SGB30N60
1 Rev. 2.3 05.03.2009
Fast IGBT in NPT-technology
75% lower Eoff compared to previous generation
combined with low conduction losses
Short circuit withstand time – 10 µs
Designed for:
- Motor controls
- Inverter
NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
Qualified according to JEDEC1 for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE I
C VCE(sat) Tj Marking Package
SGB30N60 600V 30A 2.5V
150°C G30N60 PG-TO-263-3-2
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 600 V
DC collector current
TC = 25°C
TC = 100°C
IC
41
30
Pulsed collector current, tp limited by Tjmax ICpuls 112
Turn off safe operating area
VCE 600V, Tj 150°C
- 112
A
Gate-emitter voltage VGE ±20 V
Avalanche energy, single pulse
IC = 30 A, VCC = 50 V, RGE = 25 ,
start at Tj = 25°C
EAS 165 mJ
Short circuit withstand time2
VGE = 15V, VCC 600V, Tj 150°C
tSC 10
µs
Power dissipation
TC = 25°C
Ptot 250 W
Operating junction and storage temperature Tj , Tstg -55...+150
Soldering temperature (reflow soldering, MSL1) 260
°C
1 J-STD-020 and JESD-022
2 Allowed number of short circuits: <1000; time between short circuits: >1s.
G
C
E
PG-TO-263-3-2 (D²-PAK)
(TO-263AB)
SGB30N60
2 Rev. 2.3 05.03.2009
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
RthJC 0.5 K/W
Thermal resistance,
junction – ambient1)
RthJA 40
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=500µA600 - -
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=30A
Tj=25°C
Tj=150°C
1.7
-
2.1
2.5
2.4
3.0
Gate-emitter threshold voltage VGE(th) IC=700µA,VCE=VGE 3 4 5
V
Zero gate voltage collector current
ICES VCE=600V,VGE=0V
Tj=25°C
Tj=150°C
-
-
-
-
40
3000
µA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=30A - 20 - S
Dynamic Characteristic
Input capacitance Ciss - 1600 1920
Output capacitance Coss - 150 180
Reverse transfer capacitance Crss
VCE=25V,
VGE=0V,
f=1MHz - 92 110
pF
Gate charge QGate VCC=480V, IC=30A
VGE=15V
- 140 182 nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE - 7
- nH
Short circuit collector current2) IC(SC) VGE=15V,tSC10µs
VCC 600V,
Tj 150°C
- 300 - A
1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for
collector connection. PCB is vertical without blown air.
2) Allowed number of short circuits: <1000; time between short circuits: >1s.
SGB30N60
3 Rev. 2.3 05.03.2009
Switching Characteristic, Inductive Load, at Tj=25 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 44 53
Rise time tr - 34 40
Turn-off delay time td(off) - 291 349
Fall time tf - 58 70
ns
Turn-on energy Eon - 0.64 0.77
Turn-off energy Eoff - 0.65 0.85
Total switching energy Ets
Tj=25°C,
VCC=400V,IC=30A,
VGE=0/15V,
RG=11,
L
σ
1) =180nH,
C
σ
1) =900pF
Energy losses include
“tail” and diode
reverse recovery. - 1.29 1.62
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 44 53
Rise time tr - 34 40
Turn-off delay time td(off) - 324 389
Fall time tf - 67 80
ns
Turn-on energy Eon - 0.98 1.18
Turn-off energy Eoff - 0.92 1.19
Total switching energy Ets
Tj=150°C
VCC=400V,IC=30A,
VGE=0/15V,
RG= 11,
L
σ
1) =180nH,
C
σ
1) =900pF
Energy losses include
“tail” and diode
reverse recovery. - 1.90 2.38
mJ
1) Leakage inductance L
σ
and Stray capacity Cσ due to dynamic test circuit in Figure E.
SGB30N60
4 Rev. 2.3 05.03.2009
IC, COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
20A
40A
60A
80A
100A
120A
140A
160A
TC=110°C
TC=80°C
IC, COLLECTOR CURRENT
1V 10V 100V 1000V
0.1A
1A
10A
100A
DC
1ms
200µs
50µs
15µs
tp=4µs
f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 11)
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj 150°C)
Ptot, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C
0W
50W
100W
150W
200W
250W
300W
IC, COLLECTOR CURRENT
25°C 50°C 75°C 100°C 125°C
0A
10A
20A
30A
40A
50A
60A
Limited by bond wire
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj 150°C)
Figure 4. Collector current as a function of
case temperature
(VGE 15V, Tj 150°C)
Ic
Ic
SGB30N60
5 Rev. 2.3 05.03.2009
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
10A
20A
30A
40A
50A
60A
70A
80A
90A
15V
13V
11V
9V
7V
5V
VGE=20V
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
10A
20A
30A
40A
50A
60A
70A
80A
90A
15V
13V
11V
9V
7V
5V
VGE=20V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
Figure 6. Typical output characteristics
(Tj = 150°C)
IC, COLLECTOR CURRENT
0V 2V 4V 6V 8V 10V
0A
10A
20A
30A
40A
50A
60A
70A
80A
90A
100A
-55°C
+150°C
Tj=+25°C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
-50°C 0°C 50°C 100°C 150°C
1.0V
1.5V
2.0V
2.5V
3.0V
3.5V
4.0V
VGE, GATE-EMITTER VOLTAGE Tj, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(VCE = 10V)
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
IC = 30A
IC = 60A
SGB30N60
6 Rev. 2.3 05.03.2009
t, SWITCHING TIMES
10A 20A 30A 40A 50A 60A
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES
010203040
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 11,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 30A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
0°C 50°C 100°C 150°C
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
2.0V
2.5V
3.0V
3.5V
4.0V
4.5V
5.0V
5.5V
typ.
min.
max.
Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 30A, RG = 11,
Dynamic test circuit in Figure E)
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.7mA)
SGB30N60
7 Rev. 2.3 05.03.2009
E, SWITCHING ENERGY LOSSES
10A 20A 30A 40A 50A 60A 70A
0.0mJ
0.5mJ
1.0mJ
1.5mJ
2.0mJ
2.5mJ
3.0mJ
3.5mJ
4.0mJ
4.5mJ
5.0mJ
Eon*
Eoff
Ets*
E, SWITCHING ENERGY LOSSES
010203040
0.0mJ
0.5mJ
1.0mJ
1.5mJ
2.0mJ
2.5mJ
3.0mJ
3.5mJ
4.0mJ
Ets*
Eon*
Eoff
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 11,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 30A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
0°C 50°C 100°C 150°C
0.0mJ
0.5mJ
1.0mJ
1.5mJ
2.0mJ
2.5mJ
3.0mJ
Ets*
Eon*
Eoff
ZthJC, TRANSIENT THERMAL IMPEDANCE
1µs 10µs 100µs 1ms 10ms 100ms 1s
10-4K/W
10-3K/W
10-2K/W
10-1K/W
100K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
Tj, JUNCTION TEMPERATURE tp, PULSE WIDTH
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 30A, RG = 11,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
C1=
τ
1/R1
R1R2
C2=
τ
2/R2
R,(1/W)
τ
, (s)
0.3681 0.0555
0.0938 1.26*10-3
0.0380 1.49*10-4
SGB30N60
8 Rev. 2.3 05.03.2009
VGE, GATE-EMITTER VOLTAGE
0nC 50nC 100nC 150nC 200nC
0V
5V
10V
15V
20V
25V
480V
120V
C, CAPACITANCE
0V 10V 20V 30V
10pF
100pF
1nF
Crss
Coss
Ciss
QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(IC = 30A)
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
tsc, SHORT CIRCUIT WITHSTAND TIME
10V 11V 12V 13V 14V 15V
0µs
5µs
10µs
15µs
20µs
25
µ
s
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
10V 12V 14V 16V 18V 20V
0A
50A
100A
150A
200A
250A
300A
350A
400A
450A
500
A
VGE, GATE-EMITTER VOLTAGE VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE 600V, Tj = 150°C)
SGB30N60
9 Rev. 2.3 05.03.2009
PG-TO263-3-2
SGB30N60
10 Rev. 2.3 05.03.2009
Figure A. Definition of switching times
Figure B. Definition of switching losses
p(t)
12 n
T(t)
j
τ
1
1
τ
2
2
n
n
τ
T
C
rr
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L
σ
=180nH
and Stray capacity Cσ =900pF.
SGB30N60
11 Rev. 2.3 05.03.2009
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.