_3875081 G E SOLID STATE. O1E 18294 97-3773 ol pe 3875081 0018294 a I dlanaara rower MOSFETs File Number 1825 IRF250, IRF251, IRF252, IRF253 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode W-CHANNEL ENHANCEMENT MODE Power Field-Effect Transistors . 25 A and 30 A, 150 V - 200 V tos(on) = 0.085 M and 0.120 2 Ei Features: = SOA is power-dissipation limited Nanosecond switching speeds 3 Linear transfer characteristics 9208-33741 High input impedance Majority carrier device TERMINAL DIAGRAM The IRF250, IRF251, IRF252 and IRF253 are n-channel TERMINAL DESIGNATION enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching SOURCE DRAIN regulators, switching converters, motor drivers, relay (FLANGE) drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. GATE The IRF-types are supplied in the JEDEC TO-204AE metal 928- 3780! package. JEDEC TO-204AE Absolute Maximum Ratings Parameter iRF250 IRF251 IRF252 (RF253 Units Vos Orain - Source Voltage O 200 150 200 150 Vv Vpocr Drain - Gate Voltage (Rgg = 20 kt) 200 150 200 150 Vv Ip @Tc = 26C Continuous Drain Current 30 30 25 25 A tp @ Te = 100C Continvous Drain Current 19 19 16 16 A lpm Pulsed Drain Current @) 120 120 100 100 A Ves Gate - Source Voltage 20 v Pp @Tc = 25C Max. Power Dissipation 160 (See Fig. 14) Ww Linear Derating Factor 1.2 (See Fig. 14) WIK tim * Inductive Curent, Clamped {See Fig. 15 and 16) L = 100nH A 120 l 120 | 100 | 100 Tg Storage Temperature Range 756 to 150 c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s} . C TO : : 237o. vef 3475061 0018295 oO 3875081 GE SOLID STATE Standard Power MOSFETs O1E 18295 IRF250, IRF251, IRF252, IRF253 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVposs_ Drain - Source Breakdown Voltage IRF250 200 _ _ v Veg = ov IRF252 IRF251 _ .- IRF253 150 - - v Ip = 250pA Vesith) Gate Threshold Voltage ALL 2.0 - 4.0 Vv Vos = Vas: 'p = 2502A Iggg__ Gate-Source Leakage Forward ALL ~ - 100 nA Ves = 20V Igss Gate-Source Leakage Reverse ALL - }-100 nA Vag = -20V !psg Zero Gate Voltage Drain Current ALL = - 250 BA Vos = Max. Rating, Vag = OV = ~_ 1000 nA Vos = Max. Rating x 0.8, Veg = OV. Te = 125C IDton) On-State Orain Current @ IRF250 30 - - A IRF251 Vos? tpiony * 7; Veg = 10V DS * Dion} "OS(on) max.: GS . . IRF252 | 55 _ _ A IRF253 Roston) Static Drain-Source On-State {RF250 _ Resistance {RF251 0.07 | 0.065 a Ves = 10V, Ip = 164 WRF262 | _ Jooslo120/ 9 - IRF253 . Ofs Farward Transconductance @ ALL 8.0 14 - iy) Vos pion) x Roston} max. 'p = 16A Cisg Input Capacitance ALL = 2000 | 3000 pF Vg = OV. Vpg = 25V, f = 1.0 MHz Coss Output Capacitance ALL - 800 | 1200 pF See Fig. 10 Cres Reverse Transfer Capacitance ALL 300 | 500 pF ta(on) Turn-On Delay Time ALL = - 35 ns Yop = 95, Ip = 16A,2, = 4.70 ty Rise Time ALL - - 100 ns See Fig. 17 tgfoff) Turn-Off Delay Time ALL - - 125 ns (MOSFET switching times are essentially ty Fall Time ALL a _ 100 ns independent of operating temperature.) Q, Totat Gate Charge Veg = 10, In = 384A, Vic = 0.8 Max. Rating. 9 . - Gs Oo os (Gate-Source Plus Gate-Drain} ALL 9 120 ac See Fig, 18 for test circuit. (Gate charge is essentially Qgs Gate-Source Charge ALL _ 37 _ nc independent of operating temperature.} Qoqg Gate-Drain (Miller) Charge ALL - 42 _ ac Lp Internal Drain Inductance ALL > 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances, and canter of die. e ls tnternal Source inductance ALL - 12.5 _ nH Measured from the source pin, 6mm (0.25 in.) from header and source bonding pad. . Thermal Resistance . -. Rithuc Junction-to-Case ALL = = 0.83 Kw Rincs _Case-to-Sink ALL _ 0.1 = Kiw Mounting surface flat, smooth, and greased. RinsA _Junction-to-Ambient ALL - - 30 Kw Free Air Operation Source-Drain Diode Ratings and Characteristics oo. mo Ig Continuous Source Current IRF250 _ _ 30 A Modified MOSFET symbol do- {Body Diode). _- ae IRF251 showing the integral IRF252 reverse P-N junction rectifier. - inF2ss | | | 25 | A 0 Ism Pulse Source Current IRF250 t + (BodyDiode} @ weos1 | ~ | ~ { 120] A . , we eee. wee oe - IRF252 wRr253 | ~ | ~ | Oy A - Vsp __ Diode Forward Voltage IRF260 _ _ _ IRF251 - - 2.0 Vv Tc = 26C, Ig = 30A, Vgg = OV IRF252 IRF253 - - 1.8 v Te = 25C, Ig = 26A, Veg = OV try Reverse Recovery Time ALL = 750 | ns Ty = 180C, Ip = 30A, dipfdt = 100A/us Orr Reverse Recovered Charge ALL - 47 - zc Ty = 180C, Ip = 30A, dic/dt = 100A/ns ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by lg +Lp. @Ty = 26C to 150C. 238 @Pulse Test: Pulse width < 300xus, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal impedance Curve (Fig. 5). oT 39-13oh DEB 3a75081 o01aed 1 3875081 G E SOLID STATE oie 18296 DT 39-/3 80 ps PULSE TEST Ip, DRAIN CURRENT (AMPERES) 38v 0 10 20 30 40 Vos, DRAIN TO SOURCE-VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics 80 ps PULSE TEST 1p, DRAIN CURRENT (AMPERES} a a4 08 12 16 Vos. ORAIN-TO SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics o o a THERMAL IMPEDANCE (PER UNIT} THERMAL IMPEDANCE} a o 8 Zynsett)/ Ringe. NORMALIZED EFFECTIVE TRANSIENT 0.01 1S 2 5 wt 2 5 yt 2 50 20 SINGLE PULSE (TRANSIENT Ip, ORAIN CURRENT (AMPERES) Ip, DRAIN CURRENT (AMPERES) 19-2 Standard Power MOSFETs IRF250, IRF251, IRF252, IRF253 us PULSE TEST 1 Vos > pion) * Boston} max. 0 1 2 3 4 6 7 8 Vg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics OPERATION IN THIS AREA IS LIMITED 8Y Rosin) a {RF 250, ' Te: Ty = 150C MAK Rune = 0 83 KAW SINGLE PULSE {RF251,3 titHt ,. {RE 250, 2 1G 2 5 40 20 60 100 200 500 Vps. ORAIN-TO SOURCE VOLTAGE (VOLTS] Fig. 4 Maximum Safe Operating Area L an 1. DUTY FACTOR, 0 = t 2. PEA UNIT BASE = Rynje = 083 DEG. C/W. 3. Tym - Te = Pom Zinsclt)- 2 10-! 2 5 1.0 2 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 239- 3875081 GE SOLID STATE ' O1 18297. DIT*39-/3B - Standard Power MOSFETs OL DEM 3875081 90148297 3 IRF250, IRF251, IRF252, IRF253 20 Ty = 18006 a Vos > !pion) x Rostan) max. ot ' 80 us PULSE TEST Ty = 28C Its TRANSCONOUCTANCE (SIEMENS} lpg. REVERSE DRAIN CURRENT (AMPERES) 0 1 2 3 4 0 10 20 30 40 50 Vgp- SOURCE-TO DRAIN VOLTAGE (VOLTS) Ip, GRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 24 125 Vos = 1 216A 22 2 - = wo = ~ a a an BV pgs, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) a oo a Ros{on). ORAIN TO-SOURCE ON RESISTANCE (NORMALIZED) a 06 0.76 40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (C] 0.2 . -40 a 40 80 120 160 Fig. 8 Breakdown Voltage Vs. Temperature Ty, JUNCTION TEMPERATURE (C) 4000 Fig. 9 Normalized On-Resistance Vs. Temperature 20 Ves 70 f= 1 MHz . 3200 Cigg = Cg, + Cod, Cas SHORTED Crs = Cog Vos = 40V C6 18 os - Coss = Cas + Geet tog Vos = 100V] s Cys + r~ Vpg = 160V, tRF250, 252 g C, CAPACITANCE (pF) Vgs. GATE TO-SOURCE VOLTAGE (VOLTS} Ss 800 sf / {p = 8A FOR TEST CiRCUIT +~J SEE FIGURE 18 . 0 10 20 _ 30 4080 Vpg. ORAIN TO-SOURCE VOLTAGE {VOLTS) 7 Q 8 56 84 12 (40 Qg. TOTAL GATE CHARGE (nC) Fig. 10 Typical c. i . in-to- I . v9 Ypical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical! Gate Charge Vs. Gate-to-Source Voltage te 240. - ____OL deff sazsos1 coweia s 3875081 G E SOLID STATE o1e 192908)0 pT 3I7IS Standard Power MOSFETs IRF250, IRF251, IRF252, IRF253 0.10 2 ) f ly ~ Sf SL es-200 tT 006 0.22; aT 7 Roston) MEASURED WITH a CURRENT PULSE OF = 2.0 us DURATION. 7 s INITIAL Ty = 25C uw (HEATING EFFECT OF 2.0 ys z 018 Vgg 2 10V $-+ PULSE IS MINIMAL.) 4 a ou & a ut = < = = S E Ww 2 0.14 = 3 5 8 oa e z e < Zz a z 5 cx oa = s & a o x a a 40 80 120 160 26 50 18 100 125 150 ip, ORAIN CURRENT (AMPERES) Tg. CASE TEMPERATURE (C} Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature VARY t, TO OBTAIN REQUIRED PEAK ty, 140 TT put 120 Vos = 10V F'p a g 100 MW = }=058Vpsg Ec = 0.75 BVpss ao B 80 Fig. 15 Clamped Inductive Test Circuit 2 oa = 60 = = o 0 20 40 60 80 100 120 140 Te CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve Fig. 16 Clamped Inductive Waveforms o Vos ISOLATED SUPPLY} CURRENT AEGULATOR ADJUST R, TO OBTAIN SPECIFIED Ig SAME TYPE av AS QUT T Vos Battery | 02H! a Ves SOURCE IMPEDANCE O -Yos Fig. 17 ~ Switching Time Test Circuit CURRENT = CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit re 241