3.3	Ω
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		3.5	4.6	
Driver Output Resistance (Sinking)	Ron_LN	$\begin{aligned} & \mathrm{V} D \mathrm{DD}=12 \mathrm{~V}, \mathrm{IDL}=100 \mathrm{~mA} \\ & \text { (sinking) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.1	2.8	Ω
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$		3.2	4.2	
Reverse Current at DL (Latchup Protection)		(Note 5)		400			mA
Power-Off Pulldown Clamp Voltage		$V_{D D}=0 V$ or floating, $I_{\text {dL }}=1 \mathrm{~mA}$ (sinking)			0.95	1.16	V
Peak Output Current (Sourcing)	IPK_LP	$C_{L}=10 \mathrm{nF}, \mathrm{V}_{\mathrm{DL}}=0 \mathrm{~V}$			2		A
Peak Output Current (Sinking)	IPK_LN	$C_{L}=10 \mathrm{nF}, \mathrm{V} \mathrm{DL}=12 \mathrm{~V}$			2		A
INTERNAL BOOTSTRAP DIODE							
Forward Voltage Drop	V_{F}	I BST $=100 \mathrm{~mA}$			0.91	1.11	V
Turn-On and Turn-Off Time	tR	IBST $=100 \mathrm{~mA}$			40		ns

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BST}}=+8 \mathrm{~V}\right.$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{HS}}=\mathrm{GND}=\mathrm{VV}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=$ $V_{\text {BST }}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) $($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
SWITCHING CHARACTERISTICS FOR HIGH- AND LOW-SIDE DRIVERS ($\mathrm{V}_{\text {DD }}=\mathrm{V}_{\text {BST }}=\mathbf{+ 1 2 V}$)						
Rise Time	tR	$C_{L}=1000 \mathrm{pF}$		7		ns
		$\mathrm{CL}_{\mathrm{L}}=5000 \mathrm{pF}$		33		
		$C_{L}=10,000 \mathrm{pF}$		65		
Fall Time	$\mathrm{tF}_{\text {F }}$	$C L=1000 \mathrm{pF}$		7		ns
		$\mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$		33		
		$C_{L}=10,000 \mathrm{pF}$		65		
Turn-On Propagation Delay Time	tD_ON	Figure 1, CL = 1000pF (Note 5)	CMOS	30	55	ns
			TTL	35	63	
Turn-Off Propagation Delay Time	tD_OFF	Figure 1, CL = 1000pF (Note 5)	CMOS	30	55	ns
			TTL	35	63	
Delay Matching Between DriverLow and Driver-High	tMATCH	$C \mathrm{~L}=1000 \mathrm{pF}$, Figure 1 (Note 5)		28		ns
Internal Nonoverlap				1		ns
Minimum Pulse Width Input Logic (Note 6)	tPW-min	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {BST }}=12 \mathrm{~V}$		135		ns
		$\mathrm{V}_{\text {DD }}=\mathrm{V}_{\text {BST }}=8 \mathrm{~V}$		170		

Note 2: All devices are 100% tested at $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 3: Ensure that the VDD-to-GND or BST-to-HS transient voltage does not exceed 13.2V.
Note 4: Maximum operating supply voltage (VD) reduces linearly from 12.6 V to 10.5 V with its maximum voltage (V_{HS} _MAX) increasing from 125V to 175V. See the Typical Operating Characteristics and Applications Information sections.
Note 5: Guaranteed by design, not production tested.
Note 6: See the Minimum Input Pulse Width section.

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

Typical Operating Characteristics
(Typical values are at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BST}}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

(Typical values are at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BST}}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

PEAK DH AND DL SOURCE/SINK CURRENT

DH OR DL FALL TIME vs. TEMPERATURE (CLOAD = 10nF)

DH OR DL OUTPUT LOW VOLTAGE
vs. TEMPERATURE

DH OR DL RISE TIME vs. TEMPERATURE ($\left.C_{L}=10 n F\right)$

DH OR DL RISE PROPAGATION DELAY vs. TEMPERATURE

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

Typical Operating Characteristics (continued)

(Typical values are at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BST}}=+12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

$40 \mu \mathrm{~s} / \mathrm{div}$

175V/2A, High-Speed,
 Half-Bridge MOSFET Drivers

PIN	NAME	FUNCTION
1	VDD	Power Input. Bypass V ${ }_{\text {DD }}$ to GND with a parallel combination of $0.1 \mu \mathrm{~F}$ and $1 \mu \mathrm{~F}$ ceramic capacitors.
2	BST	Boost Flying Capacitor Connection. Connect a 0.1μ F ceramic capacitor between BST and HS for the high-side MOSFET driver supply.
3	DH	High-Side-Gate Driver Output. Driver output for the high-side MOSFET gate.
4	HS	Source Connection for High-Side MOSFET. Also serves as a return terminal for the high-side driver.
5	IN_H	High-Side Noninverting Logic Input
6	IN_L	Low-Side Noninverting Logic Input (MAX15012A/C and MAX15013A/C). Low-side inverting logic input (MAX15012B/D and MAX15013B/D).
7	GND	Ground. Use GND as a return path to the DL driver output and IN_H/IN_L inputs.
8	DL	Low-Side-Gate Driver Output. Drives low-side MOSFET gate.
-	EP	Exposed Pad. Internally connected to GND. Externally connect the exposed pad to a large ground plane to aid in heat dissipation (MAX15012C/D and MAX15013C/D only).

$t_{\text {MATCH }}=\left(t_{D} O N 3-t_{D _O N 1}\right)$ or $\left(t_{D}\right.$ _OFF3 $\left.-t_{D-O F F 1}\right)$ FOR "A/C" VERSION

Figure 1. Timing Characteristics for Noninverting and Inverting Logic Inputs

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

Detailed Description

The MAX15012/MAX15013 are 175V/2A high-speed, half-bridge MOSFET drivers that operate from a supply voltage of +8 V to +12.6 V . The drivers are intended to drive a high-side switch without any isolation device like an optocoupler or drive transformer. The high-side driver is controlled by a TTL/CMOS logic signal referenced to ground. The 2A source and sink drive capability is achieved by using low RDS_ON, p-and n-channel driver output stages. The BiCMOS process allows extremely fast rise/fall times and low propagation delays. The typical propagation delay from the logic-input signal to the driver output is 35 ns with a matched propagation delay of 2 ns typical. Matching these propagation delays is as important as the absolute value of the delay itself. The high 175 V input voltage range allows plenty of margin above the 100 V transient specification per telecom standards.
The maximum operating supply voltage (VDD) must be reduced linearly from 12.6 V to 10.5 V when the maximum voltage (VHS_MAX) increases from 125 V to 175 V . See the Typical Operating Characteristics.

Undervoltage Lockout

Both the high- and low-side drivers feature undervoltage lockout (UVLO). The low-side driver's UVLOLow threshold is referenced to GND and pulls both driver outputs low when VDD falls below 6.8 V . The high-side driver has its own UVLO threshold (UVLOHIGH), referenced to HS, and pulls DH low when BST falls below 6.4 V with respect to HS .

During turn-on, once VDD rises above its UVLO threshold, DL starts switching and follows the IN_L logic input. At this time, the bootstrap capacitor is not charged and the BST-to-HS voltage is below UVLObst. For synchronous buck and half-bridge converter topologies, the bootstrap capacitor can charge up in one cycle and normal operation begins in a few microseconds after the BST-to-HS voltage exceeds UVLObST. In the two-switch forward topology, the BST capacitor takes some time (a few hundred microseconds) to charge and increase its voltage above UVLOBST.
The typical hysteresis for both UVLO thresholds is 0.5 V . The bootstrap capacitor value should be selected carefully to avoid unintentional oscillations during turn-on and turn-off at the DH output. Choose the capacitor value about 20 times higher than the total gate capacitance of the MOSFET. Use a low-ESR-type X7R dielectric ceramic capacitor at BST (typically a $0.1 \mu \mathrm{~F}$ ceramic capacitor is adequate) and a parallel combination of $1 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ ceramic capacitors from VDD to GND. The high-side MOSFET's continuous on-time is limited due to the charge loss from the high-side driver's qui-
escent current. The maximum on-time is dependent on the size of $\mathrm{C}_{\mathrm{BST}}$, IBST ($40 \mu \mathrm{~A}$ max), and UVLOBSt

Output Driver

The MAX15012/MAX15013 have low 2.5Ω RDS ON pchannel and n-channel devices (totem pole) in the output stage. This allows for a fast turn-on and turn-off of the high gate-charge switching MOSFETs. The peak source and sink current is typically 2A. Propagation delays from the logic inputs to the driver outputs are matched to within 8ns. The internal p-and n-channel MOSFETs have a 1ns break-before-make logic to avoid any cross conduction between them. This internal break-before-make logic eliminates shoot-through currents reducing the operating supply current as well as the spikes at VDD. See the Minimum Input Pulse Width section to understand the effects of propagation delays on DH and DL. The DL voltage is approximately equal to VDD, the DH-to-HS voltage is approximately equal to VDD minus a diode drop, when they are in a high state and to zero when in a low state. The driver RDS_ON is lower at higher VDD. Lower RDS_ON means higher source and sink currents and faster switching speeds.

Internal Bootstrap Diode

An internal diode connects from VDD to BST and is used in conjunction with a bootstrap capacitor externally connected between BST and HS. The diode charges the capacitor from VDD when the DL low-side switch is on and isolates V_{DD} when HS is pulled high as the highside driver turns on (see the Typical Operating Circuit).
The internal bootstrap diode has a typical forward voltage drop of 0.9 V and has a 10ns typical turn-off/turn-on time. For lower voltage drops from VDD to BST, connect an external Schottky diode between VDD and BST.

Driver Logic Inputs (IN_H, IN_L)

The MAX15012A/B/C/D are CMOS (VDD/2) logic-input drivers while the MAX15013A/B/C/D have TTL-compatible logic inputs. The logic-input signals are independent of V_{DD}. For example, the IC can be powered by a 10 V supply while the logic inputs are provided from a 12 V CMOS logic. Also, the logic inputs are protected against voltage spikes up to 14 V , regardless of the VDD voltage. The TTL and CMOS logic inputs have 250 mV and 1.6 V hysteresis, respectively, to avoid double pulsing during transition. The logic inputs are high-impedance pins and should not be left floating. The low 2.5 pF input capacitance reduces loading and increases switching speed. The noninverting inputs are pulled down to GND and the inverting inputs are pulled up to $V_{D D}$ internally using a $1 \mathrm{M} \Omega$ resistor. The PWM output from the controller must assume a proper state while powering up the device. With the logic inputs floating, the DH and DL outputs pull low as $V_{D D}$ rises up above the UVLO threshold.

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

The MAX15012/MAX15013 use a single-shot level-shifter architecture to achieve low propagation delay. Typical level shifter architecture causes a minimum (high or low) pulse width (tDmin) at the output that may be higher than the logic-input pulse width. For the MAX15012/ MAX15013 devices, the DH minimum high pulse-width (tDmin-DH-H) is lower than the DL minimum low pulse width (tDmin-DL-L) to avoid any shoot-through in the absence of external BBM delay during the narrow pulse at low duty cycle. See Figure 2.

At high duty cycle (close to 100%), the DH minimum low pulse width (tDmin-DH-L) must be higher than the DL minimum low pulse width (tDmin-DL-L) to avoid the overlap and shoot-through. See Figure 3. In case of the MAX15012/MAX15013, there is a possibility of about 40ns overlap if an external BBM delay is not provided. It is recommended to add external delay in the INH path so that the minimum low pulse width seen at INH is always longer than tPW-min. See the Electrical Characteristics table for the typical values of tPW-min.

Figure 2. Minimum Pulse-Width Behavior for Narrow Duty-Cycle Input (On-Time < tPW-min)

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

Figure 3. Minimum Pulse-Width Behavior for High Duty-Cycle Input (Off-Time <tPW-min)

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

Applications Information

Supply Bypassing and Grounding

Pay extra attention to bypassing and grounding the MAX15012/MAX15013. Peak supply and output currents may exceed 4A when both drivers are driving large external capacitive loads in-phase. Supply drops and ground shifts create forms of negative feedback for inverters and may degrade the delay and transition times. Ground shifts due to insufficient device grounding may also disturb other circuits sharing the same AC ground return path. Any series inductance in the VDD, DH, DL, and/or GND paths can cause oscillations due to the very high di/dt when switching the MAX15012/ MAX15013 with any capacitive load. Place one or more $0.1 \mu \mathrm{~F}$ ceramic capacitors in parallel as close to the device as possible to bypass VDD to GND. Use a ground plane to minimize ground return resistance and series inductance. Place the external MOSFET as close as possible to the MAX15012/MAX15013 to further minimize board inductance and AC path resistance.

Power Dissipation
Power dissipation in the MAX15012/MAX15013 is primarily due to power loss in the internal boost diode and the nMOS and pMOS FETs.
For capacitive loads, the total power dissipation for the device is:

$$
P_{D}=\left(C_{L} \times V_{D D}^{2} \times f_{S W}\right)+\left(I_{D D O}+I_{\mathrm{BSTO}}\right) \times V_{D D}
$$

where C_{L} is the combined capacitive load at DH and DL. VDD is the supply voltage and fsw is the switching frequency of the converter. PD includes the power dissipated in the internal bootstrap diode. The internal power dissipation reduces by PDIODE, if an external bootstrap Schottky diode is used. The power dissipation in the internal boost diode (when driving a capacitive load) is the charge through the diode per switching period multiplied by the maximum diode forward voltage drop $\left(\mathrm{V}_{f}=1 \mathrm{~V}\right)$.

$$
P_{\text {DIODE }} \cong C_{D H} \times\left(V_{D D}-1\right) \times f_{S W} \times V_{f}
$$

The total power dissipation when using the internal boost diode is PD and, when using an external Schottky diode, is PD - PDIODE. The total power dissipated in the device must be kept below the maximum of 0.471 W for the 8 -pin SO package at $\mathrm{TA}=+70^{\circ} \mathrm{C}$ ambient.

Layout Information

The MAX15012/MAX15013 drivers source and sink large currents to create very fast rise and fall edges at the gates of the switching MOSFETs. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled. Use the following PC board layout guidelines when designing with the MAX15012/MAX15013:

- It is important that the VDD voltage (with respect to ground) or BST voltage (with respect to HS) does not exceed 13.2V. Voltage spikes higher than 13.2 V from VDD to GND or BST to HS can damage the device. Place one or more low ESL $0.1 \mu \mathrm{~F}$ decoupling ceramic capacitors from VDD to GND, and from BST to HS as close as possible to the part. The ceramic decoupling capacitors should be at least 20 times the gate capacitance being driven.
- There are two AC current loops formed between the device and the gate of the MOSFET being driven. The MOSFET looks like a large capacitance from gate to source when the gate is being pulled low. The active current loop is from the MOSFET driver output (DL or DH) to the MOSFET gate, to the MOSFET source, and to the return terminal of the MOSFET driver (either GND or HS). When the gate of the MOSFET is being pulled high, the active current loop is from the MOSFET driver output, (DL or DH), to the MOSFET gate, to the MOSFET source, to the return terminal of the drivers decoupling capacitor, to the positive terminal of the decoupling capacitor, and to the supply connection of the MOSFET driver. The decoupling capacitor is either the flying capacitor connected between BST and HS or the decoupling capacitor for VDD. Care must be taken to minimize the physical length and the impedance of these AC current paths.

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

Typical Application Circuits

Figure 4. MAX15012A/MAX15013A Half-Bridge Conversion

*DERATE V ${ }_{\text {DD }}$ IF $V_{I N}$ INCREASES ABOVE 125V. SEE NOTE 3 IN THE ELECTRICAL CHARACTERISTICS.

Figure 5. Two-Switch Forward Conversion

175V/2A, High-Speed,
 Half-Bridge MOSFET Drivers

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

Typical Operating Circuit

*DERATE V $V_{D D}$ IF $V_{I N}$ INCREASES ABOVE 125V. SEE NOTE 3 IN THE ELECTRICAL CHARACTERISTICS.

Pin Configurations

TOP VIEW

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX15013AASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	S8-5
MAX15013BASA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO	$\mathrm{S} 8-5$
MAX15013CASA $+^{*}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mathrm{SO}-\mathrm{EP}^{* *}$	$\mathrm{~S} 8 \mathrm{E}+14$
MAX15013DASA $+^{\star}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mathrm{SO}-E P^{* *}$	$\mathrm{~S} 8 \mathrm{E}+14$

+Denotes lead-free package.
*Future product-contact factory for availability.
${ }^{* *} E P=$ Exposed pad.
Chip Information
TRANSISTOR COUNT: 790
PROCESS: HV BiCMOS

175V/2A, High-Speed, Half-Bridge MOSFET Drivers

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

Proprietary Information			
PACKAGE OUTLINE, .150" SOIC			
APPROVAL	\|DOCUMENT CONTROL NO.	B	1/1

175V／2A，High－Speed， Half－Bridge MOSFET Drivers

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.056	0.066	1.43	1.68
A1	0.000	0.004	0.00	0.10
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
D	0.189	0.196	4.80	4.98
e	0.050	BSC	1.27	BSC
E	0.150	0.157	3.81	3.99
H	0.230	0.244	5.81	6.20
h	0.010	0.016	0.25	0.41
L	0.016	0.035	0.41	0.89
a	0°	8°	0°	8°

NDTES：
1．D\＆E DO NDT INCLUDE MILD FLASH．
2．MILD FLASH OR PROTRUSIUNS NDT TI EXCEED .15 mm （．006＂）
3．CZNTRDLLING DIMENSION：MILLIMETER
4．MEETS JEDEC MS－012 EXCEPT DIMENSION A1．
5．DIMENSIUNS X AND Y DEFINE EXPISED PAD METAL AREA．

APPRIVAL	DICUMENT CONTROL NO． 21－0111	$\stackrel{\text { REV. }}{\mathrm{C}}$	1／1

175V／2A，High－Speed， Half－Bridge MOSFET Drivers

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$5 / 06$	Initial release	-
1	$12 / 07$	Added exposed paddle versions of the MAX15012A／B and MAX15013A／B， added Figures 2 and 3 and added SO－EP package outline	$1-4,8-11,13-17$

