= SEMICONDUCTOR sxe j i MOTOROLA SC (DIODES/OPTO) MOTOROLA 2SE D TECHNICAL DATA Zener Overvoltage Transient Suppressors The P6SMB6.8 series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The P6SMB6.8 series is supplied in Motorolas exclusive, cost-effective, highly reliable surmetic axial leaded package and is ideally suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications. Standard Zener Voltage Range 6.8 to 200 V Peak Power 600 Watts 1.0 ms Maximum Clamp Voltage @ Peak Pulse Current Low Leakage < 5.0 nA Above 10 V Maximum Temperature Coefficient Specified Available in Tape and Reel Mechanical Characteristics: CASE: Void-free transfer-molded, thermosetting plastic - FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable POLARITY: Cathode indicated by molded polarity notch. When operated in zener mode, will be positive with respect to anode. MOUNTING POSITION: Any LEADS: Modified L-Bend providing more contact area to bond pad MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 230C for 10 seconds MAXIMUM RATINGS Rating Symbol - Value Unit Peak Power Dissipation (1) PeK 600 Watts @ Ty = 26C . Steady State Power Dissipation Pp 3.0 Watts @ TL = 75C Derated above TL = 75C 50 mwWic Forward Surge Current (2} lFSM 100 Amps @ Ta = 25C Operating and Storage Temperature Range Ty. Tstg |-65 to +175 C NOTES: 4. Non-Repetitive Current Pulse per Figure 2. 2. 1/2 Square Wave (or equivalent), PW = 8.3 ms, Duty Cycle = 4 Pulses per minute maximum. @MOTOROLA ING.,, 1989 MB 6367255 0081341 1 Order this data sheet by P6SMB6.8/D P6SMB6.38,A thru P6SMB200,A PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 6.8-200 VOLTS 600 WATT PEAK POWER 3.0 WATTS STEADY STATE CASE 403A-01 OUTLINE DIMENSIONS p+ A omy NOTES: 1. DIMENSIONING AND TOLERANCING PER ANS! Yi4.5M, 1982. 2, CONTROLLING DIMENSION: INCH. (S) MOTOROLA EE DS7082 rT | Toil a3MOTOROLA SC (DIODES/OPTO) 2SE D MM 6367255 0081342 3 mm T~ll-a3 ELECTRICAL CHARACTERISTICS (Ta = 25C unless otherwise noted) Vp = 3.5 V max, Ip** = 100 A for all types. Maximum Breakdown Voltage* Working Peak} Reverse Maximum | Maximum Reverse | Maximum Ver @ Ir Reverse Leakage | Reverse Surge | Voltage @ IRSM_ | Temperature BP ite Voltage @ Vrawm Current (Clamping Voltage) | Coefficient of Vrawm IR Irsmt Vasm VBR Device Device Min | Nom | Max | mA Volts pA Amps Volts BIC Marking P6SMB6.8 6.12 | 6.8 | 7.48 | 10 5.50 1060 56 10.8 0.057 V68 P6SMB6.8A | 6.45} 68 | 7.14} 10 5.80 1000 57 10.5 0.057 A68 P6SMB7,5 6.75 | 7.6 | 8251 10 6.05 500 51 11.7 0.061 V75 P6SMB7.5A | 7.13 | 7.6 | 7.88] 10 6.40 500 53 11.3 0.061 A75 P6SMB8.2 7.38 | 8.2 | 9.02 | 10 6.63 200 48 12.5 0.065 V82 P6SMB8.2A 7.79 | 82 | 8.61 10 7.02 200 50 12.1 0.065 A8&2 P6SMB39.1 8.19 | 9.1 | 10.0] 1.0 7.37 50 44 13.8 0.068 v91 P6SMB9.1A | 8.65] 9.1 | 9.55 | 1.0 7.78 50 45 13.4 0,068 A91 P6SMB10 9.00 | 10 | 11.0] 1.0 8.10 10 40 15.0 0.073 1V0 P6SMBi0A 9.50} 10 | 10.5} 1.0 8,55 10 41 14.5 0.073 1A0 P6SMB11 9.90 | 11 | 12.1] 1.0 8,92 6.0 37 16.2 0.075 11 P6SMB11A 10.5 11 11.6 | 1.0 9.40 5.0 38 15.6 0.075 1A1 P6SMB12 10.8 | 12 | 132] 1.0 9.72 5.0 35 17.3 0.078 V2. P6SMB12A 11.4 12 12.6 | 1.0 10.2 5.0 36 16,7 0.078 1A2 P6SMB13 11.7 13 14.3 | 1.0 10.5 5.0 32 19,0 0,081 1V3 P6SMB13A 12.4 | 13 | 13.7] 1,0 11.1 5.0 33 18.2 0.081 4A3 P6SMB15 13.5 15 | 165) 1.0 12.1 5.0 27 22.0 0,084 1V5 P6SMBI5A 14.3 15 | 15.8 | 1.0 12.8 5.0 28 21.2 0.084 1A5 P6SMB16 14.4 16 17.6 | 1.0 12.9 5.0 26 23.5 0.086 1V6 P6SMB16A 15.2 | 16 | 168] 1.0 13.6 5.0 27 22.5 0.086 1A6 P6SMB18 16.2 | 18 | 19.8] 1.0 14.5 5.0 23 26.5 0,088 iv8 P6SMB18A 17.1 | 18 | 189) 1.0 15.3 5.0 24 25.2 0.088 1A8 P6SMB20 18.0 | 20 | 22.01 1.0 16,2 5.0 21 29.1 0.090 2v0 P6SMB20A 19.0 | 20 | 21.0] 1.0 17.1 5.0 22 27.7 0.090 2A0 P6SMB22 19.8 | 22 | 24.2] 1.0 17.8 5.0 19 31.9 0.092 2vV2 P6SMB22A 20.9 | 22 | 23.11 1.0 18.8 5.0 20 30.6 0.092 2A2 P6SMB24 21.6 | 24 | 26.4 |. 1.0 19.4 5.0 17 34,7 0.094 2V4 P6SMB24A 22.8 | 24 | 26,2] 1.0 20.5 5.0 18 33.2 0.094 2A4 P6SMB27 24.3 | 27 | 29.71 1.0 21.8 5.0 15 39,1 0.096 2v7 P6SMB27A 26.7 | 27.| 2841] 1.0 23.1 5.0 16 37.5 0,096 2A7 P6SMB30 27.0 | 30 | 33.0] 1.0 24.3 5.0 14 43.5 0.097 3V0 P6SMB30A 28.5 | 30 | 31.5] 1.0 25.6 5.0 14.4 41.4 0,097 3A0 P6SMB33 29.7 | 33 | 363} 1.0 26.8 5.0 12.6 47,7 0,098 3V3 P6SMB33A 31.4 | 33 | 34.71] 1.0 28,2 5.0 13.2 45.7 0.098 3A3 P6SMB36 32.4} 36 | 39.6/ 1.0 29.1 5.0 11.6 62.0 0.099 3V6 P6SMB36A 34.2 |-36 | 37.8] 1.0 30.8 5.0 12 49,9 0,099 3A6 P6SMB39 35.1} 39 | 429] 1.0 31.6 5.0 10.6 56.4 0,100 3V9 P6SMB39A 37.1 | 39 | 41.07 1.0 33.3 5.0 11.2 53.9 0.100 3A9 P6SMB43 38.7 | 43 | 47.3] 1.0 34.8 5.0 9.6 61.9 0.101 4v3 P6SMB43A 40.9 | 43 | 45.2] 1.0 36.8 5.0 10.1 59.3 0.101 4A3 P6SMB47 42.3 | 47 | 51.7} 1.0 38.1 5.0 8.9 67.8 ~ 0,101 4V7 P6SMB47A 44.7) 47 | 49.41 1.0 40.2 5.0 9.3 64.8 0.101 4A7 P6SMB51 45.9} 51 66.1 | 1.0 41.3 5.0 8.2 73.5 0.102 5V1 P6SMB51A 48.5] 517 | 53.6) 1.0 43.6 5.0 8.6 70.1 0.102 5A1 P6SMB56 50.4] 56 | 61.6} 1.0 45.4 5.0 7.4 80.5 0.103 5V6 P6SMB56A 53.2 | 56 | 688] 1.0 47.8 5.0 78 77.0 0.103 5AG P6SMB62 55.8 | 62 | 68.2 | 1.0 50.2 5.0 6.8 89.0 0.104 6V2 P6SMB62A 58.9 | 62 | 65.1 | 1.0 * 63.0 5.0 7.1 85.0 0.104 6A2 P6SMB68 61.2 | 68 | 74.81 1.0 55.1 5.0 6.1 98.0 0.104 6V8 P6SMBE8A 64.6] 68 | 71.41] 1.0 58.1 5.0 6.5 92.0 0.104 6A8 P6SMB75 67.5 | 75 | 82.5 | 1.0 60.7 5.0 5.5 108.0 0.105 7V5 P6SMB75A 71.3 | 75 | 78.8] 1.0 64.4 5.0 5.8 103.0 0.105 7AS P6SMB82 73.8 | 82 | 90.2 | 7.0 66.4 5.0 5.1 118.0 0.105 8V2 P6SMB82A 77.9 | 82 | 86.1 | 1.0 70.1 5.0 5.3 113.0 0.105 8A2 P6SMB91 81.9 | 91 |100.0] 1.0 73.7 5.0 4.8 131.0 0.106 9V1 P6SMBS1A 86.5 | 97 | 95.5] 7.0 77.8 5.0 48 125.0 0.106 9A1 MOTOROLA P6SMB6.8 SERIES 2 :NOTOROLA SC (DIODES/OPTO) 25E D MM b3b7255 0061343 5 ml ELECTRICAL CHARACTERISTICS continued (Ta = 25C unless otherwise noted). Vp = 3.5 V max, Ip** = 100 A for all types. / - Maximum T- / a3 Breakdown Voltage Working Peak | Reverse Maximum | Maximum Reverse | Maximum " Ver @ Reverse Leakage | Reverse Surge | Voltage @Ipsny | Temperature i BR @ tr Voltage @ VawM Current (Clamping Voltage) | Coefficient of olts . . . VaAWM In tIasuit VrRsM VBR Device Device Min | Nom | Max | mA Volts BA Amps Volts *IPG Marking P6SMB100 90.0 | 100 [110.0] 1.0 81.0 5.0 4.2 144.0 -0,106 10V P6SMB100A | 95.0 | 100 | 105.0] 1.0 85.5 5.0 4.4 137.0 0.106 10A P6SMB110 99.0 | 110 | 121.0} 1.0 89.2 5.0 3.8 158.0 0.107 11V P6SMB110A | 105.0] 110 [116.0] 1.0 94.0 5.0 4.0 162.0 0.107 VIA P6SMB120 108,0/ 120 | 132.0) 1.0 97.2 5.0 3.5 173.0 0.107 12V P6SMB120A | 114.0] 120 1126.0; 1.0 102.0 5.0 3.6 165.0 0,107 124 P6SMB130 117.0) 130 |143.0| 1.0 105.0 5.0 3.2 187.0 0.107 13V P6SMB130A | 124.0] 130 1137.0] 1.0 111.0 5.0 3.3 179.0 0.107 138A P6SMB150 135.0} 150 | 165.0] 1.0 121.0 5.0 2.8 215.0 0.108 15V P6SMB150A | 143.0} 150 | 158.0) 1.0 128.0 5.0 29 207.0 0.108 1bA P6SMB160 144.0} 160 1176.0| 1.0 130.0 5.0 2.6 230.0 0.108 16V P6SMB160A | 152.0] 160 | 168.0} 1.0 136.0 5.0 2.7 219.0 0:108 164 P6SMB170 153.0} 170 |187.0| 1.0 138.0 5.0 2.5 244.0 0.108 17V P6SMB170A | 162.0} 170 | 179.0] 1,0 - 145.0 5.0 2.6 234.0 0.108 17A P6SMB180 162.0} 180 |198.0! 1,0 146.0 5.0 23 258.0 0.108 18V P6SMB180A {171.0} 180 |189.0| 1.0 154.0 5.0 2.4 246.0 0.108 18A P6SMB200 180.0] 200 | 220.0} 1.0 162.0 5.0 2.1 287.0 0.108 20Vv P6SMB200A | 190.0! 200 1210.0] 1.0 171.0 ; 5.0 22 ~~. 274.0 0.108 20A tSurge Current Waveform per Figure 2. *VpR measured after IT applied for 300 us, lt = Square Wave Pulse or equivalent. **4/2 Square or Equivalent Sine Wave, PW = 83 ms, Duty Cycle = 4 Pulses per minute maximum. 100 _ NONREPETITIVE t PULSE WIDTH (tp) IS DEFINED = PULSE WAVEFORM t AS THAT POINT THE PEAK = SHOWN IN FIGURE 2 PEAK VALUE CURRENT DECAYS TO 50% = OF 5 1 z Ar t= 10 = 3 r BS = = HALE VALUE 'RSM | of 0.1 ps lus 10 ps 100 pus 1ms 10 ms 0 1 2 3 4 tp, PULSE WIDTH t, TIME (ms! Figure 1. Pulse Rating Curve Figure 2. Pulse Waveform Motorola reserves the right to make changs without further notice to any products herein (o improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein: neither does it convey any license under its patent rights nor the rights of others. The software described herein will be provided on an as is" basis and without warranty. Motorola accepts no liability for incidental or consequential damages arising from use of the sofiware. This disclaimer of warranty extends to Motorola's licensee, to |i- censee's transferees and to licensee's customers or users and is in lieu of all warranties whether expressed, implied or statutory, including implied warranties of merchantability or fitness for a particular purpose. Motorola anda, are registered trademarks of Motorola, Inc. Motorola, Inc. Is an Equal Employment Opportunity/Affirmative Action Employer. P6SMB6.8 SERIES MOTOROLA 3a (3) MOTOROLA B 24257 FRLNTED 1m USA 0/89 INPERIAL LITHO [E6596 16,000 YAACAA Y MOTOROLA SC (DIODES/OPTO) RESPONSE TIME In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay asso- ciated with the capacitance of the device and an over- shoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 3. The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in TYPICAL PROTECTION CIRCUIT Zin Vin x LOAD VL oO Vin (TRANSIENT) Vv VL Vin 4 tp = TIME DELAY DUE TO CAPACITIVE EFFECT t Figure 3. Literature Distribution Centers: eSE Dd ME 6367255 0081344 7 mm TH ll-ad Figure 4. Minimizing this overshoot is very important in the application, since the main purpose for adding a tran- sient suppressor is to clamp voltage spikes. The P6SMB6.8 series has very good response time, typically < 1.0 ns and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equip- ment or components to be protected will minimize this overshoot. Some input impedance represented by Zjy is essential to prevent oversitress of the protection device. This impedance should be as high as possible, without restricting the circuit operation. OVERSHOOT DUE TO INDUCTIVE EFFECTS Figure 4. USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong. JAPAN: Nippon Motorola Ltd.; 3-20-1 Minamiazabu, Minato-ku, Tokyo 106 Japan. P6SMB6.8 SERIES