THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
1/25
Copyright(C)2016 THine Electronics, Inc.
THCV215 and THCV216
V-by-One® HS High-speed Video Data Transmitter and Receiver
General Description
THCV215 and THCV216 are designed to support
video data transmission between the host and
display.
The chipset can transmit 39bit video data and 3bit
sync data via only a single differential cable at an
LVDS clock frequency from 20MHz to 100MHz.
The chipset, which has two high-speed data lanes,
can transmit the video data up to 1080p/10b/60Hz,
1080p/12b/60Hz. The maximum serial data rate is
3.75Gbps/lane.
Color
Depth
Link
LVDS
Clock Frequency
6bit
Single/Dual
20MHz to 100MHz
8bit
Single/Dual
20MHz to 100MHz
10bit
Single/Dual
20MHz to 85MHz
12bit
Single/Dual
20MHz to 75MHz
Features
Color depth selectable: 6/8/10/12 bit
Single/Dual Link selectable
AC coupling
LVDS Input internal termination
CORE 1.8V, LVDS 3.3V
Package: 64 pin TSSOP
Wide frequency range
CDR requires no external frequency reference
Supports Spread Spectrum Clocking: Up to
30kHz/0.5%(center spread)
V-by-One® HS standard Version1.4 compliant
Block Diagram
TLA0+/-
TLF0+/-
TLCLK0+/-
TLA1+/-
TLF1+/-
TLCLK1+/-
Color depth
(6/8/10/12)
Single/Dual
Pre-emphasis
PDN
LVDS
Deserializer
LVDS
Deserializer
Formatter
SerializerSerializerPLL
Controls HTPDN
LOCKN
Color depth
(6/8/10/12)
Single/Dual
RS
PDN
DeserializerDeserializer
CDR
Deskew & Formatter
PLL LVDS
Serializer LVDS
Serializer
Controls
THCV215 THCV216 RLA0+/-
RLF0+/-
RLCLK0+/-
RLA1+/-
RLF1+/-
RLCLK1+/-
TX0+
TX0- RX0+
RX0-
TX1+
TX1- RX1+
RX1-
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
2/25
Copyright(C)2016 THine Electronics, Inc.
Contents Page
General Description ................................................................................................................................................. 1
Features .................................................................................................................................................................... 1
Block Diagram ......................................................................................................................................................... 1
Pin Diagram ............................................................................................................................................................. 3
Pin Description ......................................................................................................................................................... 4
Functional Description ............................................................................................................................................ 5
Absolute Maximum Ratings0F ............................................................................................................................. 13
Operating Conditions ............................................................................................................................................ 13
Electrical Specifications ........................................................................................................................................ 14
AC Timing Diagrams and Test Circuits ............................................................................................................... 17
Package ................................................................................................................................................................... 24
Notices and Requests ............................................................................................................................................. 25
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
3/25
Copyright(C)2016 THine Electronics, Inc.
Pin Diagram
THCV216
64pin
TSSOP
THCV215
64pin
TSSOP
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
4/25
Copyright(C)2016 THine Electronics, Inc.
Pin Description
THCV215 THCV216
Pin Name Pin # Type* Description Pin Name Pin # Type* Description
TX0 +/- 50,51 CO RX0 +/- 15,14 CI
TX1 +/- 47,48 CO RX1 +/- 19,18 CI
TLA0+/- 4,3 LI RLA0+/- 61,62 LO
TLB0+/- 6,5 LI RLB0+/- 59,60 LO
TLC0+/- 8,7 LI RLC0+/- 57,58 LO
TLCLK0+/- 10,9 LI RLCLK0+/ 55,56 LO
TLD0+/- 12,11 LI RLD0+/- 53,54 LO
TLE0+/- 14,13 LI RLE0+/- 51,52 LO
TLF0+/- 16,15 LI RLF0+/- 49,50 LO
TLA1+/- 18,17 LI RLA1+/- 47,48 LO
TLB1+/- 20,19 LI RLB1+/- 45,46 LO
TLC1+/- 22,21 LI RLC1+/- 43,44 LO
TLCLK1+/- 24,23 LI RLCLK1+/ 41,42 LO
TLD1+/- 26,25 LI RLD1+/- 39,40 LO
TLE1+/- 28,27 LI RLE1+/- 37,38 LO
TLF1+/- 30,29 LI RLF1+/- 35,36 LO
LOCKN 56 I Lock detect input LOCKN 7 O Lock detect output (open drain)
HTPDN 57 I Hot plug detect input HTPDN 6 O Hot plug detect output (open drain)
PDN 58 I
Power down input
H: Normal Operation
L: Power down (CML output High Fix,
other High-Z)
PDN 27 I
Power down input
H: Normal Operation
L: Power down (High-Z)
COL1,
COL0
61,60 I
Color depth select input
L,L: 6bit
L,H: 8bit
H,L: 10bit
H,H: 12bit
COL1,
COL0
4,5 I
Color depth select input
L,L: 6bit
L,H: 8bit
H,L: 10bit
H,H: 12bit
SDSEL 62 I
Single/Dual select input
L: Channel0 enable, Channel1 disable
H: Channel0, Channel1 enable
SDSEL 3 I
Single/Dual select input
L: Channel0 enable, Channel1 disable
H: Channel0, Channel1 enable
DRV1 42 I Must be tied to GND
DRV0 41 I Must be tied to VDL
PRE1,
PRE0
40,39 I
Pre-emphasis level select input
L,L: 0%
H,L: 100%
L,H: not available
H,H: not available
RDY 59 O
Link status ready output
L: not ready
H: ready
Reserved
1,2
26,28 I Must be tied to GND
Reserved1 37 I
Field BET mode enable input
L: Normal operation (default)
H: Field BET mode enabled
Reserved3 29 I
Field BET mode enable input
L: Normal operation (default)
H: Field BET mode enabled
Reserved0 38 I Must be tied to GND VDL 8,25 P 1.8V power supply pin for digital circuitry
GND 9,24 P Ground pin for digital circuitry
CAVDL 12,21 P 1.8V power supply pin for CML input
GND 36,54 P Ground pin for digital circuitry CAGND
13,16,
17,20
P Ground pin for CML input
CAVDL 45,53 P 1.8V power supply pin for CML output CPVDL0 10 P 1.8V power supply pin for PLL circuitry
CAGND 46,49,52 P Ground pin for CML output CPGND0 11 P Ground pin for PLL circuitry
CPVDL 43 P 1.8V power supply pin for PLL circuitry CPVDL1 23 P 1.8V power supply pin for PLL circuitry
CPGND 44 P Ground pin for PLL circuitry CPGND1 22 P Ground pin for PLL circuitry
LPVDL 33,64 P
1.8V power supply pin for LVDS PLL
LPVDH 1,32 P
3.3V power supply pin for LVDS PLL
LPGND 34,63 P Ground pin for LVDS PLL circuitry LPGND 2,31 P Ground pin for LVDS PLL circuitry
LAVDH 2,31 P 3.3V power supply pin for LVDS input LAVDH 34,63 P 3.3V power supply pin for LVDS output
LAGND 1,32 P Ground pin for LVDS input LAGND 33,64 P Ground pin for LVDS output
*type symbol
Note) All CMOS inputs are 1.8V-inputs I=1.8V CMOS Input, O=1.8V CMOS Output, IO3=3.3V CMOS I/O
except for THCV216's RS LI=LVDS Input, LO= LVDS Output
CI=CML Input, CO=CML Output
P=Power
VDL
35,55
P
1.8V power supply pin for digital circuitry
RS
30
IO3
Direction of RS pin depends on
Reserved3.
LVDS swing range select input
when Reserved3=L
H: Normal swing (350mV typ.)
L: Reduced swing (200mV typ.)
Field BET output when Reserved3=H.
Goes LOW when errors detected.
CML Data Input
LVDS Data Output
LVDS Data Input
CML Data Output
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
5/25
Copyright(C)2016 THine Electronics, Inc.
Functional Description
Functional Overview
With V-by-One®HSs proprietary encoding scheme and CDR (Clock and Data Recovery) architecture, THCV215
and THCV216 enable transmission of 18/24/30/36bits per pixel video data (Rn/Gn/Bn/CONTn), Hsync
(HSYNCn), Vsync (VSYNCn) data and Data Enable (DE) by single/dual differential pair cable with minimal
external components.
THCV215, the transmitter, inputs LVDS data (including video data, Hsync, Vsync and DE) and serializes video
data and Hsync, Vsync data separately, depending on the polarity of DE. DE is a signal which indicates whether
video or Hsync, Vsync data are active. When DE is high, it serializes video data inputs into a single differential
data stream. And it transmits serialized Hsync, Vsync data when DE is low.
THCV216, the receiver, automatically extracts the clock from the incoming data stream and converts the serial
data into video data with DE being high or Hsync, Vsync data with DE being low, recognizing which type of
serial data is being sent by the transmitter. And it outputs the recovered data in the form of LVDS data.
THCV216 can seamlessly operate for a wide range of a serial bit rate from 600Mbps to 3.75Gbps/channel,
detecting the frequency of an incoming data stream, and recovering both the clock and data by itself.
It does not need any external frequency reference, such as a crystal oscillator.
Data Enable Requirement (DE)
There are some requirements for DE as described in Figure 2, Figure 3 and Table 15.
Dual LVDS input to THCV215 should be synchronized in terms of DE transition. See Figure 2.
If DE=Low, Hsync and Vsync data of same cycle are transmitted. Otherwise video data of that are transmitted
(DE=High). SYNC data from receiver in DE=High period are previous data of DE transition. See Figure 3.
The length of DE being low and high is at least 2 clock cycles long as described in Table 15.
Data Enable must be toggled like High -> Low -> High at regular interval.
Figure 1. Conceptual diagram of the basic operation of the chipset
Figure 2. Service condition of DE input synchronization
Vdiff = (TLCLK0+) (TLCLK0-)
Vdiff = (TLCLK1+) (TLCLK1-)
Vdiff = (TLC0+) (TLC0-)
Vdiff = (TLC1+) (TLC1-)
DE DE DE DE DE DE
DE DE DE DE DE DE
H
L
DE
THCV
216
THCV
215
DE
D[39:0]
Hsync
Vsync
Rn/Gn/Bn
CONTn
HSYNCn
VSYNCn
H
L
D[39:0]
Hsync
Vsync
Rn/Gn/Bn
CONTn
HSYNCn
VSYNCn
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
6/25
Copyright(C)2016 THine Electronics, Inc.
DE
VSYNCn
HSYNCn
Rn/Gn/Bn
CONTn
tDEH tDEL
1 cycle
Valid Data Valid Data
Low LowValid Data
Low High
Keep the last data
of DE=L period
THCV216
Output
Low
DE
VSYNC
HSYNC
Rn/Gn/Bn
CONTn
tDEH tDEL
1 cycle
Valid Data Valid Data
Invalid InvalidValid Data
Low High
Invalid
THCV215
Input
Low
n=0,1
n=0,1
Figure 3. Video and sync data transmission timing diagram
Single/Dual Link mode function (SDSEL)
SDSEL
Mode
Function
H
Single
Channel 0 active and channel 1 power down
L
Dual
Both channel 0 and channel 1 active
Table 1. Single/Dual mode select
Color Depth mode function (COL [1:0])
COL[1:0]
Color Depth
LVDS Clock Frequency Range
L,L
6bit
20MHz to 100MHz
L,H
8bit
20MHz to 100MHz
H,L
10bit
20MHz to 85MHz
H,H
12bit
20MHz to 75MHz
Table 2. Color depth mode select
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
7/25
Copyright(C)2016 THine Electronics, Inc.
LVDS Mapping
LVDS data (video data, Hsync, Vsync, DE) are mapped as Figure 4. TLC0[6] is special bit for DE(data enable),
and TLC0[5:4] are for Hsync, Vsync data bits and the other bits are for video data.
The number of LVDS channel depends on color depth mode(COL[1:0]).
If SDSEL=Low, only channel 0 (Figure 4, n=0) is active. If SDSEL=High, both channel 0/1(Figure 4, n=0/1) are
active. (TLC1[6:4] are not available).
Depending on color mode, TLD1[6] and TLD0[6] are not available. See Table 3.
TLAn6
Vdiff = (TLCLKn +) - (TLCLKn-)
n=0,1
TLAn5 TLAn4 TLAn3 TLAn2 TLAn1 TLAn0 TLAn6 TLAn5 TLAn4 TLAn3 TLAn2 TLAn1
tTCIP
Vdiff=0V
next cyclecurrent cycle
TLAn1 TLAn0
previous cycle
TLBn6 TLBn5 TLBn4 TLBn3 TLBn2 TLBn1 TLBn0 TLBn6 TLBn5 TLBn4 TLBn3 TLBn2 TLBn1TLBn1 TLBn0
TLCn6
(DE) TLCn5
(V) TLCn4
(H) TLCn3 TLCn2 TLCn1 TLCn0 TLCn3 TLCn2 TLCn1TLCn1 TLCn0
TLDn6 TLDn5 TLDn4 TLDn3 TLDn2 TLDn1 TLDn0 TLDn6 TLDn5 TLDn4 TLDn3 TLDn2 TLDn1TLDn1 TLDn0
TLEn6 TLEn5 TLEn4 TLEn3 TLEn2 TLEn1 TLEn0 TLEn6 TLEn5 TLEn4 TLEn3 TLEn2 TLEn1TLEn1 TLEn0
TLFn6 TLFn5 TLFn4 TLFn3 TLFn2 TLFn1 TLFn0 TLFn6 TLFn5 TLFn4 TLFn3 TLFn2 TLFn1TLFn1 TLFn0
TLAn +/-
TLBn +/-
TLCn +/-
TLDn +/-
TLEn +/-
TLFn +/-
Control data bitData Enable
TLCn6
(DE) TLCn5
(V) TLCn4
(H)
Color depth
12,10, 8, 6
Figure 4. LVDS mapping timing diagram
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
8/25
Copyright(C)2016 THine Electronics, Inc.
L,L (6bit) L,H (8bit) H,L (10bit) H,H (12bit)
TLAn[0] RLAn[0] Rn[0] Rn[2] Rn[4] Rn[6] D2
TLAn[1] RLAn[1] Rn[1] Rn[3] Rn[5] Rn[7] D3
TLAn[2] RLAn[2] Rn[2] Rn[4] Rn[6] Rn[8] D4
TLAn[3] RLAn[3] Rn[3] Rn[5] Rn[7] Rn[9] D5
TLAn[4] RLAn[4] Rn[4] Rn[6] Rn[8] Rn[10] D6
TLAn[5] RLAn[5] Rn[5] Rn[7] Rn[9] Rn[11] D7
TLAn[6] RLAn[6] Gn[0] Gn[2] Gn[4] Gn[6] D10
TLBn[0] RLBn[0] Gn[1] Gn[3] Gn[5] Gn[7] D11
TLBn[1] RLBn[1] Gn[2] Gn[4] Gn[6] Gn[8] D12
TLBn[2] RLBn[2] Gn[3] Gn[5] Gn[7] Gn[9] D13
TLBn[3] RLBn[3] Gn[4] Gn[6] Gn[8] Gn[10] D14
TLBn[4] RLBn[4] Gn[5] Gn[7] Gn[9] Gn[11] D15
TLBn[5] RLBn[5] Bn[0] Bn[2] Bn[4] Bn[6] D18
TLBn[6] RLBn[6] Bn[1] Bn[3] Bn[5] Bn[7] D19
TLCn[0] RLCn[0] Bn[2] Bn[4] Bn[6] Bn[8] D20
TLCn[1] RLCn[1] Bn[3] Bn[5] Bn[7] Bn[9] D21
TLCn[2] RLCn[2] Bn[4] Bn[6] Bn[8] Bn[10] D22
TLCn[3] RLCn[3] Bn[5] Bn[7] Bn[9] Bn[11] D23
TLCn[4] RLCn[4] HSYNCn HSYNCn HSYNCn HSYNCn Hsync
TLCn[5] RLCn[5] VSYNCn VSYNCn VSYNCn VSYNCn Vsync
TLCn[6] RLCn[6] DEn(*2) DEn(*2) DEn(*2) DEn(*2) DE
TLDn[0] RLDn[0] Rn[0] Rn[2] Rn[4] D0
TLDn[1] RLDn[1] Rn[1] Rn[3] Rn[5] D1
TLDn[2] RLDn[2] Gn[0] Gn[2] Gn[4] D8
TLDn[3] RLDn[3] Gn[1] Gn[3] Gn[5] D9
TLDn[4] RLDn[4] Bn[0] Bn[2] Bn[4] D16
TLDn[5] RLDn[5] Bn[1] Bn[3] Bn[5] D17
TLDn[6] RLDn[6] N/A(*1) CONTn[1] CONTn[3] D25(*3)
TLEn[0] RLEn[0] Rn[0] Rn[2] D30
TLEn[1] RLEn[1] Rn[1] Rn[3] D31
TLEn[2] RLEn[2] Gn[0] Gn[2] D28
TLEn[3] RLEn[3] Gn[1] Gn[3] D29
TLEn[4] RLEn[4] Bn[0] Bn[2] D26
TLEn[5] RLEn[5] Bn[1] Bn[3] D27
TLEn[6] RLEn[6] CONTn[2] CONTn[4] D24(*3)
TLFn[0] RLFn[0]
Channel
Power
Rn[0] D38
TLFn[1] RLFn[1] Rn[1] D39
TLFn[2] RLFn[2] Gn[0] D36
TLFn[3] RLFn[3] Gn[1] D37
TLFn[4] RLFn[4] Bn[0] D34
TLFn[5] RLFn[5] Bn[1] D35
TLFn[6] RLFn[6] CONTn[1] D33
n=0,1 : if SDSEL=L, Channel 1(n=1) is power down
*1 N/A: Not available, THCV216 output RLDn[6]=Low.
*2 DE must be same polarity(TLC0[6] = TLC1[6]) when SDSEL=H
*3 3D information flags defined in the V-by-One® HS Standard are assigned to the following bit.
V-by-One® HS Standard Packer/Unpacker D[24](3DLR) <=> LVDS T/RLEn[6]
V-by-One® HS Standard Packer/Unpacker D[25](3DEN) <=> LVDS T/RLDn[6]
Symbol defined by
V-by-One® HS
THCV215
Input
THCV216
Output
Color depth (COL[1:0])
Symbol defined by
V-by-One® HS
Channel
Power
Down
Channel
Power
Down
Channel
Power
Down
Channel
Power
Down
Channel
Power
Down
Table 3. LVDS mapping table
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
9/25
Copyright(C)2016 THine Electronics, Inc.
CML Buffer
CAVDL
TXn + RXn +
TXn - RXn -
Vterm ~ 1.3V
C=75
200nF
50
n=0,1
CAVDL
CAGND
THCV215 THCV216
CML
Transmitter CML
Receiver
50C=75
200nF
50
50
Zdiff=100
Figure 5. CML buffer scheme
Lock detect and Hot-plug function
LOCKN and HTPDN are both open drain output from THCV216. Pull-up resistors are needed at THCV215 side
to VDL. See Figure 6.
If THCV216 is not active (power down mode (PDN=L) or powered off), HTPDN is open. Otherwise, HTPDN is
pulled down by THCV216.
HTPDN of THCV215 side is High when THCV216 is not active or the receiver board is not connected. Then
THCV215 enters into the power down mode. When HTPDN transits from High to Low, THCV215 starts up and
transmits training pattern for link training.
LOCKN indicates whether THCV216 is in the lock state or not. If THCV216 is in the unlock state, LOCKN is
open. Otherwise (in the lock state), it’s pulled down by THCV216.
THCV215 keeps transmitting training pattern until LOCKN transits to Low. After training done, THCV216 sinks
current and LOCKN is Low. Then THCV215 starts transmitting normal video pattern.
VDL
(THCV215 side)
VDL
(THCV215 side)
HTPDN
LOCKN
10kΩ
THCV215 THCV216
10kΩ
Figure 6. Hot-plug and Lock detect scheme
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
10/25
Copyright(C)2016 THine Electronics, Inc.
No HTPDN connection option
HTPDN connection between THCV215 and THCV216 can be omitted as an application option. In this case,
HTPDN at the Transmitter side should always be taken ad Low. See Figure 7.
Figure 7. HTPDN is not connected scheme
VDL
(THCV215 side)
HTPDN
LOCKN
10kΩ
THCV215 THCV216
HTPDN
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
11/25
Copyright(C)2016 THine Electronics, Inc.
THCV215 Pre-emphasis function (PRE [1:0])
Pre-emphasis can equalize severe signal degradation caused by long distance or high-speed transmission.
Two pins, PRE1 and PRE0, select the strength of pre-emphasis. See Table 4.
PRE[1:0]
Description
L,L
w/o Pre-emphasis
H,L
w/ 100% Pre-emphasis
L,H / H,H
Not available
Table 4. Pre-emphasis function table
THCV215 Power Down function (PDN)
By setting the PDN pin to low, it results in the power down mode. All the internal circuitry turns off and the
both TXn+/- (n=0, 1) outputs turn to VDL.
THCV216 Power Down function (PDN)
By setting the PDN pin to low, it results in the power down mode. All the internal circuitry turns off and the
RLXn+/- (X=A, B, C, D, E, F, CLK, n=0, 1) outputs turn to High-Z.
THCV215 Link Ready function (RDY)
This is a CMOS output for indicating the link status. RDY=High if link is ready.
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
12/25
Copyright(C)2016 THine Electronics, Inc.
Field BET Operation
In order to help users to check the validity of high speed serial links (CML lines), THCV215/THCV216 have
an operation mode in which they act as the bit error tester (BET). In this mode, THCV215 internally generates a
test pattern, which is then serialized onto the CML high speed lines. THCV216 receives the data stream and
checks the sampled data for bit errors.
This "Field BET" mode is activated by setting Reserved1= H on THCV215 and Reserved3= H on THCV216
(Refer to Table 5).
In the Field BET mode, the on-chip pattern generator on THCV215 is enabled and generates the test pattern as
long as the LVDS clocks (TLCLK0+/-, TLCLK1+/-) are applied. Other LVDS data inputs may be left open or
applied with any pattern. They are ignored by THCV215. The generated data pattern is then 8b/10b encoded,
scrambled, and serialized onto the CML channels. As for THCV216, the internal test pattern check circuit gets
enabled and the RS pin, which is normally an input, turns into an output for the pattern checker (LVDS output
level is internally configured to be "Normal Swing”). The RS pin goes LOW whenever bit errors occur, and it
stays HIGH when there is no bit error. Please Refer to Figure 8.
Product
THCV215
THCV216
Pin Name
Reserved1
Reserved3
RS
Normal
L
L
3.3V INPUT
H: Normal Swing, L: Reduced Swing
Field BET
H
H
3.3V OUTPUT
Goes LOW when bit errors occur.
Table 5. Field BET Operation Pin Settings
Figure 8. Field BET Configuration
THCV215 THCV216
LVDS clock to
TLCLK0, 1
Reserved1=H
(Field BET mode) Reserved3=H
(Field BET mode)
Test
Pattern
Checker
Test Pattern
Generator
LVDS data inputs
are ignored
R
STest Point
for
Field BET
LVDS Swing Select
for
Normal Operation
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
13/25
Copyright(C)2016 THine Electronics, Inc.
Absolute Maximum Ratings0F
Parameter Min. Typ. Max.
Units
1.8V Supply VoltageVDL,CAVDL,CPVDL,LPVDL-0.3 - +2.1 V
3.3V Supply Voltage(LAVDH) -0.3 - +4.0 V
1.8V CMOS Input Voltage -0.3 - VDL+0.3 V
1.8V CMOS Output Voltage -0.3 - VDL+0.3 V
LVDS Receiver Input Voltage -0.3 - LAVDH+0.3 V
CML Transmitter Output Voltage -0.3 - CAVDL+0.3 V
Output Current -50 - 50 mA
Storage Temperature -55 - +125 °C
Junction Temperature - - +125 °C
Reflow Peak Temperature / Time - - +260/10sec °C
Table 6. THCV215 Absolute Maximum Ratings
Parameter Min. Typ. Max.
Units
1.8V Supply Voltage(VDL,CAVDL,CPVDL0,CPVDL1) -0.3 - +2.1 V
3.3V Supply Voltage(LPVDH,LAVDH) -0.3 - +4.0 V
1.8V CMOS Input Voltage -0.3 - VDL+0.3 V
3.3V CMOS Input Voltage -0.3 - LAVDH+0.3
CMOS Output Voltage -0.3 - +2.1 V
CML Receiver Input Voltage -0.3 - CAVDL+0.3 V
LVDS Transmitter Output Voltage -0.3 - LAVDH+0.3 V
Output Current -30 - 30 mA
Storage Temperature -55 - +125 °C
Junction Temperature - - +125 °C
Reflow Peak Temperature / Time - - +260/10sec °C
Maximum Power Dissipation @+25- - 2 W
Lead Temperature (Soldering, 10sec) - - +260 °C
Table 7. THCV216 Absolute Maximum Ratings
Operating Conditions
Parameter Min. Typ. Max.
Units
1.8V Supply VoltageVDL,CAVDL,CPVDL,LPVDL1.62 1.80 1.98 V
3.3V Supply Voltage(LAVDH) 3.00 3.30 3.60 V
Operating Temperature 0 - 70
Table 8. THCV215 Operating Conditions
Parameter Min. Typ. Max.
Units
1.8V Supply Voltage(VDL,CAVDL,CPVDL0,CPVDL1)
except for the 12 bit color depth mode
1.62 1.80 1.98 V
1.8V Supply Voltage(VDL,CAVDL,CPVDL0,CPVDL1)
for the 12 bit color depth mode
1.71 1.80 1.89 V
3.3V Supply Voltage(LPVDH,LAVDH) 3.00 3.30 3.60 V
Operating Temperature 0 - 70
Table 9. THCV216 Operating Conditions
“Absolute Maximum Ratings” are those values beyond which the safety of the device can not be guaranteed.
They are not meant to imply that the device should be operated at these limits. The tables of “Electrical
Characteristics” specify conditions for device operation.
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
14/25
Copyright(C)2016 THine Electronics, Inc.
Electrical Specifications
1.8V & 3.3V CMOS DC Specifications
Symbol Parameter Conditions Min. Typ. Max. Units
VIH High Level Input Voltage 0.65×VDL - VDL V
VIL Low Level Input Voltage 0 - 0.35×VDL V
VOH High Level Output Voltage IOH=-2mA VDL-0.45 - - V
VOL Low Level Output Voltage IOL=2mA - - 0.2 V
IIH Input Leak Current High VIN=VDL - - ±10 uA
IIL Input Leak Current Low VIN=0V - - ±10 uA
VIH3 High Level Input Voltage (3.3V inputs) 2.1 - LAVDH V
VIL3 Low Level Input Voltage (3.3V inputs) 0 - 0.8 V
VOH3 High Level Output Voltage (3.3V outputs) IOH=-4mA 2.4 - - V
VOL3 Low Level Output Voltage (3.3V outputs) IOL=4mA - - 0.4 V
IIH3 Input Leak Current High (3.3V inputs) VIN=LAVDH - - ±10 uA
IIL3 Input Leak Current Low (3.3V inputs) VIN=0V - - ±10 uA
Table 10. THCV215 and THCV216 1.8V & 3.3V CMOS DC Specifications
CML & LVDS DC Specifications
Symbol Parameter Conditions Min. Typ. Max. Units
VTTH LVDS Differential Input High Threshold - - 100 mV
VTTL LVDS Differential Input Low Threshold -100 - - mV
ITIH LVDS Input Leak Current High
PDN=L,
TLxn+/-=LAVDH
- - ±10 uA
ITIL LVDS Input Leak Current Low TLxn+/-=0V,PDN=L - - ±10 uA
RTIN LVDS Differential Input Resistance PDN=L 80 100 120 W
VTOD CML Differential Mode Output Voltage
DRV[1:0]=L,H
PRE[1:0]=L,L
200 300 400 mV
PRE[1:0]=L,L - 0 - %
PRE[1:0]=H,L 80 100 120 %
PRE[1:0]=L,L mV
PRE[1:0]=H,L mV
ITOH CML Output Leak Current High PDN=L - ±10 uA
ITOS CML Output Short Circuit Current CAVDL=1.8V -90 - - mA
PRE
CML Pre-emphasis Level
CAVDL-VTOD
CAVDL-2×VTOD
VTOC
CML Common Mode Output Voltage
Table 11. THCV215 CML & LVDS DC Specifications
Symbol Parameter Conditions Min. Typ. Max. Units
VRTH CML Differential Input High Threshold - - 50 mV
VRTL CML Differential Input Low Threshold -50 - mV
IRIH CML Input Leak Current High
PDN=L,
RXn+/-=CAVDL
- - ±10 uA
IRIL CML Input Leak Current Low PDN=L,RXn+/-=0V - - ±10 uA
IRRIH CML Input Current High RXn+/-=CAVDL - - 2 mA
IRRIL CML Input Current Low RXn+/-=0V -6 - - mA
RRIN CML Differential Input Resistance 80 100 120 W
LVDS Differential Mode Output Voltage
(Normal Swing)
RL=100Ω, RS=H 250 350 450 mV
LVDS Differential Mode Output Voltage
(Reduced Swing)
RL=100Ω, RS=L 100 200 300 mV
ΔVROD
Change in VROD between
Complementary Output States
RL=100Ω - - 35 mV
VROC LVDS Common Mode Output Voltage RL=100Ω 1.125 1.25 1.375 V
ΔVROC
Change in VROC between
Complementary Output States
RL=100Ω - - 35 mV
IROS LVDS Output Short Circuit Current RLxn+/-=0V -24 - - mA
IROZ LVDS Output TRI-STATE Current
PDN=L,
RLxn+/-=0V / LAVDH
x=A~F,CLK, n=0, 1
- - ±10 uA
VROD
Table 12. THCV216 CML & LVDS DC Specifications
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
15/25
Copyright(C)2016 THine Electronics, Inc.
Supply Currents
Symbol Parameter Conditions Min. Typ. Max. Units
ITCCW
Supply Current for 1.8V Power Supply
(Worst Case Pattern)
COL[1:0]=H,H
PRE[1:0]=H,L
SDSEL=H
- - 210 mA
ITCCW33
Supply Current for 3.3V Power Supply
(Worst Case Pattern)
COL[1:0]=H,H
PRE[1:0]=H,L
SDSEL=H
- - 90 mA
ITCCS
Power Down Supply Current
PDN=L
All Inputs
=Fixed L or H
- - 200 uA
Table 13. THCV215 Supply Currents
Symbol Parameter Conditions Min. Typ. Max. Units
IRCCW
Supply Current for 1.8V Power Supply
(Worst Case Pattern)
COL[1:0]=H,H
SDSEL=H
RS=H
- - 160 mA
IRCCW33
Supply Current for 3.3V Power Supply
(Worst Case Pattern)
COL[1:0]=H,H
SDSEL=H
RS=H
- - 190 mA
IRCCS
Power Down Supply Current
PDN=L
All Inputs
=Fixed L or H
- - 200 uA
Table 14. THCV216 Supply Currents
Vdiff = (TLCLKn +) - (TLCLKn-)
n=0,1 tTCIP
Vdiff=0V
next cyclecurrent cycleprevious cycle
TLAn +/-
TLBn +/-
TLCn +/-
TLDn +/-
TLEn +/-
TLFn +/-
Control bitData Enable
H H
Figure 9. Worst Case Pattern
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
16/25
Copyright(C)2016 THine Electronics, Inc.
Switching Characteristics
Symbol Parameter Conditions Min. Typ. Max. Units
tDEH DE=High Duration 2tTCIP - - sec
tDEL DE=Low Duration 2tTCIP - - sec
Table 15. DE requirement
Symbol Parameter Conditions Min. Typ. Max. Units
COL[1:0]=L,L | L,H 10 -50 ns
COL[1:0]=H,L 11.76 - 50 ns
COL[1:0]=H,H 13.3 - 50 ns
tTCIH LVDS Differential Clock High Time 2×tTCIP/7 - 5×tTCIP/7 ns
tTCIL LVDS Differential Clock Low Time 2×tTCIP/7 - 5×tTCIP/7 ns
tTCIP=75MHz -440 - 440 ps
tTCIP=85MHz -390 - 390 ps
tTCIP=100MHz -330 - 330 ps
tTIP1 LVDS Input Data Position0 -tSK 0 +tSK ns
tTIP0 LVDS Input Data Position1 tTCIP/7-tSK tTCIP/7 tTCIP/7+tSK ns
tTIP6 LVDS Input Data Position2 2×tTCIP/7-tSK 2×tTCIP/7 2×tTCIP/7+tSK ns
tTIP5 LVDS Input Data Position3 3×tTCIP/7-tSK 3×tTCIP/7 3×tTCIP/7+tSK ns
tTIP4 LVDS Input Data Position4 4×tTCIP/7-tSK 4×tTCIP/7 4×tTCIP/7+tSK ns
tTIP3 LVDS Input Data Position5 5×tTCIP/7-tSK 5×tTCIP/7 5×tTCIP/7+tSK ns
tTIP2 LVDS Input Data Position6 6×tTCIP/7-tSK 6×tTCIP/7 6×tTCIP/7+tSK ns
tTISK Lane0/1 LVDS Input Clock Skew -0.3×tTCIP - 0.3×tTCIP ns
tTRF CML Output Rise and Fall Time(20%-80%) 50 -150 ps
tTOSK CML Lane0/1 Output Inter Pair Skew -2 - 2 UI
tTCD Input Clock to Output Data Delay
(56/(5×n)+6.1)
×tTCIP-5 (1)
-
(56/(5×n)+6.1)
×tTCIP+5 (1)
ns
tTPD Power On to PDN High Delay 0 - - ns
tTPLL0 PDN High to CML Output Delay - - 10 ms
tTPLL1 PDN Low to CML Output High Fix Delay - - 20 ns
tTNP0
LOCKN High to Training Pattern Output
Delay
- - 10 ms
tTNP1
LOCKN Low to Data Pattern Output
Delay
- - 10 ms
(1) n =3, 4, and 5 for 6/8bit, 10bit, and 12bit mode, respectively.
tTCIP
tSK
TLCLK Period
LVDS Receiver Skew Margin
Table 16. THCV215 Switching Characteristics
Symbol Parameter Conditions Min. Typ. Max. Units
COL[1:0]=L,L | L,H 333 tTCIP/30 1667 ps
COL[1:0]=H,L 294 tTCIP/40 1250 ps
COL[1:0]=H,H 266 tTCIP/50 1000 ps
tRISK CML Lane0/1 Input Inter Pair Skew Margin - - 15 UI
tRLVT LVDS Differential Output Transition Time - 0.6 1.5 ns
tROP1 LVDS Output Data Position0 -0.25 0 0.25 ns
tROP0 LVDS Output Data Position1 tTCIP/7-0.25 tTCIP/7 tTCIP/7+0.25 ns
tROP6 LVDS Output Data Position2 2×tTCIP/7-0.25 2×tTCIP/7
2×tTCIP/7+0.25
ns
tROP5 LVDS Output Data Position3 3×tTCIP/7-0.25 3×tTCIP/7
3×tTCIP/7+0.25
ns
tROP4 LVDS Output Data Position4 4×tTCIP/7-0.25 4×tTCIP/7
4×tTCIP/7+0.25
ns
tROP3 LVDS Output Data Position5 5×tTCIP/7-0.25 5×tTCIP/7
5×tTCIP/7+0.25
ns
tROP2 LVDS Output Data Position6 6×tTCIP/7-0.25 6×tTCIP/7
6×tTCIP/7+0.25
ns
tROSK Lane0/1 LVDS Output Clock Skew - - 50 ps
tRDC Input Data to Output Clock Delay
(178+68×n)
×tRBIT-5 (1)
-
(178+68×n)
×tRBIT+5 (1)
ns
tRPD Power On to PDN High Delay 0 - - ns
tRHPD0 PDN High to HTPDN Low Delay - - 1 us
tRHPD1 PDN Low to HTPDN High Delay - - 1 us
tRPLL0
Training Pattern Input to LOCKN Low
Delay
- - 10 ms
tRPLL1 PDN Low to LOCKN High Delay - - 10 us
tRLCK0 LOCKN Low to LVDS Output Delay - - 1 ms
tRLCK1 LOCKN High to LVDS High-Z Delay - - 0 ns
(1) n =3, 4, and 5 for 6/8bit, 10bit, and 12bit mode, respectively.
Unit Interval
tRBIT
Table 17. THCV216 Switching Characteristics
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
17/25
Copyright(C)2016 THine Electronics, Inc.
AC Timing Diagrams and Test Circuits
THCV215 LVDS Input Switching Characteristics
TLxn6
Vdiff = (TLCLKn +) - (TLCLKn-)
x=A,B,C,D,E,F
n=0,1
TLxn5 TLxn4 TLxn3 TLxn2 TLxn1 TLxn0 TLxn6 TLxn5 TLxn4 TLxn3 TLxn2 TLxn1
Vdiff = (TLxn +) - (TLxn-)
tTCIP
Vdiff=0V
tTIP1
tTIP0
tTIP6
tTIP5
tTIP4
tTIP3
tTIP2
Vdiff = (TLCLK0 +) - (TLCLK0-) Vdiff=0V
Vdiff = (TLCLK1 +) - (TLCLK1-) Vdiff=0V
tTISK
tTCIH tTCIL
Figure 10. THCV215 LVDS Input Switching Timing Diagrams
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
18/25
Copyright(C)2016 THine Electronics, Inc.
THCV216 LVDS Output Switching Characteristics
RLxn6
Vdiff = (RLCLKn +) - (RLCLKn-)
x=A,B,C,D,E,F
n=0,1
RLxn5 RLxn4 RLxn3 RLxn2 RLxn1 RLxn0 RLxn6 RLxn5 RLxn4 RLxn3 RLxn2 RLxn1
Vdiff = (RLxn +) - (RLxn-)
tROP1
tROP0
tROP6
tROP5
tROP4
tROP3
tROP2
tTCIP
Vdiff=0V
Vdiff = (RLCLK0 +) - (RLCLK0-) Vdiff=0V
Vdiff = (RLCLK1 +) - (RLCLK1-) Vdiff=0V
tROSK
Figure 11. THCV216 LVDS Output Switching Timing Diagrams
RL=100Ω
5pF
20%
80%
RLxn+
RLxn-
x=A,B,C,D,E,F
n=0,1
Vdiff = (RLxn +) - (RLxn-)
tRLVT tRLVT
Figure 12. THCV216 LVDS Output Switching Timing Diagram and Test Circuit.
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
19/25
Copyright(C)2016 THine Electronics, Inc.
THCV215 CML Output Switching Characteristics
TXn+
TXn-
n=0,1
75200nF
75200nF
< 5mm
20%
80%
Vdiff = (TXn +) - (TXn-)
tTRF tTRF
Vdiff = (TX0 +) - (TX0-) Vdiff=0V
Vdiff = (TX1 +) - (TX1-) Vdiff=0V
tTOSK
50Ω
50Ω
Figure 13. THCV215 CML Output Switching Timing Diagrams and Test Circuit
THCV216 CML Input Switching Characteristics
Vdiff = (RX0 +) - (RX0-)
Vdiff = (RX1 +) - (RX1-)
Vdiff=0V
Vdiff=0V
tRISK
Figure 14. THCV216 CML Input Timing Diagrams
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
20/25
Copyright(C)2016 THine Electronics, Inc.
DE period requirement
Figure 15. DE period requirement
Latency Characteristics
Vdiff = (TLCLK0 +) - (TLCLK0-) Vdiff=0V
tTCD
Vdiff = (TX0 +) - (TX0-)
Vdiff = (RX0 +) - (RX0-)
Vdiff=0V
tRDC
pixel 1st bit
pixel 1st bit
Vdiff = (RLCLK0 +) - (RLCLK0-)
Figure 16. THCV215 and THCV216 Latency
Vdiff = (TLCLK0+) (TLCLK0-)
Vdiff = (TLC0+) (TLC0-)
DE DE DE DE DE DE
tDEH tDEL
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
21/25
Copyright(C)2016 THine Electronics, Inc.
Lock and Unlock Sequence
Power On
VDD18
VDD33
TLCLKn
HTPDN
PDN
LOCKN
Fix to VDD18 CDR Training
pattern ALN Training
Pattern CDR Training
pattern
tTPLL0 tTNP1 tTNP0 tTPLL1
TXn
LVDS Data PatternTLxn+/-
1.5V
tTPD
x=A,B,C,D,E,F
n=0,1
Normal
pattern
Low-level
LVDS Clock Pattern
Normal
pattern
Figure 17. THCV215 Lock/Unlock Sequence
RXn
Power On
VDD18
VDD33
HTPDN
PDN
LOCKN
CDR Training
Pattern
tRHPD0
tRPLL0
tRHPD1
RLx
High-Z
tRLCK0 tRLCK1
1.5V
tRPD
High-Z LVDS Data Pattern
RLCLK
x=A,B,C,D,E,F
n=0,1
ALN Training
Pattern Normal
pattern
tRPLL1
LVDS Clock Pattern
Figure 18. THCV216 Lock/Unlock Sequence
tTPD and tRPD minimum is 0sec; therefore, PDN can be applied at the same time as VDD18 and VDD33.
tTPLL0 is the time from both PDN=High and HTPDN=Low moment to Training pattern ignition.
HTPDN could transit from High to Low under PDN=High condition at THCV215, which is different from what
Figure 17 indicates but is natural situation.
VDD18 : 1.8V power supply
VDD33 : 3.3V power supply
VDD18 : 1.8V power supply
VDD33 : 3.3V power supply
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
22/25
Copyright(C)2016 THine Electronics, Inc.
Note
1)HTPDN/LOCKN connection between high VDD V-by-One® HS transmitter and THCV216
When using THCV216 with high VDD V-by-One® HS transmitter, user have to take care of HTPDN/LOCKN
connection because THCV216 HTPDN/LOCKN output pins absolute maximum ratings are VDL+0.3V;
therefore high VDD pull-up at transmitter side can cause violation of usage. Users are supposed to connect
those HTPDN/LOCKN line between two devices with appropriate level-shifter configuration.
LOCKN
HTPDN
THCV216
1.8V
10kΩ
MOSFET
(Vth<1.2V)
1.8V
10kΩ
MOSFET
(Vth<1.2V)
3.3V
3.3V
10kΩ
10kΩ
V-by-One®HS Transmitter
(Ex. THCV217,THCV233) 1.8V Tolerant
Transistor
V-by-One®HS Tx side PCB V-by-One®HS Rx side PCB
D S
G
D S
G
2)LVDS input pin connection
When LVDS line is not drove from the previous device, the line is pulled up to 3.3V internally in
THCV215.This can cause violation of absolute maximum ratings to the previous LVDS Tx device whose
operating condition is lower voltage power supply than 3.3V. This phenomenon may happen at power on phase
of the whole system including THCV215. One solution for this problem is PD=L control during no LVDS input
period because pull-up resistors are cut off at power down state.
3)Power On Sequence
Don’t input TCLK#+/- before power supply to THCV215 is on in order to keep absolute maximum ratings.
4)Unused LVDS input pins
First, select appropriate color depth with COL0,COL1 pins. If there are inevitably remained LVDS no input
pins which are originally active, tie them to GND.
Second, avoid the situation that LVDS input pins in use are open. You can use PDN=L control during no
LVDS input period to cut off pulled-up resistors.
5)Cable Connection and Disconnection
Don’t connect and disconnect CML and LVDS cables, when the power is supplied to the system.
6)GND Connection
Connect the each GND of the PCB which Transmitter, Receiver and THCV215 on it. It is better for EMI
reduction to place GND cable as close to LVDS cable as possible.
LAVDH
LVDS input buffer
Internal circuit of THCV215
Low VDD
LVDS Tx
THCV215
or
LVDS Tx
integrated
device
LVDS Tx side PCB
LVDS Rx side PCB
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
23/25
Copyright(C)2016 THine Electronics, Inc.
7)Multi Drop Connection
Multi drop connection is not recommended.
8)Multiple counterpart use
Multiple counterpart use such as following system is not recommended.
p.15 tTISK spec should be kept.
Asynchronous use such as following system is not recommended.
9)Multiple device connection
HTPDN and LOCKN signals are supposed to be connected proper for their purpose like the following figure.
HTPDN should be from just one Rx to multiple Tx because its purpose is only ignition of all Tx.
LOCKN should be connected so as to indicate that all Rx CDR become ready to receive normal operation data.
LOCKN of Tx side can be simply split to multiple Tx.
There can be other applicable circuits like OR gate of LOCKN, npn transistor with resistors as inverter, etc.
Also possible time difference of internal processing time (p.15 THCV215 tTCD and THCV216 tRDC) on
multiple data stream must be accommodated and compensated by the following destination device connected to
multiple THCV216, which may have internal FIFO.
THCV215
HTPDN
LOCKN
THCV215
HTPDN
LOCKN
THCV216
HTPDN
LOCKN
PDN
THCV216
HTPDN
LOCKN
PDN
Source
Device Destination
Device
Ex. synchronized Time diff. comes up
clkin.1
clkin.2
clkout.1
clkout.2
Internal processing time tTCD Internal processing time tRDC
FIFO
FIFO
LVDS Rx
LVDS Rx
IC
CLK
DATA
DATA
THCV216
RLCLK0-
RLCLK0+
RLCLK1-
RLCLK1+
LVDS Tx
LVDS Tx
IC
CLK
CLK
DATA
DATA
THCV215
TLCLK0-
TLCLK0+
TLCLK1-
TLCLK1+
LVDS Rx
THCV216
LVDS Rx
RLCLK0,1-
RLCLK0,1+
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
24/25
Copyright(C)2016 THine Electronics, Inc.
Package
64 Lead Molded Thin Shrink Small Outline Package, JEDEC
Figure 19. 64 pin TSSOP package physical dimension
0.50 NOM
0.17~0.27
17.00 ± 0.10
1
0.25 NOM
0.60 ± 0.15
1.00 NOM
0.10 ± 0.05
0.90 ± 0.10
1.20 MAX
Detail of Lead End Unit:mm
0.10
0°~
8.10 ± 0.20
6.10 ± 0.10
64
THCV215-216_Rev.2.70_E
THine Electronics, Inc.
Security E
25/25
Copyright(C)2016 THine Electronics, Inc.
Notices and Requests
1. The product specifications described in this material are subject to change without prior notice.
2. The circuit diagrams described in this material are examples of the application which may not always apply to
the customer's design. We are not responsible for possible errors and omissions in this material. Please note if
errors or omissions should be found in this material, we may not be able to correct them immediately.
3. This material contains our copyright, know-how or other proprietary. Copying or disclosing to third parties
the contents of this material without our prior permission is prohibited.
4. Note that if infringement of any third party's industrial ownership should occur by using this product, we will
be exempted from the responsibility unless it directly relates to the production process or functions of the
product.
5. Product Application
5.1 Application of this product is intended for and limited to the following applications: audio-video
device, office automation device, communication device, consumer electronics, smartphone, feature
phone, and amusement machine device. This product must not be used for applications that require
extremely high-reliability/safety such as aerospace device, traffic device, transportation device, nuclear
power control device, combustion chamber device, medical device related to critical care, or any kind of
safety device.
5.2 This product is not intended to be used as an automotive part, unless the product is specified as a
product conforming to the demands and specifications of ISO/TS16949 ("the Specified Product") in this
data sheet. THine Electronics, Inc. (“THine”) accepts no liability whatsoever for any product other than
the Specified Product for it not conforming to the aforementioned demands and specifications.
5.3 THine accepts liability for demands and specifications of the Specified Product only to the extent
that the user and THine have been previously and explicitly agreed to each other.
6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain
small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have
sufficiently redundant or error preventive design applied to the use of the product so as not to have our
product cause any social or public damage.
7. Please note that this product is not designed to be radiation-proof.
8. Testing and other quality control techniques are used to this product to the extent THine deems necessary
to support warranty for performance of this product. Except where mandated by applicable law or
deemed necessary by THine based on the users request, testing of all functions and performance of the
product is not necessarily performed.
9. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic
goods under the Foreign Exchange and Foreign Trade Control Law.
10. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or
malfunction, if pins of the product are shorted by such as foreign substance. The damage may cause a
smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection
devices, such as fuses.
THine Electronics, Inc.
sales@thine.co.jp
http://www.thine.co.jp/