FullFlex FullFlexTM Synchronous DDR Dual-Port SRAM Features * True dual-ported memory allows simultaneous access to the shared array from each port * Synchronous pipelined operation with selectable Double Data Rate (DDR) or Single Data Rate (SDR) operation on each port -- DDR interface at 200 MHz -- Burst counters for sequential memory access -- Mailbox with interrupt flags for message passing -- Dual Chip Enables for easy depth expansion Functional Description -- SDR interface at 250 MHz -- Up to 36-Gb/s bandwidth (250 MHz * 72 bit * 2 ports) * Selectable pipelined or flow-through mode * 1.5V or 1.8V core power supply * Commercial and Industrial temperature ranges * IEEE 1149.1 JTAG boundary scan * Available in 484-ball PBGA Packages and 256-ball FBGA Packages * FullFlex72 family -- 18 Mbit: 256K x 36 x 2 DDR or 256K x 72 SDR (CYDD18S72V18) -- 9 Mbit: 128K x 36 x 2 DDR or 128K x 72 SDR (CYDD09S72V18) -- 4 Mbit: 64K x 36 x 2 DDR or 64 x 72 SDR (CYDD04S72V18) * FullFlex36 family -- 36 Mbit: 512K x 36 x 2 DDR (CYDD36S36V18) -- 18 Mbit: 256K x 36 x 2 DDR (CYDD18S36V18) -- 9 Mbit: 128K x 36 x 2 DDR (CYDD09S36V18) -- 4 Mbit: 64K x 36 x 2 DDR (CYDD04S36V18) * FullFlex18 family -- 36 Mbit: 1M x 18 x 2 DDR (CYDD36S18V18) -- 18 Mbit: 512K x 18 x 2 DDR (CYDD18S18V18) -- 9 Mbit: 256K x 18 x 2 DDR (CYDD09S18V18) -- 4 Mbit: 128K x 18 x 2 DDR (CYDD04S18V18) * Built-in deterministic access control to manage address collisions -- Deterministic flag output upon collision detection -- Collision detection on back-to-back clock cycles -- First Busy Address readback * Advanced features for improved high-speed data transfer and flexibility -- Variable Impedance Matching (VIM) -- Echo clocks Cypress Semiconductor Corporation Document #: 38-06072 Rev. *I -- Selectable LVTTL (3.3V), Extended HSTL (1.4V-1.9V), 1.8V LVCMOS, or 2.5V LVCMOS I/O on each port The FullFlexTM Dual-Port SRAM families consist of 4-Mbit, 9-Mbit, 18-Mbit, and 36-Mbit synchronous, true dual-port static RAMs that are high-speed, low-power 1.8V/1.5V CMOS. Two ports are provided, allowing the array to be accessed simultaneously. Simultaneous access to a location triggers deterministic access control. For FullFlex72, these ports can operate independently in DDR mode with 36-bit bus widths or in SDR mode with 72-bit bus widths. For FullFlex36 and FullFlex18, the ports operate in DDR mode only. Each port can be independently configured for two pipelined stages for SDR mode or 2.5 stages in DDR mode. Each port can also be configured to operate in pipelined or flow-through mode in SDR mode. Advanced features include built-in deterministic access control to manage address collisions during simultaneous access to the same memory location, Variable Impedance Matching (VIM) to improve data transmission by matching the output driver impedance to the line impedance, and echo clocks to improve data transfer. To reduce the static power consumption, chip enables can be used to power down the internal circuitry. The number of cycles of latency before a change in CE0 or CE1 will enable or disable the databus matches the number of cycles of read latency selected for the device. In order for a valid write or read to occur, both chip enable inputs on a port must be active. Each port contains an optional burst counter on the input address register. After externally loading the counter with the initial address, the counter will increment the address internally. Additional features of this device include a mask register and a mirror register to control counter increments and wrap-around. The counter-interrupt (CNTINT) flags notify the host that the counter will reach maximum count value on the next clock cycle. The host can read the burst-counter internal address, mask register address, and busy address on the address lines. The host can also load the counter with the address stored in the mirror register by utilizing the retransmit functionality. Mailbox interrupt flags can be used for message passing, and JTAG boundary scan and asynchronous Master Reset (MRST) are also available. The logic block diagram in Figure 1 displays these features. The FullFlex72 DDR family of devices is offered in a 484-ball plastic BGA package. The FullFlex36 and FullFlex18 DDR only families of devices are offered in both 484-ball and 256-ball fine pitch BGA packages. * 198 Champion Court * San Jose, CA 95134-1709 * 408-943-2600 Revised December 21, 2006 FullFlex FTSELL FTSELR CQENL CQENR PORTSTD[1:0]L CONFIG Block CONFIG Block PORTSTD[1:0]R DDRONL DDRONR DQ[71:0]L BE [7:0]L CE0L CE1L OEL IO Control DQ [71:0]R BE [7:0]R CE0R CE1R OER IO Control R/WR CQ0R CQ0R CQ1R CQ1R R/WL CQ0L CQ0L CQ1L CQ1L Dual Ported Array Collision Detection Logic BUSYL A [19:0]L CNT/MSKL ADSL CNTENL CNTRSTL RETL CNTINTL CL CL WRPL Address & Counter Logic BUSYR Address & Counter Logic A [19:0]R CNT/MSKR ADSR CNTENR CNTRSTR RETR CNTINTR CR CR WRPR Mailboxes INTL INTR READYL LowSPDL ZQ0L ZQ1L JTAG RESET LOGIC TRST TMS TDI TDO TCK MRST READYR LowSPDR ZQ0R ZQ1R Figure 1. Block Diagram[1,2,3] Notes: 1. The CYDD36S18V18 device has 20 address bits. The CYDD36S36V18, and the CYDD18S18V18 devices have 19 address bits. The CYDD18S72V18, CYDD18S36V18, and the CYDD09S18V18 devices have 18 address bits. The CYDD09S72V18, CYDD04S18V18, and the CYDD09S36V18 devices have 17 address bits. The CYDD04S36V18 and the CYDD04S72V18 devices have 16 address bits. 2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines. 3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte enables. Document #: 38-06072 Rev. *I Page 2 of 53 FullFlex FullFlex72 SDR/DDR 484-ball BGA Pinout (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 A DNU DQ34 DQ32 DQ30 DQ27 DQ60 DQ57 DQ54 DQ24 DQ21 DQ18 DQ18 DQ21 DQ24 DQ54 DQ57 DQ60 DQ27 DQ30 DQ32 DQ34 DNU L L L L L L L L L L R R R R R R R R R R B DQ63 DQ35 DQ33 DQ31 DQ28 DQ61 DQ58 DQ55 DQ25 DQ22 DQ19 DQ19 DQ22 DQ25 DQ55 DQ58 DQ61 DQ28 DQ31 DQ33 DQ35 DQ63 L L L L L L L L L L L R R R R R R R R R R R C DQ65 DQ64 VSS L L VSS DQ29 DQ62 DQ59 DQ56 DQ26 DQ23 DQ20 DQ20 DQ23 DQ26 DQ56 DQ59 DQ62 DQ29 VSS L L L L L L L R R R R R R R VSS DQ64 DQ65 R R DQ67 DQ66 VSS L L VSS VSS CQ1L CQ1L DDR LOW PORT ZQ0L BUSY CNTI PORT DNU CQ1R CQ1R VSS ONL SPDL STD0 [4] L NTL STD1 L L VSS VSS DQ66 DQ67 R R E DQ69 DQ68 VDDI VSS L L OL VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI DNU OL OL OL OL OL OR OR OR OR VSS VDDI DQ68 DQ69 OR R R F DQ71 DQ70 CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R DQ70 DQ71 L L OL OL OL OL OL RE RE RE RE OR OR OR OR OR R R D A0L A1L RETL BE2L VDDI VDDI VREF VSS OL OL L VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE2R RETR A1R R OR OR A0R A2L A3L WRP BE6L VDDI VDDI VSS OL OL L VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE6R WRP OR OR R A3R A2R A4L A5L READ BE3L VDDI VDDI VSS YL OL OL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE3R READ A5R OR OR YR A4R A6L A7L VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI BE7R ZQ1R A7R [4] RE OR A6R A8L A9L CL OEL VTTL VCO RE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER RE CR A9R A8R A10L A11L CL BE5L VTTL VCO RE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL BE5R RE CR A11R A10R A12L A13L ADSL BE1L VDDI VCO OL RE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL BE1R ADSR A13R A12R RE A14L A15L CNT/ BE4L VDDI VDDI VSS OL OL MSKL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE4R CNT/ A15R A14R OR OR MSK R R A16L A17L CNTE BE0L VDDI VDDI VSS [7] [6] OL OL NL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R [6] [7] OR OR NR T A18L DNU CNTR INTL VDDI VDDI VREF VSS [5] STL OL OL L VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR DNU A18R [5] R OR OR STR U DQ53 DQ52 R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR DQ52 DQ53 L L NL OL OL OL OL OL RE RE RE RE OR OR OR OR OR NR R R V DQ51 DQ50 FTSE VDDI DNU VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI FTSE DQ50 DQ51 L L OL OL OL OL OL OR OR OR OR OR OR R R LL LR W DQ49 DQ48 VSS MRST VSS CQ0L CQ0L DNU PORT CNTI BUSY ZQ0R PORT LOW DDR CQ0R CQ0R VSS [4] L L STD1 NTR STD0 SPDR ONR R R R Y DQ47 DQ46 VSS L L G H J K L M N P ZQ1L BE7L VTTL VCO [4] RE TDI TDO DQ48 DQ49 R R VSS DQ11 DQ44 DQ41 DQ38 DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ38 DQ41 DQ44 DQ11 TMS L L L L R R R R TCK DQ46 DQ47 R R AA DQ45 DQ17 DQ15 DQ13 DQ10 DQ43 DQ40 DQ37 DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ37 DQ40 DQ43 DQ10 DQ13 DQ15 DQ17 DQ45 L L L L L L L L R R R R R R R R AB DNU DQ16 DQ14 DQ12 DQ9L DQ42 DQ39 DQ36 DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ36 DQ39 DQ42 DQ9R DQ12 DQ14 DQ16 DNU L L L L L L R R R R R R Notes: 4. Leaving this pin DNU disables VIM 5. Leave this ball unconnected for CYDD18S72V18, CYDD09S72V18 and CYDD04S72V18. 6. Leave this ball unconnected for CYDD09S72V18 and CYDD04S72V18 7. Leave this ball unconnected for CYDD04S72V18 Document #: 38-06072 Rev. *I Page 3 of 53 FullFlex FullFlex36 DDR 484-ball BGA Pinout (Top View)[8] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 A DNU DNU DNU DNU DNU DQ33 DQ30 DQ27 DQ24 DQ21 DQ18 DQ18 DQ21 DQ24 DQ27 DQ30 DQ33 DNU DNU DNU DNU DNU L L L L L L R R R R R R B DNU DNU DNU DNU DNU DQ34 DQ31 DQ28 DQ25 DQ22 DQ19 DQ19 DQ22 DQ25 DQ28 DQ31 DQ34 DNU DNU DNU DNU DNU L L L L L L R R R R R R DNU DNU VSS VSS DNU DQ35 DQ32 DQ29 DQ26 DQ23 DQ20 DQ20 DQ23 DQ26 DQ29 DQ32 DQ35 DNU L L L L L L R R R R R R VSS VSS DNU DNU DNU DNU VSS VSS VSS CQ1L CQ1L VDDI LOW PORT ZQ0L BUSY CNTI PORT DNU CQ1R CQ1R VSS OL SPDL STD0 [4] L NTL STD1 L L VSS VSS DNU DNU E DNU DNU VDDI VSS OL VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI DNU OL OR OR OR OR OL OL OL OL VSS VDDI DNU DNU OR F DNU DNU CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R DNU DNU OL OL OR OR OR RE RE RE RE OL OL OL OR OR C D A0L A1L RETL BE2L VDDI VDDI VREF VSS OL OL L VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE2R RETR A1R R OR OR A0R A2L A3L WRP BE3L VDDI VDDI VSS OL OL L VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE3R WRP OR OR R A3R A2R A4L A5L READ DNU VDDI VDDI VSS OL OL YL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI DNU READ A5R OR OR YR A4R A6L A7L VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI DNU ZQ1R A7R [4] RE OR A6R A8L A9L CL OEL VTTL VCO RE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER RE CR A9R A8R A10L A11L CL DNU VTTL VCO RE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL DNU RE CR A11R A10R A12L A13L ADSL DNU VDDI VCO OL RE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL DNU ADSR A13R A12R RE A14L A15L CNT/ BE1L VDDI VDDI VSS OL OL MSKL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE1R CNT/ A15R A14R OR OR MSK R R A16L A17L CNTE BE0L VDDI VDDI VSS OL OL NL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R OR OR NR T A18L DNU CNTR INTL VDDI VDDI VREF VSS OL OL L STL VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR DNU A18R R OR OR STR U DNU DNU R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR DNU DNU NL OL OL OR OR OR RE RE RE RE OL OL OL OR OR NR V DNU DNU VDDI VDDI DNU VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI VDDI DNU DNU OL OL OR OR OR OR OL OL OL OL OR OR OR G H J K L M N P DNU DNU VSS MRST VSS CQ0L CQ0L DNU PORT CNTI BUSY ZQ0R PORT LOW VDDI CQ0R CQ0R VSS [4] STD1 NTR R STD0 SPDR OR R R TDI TDO DNU DNU DNU DNU VSS TMS TCK DNU DNU W Y ZQ1L DNU VTTL VCO [4] RE VSS DNU DQ17 DQ14 DQ11 DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11 DQ14 DQ17 DNU L L L R R R AA DNU DNU DNU DNU DNU DQ16 DQ13 DQ10 DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10 DQ13 DQ16 DNU DNU DNU DNU DNU L L L R R R AB DNU DNU DNU DNU DNU DQ15 DQ12 DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12 DQ15 DNU DNU DNU DNU DNU L L R R Note: 8. Use this pinout only for device CYDD36S36V18 of the FullFlex36 family. Document #: 38-06072 Rev. *I Page 4 of 53 FullFlex FullFlex18 DDR 484-ball BGA Pinout (Top View)[9] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 A DNU DNU DNU DNU DNU DNU DNU DNU DQ15 DQ12 DQ9L DQ9R DQ12 DQ15 DNU DNU DNU DNU DNU DNU DNU DNU L L R R B DNU DNU DNU DNU DNU DNU DNU DNU DQ16 DQ13 DQ10 DQ10 DQ13 DQ16 DNU DNU DNU DNU DNU DNU DNU DNU L L L R R R DNU DNU VSS VSS DNU DNU DNU DNU DQ17 DQ14 DQ11 DQ11 DQ14 DQ17 DNU DNU DNU DNU L L L R R R VSS VSS DNU DNU DNU DNU VSS VSS VSS CQ1L CQ1L VDDI LOW PORT ZQ0L BUSY CNTI PORT DNU CQ1R CQ1R VSS OL SPDL STD0 [4] L NTL STD1 L L VSS VSS DNU DNU E DNU DNU VDDI VSS OL VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI DNU OL OR OR OR OR OL OL OL OL VSS VDDI DNU DNU OR F DNU DNU CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R DNU DNU OL OL OR OR OR RE RE RE RE OL OL OL OR OR C D A0L A1L RETL BE1L VDDI VDDI VREF VSS OL OL L VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE1R RETR A1R R OR OR A0R A2L A3L WRP DNU VDDI VDDI VSS OL OL L VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI DNU WRP OR OR R A3R A2R A4L A5L READ DNU VDDI VDDI VSS YL OL OL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI DNU READ A5R OR OR YR A4R A6L A7L VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI DNU ZQ1R A7R [4] RE OR A6R A8L A9L CL OEL VTTL VCO RE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER RE CR A9R A8R A10L A11L CL DNU VTTL VCO RE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL DNU RE CR A11R A10R A12L A13L ADSL DNU VDDI VCO OL RE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL DNU ADSR A13R A12R RE A14L A15L CNT/ DNU VDDI VDDI VSS OL OL MSKL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI DNU CNT/ A15R A14R OR OR MSK R R A16L A17L CNTE BE0L VDDI VDDI VSS OL OL NL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R OR OR NR T A18L A19L CNTR INTL VDDI VDDI VREF VSS STL OL OL L VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR A19R A18R R OR OR STR U DNU DNU R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR DNU DNU NL OL OL OR OR OR RE RE RE RE OL OL OL OR OR NR V DNU DNU VDDI VDDI DNU VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI VDDI DNU DNU OL OL OR OR OR OR OL OL OL OL OR OR OR G H J K L M N P DNU DNU VSS MRST VSS CQ0L CQ0L DNU PORT CNTI BUSY ZQ0R PORT LOW VDDI CQ0R CQ0R VSS [4] STD1 NTR STD0 SPDR OR R R R TDI TDO DNU DNU DNU DNU VSS TMS TCK DNU DNU W Y ZQ1L DNU VTTL VCO [4] RE VSS DNU DNU DNU DNU DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DNU DNU DNU DNU AA DNU DNU DNU DNU DNU DNU DNU DNU DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DNU DNU DNU DNU DNU DNU DNU DNU AB DNU DNU DNU DNU DNU DNU DNU DNU DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DNU DNU DNU DNU DNU DNU DNU DNU Note: 9. Use this pinout only for device CYDD36S18V18 of the FullFlex18 family. Document #: 38-06072 Rev. *I Page 5 of 53 FullFlex FullFlex36 DDR 256 Ball BGA (Top View) 1 2 3 4 5 6 7 8 A DQ32L DQ30L DQ28L DQ26L DQ24L DQ22L DQ20L DQ18L B DQ33L DQ31L DQ29L DQ27L DQ25L DQ23L DQ21L C DQ34L DQ35L RETL INTL CQ1L CQ1L D A0L A1L WRPL E A2L A3L CE0L CE1L VDDIOL VDDIOL VDDIOL VCORE F A4L A5L CNTINTL BE3L VDDIOL VDDIOL VSS G A6L A7L BUSYL BE2L ZQ0L[4] VSS H A8L A9L CL VTTL VCORE J A10L A11L CL PORTS VCORE TD1L K A12L A13L OEL BE1L L A14L A15L ADSL BE0L M A16L[11] A17L[10] R/WL N DNU DNU P DQ16L DQ17L R DQ15L DQ13L DQ11L T DQ14L DQ12L DQ10L 11 12 13 14 15 16 DQ18R DQ20R DQ22R DQ24R DQ26R DQ28R DQ30R DQ32R DQ19L DQ19R DQ21R DQ23R DQ25R DQ27R DQ29R DQ31R DQ33R DNU TRST MRST ZQ0R[4] CQ1R CQ1R INTR RETR DQ35R DQ34R VSS VTTL VTTL VSS LOWSP DR VDDIO R VREFR WRPR A1R A0R VCOR E VDDIO R VDDIO R VDDIO R CE1R CE0R A3R A2R VSS VSS VSS VSS VDDIO R BE3R CNTINT R A5R A4R VSS VSS VSS VSS VSS VDDIO R BE2R BUSYR A7R A6R VSS VSS VSS VSS VSS VSS VCORE VTTL CR A9R A8R VSS VSS VSS VSS VSS VSS VCORE PORTS TD1R CR A11R A10R VDDIOL VSS VSS VSS VSS VSS VSS VDDIO R BE1R OER A13R A12R VDDIOL VSS VSS VSS VSS VSS VDDIO R VDDIO R BE0R ADSR A15R A14R VCOR E VDDIO R VDDIO R VDDIO R CQENR R/WR ZQ1R[4] READY PORTS R TD0R VREFR CNT/MS KR VREFL VDDIOL LOWSP DL CQENL VDDIOL VDDIOL VDDIOL VCORE CNT/MS VREFL PORTS READY KL TD0L L CNTENL CNTRS TL 9 ZQ1L[4] VTTL VTTL 10 A17R[10] A16R[11] DNU CNTRS CNTENR DQ17R TR DNU CQ0L CQ0L TCK TMS TDO TDI CQ0R CQ0R DQ16R DQ9L DQ7L DQ5L DQ3L DQ1L DQ1R DQ3R DQ5R DQ7R DQ9R DQ11R DQ13R DQ15R DQ8L DQ6L DQ4L DQ2L DQ0L DQ0R DQ2R DQ4R DQ6R DQ8R DQ10R DQ12R DQ14R Notes: 10. Leave this ball unconnected for CYDD09S36V18 and CYDD04S36V18. 11. Leave this ball unconnected for CYDD04S36V18. Document #: 38-06072 Rev. *I Page 6 of 53 FullFlex FullFlex18 DDR 256 Ball BGA (Top View) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A DNU DNU DNU DQ17L DQ16L DQ13L DQ12L DQ9L DQ9R DQ12R DQ13R DQ16R DQ17R DNU DNU DNU B DNU DNU DNU DNU DQ15L DQ14L DQ11L DQ10L DQ10R DQ11R DQ14R DQ15R DNU DNU DNU DNU C DNU DNU RETL INTL CQ1L CQ1L DNU TRST MRST ZQ0R[4] CQ1R CQ1R INTR RETR DNU DNU D A0L A1L WRPL VSS VTTL VTTL VSS WRPR A1R A0R E A2L A3L CE0L CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CE1R CE0R A3R A2R F A4L A5L CNTINTL DNU VDDIOL VDDIOL VSS VSS VSS VSS VSS VDDIOR DNU CNTINTR A5R A4R G A6L A7L BUSYL DNU ZQ0L[4] VSS VSS VSS VSS VSS VSS VDDIOR DNU BUSYR A7R A6R H A8L A9L CL VTTL VCORE VSS VSS VSS VSS VSS VSS VCORE VTTL CR A9R A8R J A10L A11L CL PORTST VCORE D1L VSS VSS VSS VSS VSS VSS VCORE PORTST D1R CR A11R A10R K A12L A13L OEL BE1L VDDIOL VSS VSS VSS VSS VSS VSS VDDIOR BE1R OER A13R A12R L A14L A15L ADSL BE0L VDDIOL VSS VSS VSS VSS VSS VDDIOR VDDIOR BE0R ADSR A15R A14R M A16L A17L[13] R/WL R/WR A17R[13] A16R N A18L[12] DNU CNT/MS VREFL PORTST READYL ZQ1L[4] KL D0L VTTL VTTL DNU A18R[12] P DNU DNU CNTENL CNTRST L DNU DNU R DNU DNU DNU T DNU DNU DNU VREFL VDDIOL LOWSP DL LOWSP VDDIOR VREFR DR CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CQENR ZQ1R[4] READY PORTST VREFR CNT/MS R D0R KR CQ0L CQ0L TCK TMS TDO TDI CQ0R CQ0R CNTRST CNTENR R DNU DQ6L DQ5L DQ2L DQ1L DQ1R DQ2R DQ5R DQ6R DNU DNU DNU DNU DQ8L DQ7L DQ4L DQ3L DQ0L DQ0R DQ3R DQ4R DQ7R DQ8R DNU DNU DNU Table 1. Selection Guide -200 -167 Unit SDR fMAX[14] DDR fMAX[15] 250 200 MHz 200 167 MHz SDR Max. Access Time (Clock to Data) 2.64 3.3 ns DDR Max. Access Time (Clock to Data) 0.50 0.60 ns Typical Operating Current ICC 800[16] 700[16] mA Typical Standby Current for ISB3 (Both Ports CMOS Level) 210[16]] 210[16] mA Notes: 12. Leave this ball unconnected for CYDD09S18V18 and CYDD04S18V18. 13. Leave this ball unconnected for CYDD04S18V18. 14. SDR mode with two pipelined stages. 15. DDR mode with 2.5 pipelined stages. 16. For 18-Mbit x36x2 DDR commercial configuration only, please refer to the electrical characteristics section for complete information. Document #: 38-06072 Rev. *I Page 7 of 53 FullFlex Pin Definitions Left Port Right Port Description A[19:0]L A[19:0]R Address Inputs.[1] DQ[71:0]L DQ[71:0]R Data Bus Input/Output.[2] BE[7:0]L BE[7:0]R Byte Select Inputs.[3] Asserting these signals enables Read and Write operations to the corresponding bytes of the memory array. BUSYL BUSYR Port Busy Output. When there is an address match and both chip enables are active for both ports, an external BUSY signal is asserted on the fifth clock cycle from when the collision occurs. C/CL C/CR Clock Signal.[18] Maximum clock input rate is fMAX. Tie C to VSS when operating in SDR mode. CE0L CE0R Active LOW Chip Enable Input. CE1L CE1R Active HIGH Chip Enable Input. CQENL CQENR Echo Clock Enable Input. Assert HIGH to enable echo clocking on respective port. CQ0L CQ0R Echo Clock Signal Output for DQ[35:0] for FullFlex72 devices. Echo Clock Signal Output for DQ[17:0] for FullFlex36 devices. Echo Clock Signal Output for DQ[8:0] for FullFlex18 devices. CQ0L CQ0R Inverted Echo Clock Signal Output for DQ[35:0] for FullFlex72 devices. Inverted Echo Clock Signal Output for DQ[17:0] for FullFlex36 devices. Inverted Echo Clock Signal Output for DQ[8:0] for FullFlex18 devices. CQ1L CQ1R Echo Clock Signal Output for DQ[71:36] for FullFlex72 devices. Echo Clock Signal Output for DQ[35:18] for FullFlex36 devices. Echo Clock Signal Output for DQ[17:9] for FullFlex18 devices. CQ1L CQ1R Inverted Echo Clock Signal Output for DQ[71:36] for FullFlex72 devices. Inverted Echo Clock Signal Output for DQ[35:18] for FullFlex36 devices. Inverted Echo Clock Signal Output for DQ[17:9] forFullFlex18 devices. DDRONL[17] DDRONR[17] DDR Enable Input. Assert HIGH to enable DDR clocking on respective port. ZQ[1:0]L ZQ[1:0]R VIM Output Impedance Matching Input. To use, connect a calibrating resistor between ZQ and ground. The resistor must be five times larger than the intended line impedance driven by the dual-port. Assert HIGH or leave DNU to disable Variable Impedance Matching. OEL OER Output Enable Input. This asynchronous signal must be asserted LOW to enable the DQ data pins during Read operations. INTL INTR Mailbox Interrupt Flag Output. The mailbox permits communications between ports. The upper two memory locations can be used for message passing. INTL is asserted LOW when the right port writes to the mailbox location of the left port, and vice versa. An interrupt to a port is deasserted HIGH when it reads the contents of its mailbox. LowSPDL LowSPDR Port Low Speed Select Input. Assert this pin LOW to disable the DLL. For operation at less than 100 MHz, assert this pin LOW. PORTSTD[1:0]L PORTSTD[1:0]R Port Clock/Address/Control/Data/Echo Clock/I/O Standard Select Input. Assert these [19] [19] pins LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5V LVCMOS, and HIGH/HIGH for 1.8V LVCMOS, respectively. These pins must be driven by VTTL referenced levels. R/WL R/WR Read/Write Enable Input. Assert this pin LOW to Write to, or HIGH to Read from the dual-port memory array. READYL READYR Port DLL Ready Output. This signal will be asserted LOW when the DLL and Variable Impedance Matching circuits have completed calibration. This is a wired OR capable output. CNT/MSKL CNT/MSKR Port Counter/Mask Select Input. Counter control input. ADSL ADSR Port Counter Address Load Strobe Input. Counter control input. CNTENL CNTENR Port Counter Enable Input. Counter control input. Notes: 17. DDRONL and DDRONR needs to tie to the same voltage level for FullFlex36 and FullFlex18 Family. 18. C and C are complimentary for DDR operation. 19. PORTSTD[1:0]L and PORTSTD[1:0]R have internal pull-down resistors. Document #: 38-06072 Rev. *I Page 8 of 53 FullFlex Pin Definitions (continued) Left Port Right Port Description CNTRSTL CNTRSTR Port Counter Reset Input. Counter control input. CNTINTL CNTINTR Port Counter Interrupt Output. This pin is asserted LOW one cycle before the unmasked portion of the counter is incremented to all "1s". WRPL WRPR Port Counter Wrap Input. When the burst counter reaches the maximum count, on the next counter increment WRP can be set LOW to load the unmasked counter bits to 0 or set HIGH to load the counter with the value stored in the mirror register. RETL RETR Port Counter Retransmit Input. Assert this pin LOW to reload the initial address for repeated access to the same segment of memory. VREFL VREFR Port External HSTL I/O Reference Input. This pin is left DNU when HSTL is not used. VDDIOL VDDIOR Port Data I/O Power Supply. FTSELL FTSELR Port Flow-through Mode Select Input. Assert this pin LOW to select Flow-through mode. Assert this pin HIGH to select Pipelined mode. Selection for SDR only. MRST Master Reset Input. MRST is an asynchronous input signal and affects both ports. Asserting MRST LOW performs all of the reset functions as described in the text. A MRST operation is required at power-up. This pin must be driven by VDDIOL referenced levels. TMS JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5V LVCMOS. TDI JTAG Test Data Input. Data on the TDI input will be shifted serially into selected registers. Operation for LVTTL or 2.5V LVCMOS. TRST JTAG Reset Input. Operation for LVTTL or 2.5V LVCMOS. TCK JTAG Test Clock Input. Operation for LVTTL or 2.5V LVCMOS. TDO JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally three-stated except when captured data is shifted out of the JTAG TAP. Operation for LVTTL or 2.5V LVCMOS. VSS Ground Inputs. VCORE Device Core Power Supply. VTTL LVTTL Power Supply. Selectable I/O Standard Clocking The FullFlex device families also offer the option of choosing one of four port standards for the device. Each port can independently select standards from single-ended HSTL class I, single-ended LVTTL, 2.5V LVCMOS, or 1.8V LVCMOS. The selection of the standard is determined by the PORTSTD pins for each port. These pins must be connected to a VTTL power supply. This will determine the input clock, address, control, data, and Echo clock standard for each port as shown in Table 2. Please note that only 1.8V LVCMOS and HSTL are supported for 4-Mbit, 9-Mbit, 18-Mbit devices running at 250MHz SDR, and for 36-Mbit devices running at 200 MHz SDR. Separate clocks synchronize the operations on each port. Each port has two clock inputs C and C. In SDR mode only the C input clock is used and C should be tied to VSS. In this mode, all the transactions on the address, control, and data will be on the C rising edge. In DDR mode, both C and C will be used and these signals are complementary. In this mode, all transactions on the address and control, except for the byte enables, will occur on the C rising edge. Transactions on the data input, output, and byte enables will be on the C and C rising edges. Table 2. Port Standard Selection PORTSTD1 VSS VSS VTTL VTTL PORTSTD0 VSS VTTL VSS VTTL Document #: 38-06072 Rev. *I I/O Standard LVTTL HSTL 2.5V LVCMOS 1.8V LVCMOS Double Data Rate (DDR) In DDR mode with a x36 bus width, the input data is sampled on both edges of the input clock. During a write, on the rising edge of C, the first 36 bits (DQ[71:36]) will be latched into a register. On the rising edge of C, the next 36 bits (DQ[35:0]) will be latched into a register. During a read, the first 36 bits are driven out first on the rising edge of C. The next 36 bits will be driven out on the rising edge of C. The internal bus width of the FullFlex72 family is still x72. All counter operation is based upon the x72 word width. The DDR option is set on a per port basis by the configuration of the DDRON pin. Table 3 shows the data assignment for SDR and DDR configuration. The column on the right (Data Pin Name) shows the pins on which data is presented on the data lines. Page 9 of 53 FullFlex Table 3. Data Pin Assignment for SDR and DDR Configuration x72 SDR Mode x36 DDR Mode BE Pin Name for DDR BE Pin Name for SDR Data Pin Name Related Rising Edge Clock for Write Related Rising Edge Clock for Read Data Pin Name BE[3] BE[7] DQ[71] C C DQ[35] BE[3] BE[3] DQ[35] C C BE[3] BE[7] DQ[70] C C BE[3] BE[3] DQ[34] C C BE[3] BE[7] DQ[69] C C BE[3] BE[3] DQ[33] C C BE[3] BE[7] DQ[68] C C BE[3] BE[3] DQ[32] C C BE[3] BE[7] DQ[67] C C BE[3] BE[3] DQ[31] C C BE[3] BE[7] DQ[66] C C BE[3] BE[3] DQ[30] C C BE[3] BE[7] DQ[65] C C BE[3] BE[3] DQ[29] C C BE[3] BE[7] DQ[64] C C BE[3] BE[3] DQ[28] C C BE[3] BE[7] DQ[63] C C BE[3] BE[3] DQ[27] C C BE[2] BE[6] DQ[62] C C BE[2] BE[2] DQ[26] C C BE[2] BE[6] DQ[61] C C BE[2] BE[2] DQ[25] C C BE[2] BE[6] DQ[60] C C BE[2] BE[2] DQ[24] C C BE[2] BE[6] DQ[59] C C BE[2] BE[2] DQ[23] C C BE[2] BE[6] DQ[58] C C BE[2] BE[2] DQ[22] C C BE[2] BE[6] DQ[57] C C BE[2] BE[2] DQ[21] C C BE[2] BE[6] DQ[56] C C BE[2] BE[2] DQ[20] C C BE[2] BE[6] DQ[55] C C BE[2] BE[2] DQ[19] C C BE[2] BE[6] DQ[54] C C BE[2] BE[2] DQ[18] C C BE[1] BE[5] DQ[53] C C BE[1] BE[1] DQ[17] C C BE[1] BE[5] DQ[52] C C BE[1] BE[1] DQ[16] C C Document #: 38-06072 Rev. *I DQ[34] DQ[33] DQ[32] DQ[31] DQ[30] DQ[29] DQ[28] DQ[27] DQ[26] DQ[25] DQ[24] DQ[23] DQ[22] DQ[21] DQ[20] DQ[19] DQ[18] DQ[17] DQ[16] Page 10 of 53 FullFlex Table 3. Data Pin Assignment for SDR and DDR Configuration (continued) x72 SDR Mode BE Pin Name for DDR BE Pin Name for SDR BE[1] x36 DDR Mode Data Pin Name Related Rising Edge Clock for Write Related Rising Edge Clock for Read Data Pin Name BE[5] DQ[51] C C DQ[15] BE[1] BE[1] DQ[15] C C BE[1] BE[5] DQ[50] C C BE[1] BE[1] DQ[14] C C BE[1] BE[5] DQ[49] C C BE[1] BE[1] DQ[13] C C BE[1] BE[5] DQ[48] C C BE[1] BE[1] DQ[12] C C BE[1] BE[5] DQ[47] C C BE[1] BE[1] DQ[11] C C BE[1] BE[5] DQ[46] C C BE[1] BE[1] DQ[10] C C BE[1] BE[5] DQ[45] C C BE[1] BE[1] DQ[9] C C BE[0] BE[4] DQ[44] C C BE[0] BE[0] DQ[8] C C BE[0] BE[4] DQ[43] C C BE[0] BE[0] DQ[7] C C BE[0] BE[4] DQ[42] C C BE[0] BE[0] DQ[6] C C BE[0] BE[4] DQ[41] C C BE[0] BE[0] DQ[5] C C BE[0] BE[4] DQ[40] C C BE[0] BE[0] DQ[4] C C BE[0] BE[4] DQ[39] C C BE[0] BE[0] DQ[3] C C BE[0] BE[4] DQ[38] C C BE[0] BE[0] DQ[2] C C BE[0] BE[4] DQ[37] C C BE[0] BE[0] DQ[1] C C BE[0] BE[4] DQ[36] C C BE[0] BE[0] DQ[0] C C DQ[14] DQ[13] DQ[12] DQ[11] DQ[10] DQ[9] DQ[8] DQ[7] DQ[6] DQ[5] DQ[4] DQ[3] DQ[2] DQ[1] DQ[0] Selectable Pipelined/Flow-through Mode DLL To meet data rate and throughput requirements, the FullFlex families offer selectable pipelined or flow-through mode. Flow-through mode is only supported in the FullFlex72 devices when the port is configured in SDR mode. Echo clocks are not supported in flow-through mode and the DLL must be disabled. The FullFlex families of devices have an on-chip DLL. Enabling the DLL reduces the clock to data valid (tCD) time allowing more setup time for the receiving device. For operation at or below 100 MHz, the DLL must be disabled. This is selectable by strapping LowSPD LOW. Flow-through mode is selected by the FTSEL pin. Strapping this pin HIGH selects pipelined mode. Strapping this pin LOW selects flow-through mode. Document #: 38-06072 Rev. *I Whenever the operating frequency is altered beyond the Clock Input Cycle to Cycle Jitter spec, the DLL is required to be reset followed by 1024 clocks before any valid operation. LowSPD pins can be used to reset the DLL(s) for a single port independent of all other circuitry. MRST can be used to reset Page 11 of 53 FullFlex all DLLs on the chip, for information on DLL lock and reset time, please see the Master Reset section below. Echo Clocking As the speed of data increases, on-board delays caused by parasitics make providing accurate clock trees extremely difficult. To counter this problem, the FullFlex families incorporate Echo Clocks. Echo Clocks are enabled on a per port basis. The dual-port receives input clocks (C and C for DDR mode, C for SDR mode) that are used to clock in the address and control signals for a read operation. The dual-port retransmits the input clocks relative to the data output. The buffered clocks are provided on the CQ1, CQ1, CQ0, and CQ0 outputs. Each port has two pairs of Echo clocks. Each clock is associated with half the data bits. The output clock will match the corresponding ports I/O configuration. To enable Echo clock outputs, tie CQEN HIGH. To disable Echo clock outputs, tie CQEN LOW. Input Clock Deterministic Access Control Deterministic Access Control is provided for ease of design. The circuitry detects when both ports are accessing the same location and provides an external BUSY flag to the port on which data may be corrupted. The collision detection logic saves the address in conflict (Busy Address) to a readable register. In the case of multiple collisions, the first Busy address will be written to the Busy Address register. If both ports are accessing the same location at the same time and only one port is doing a write, if tCCS is met, then the data being written to and read from the address is valid data. For example, if the right port is reading and the left port is writing and the left ports clock meets tCCS, then the data being read from the address by the right port will be the old data. In the same case, if the right ports clock meets tCCS, then the data being read out of the address from the right port will be the new data. In the above case, if tCCS is violated by the either ports clock with respect to the other port and the right port gets the external BUSY flag, the data from the right port is corrupted. Table 4 shows the tCCS timing that must be met to guarantee the data. Table 5 shows that in the case of the left port writing and the right port reading, when an external BUSY flag is asserted on the right port, the data read out of the device will not be guaranteed. Data Out Echo Clock Echo Clock Figure 2. SDR Echo Clock Delay Input Clock Input Clock Data Out Echo Clock Echo Clock Figure 3. DDR Echo Clock Delay Document #: 38-06072 Rev. *I The value in the busy address register can be read back to the address lines. The required input control signals for this function are shown in Table 8. The value in the busy address register will be read out to the address lines tCA after the same amount of latency as a data read operation in SDR mode. In DDR mode, the address latency is only 2 cycles instead of 2.5 which is the data latency. After an initial address match, the address under contention is saved in the busy address register. All following address matches cause the BUSY flag to be generated, however, none of the addresses are saved into the busy address register. Once a busy readback is performed, the address of the first match which happens at least two clock cycles after the busy readback is saved into the busy address register. Page 12 of 53 FullFlex Table 4. tCCS Timing for All Operating Modes Port A - Early Arriving Port Port B - Late Arriving Port Mode Active Edge SDR SDR tCCS C/C Rise to Opposite C/C Rise Set-up Time Mode Active Edge Unit C SDR C tCYC(min) - 0.5 ns C DDR C tCYC(min) - 0.5 ns DDR C SDR C 0.55 * tCYC + tCYC(min) - 1 ns DDR C DDR C 0.55 * tCYC + tCYC(min) - 1 ns for Non-corrupt Data Table 5. Deterministic Access Control Winning Port Left Port Read Write Read Write Right Port Read Read Clock Timing Left Clock Right Clock X X >tCCS 0 0 >tCCS Write Write tCCS 0 tCCS 0 0 -tCCS & tCCS 0 >tCCS Variable Impedance Matching (VIM) Each port contains a Variable Impedance Matching circuit to set the impedance of the I/O driver to match the impedance of the on-board traces. The impedance is set for all outputs except JTAG and is done on a per port basis. To take advantage of the VIM feature, connect a calibrating resistor (RQ) that is five times the value of the intended line impedance from the ZQ pin to VSS. The output impedance is then adjusted to account for drifts in supply voltage and temperature every 1024 clock cycles. If a port's clock is suspended, the VIM circuit will retain its last setting until the clock is restarted. On restart, it will then resume periodic adjustment. In the case of a significant change in device temperature or supply voltage, recalibration will happen every 1024 clock cycles. A Master Reset will initialize the VIM circuitry. Table 6 shows the VIM parameters and Table 7 describes the VIM operation modes. In order to disable VIM, the ZQ pin must be connected to VDDIO of the relative supply for the I/Os before a Master Reset. BUSYL H H H BUSYR H H H H H H H H H H L H L L L H H L H L H H H H H H L H L Description No Collision Read OLD Data Read NEW Data Read OLD Data Data Not Guaranteed Read NEW Data Data Not Guaranteed Read NEW Data Read OLD Data Read NEW Data Data Not Guaranteed Read OLD Data Data Not Guaranteed Array Data Corrupted Array Stores Right Port Data Array Stores Left Port Data Table 6. Variable Impedance Matching Parameters Parameter Min. Max. Unit Tolerance RQ Value 100 275 2% Output Impedance 20 55 15% Reset Time N/A 1024 Cycles N/A Update Time N/A 1024 Cycles N/A Table 7. Variable Impedance Matching Operation RQ Connection Output Configuration 100-275 to VSS Output Driver Impedance = RQ/5 15% at Vout = VDDIO/2 ZQ to VDDIO VIM Disabled. Rout < 20 at Vout = VDDIO/2 Address Counter and Mask Register Operations[1] Each port of the FullFlex families contains a programmable burst address counter. The burst counter contains four registers: a counter register, a mask register, a mirror register, and a busy address register. The counter register contains the address used to access the RAM array. It is changed only by the master reset (MRST), Counter Reset, Counter Load, Retransmit, and Counter Increment operations. Document #: 38-06072 Rev. *I Page 13 of 53 FullFlex Counter Load Operation[1] The mask register value affects the Counter Increment and Counter Reset operations by preventing the corresponding bits of the counter register from changing. It also affects the counter interrupt output (CNTINT). The mask register is only changed by Mask Reset, Mask Load, and MRST. The Mask Load operation loads the value of the address bus into the mask register. The mask register defines the counting range of the counter register. The mask register is divided into two or three consecutive regions. Zero or more "0s" define the masked region and one or more "1s" define the unmasked portion of the counter register. The counter register may only be divided into up to three regions. The region containing the least significant bits must be no more than two "0s". Bits one and zero may be "10" respectively, masking the least significant counter bit and causing the counter to increment by two instead of one. If bits one and zero are "00", the two least significant bits are masked and the counter will increment by four instead of one. For example, in the case of a 256Kx72 configuration, a mask register value of 003FC divides the mask register into three regions. With bit 0 being the least significant bit and bit 17 being the most significant bit, the two least significant bits are masked, the next eight bits are unmasked, and the remaining bits are masked. The address counter and mirror registers are both loaded with the address value presented on the address lines. This value ranges from 0 to FFFFF. Mask Load Operation[1] The mask register is loaded with the address value presented on the address bus. This value ranges from 0 to FFFFF though not all values permit correct increment operations. Permitted values are in the form of 2n-1, 2n-2, or 2n-4. The counter register can only be segmented in up to three regions. From the most significant bit to the least significant bit, permitted values have zero or more "0s", one or more "1s", and the least significant two bits can be "11", "10", or "00". Thus FFFFE, 7FFFF, and 03FFC are permitted values but 2FFFF, 03FFA, and 7FFE4 are not. Counter Readback Operation The internal value of the counter register can be read out on the address lines. The address will be valid tCA after the selected number of latency cycles configured by FTSEL. This is the same as data in SDR mode and one half cycle earlier than data latency for DDR mode. The data bus (DQ) is tri-stated on the cycle that the address is presented on the address lines. Figure 4 shows a block diagram of the logic. The mirror register is used to reload the counter register on retransmit operations (see "retransmit" below) and wrap functions (see "counter increment" below). The last value loaded into the counter register is stored in the mirror register. The mirror register is only changed by master reset (MRST), Counter Reset, and Counter Load. Mask Readback Operation The internal value of the mask register can be read out on the address lines. The address will be valid tCA after the selected number of latency cycles configured by FTSEL. For pipelined SDR and DDR mode this is two cycles. The data bus (DQ) is tri-stated on the cycle that the address is presented on the address lines. Figure 4 shows a block diagram of the operation. Table 8 summarizes the operations of these registers and the required input control signals. All signals except MRST are synchronized to the ports clock. Table 8. Burst Counter and Mask Register Control Operation (Any Port) [20,21] C X MRST CNTRST CNT/MSK CNTEN ADS RET Operation Description L X X X X X Master Reset Reset address counter to all 0s, mask register to all 1s, and busy address to all 0's. H L H X X X Counter Reset Reset counter and mirror unmasked portion to all 0s. H L L X X X Mask Reset Reset mask register to all 1s. H H H L L X Counter Load Load burst counter and mirror with external address value presented on address lines. H H L L L X Mask Load Load mask register with value presented on the address lines. H H H L H L Retransmit Load counter with value in the mirror register H H H L H H Counter Increment Internally increment address counter value. H H H H H H Counter Hold Constantly hold the address value for multiple clock cycles. H H H H L H Counter Readback Read out counter internal value on address lines. H H L H L H Mask Readback Read out mask register value on address lines. Notes: 20. X" = "Don't Care", "H" = HIGH, "L" = LOW. 21. Counter operation and mask register operation is independent of chip enables. Document #: 38-06072 Rev. *I Page 14 of 53 FullFlex Table 8. Burst Counter and Mask Register Control Operation (Any Port) (continued)[20,21] C MRST CNTRST CNT/MSK CNTEN ADS RET Operation H H L H H L Busy Address Readback H H L L H X Reserved H H L H L L Reserved H H L H H H Reserved H H H H L L Reserved H H H H H L Reserved Counter Reset Operation All unmasked bits of the counter are reset to "0". All masked bits remain unchanged. The new burst counter value is loaded into the mirror registers. A mask reset followed by a counter reset will reset the counter and mirror registers to 00000. Mask Reset Operation The mask register is reset to all "1s", which unmasks every bit of the burst counter. Increment Operation[1] Once the address counter is initially loaded with an external address, the counter can internally increment the address value and address the entire memory array. Only the unmasked bits of the counter register are incremented. In order for a counter bit to change, the corresponding bit in the mask register must be "1". If the two least significant bits of the mask register are "11", the burst counter will increment by one. If the two least significant bits are "10", the burst counter will increment by two, and if they are "00", the burst counter will increment by four. If all unmasked counter bits are incremented to "1" and WRP is deasserted, the next increment will wrap the counter back to the initially loaded value. The cycle before the increment that results in all unmasked counter bits to become "1s", a counter interrupt flag (CNTINT) is asserted if the counter is incremented again. This increment will cause the counter to reach its maximum value and the next increment will return the counter register to its initial value that was stored in the mirror register if WRP is deasserted. If WRP is asserted, the unmasked portion of the counter is filled with "0" instead. The example shown in Figure 5 shows an example of the CYDD36S18V18 device with the mask register loaded with a mask value of 0007F unmasking the seven least significant bits. Setting the mask register to this value allows the counter to access the entire memory space. The address counter is then loaded with an initial value of 00005 assuming WRP is deasserted. The base address bits (in this case, the seventh address through the twentieth address) do not increment once the counter is configured for increment operation. The counter address will start at address 00005 and will increment its internal address value until it reaches the mask register value of 0007F. The counter wraps around the memory block to location 00005 at the next count. CNTINT is issued when the counter reaches the maximum -1 count. Hold Operation Description Read out first busy address after last busy address readback operation is useful in applications where wait states are needed, or when address is available a few cycles ahead of data in a shared bus interface. Retransmit Retransmit allows repeated access to the same block of memory without the need to reload the initial address. An internal mirror register stores the address counter value last loaded. While RET is asserted low, the counter will continue to wrap back to the value in the mirror register independent of the state of WRP. Counter Interrupt The counter interrupt (CNTINT) is asserted LOW one clock cycle before an increment operation that results in the unmasked portion of the counter register being all "1s". It is deasserted by counter reset, counter load, mask reset, mask load, counter increment, re-transmit, and MRST. Counting by Two When the two least significant bits of the mask register are "10," the counter increments by two. Counting by Four When the two least significant bits of the mask register are "00," the counter increments by four. Mailbox Interrupts The upper two memory locations can be used for message passing and permit communications between ports. Table 9 shows the interrupt operation for both ports. The highest memory location is the mailbox for the right port and the maximum address-1 is the mailbox for the left port. When one port Writes to the other ports mailbox, the INT flag of the port that the mailbox belongs to is asserted LOW. The INT flag remains asserted until the mailbox location is read by the other port. When a port reads it's mailbox, the INT flag is deasserted HIGH after one cycle of latency with respect to the input clock of the port to which the mailbox belongs and is independent of OE. Table 9 shows that in order to set the INTR flag, a Write operation by the left port to address FFFFF will assert INTR LOW. A valid Read of the FFFFF location by the right port will reset INTR HIGH after one cycle of latency with respect to the The value of all three registers can be constantly maintained unchanged for an unlimited number of clock cycles. Such Document #: 38-06072 Rev. *I Page 15 of 53 FullFlex right port's clock. At least one byte enable has to be activated to set or reset the mailbox interrupt. CNT/MSK CNTEN Decode Logic A CNTRST RET MRST A Mask Register Counter/ Address Register Address Decode RAM Array C From Address Lines Load / Increment 19 Mirror From Mask Register Increment Logic Wrap 19 From Mask From Counter 19 To Readback and Address Decode 0 0 19 Counter 1 1 19 19 +1 +2 +4 Bit 0 and 1 Wrap Detect 1 Wrap 0 1 19 To Counter 0 Figure 4. Counter, Mask, and Mirror Logic Block Diagram[1] Document #: 38-06072 Rev. *I Page 16 of 53 FullFlex CNTINT Example: Load Counter-Mask H Register = 00007F 0 0 0s 219 218 0 1 1 1 H X X Xs 219 218 Max Address Value L H 1 1 Unmasked Address X 0 0 0 0 1 0 X X Xs X 1 1 1 1 Mask Register LSB 1 6 5 4 3 2 1 0 27 2 2 2 2 2 2 2 219 218 Max + 1 Address Value 1 6 5 4 3 2 1 0 27 2 2 2 2 2 2 2 Masked Address Load Address Counter = 000005 1 1 1 1 Address Counter LSB 6 5 4 3 2 1 0 27 2 2 2 2 2 2 2 X X Xs X 0 0 0 0 1 0 1 219 218 6 5 4 3 2 1 0 27 2 2 2 2 2 2 2 Figure 5. Programmable Counter-Mask Register Operation with WRP deasserted[1,25] Table 9. Interrupt Operation Example [1, 20, 22, 23, 24] Left Port Function R/WL Right Port CEL A0L-19L INTL R/WR CER A0R-19R INTR Set Right INTR Flag L L Max. Address X X X X L Reset Right INTR Flag X X X X H L Max. Address H Set Left INTL Flag X X X L L L Max. Address-1 X Reset Left INTL Flag H L Max. Address-1 H X X X X Master Reset The FullFlex family of dual-ports undergo a complete reset when MRST is asserted. MRST must be driven by VDDIOL referenced levels. The MRST can be asserted asynchronously to the clocks and must remain asserted for at least tRS. Once asserted MRST deasserts READY, initializes the internal burst counters, internal mirror registers, and internal Busy Addresses to zero, and initializes the internal mask register to all "1s". All mailbox interrupts (INT), Busy Address Outputs (BUSY), and burst counter interrupts (CNTINT) are deasserted upon master reset. Additionally, MRST must not be released until all power supplies including VREF are fully ramped, all port clocks and mode select inputs (LOWSPD, ZQ, CQEN, DDRON, FTSEL, and PORTSTD) are valid and stable. This begins calibration of the DLL and VIM circuits. READY will be asserted within 1024 clock cycles. READY is a wired OR capable output with a strong pull-up and weak pull-down. Up to four outputs may be connected together. For faster pull-down of the signal, connect a 250- resistor to VSS. If the DLL and VIM circuits are disabled for a port, the port will be operational within five clock cycles. However, the READY will be asserted within 160 clock cycles. IEEE 1149.1 Serial Boundary Scan (JTAG) The FullFlex families incorporate an IEEE 1149.1 serial boundary scan test access port (TAP). The TAP operates using JEDEC-standard 3.3V or 2.5V I/O logic levels depending on the VTTL power supply. It is composed of four input connections and one output connection required by the test logic defined by the standard. Notes: 22. CE is internal signal. CE = LOW if CE0 = LOW and CE1 = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the C and can be deasserted after that. Data will be out after the following C edge and will be tri-stated after the next C edge. 23. OE is "Don't Care" for mailbox operation. 24. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW. 25. The "X" in this diagram represents the counter's upper bits. Document #: 38-06072 Rev. *I Page 17 of 53 FullFlex Table 10.JTAG IDCODE Register Definitions Part Number Table 11.Scan Registers Sizes Configuration Value CYDD36S36V18 512Kx72 0C041069h Instruction Register Name Bit Size CYDD36S18V18 1024Kx36 0C042069h Bypass 1 CYDD18S72V18 256Kx72 0C043069h Identification 32 CYDD18S36V18 256Kx72 0C044069h Boundary Scan CYDD18S18V18 512Kx36 0C045069h CYDD09S72V18 128Kx72 0C046069h CYDD09S36V18 128Kx72 0C047069h CYDD09S18V18 256Kx36 0C048069h CYDD04S72V18 64Kx72 0C049069h CYDD04S36V18 64Kx72 0C04A069h CYDD04S18V18 128Kx36 0C04B069h 4 n[26] Table 12.Instruction Identification Codes Instruction Code Description EXTEST 0000 Captures the Input/Output ring contents. Places the BSR between the TDI and TDO. BYPASS 1111 Places the BYR between TDI and TDO. IDCODE 1011 Loads the IDR with the vendor ID code and places the register between TDI and TDO. HIGHZ 0111 Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers to a High-Z state. CLAMP 0100 Controls boundary to 1/0. Places BYR between TDI and TDO. SAMPLE/PRELOAD 1000 Captures the input/output ring contents. Places BSR between TDI and TDO. RESERVED All other codes Other combinations are reserved. Do not use other than the above. Note: 26. Details of the boundary scan length can be found in the BSDL file for the device. Document #: 38-06072 Rev. *I Page 18 of 53 FullFlex Maximum Ratings Operating Range (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ................................ -65C to + 150C Range Ambient Temperature VCORE Commercial 0C to +70C 1.8V 100 mV 1.5V 80 mV Industrial -40C to +85C 1.8V 100 mV 1.5V 80 mV Ambient Temperature with Power Applied............................................ -55C to + 125C Supply Voltage to Ground Potential .............. -0.5V to + 4.1V DC Voltage Applied to Outputs in High-Z State.......................-0.5V to VDDIO + 0.5V Power Supply Requirements Min. Typ. Max. DC Input Voltage.................................-0.5V to VDDIO + 0.5V LVTTL VDDIO 3.0V 3.3V 3.6V Output Current into Outputs (LOW) ............................ 20 mA 2.5V LVCMOS VDDIO 2.3V 2.5V 2.7V Static Discharge Voltage ...........................................> 2200V HSTL VDDIO 1.4V 1.5V 1.9V (JEDEC JESD8-6, JESD8-B) 1.8V LVCMOS VDDIO 1.7V 1.8V 1.9V Latch-up Current .....................................................> 200 mA 3.3V VTTL 3.0V 3.3V 3.6V 2.5V VTTL 2.3V 2.5V 2.7V HSTL VREF 0.68V 0.75V 0.95V Electrical Characteristics Over the Operating Range All Speed Bins[27] Parameter VOH Configuration Min. Output HIGH Voltage (VDDIO = Min., IOH = -8 mA) Description LVTTL 2.4[28] V (VDDIO = Min., IOH = -4 mA) HSTL(DC)[29] VDDIO - 0.4[28] V (VDDIO= Min., IOH = -4 mA) HSTL(AC)[29] 0.5[28] V (VDDIO = Min., IOH = -6 mA) 2.5V LVCMOS (VDDIO = Min., IOH = -4 mA) VOL VIL Max. 1.7[28] VDDIO - Unit V 0.45[28] V Output HIGH Voltage (VDDIO = Min., IOL = 8 mA) LVTTL 0.4[28] V (VDDIO = Min., IOL = 4 mA) HSTL(DC)[29] 0.4[28] V (VDDIO = Min., IOL = 4 mA) HSTL(AC)[29] 0.5[28] V (VDDIO = Min., IOL = 6 mA) 2.5V LVCMOS 0.7[28] V (VDDIO = Min., IOL = 4 mA) VIH 1.8V LVCMOS VDDIO - Typ. Input HIGH Voltage Input LOW Voltage [28] 1.8V LVCMOS 0.45 V LVTTL 2 VDDIO + 0.3 V HSTL(DC)[29] VREF + 0.1 VDDIO + 0.3 V 2.5V LVCMOS 1.7 1.8V LVCMOS 1.26 LVTTL -0.3 0.8 V -0.3 VREF - 0.1 V HSTL(DC) [29] V V 2.5V LVCMOS 0.7 V 1.8V LVCMOS 0.36 V Notes: 27. LVTTL and 2.5V LVCMOS are not available for 4-Mbit, 9-Mbit, 18-Mbit devices running at 250 MHz SDR and 36-Mbit devices running at 200 MHz SDR. 28. These parameters are met with VIM disabled. 29. The (DC) specifications are measured under steady state conditions. The (AC) specifications are measured while switching at speed. AC VIH/VIL in HSTL mode are measured with 1V/ns input edge rates Document #: 38-06072 Rev. *I Page 19 of 53 FullFlex Electrical Characteristics Over the Operating Range (continued) READY VOH READY VOL Output HIGH Voltage (VDDIO = Min., IOH = -24 mA) LVTTL 2.7[28] V (VDDIO = Min., IOH = -12 mA) HSTL(DC)[29] VDDIO - 0.4[28] V (VDDIO = Min., IOH = -12 mA) HSTL(AC)[29] VDDIO - 0.5[28] V (VDDIO = Min., IOH = -15 mA) 2.5V LVCMOS (VDDIO = Min., IOH = -12 mA) 1.8V LVCMOS [28] 2.0 V VDDIO - 0.45[28] V 0.4 [28] V Output HIGH Voltage (VDDIO = Min., IOL = 0.12 mA) LVTTL (VDDIO = Min., IOL = 0.12 mA) HSTL(DC)[29] 0.4[28] V (VDDIO = Min., IOL = 0.12 mA) HSTL(AC)[29] 0.5[28] V [28] V (VDDIO = Min., IOL = 0.15 mA) 2.5V LVCMOS 0.7 (VDDIO = Min., IOL = 0.08 mA) 1.8V LVCMOS 0.45[28] V IOZ Output Leakage Current -10 10 A IIX1 Input Leakage Current -10 10 A IIX2 Input Leakage Current TDI, TMS, MRST, TRST, TCK -300 10 A IIX3 Input Leakage Current PORTSTD, DDRON -10 300 A Document #: 38-06072 Rev. *I Page 20 of 53 FullFlex Electrical Characteristics Over the Operating Range -200[27] Parameter ICC Description Operating Current (VCORE = Max.,IOUT = 0 mA) Outputs Disabled -167[27] -133 Configuration Typ. Max. Typ. Max. Typ. Max. Unit 512Kx72 SDR[30] Com. N/A N/A 1440 1800 1280 1620 mA Ind. N/A N/A N/A N/A 1330 1730 mA 512Kx36x2 Com. DDR Ind. N/A N/A 1280 1620 1120 1430 mA N/A N/A N/A N/A 1170 1550 mA 1024Kx18x2 Com. DDR Ind. N/A N/A 1050 1350 930 1220 mA N/A N/A N/A N/A 980 1330 mA Com. 930 1140 800 980 N/A N/A mA Ind. N/A N/A 820 1030 N/A N/A mA 256Kx36x2 Com. DDR Ind. 800 980 700 880 N/A N/A mA N/A N/A 730 930 N/A N/A mA 512Kx18x2 Com. DDR Ind. 640 800 570 720 N/A N/A mA N/A N/A 590 780 N/A N/A mA Com. 770 930 640 790 N/A N/A mA Ind. N/A N/A 660 830 N/A N/A mA 128Kx36x2 Com. DDR Ind. 640 790 560 700 N/A N/A mA N/A N/A 580 740 N/A N/A mA 256Kx18x2 Com. DDR Ind. 540 640 470 570 N/A N/A mA N/A N/A 490 600 N/A N/A mA 256Kx72 SDR[30] 128Kx72 SDR[30] 64Kx72 SDR[30] Com. 740 880 620 740 N/A N/A mA Ind. N/A N/A 630 770 N/A N/A mA 64Kx36x2 DDR Com. 620 740 540 650 N/A N/A mA Ind. 128Kx18x2 Com. DDR Ind. N/A N/A 550 680 N/A N/A mA 510 590 450 520 N/A N/A mA N/A N/A 460 530 N/A N/A mA Note: 30. Use this number if any one of the two ports is operating in SDR mode. Document #: 38-06072 Rev. *I Page 21 of 53 FullFlex Electrical Characteristics Over the Operating Range (continued) -200[27] Parameter ISB1 Description Standby Current (Both Ports TTL Level) CEL and CER VIH, f = fMAX -133 Configuration Typ. Max. Typ. Max. Typ. Max. Unit 512Kx72 SDR[30] Com. N/A N/A 1000 1250 920 1160 mA Ind. N/A N/A N/A N/A 970 1260 mA 512Kx36x2 Com. DDR Ind. N/A N/A 920 1160 830 1060 mA N/A N/A N/A N/A 880 1170 mA 1024Kx18x2 Com. DDR Ind. N/A N/A 820 1050 740 960 mA N/A N/A N/A N/A 790 1080 mA Com. 570 700 500 630 N/A N/A mA Ind. N/A N/A 530 680 N/A N/A mA 256Kx36x2 Com. DDR Ind. 500 630 460 580 N/A N/A mA N/A N/A 490 630 N/A N/A mA 512Kx18x2 Com. DDR Ind. 460 570 410 530 N/A N/A mA N/A N/A 440 580 N/A N/A mA Com. 460 560 400 490 N/A N/A mA Ind. N/A N/A 420 540 N/A N/A mA 128Kx36x2 Com. DDR Ind. 400 490 360 450 N/A N/A mA N/A N/A 380 490 N/A N/A mA 256Kx18x2 Com. DDR Ind. 380 440 340 400 N/A N/A mA N/A N/A 360 430 N/A N/A mA 256Kx72 SDR[30] 128Kx72 SDR[30] 64Kx72 SDR[30] Com. 440 520 380 450 N/A N/A mA Ind. N/A N/A 390 480 N/A N/A mA 64Kx36x2 DDR Com. 380 450 340 400 N/A N/A mA Ind. 128Kx18x2 Com. DDR Ind. Document #: 38-06072 Rev. *I -167[27] N/A N/A 350 430 N/A N/A mA 360 400 320 360 N/A N/A mA N/A N/A 330 370 N/A N/A mA Page 22 of 53 FullFlex Electrical Characteristics Over the Operating Range (continued) -200[27] Parameter ISB2 Description Standby Current (One Port TTL or CMOS Level) CEL | CER VIH, f = fMAX -133 Configuration Typ. Max. Typ. Max. Typ. Max. Unit 512Kx72 SDR[30] Com. N/A N/A 1300 1570 1160 1410 mA Ind. N/A N/A N/A N/A 1210 1520 mA 512Kx36x2 Com. DDR Ind. N/A N/A 1160 1410 1020 1260 mA N/A N/A N/A N/A 1070 1370 mA 1024Kx18x2 Com. DDR Ind. N/A N/A 980 1210 870 1100 mA N/A N/A N/A N/A 920 1210 mA Com. 760 890 650 790 N/A N/A mA Ind. N/A N/A 680 840 N/A N/A mA 256Kx36x2 Com. DDR Ind. 650 790 580 710 N/A N/A mA N/A N/A 610 760 N/A N/A mA 512Kx18x2 Com. DDR Ind. 550 670 490 610 N/A N/A mA N/A N/A 520 670 N/A N/A mA Com. 620 730 520 630 N/A N/A mA Ind. N/A N/A 550 670 N/A N/A mA 128Kx36x2 Com. DDR Ind. 520 630 460 560 N/A N/A mA N/A N/A 480 610 N/A N/A mA 256Kx18x2 Com. DDR Ind. 460 530 400 470 N/A N/A mA N/A N/A 430 500 N/A N/A mA 256Kx72 SDR[30] 128Kx72 SDR[30] 64Kx72 SDR[30] Com. 590 680 500 580 N/A N/A mA Ind. N/A N/A 510 610 N/A N/A mA 64Kx36x2 DDR Com. 500 580 440 510 N/A N/A mA Ind. 128Kx18x2 Com. DDR Ind. Document #: 38-06072 Rev. *I -167[27] N/A N/A 450 550 N/A N/A mA 440 480 380 420 N/A N/A mA N/A N/A 390 440 N/A N/A mA Page 23 of 53 FullFlex Electrical Characteristics Over the Operating Range (continued) All Speed Bins[27] Parameter ISB3 Description Standby Current (Both Ports CMOS Level) CEL and CER VCORE - 0.2V, f=0 Typ. Max. Unit 512Kx72 SDR[30] Configuration Com. 410 590 mA Ind. 460 700 mA 512Kx36x2 DDR Com. 410 590 mA Ind. 460 700 mA 1024Kx18x2 DDR Com. 410 590 mA Ind. 460 700 mA 256Kx72 SDR[30] Com. 210 300 mA Ind. 230 350 mA 256Kx36x2 DDR Com. 210 300 mA Ind. 230 350 mA 512Kx18x2 DDR Com. 210 300 mA Ind. 230 350 mA 128Kx72 SDR[30] Com. 150 200 mA Ind. 170 220 mA 128Kx36x2 DDR Com. 150 200 mA Ind. 170 220 mA 256Kx18x2 DDR Com. 150 200 mA Ind. 170 220 mA 64Kx72 SDR[30] Com. 130 150 mA Ind. 140 170 mA 64Kx36x2 DDR Com. 130 150 mA Ind. 140 170 mA 128Kx18x2 DDR Com. 130 150 mA Ind. 140 170 mA Table 13.Capacitance Signals Packages CYDD18S72V18 CYDD09S72V18 CYDD04S72V18 CYDD18S36V18 CYDD09S36V18 CYDD04S36V18 CYDD18S18V18 CYDD09S18V18 CYDD04S18V18 CYDD36S36V18 CYDD36S18V18 OE 12 pF 12 pF 20 pF 20 pF BE, DQ 10 pF 18 pF 16 pF 30 pF All other signals 10 pF 10 pF 16 pF 16 pF Document #: 38-06072 Rev. *I Page 24 of 53 FullFlex AC Test Load and Waveforms V REF = N C V REF 50 O hm 50 O hm O u tp u t T e s t P o in t R =250 O hm READY C = 10pF ZQ D e v ic e u n d e r te s t VTH R Q =250 O hm V T H = 1 .5 V fo r L V T T L V T H = 5 0 % V D D IO fo r 2 .5 V C M O S V T H = 5 0 % V D D IO fo r 1 .8 V C M O S Figure 6. Output Test Load for LVTTL/CMOS V V R EF = 0 .7 5 V R EF 5 0 O hm 5 0 O hm O u tp u t T e s t P o in t R =2 5 0 O hm R E A D Y V TH Z Q D e vic e u n d e r te s t R Q =2 50 O hm C = 0 p F fo r D D R C = 1 0 p F fo r S D R V TH = 5 0% V D D IO Figure 7. Output Test Load for HSTL Figure 8. HSTL Input Waveform Document #: 38-06072 Rev. *I Page 25 of 53 FullFlex Switching Characteristics Over the Operating Range Table 14.DDR Mode with 2.5 Pipelined Stages and DLL Enabled (LOWSPD-HIGH)[33] -200 Parameter Description -167 -133 Min. Max. Min. Max. Min. Max. Unit 159 200 127 167 100 133 MHz C/C Clock Cycle Time 5.00[34] 6.3 6.00[34] 7.88 7.50[34] 10.00 ns tCH C/C Clock HIGH Time 2.00 2.40 3.00 ns tCL C/C Clock LOW Time 2.00 2.40 3.00 ns tCHCH C/C Clock Rise to C/C Clock Rise 2.20 2.70 3.38 ns fMAX Maximum Operating Frequency tCYC tSD Data Input Set-up Time to C/C Rise [32] HSTL 1.8V LVCMOS 0.45 2.5V LVCMOS 3.3V LVTTL 0.65[32] [32] 0.55 [32] 0.75 ns 0.75[32] 0.95[32] ns tHD Data Input Hold Time after C/C Rise 0.45 0.55 0.75 ns tSBE Byte enable Set-up Time to HSTL C/C Rise 1.8V LVCMOS 0.45[32] 0.55[32,] 0.65[32] ns 2.5V LVCMOS 3.3V LVTTL 0.65[32] 0.75[32] 0.85[32] ns 0.45 0.55 0.65 ns Address & Control Input HSTL except BE Set-up Time to C 1.8V LVCMOS Rise 2.5V LVCMOS 3.3V LVTTL 1.50[34] 1.70[34] 1.80[34] ns 1.75[34] 1.95[34] 2.05[34] ns tHAC Address & Control Input except BE Hold Time after C Rise 0.50 0.60 0.70 ns tOE Output Enable to Data Valid tOLZ[31] OE to Low Z tHBE tSAC tOHZ[31] tCD[35] tDC[35] tCCQ[35] Byte enable Hold Time after C/C Rise 4.40[32,34] 1.00 OE to High Z C/C Rise to DQ Valid DQ Output Hold after C/C Rise C/C Rise to CQ/CQ Rise 1.00 5.00[32,34] 1.00 4.40[32,34] 1.00 5.50[32,34] ns 1.00 5.00[32,34] 1.00 ns 5.50[32,34] ns HSTL 1.8V LVCMOS 0.65[32] 0.75[32] 0.85[32] ns 2.5V LVCMOS 3.3V LVTTL 0.65[32] 0.75[32] 0.85[32] ns HSTL 1.8V LVCMOS -0.65 -0.75 -0.85 ns 2.5V LVCMOS 3.3V LVTTL -0.65 -0.75 -0.85 ns HSTL -0.65[36] 1.8V LVCMOS 0.65 -0.75[36] 0.75 -0.85[36] 0.85 ns 2.5V LVCMOS -0.65[36] 3.3V LVTTL 0.60 -0.75[36] 0.70 -0.85[36] 0.80 ns tCQHQV[35] Echo Clock (CQ/CQ) High HSTL 1.8V LVCMOS to Output Valid 0.35[32] 0.40[32] 0.50[32] ns 2.5V LVCMOS 3.3V LVTTL 0.45[32] 0.50[32] 0.60[32] ns Notes: 31. Parameters specified with the load capacitance in Figure 6 and Figure 7. 32. For the x18 devices, add 200 ps to this parameter in the table above. 33. Test conditions assume a signal transition time of 2 V/ns. 34. Add 15% to this parameter if a VCORE of 1.5V is used. 35. This parameter assumes input clock cycle to cycle jitter of +/- 0ps. 36. For the x18 devices, subtract 200ps from this parameter in the table above. Document #: 38-06072 Rev. *I Page 26 of 53 FullFlex Table 14.DDR Mode with 2.5 Pipelined Stages and DLL Enabled (LOWSPD-HIGH)[33] -200 Parameter Description Min. -167 Max. Min. -133 Max. Min. Max. Unit tCQHQX[35] Echo Clock (CQ/CQ) High HSTL -0.35[36] to Output Hold 1.8V LVCMOS -0.40[36] -0.50[36] ns 2.5V LVCMOS -0.50[36] 3.3V LVTTL -0.55[36] -0.65[36] ns tCKHZ[31,35] C Rise to DQ Output High Z HSTL 1.8V LVCMOS 0.65[32] 0.75[32] 0.85[32] ns 2.5V LVCMOS 3.3V LVTTL 0.65[32] 0.75[32] 0.85[32] ns tCKLZ[31,35] C Rise to DQ Output Low Z HSTL 1.8V LVCMOS -0.65 -0.75 -0.85 ns 2.5V LVCMOS 3.3V LVTTL -0.65 -0.75 -0.85 ns tCA C Rise to Address Readback Valid tAC 5.00[34] Address Output Hold after C Rise 1.00 tCKHZA[31] C Rise to Address Output High Z 1.00 tCKLZA[31] 1.00 tSCINT C Rise to Address Output Low Z C Rise to CNTINT Low 1.00 5.00[34] ns 1.00 1.00 1.00 4.00[34] 1.00 5.00[34] ns 0.50 8.00[34] 0.50 9.00[34] ns 0.50 8.00[34] 0.50 9.00[34] ns 1.00 4.00[34] 1.00 5.00[34] ns +/- 200 ps 1.00 0.50 7.00[34] 0.50 7.00[34] 1.00 3.30[34] Clock Input Cycle to Cycle Jitter 1.00 ns 1.00 C Rise to INT Low tJIT ns 7.50[34] 1.00 5.00[34] C Rise to CNTINT High C Rise to BUSY Valid ns 4.00[34] tSINT tBSY 1.00 6.00[34] 1.00 tRCINT C Rise to INT High 1.00 7.50[34] 3.30[34] 3.30[34] tRINT 6.00[34] +/- 200 +/- 200 ns Table 15.SDR Mode with Flow-Through Mode -200[27] Parameter Description Min. fMAX Maximum Operating Frequency for (FLOW-THROUGH) Flow-through Mode tCYC C Clock Cycle Time for Flow-through (FLOW-THROUGH) mode Max. -167[27] Min. Max. 100 10.00[34] tCD1 C Rise to DQ Valid for Flow-through Mode (LowSPD = 1) tCA1 C Rise to Address Readback Valid for Flow-through Mode tCKHZ1[31] C Rise to DQ Output High Z in Flow-through Mode 1.00 tCKLZ1[31] C Rise to DQ Output Low Z in Flow-through Mode 1.00 tCKHZA1[31] C Rise to Address Output High Z for Flow-through Mode 1.00 -133 Min. 77 13.00[34] Max. Unit 66.7 MHz 15.00[34] ns 7.20[32,34] 9.00[32,34] 11.00[32, ns 7.20[34] 9.00[34] 11.00[34] ns 11.00[32, ns 7.20[32,34] 1.00 9.00[32,34] 1.00 7.20[34] 1.00 34] 1.00 34] 1.00 9.00[34] 1.00 ns 11.00[34] ns Table 16.SDR Mode with Pipeline Mode, DLL Enabled (LOWSPD-HIGH)[33] -200[27] Parameter Description fMAX (PIPELINED) Maximum Operating Frequency for Pipelined Mode Document #: 38-06072 Rev. *I -167[27] -133 Min. Max. Min. Max. Min. Max. Unit 100 250 100 200 100 167 MHz Page 27 of 53 FullFlex Table 16.SDR Mode with Pipeline Mode, DLL Enabled (LOWSPD-HIGH)[33] (continued) -200[27] Parameter Description Min. tCYC (PIPELINED) C Clock Cycle Time for Pipelined Mode 4.00 tCKD C Clock Duty Time tSD Data Input Set-up Time to C Rise tHD 45 Max. 10.00 55 [32,34] Min. [34] 5.00 45 10.00 55 [32,34] ns 55 % [32,34] 1.70 ns ns 0.50 0.50 0.50 ns tOLZ[31] OE to Low Z 1.20 [32,34] 1.50 [32,34] 1.70 ns 1.75[32,34] 1.95[32,34] ns 0.50 0.50 0.60 ns 3.40[32,34] 1.00 4.40[32,34] 1.00 C Rise to DQ Valid for Pipelined Mode (LowSPD = 1) 2.64[32,34] 3.30[32,34] tCA2 C Rise to Address Readback Valid for Pipelined Mode 4.00[34] 5.00[34] tDC[35] DQ Output Hold after C Rise 1.00 3.40[32,34] 1.00 1.00 1.00 4.40[32,34] 1.00 2.64[34] 1.00 5.00[32,34] ns 1.00 OE to High Z C Rise to CQ Rise [32,34] 1.45[32,34] tOHZ[31] tCD2[35] 1.00 ns 5.00[32,34] 6.00[34] 1.00 3.30[34] ns 4.00[32,34] ns 1.00 ns ns 4.00[34] ns Echo Clock (CQ) HSTL High to Output Valid 1.8V LVCMOS 0.60[32] 0.70[32] 0.80[32] ns 2.5V LVCMOS 3.3V LVTTL 0.70[32] 0.80[32] 0.90[32] ns Echo Clock (CQ) HSTL High to Output Hold 1.8V LVCMOS -0.60 -0.70 -0.80 ns 2.5V LVCMOS 3.3V LVTTL -0.75 -0.85 -0.95 ns 1.00 4.00[32,34] ns 1.00 ns tCKHZ2[31,35] C Rise to DQ Output High Z in Pipelined Mode 1.00 tCKLZ2[31,35] C Rise to DQ Output Low Z in Pipelined Mode 1.00 tAC Address Output Hold after C Rise 1.00 tCKLZA[31] 10.00 1.95[32,34] Output Enable to Data Valid tCKHZA2 Unit 1.75[32,34] tOE [31] 45 Max. 1.45[32,34] Address & Control Input Hold Time after C Rise tCQHQX[35] 6.00 [34] 2.5V LVCMOS 3.3V LVTTL tHAC tCCQ[35] tCQHQV[35] Min. 1.20 Address & Control HSTL Input Set-up Time 1.8V LVCMOS to C Rise 2.5V LVCMOS 3.3V LVTTL 1.50 -133 Max. HSTL 1.8V LVCMOS Data Input Hold Time after C Rise tSAC [34] -167[27] C Rise to Address Output High Z for Pipelined Mode 1.00 C Rise to Address Output Low Z 1.00 2.64 [32, 34] 1.00 3.30[32,34] 1.00 1.00 [34] 4.00 1.00 1.00 5.00 [34] [34] 1.00 [34] 1.00 ns [34] 6.00 1.00 ns ns 1.00 [34] 4.00 ns 1.00 4.00[34] ns ns tSCINT C Rise to CNTINT Low 1.00 2.64 1.00 3.30 tRCINT C Rise to CNTINT High 1.00 2.64[34] 1.00 3.30[34] 0.50 6.00[34] 0.50 7.00[34] 0.50 8.00[34] [34] [34] 0.50 [34] 8.00 ns 1.00 4.00[34] ns +/- 200 ps tSINT C Rise to INT Low tRINT C Rise to INT High 0.50 6.00 0.50 7.00 tBSY C Rise to BUSY Valid 1.00 2.64[34] 1.00 3.30[34] tJIT Clock Input Cycle to Cycle Jitter Document #: 38-06072 Rev. *I +/- 200 +/- 200 Page 28 of 53 FullFlex Table 17.SDR Mode with Pipeline Mode, DLL Disabled (LOWSPD-LOW)[33] All Speed Bins Parameter fMAX (PIPELINED) Description Maximum Operating Frequency for Pipelined Mode tCYC (PIPELINED) C Clock Cycle Time for Pipelined Mode tCKD C Clock Duty Time tSD Data Input Set-up Time to C Rise tHD Min. Address & Control Input Set-up Time to C Rise tHAC Unit 100 MHz 10.00[34] ns 45 55 % HSTL 1.8V LVCMOS 1.80[32,34] ns 2.5V LVCMOS 3.3V LVTTL 2.05[32,34] ns 0.50 ns Data Input Hold Time after C Rise tSAC Max. HSTL 1.8V LVCMOS [32,34] 1.80 ns 2.5V LVCMOS 3.3V LVTTL 2.05[32,34] ns Address & Control Input Hold Time after C Rise 0.70 ns 5.50[32,34] tOE Output Enable to Data Valid tOLZ[31] tOHZ[31] tCD2[35] OE to Low Z 1.00 OE to High Z 1.00 ns ns 5.50[32,34] ns C Rise to DQ Valid for Pipelined Mode (LowSPD = 0) 6.00[32,34] ns tCA2 C Rise to Address Readback Valid for Pipelined Mode 7.50[34] ns tDC[35] tCCQ[35] tCQHQV[35] DQ Output Hold after C Rise 1.00 C Rise to CQ Rise 1.00 tCQHQX[35] Echo Clock (CQ) High to Output Valid Echo Clock (CQ) High to Output Hold ns HSTL 1.8V LVCMOS 0.90[32] ns 2.5V LVCMOS 3.3V LVTTL 1.00[32] ns HSTL 1.8V LVCMOS -0.90 ns 2.5V LVCMOS 3.3V LVTTL -1.05 ns tCKHZ2[31,35] C Rise to DQ Output High Z in Pipelined Mode 1.00 [31,35] C Rise to DQ Output Low Z in Pipelined Mode 1.00 tAC Address Output Hold after C Rise 1.00 tCKHZA2[31] C Rise to Address Output High Z for Pipelined Mode 1.00 tCKLZA[31] C Rise to Address Output Low Z 1.00 tCKLZ2 tSCINT ns 6.00[34] C Rise to CNTINT Low 6.00[32,34] ns ns ns 7.50[34] ns ns 1.00 [34] ns [34] 4.50 tRCINT C Rise to CNTINT High 1.00 4.50 ns tSINT C Rise to INT Low 0.50 8.50[34] ns 0.50 [34] ns [34] ns tRINT tBSY C Rise to INT High C Rise to BUSY Valid 8.50 1.00 4.50 Table 18.Master Reset Timing -200[27] Parameter Description Min. Max. -167[27] Min. Max. -133 Min. Max. Unit tPUP Power-up Time 1 1 1 ms tRS Master Reset Pulse Width 5 5 5 cycles Document #: 38-06072 Rev. *I Page 29 of 53 FullFlex Table 18.Master Reset Timing -200[27] Parameter Description Min. Max. 5 -167[27] Min. Max. -133 Min. 5 Max. 5 Unit tRSR Master Reset Recovery Time cycles tRSF Master Reset to Outputs Inactive/Hi-Z 12 15 18 ns tRDY[37] Master Reset Release to Port Ready 1024 1024 1024 cycles tCORDY[38] C Rise to Port Ready 8[34] 9.5[34] 11[34] ns Table 19.JTAG Timing -200[27] Parameter Description Min. Max. -167[27] Min. 20 Max. -133 Min. 20 Max. Unit 20 MHz fJTAG JTAG TAP Controller Frequency tTCYC TCK Cycle Time 50 50 50 ns tTH TCK High Time 20 20 20 ns tTL TCK Low Time 20 20 20 ns tTMSS TMS Set-up to TCK Rise 10 10 10 ns tTMSH TMS Hold to TCK Rise 10 10 10 ns tTDIS TDI Set-up to TCK Rise 10 10 10 ns tTDIH TDI Hold to TCK Rise 10 10 10 ns tTDOV TCK Low to TDO Valid tTDOX TCK Low to TDO Invalid tJXZ TCK Low to TDO hi-Z 15 15 15 ns tJZX TCK Low to TDO Active 15 15 15 ns 10 0 10 0 10 0 ns ns Notes: 37. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250 resistor to VSS. 38. Add this propagation delay after tRDY for all Master Reset Operations Document #: 38-06072 Rev. *I Page 30 of 53 FullFlex Switching Waveforms JTAG Timing tTH Test Clock TCK tTL tTCYC tTMSS tTMSH Test Mode Select TMS tTDIS tTDIH Test Data-In TDI Test Data-Out TDO tTDOX tTDOV Master Reset[37] ~ VCORE tPUP tRS ~ MRST C ~ tRDY READY All Address & Data tRSF tCORDY ~ ~ tRSR All Other Inputs Document #: 38-06072 Rev. *I ~ Page 31 of 53 FullFlex Switching Waveforms (continued) READ Cycle for Pipelined Mode, DDRON = LOW tCYC C tSAC tHAC R/W A An An+1 2 pipelined stages DQ DQx-1 An+2 DQx DQn An+3 An+4 DQn+1 tDC An+5 An+6 DQn+2 DQn+3 DQn+4 tCD WRITE Cycle for Pipelined and Flow-through Modes, DDRON = LOW tCYC C R/W A An An+1 An+2 An+3 An+4 An+5 An+6 DQn+1 DQn+2 DQn+3 DQn+4 DQn+5 DQn+6 2 pipelined stages DQ DQn tSD Document #: 38-06072 Rev. *I tHD Page 32 of 53 FullFlex Switching Waveforms (continued) READ with Address Counter Advance for Pipelined Mode, DDRON = LOW tCYC C An A Internal Address An An+1 An+2 An+3 ADS CNTEN DQx-1 DQ DQx DQn DQn+1 DQn+2 DQn+3 READ with Address Counter Advance for Flow-through Mode, DDRON = LOW tC Y C C tS A C tH A C A An ADS t S AC t H AC C NT E N tC D 1 DQ DQx DQ n DQ n + 1 DQ n + 2 DQn + 3 DQn + 4 tD C R EA D EXT E R N A L A D D R E SS Document #: 38-06072 Rev. *I R E AD W IT H C O U N TE R C O U N T ER H O L D R EA D W IT H C O U N T E R Page 33 of 53 FullFlex Switching Waveforms (continued) Mailbox Interrupt Output, DDRON = LOW tCYC CL AL AMAX R/WL DQL INTR tSINT tRINT CR AR AMAX R/WR DQR Document #: 38-06072 Rev. *I DQMAX Page 34 of 53 FullFlex Switching Waveforms (continued) Port-to-Port WRITE-READ for Pipelined Mode, DDRON = LOW tCYC Left Port CL AL An R/WL DQL DQn Right Port CR tCCS tCYC AR An R/WR tSAC tHAC DQR DQn tCD2 tDC Chip Enable READ for Pipelined Mode, DDRON = LOW tCYC C CE0 CE1 R/W tSAC tHAC A An An+1 An+3 An+4 tCD2 An+5 An+6 DQn+3 DQn DQ Document #: 38-06072 Rev. *I An+2 tCKHZ2 tCKLZ2 Page 35 of 53 FullFlex Switching Waveforms (continued) OE Controlled WRITE for Pipelined Mode, DDRON = LOW tCYC C A Ax+1 Ax+2 Ax+3 An An+1 An+2 An+3 DQn DQn+1 DQn+2 DQn+3 An An+1 An+2 An+3 DQn DQn+1 DQn+2 DQn+3 R/W OE tOHZ DQx+1 DQ DQx-1 DQx OE Controlled WRITE for Flow-through Mode, DDRON = LOW tCYC C A Ax+1 Ax+2 Ax+3 R/W OE tOHZ DQx+2 DQ DQx DQx+1 Document #: 38-06072 Rev. *I Page 36 of 53 FullFlex Switching Waveforms (continued) Byte-Enable READ for Pipelined Mode, DDRON = LOW tCYC C A An An+1 An+2 An+3 R/W BE7 BE6 BE5 BE4 BE3 BE2 BE1 BE0 tCKLZ2 t DQn+1(63:71) CKHZ2 DQ63:71 DQ54:62 DQn+1(54:62) DQn+2(45:53) DQ45:53 DQn+2(36:44) DQ36:44 DQn+1(27:35) DQ27:35 DQ18:26 DQ9:17 DQ0:8 Document #: 38-06072 Rev. *I DQn+2(18:26) DQn+3(9:17) DQn+3(0:8) Page 37 of 53 FullFlex Switching Waveforms (continued) Port-to-Port WRITE-to-READ for Flow-through Mode, DDRON = LOW CL R /W L t S AC AL tH A C N O M AT C H M A TC H t SD tH D V A LID DQL tC C S CR tC D1 R /W R tH A C t SA C AR N O MATCH M A TC H tC D1 V A LID DQR V A LID tD C tD C BUSY Address Readback for Pipelined and Flow-through Modes, DDRON = CNT/MSK = RET = LOW[39] tCYC ~ C Internal Address Amatch+2 Amatch+3 BUSY Amatch+4 ~ ~ CNTEN ~ ADS External Address Pipelined External Address Flow-through ~ Amatch tCA2 ~ tAC Amatch tCA1 tAC Note: 39. Amatch is the matching address which will be reported on the address bus of the losing port. The counter operation selected for reporting the address is "Busy Address Readback." Document #: 38-06072 Rev. *I Page 38 of 53 FullFlex Switching Waveforms (continued) Read Cycle for Flow-through Mode, DDRON = LOW t CYC C CE 0 t SAC t H AC CE 1 BEn R/W t SAC A t HAC An + 1 An t CD 1 An + 2 An + 3 t CKH Z1 tD C DQ DQ n D Qn + 1 t C KLZ1 t O HZ DQ n + 2 t OLZ tD C OE tO E READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE = VIL)[40, 41, 42] tCYC tCL C A tCH Ax An An+1 tSAC tHAC An+2 tSAC tHAC R/W DQ DQx-2 DQx-1 tCD2 DQx tDC DQn tCKHZ2 DQn+1 DQn+2 tSD tHD Notes: 40. When OE = VIL, the last read operation is allowed to complete before the DQ bus is tri-stated and the user is allowed to drive write data. 41. Two dummy writes should be issued to accomplish bus turnaround. The third instruction is the first valid write. 42. Chip enable or all byte enables should be held inactive during the two dummy writes to avoid data corruption. Document #: 38-06072 Rev. *I Page 39 of 53 FullFlex Switching Waveforms (continued) READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE Controlled)[43, 44] tCYC C A Ax Ax+1 Ax+2 An An+1 An+2 An+3 DQn+1 DQn+2 DQn+3 tSAC tHAC R/W OE tOHZ tSD tHD DQx DQ DQx-2 DQx-1 DQn READ-to-WRITE-to-READ for DDR, DDRON = HIGH[40,41,45,46] tCH tCL C tCYC C A tSAC t HAC tCHCH tCHCH An Ax tSAC An+2 An+1 tHAC R/W tCKHZ DQ DQx-2[0] DQn[1] DQn[0] DQ [0] DQ [0] DQn+1[1] n+1 DQn+2[1] n+2 DQ [1] n+2 DQx-1[1] DQx-1[0] DQx[1] DQx[0] tCD tDC tSD tHD Notes: 43. OE should be deasserted and tOHZ allowed to elapse before the first write operation is issued. 44. Any write scheduled to complete after OE is deasserted will be preempted. 45. The address should be held constant during the two dummy writes and first valid write to avoid data corruption. 46. D[1]/Q [1] contains data [71:36]; D[0]/Q[0] contains data [35:0]. Document #: 38-06072 Rev. *I Page 40 of 53 FullFlex Switching Waveforms (continued) Read-to-Write-to-Read for Flow-through Mode, DDRON = LOW (OE = LOW) t C YC C t SAC t H AC CE0 CE 1 BEn t SAC t HAC R/W A An An + 1 An + 2 An + 2 t SD D Q IN An + 3 An + 4 tH D DQn + 2 tC D 1 tC D 1 DQn D Q O UT tC D 1 DQn + 1 t CD 1 DQn + 3 t CKH Z1 t C KLZ1 tD C READ Document #: 38-06072 Rev. *I tD C NOP W R ITE READ Page 41 of 53 FullFlex Switching Waveforms (continued) Read-to-Write-to-Read for Flow-through Mode, DDRON = LOW (OE Controlled) t C YC C t SA C t H AC CE0 CE1 BEn t SA C t H A C R /W A An An + 1 An + 2 tS D D Q IN D Q OUT An + 4 An + 5 tH D DQn + 2 tC D 1 An + 3 DQn + 3 tD C tO E tC D 1 tC D 1 DQn DQn + 4 t C KLZ 1 tO H Z tD C OE READ Document #: 38-06072 Rev. *I W R IT E R EA D Page 42 of 53 FullFlex Switching Waveforms (continued) BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-through Modes, Clock Timing Violates tCCS. (Flag Both Ports) Port A C A R/W BUSY < tCCS tBSY tBSY Port B C A R/W tBSY BUSY tBSY BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-through Modes, Clock Timing Meets tCCS. (Flag Losing Port) Losing Port C A R/W BUSY tccs tBSY tBSY Winning Port C A Match R/W BUSY Document #: 38-06072 Rev. *I Page 43 of 53 FullFlex Switching Waveforms (continued) Read with Echo Clock for Pipelined Mode (CQEN = HIGH) C tSAC tHAC R/W A An An+1 An+2 An+3 An+4 An+5 An+6 CQ0 CQ0 tCCQ CQ1 CQ1 tCQHQX tCQHQV DQ DQx-1 DQx Document #: 38-06072 Rev. *I DQn DQn+1 DQn+2 DQn+3 DQn+4 Page 44 of 53 FullFlex Ordering Information 256K x 72/256K x 36 x 2 (18 Mbit) 1.8V/1.5V Synchronous CYDD18S72V18 Dual-Port SRAM (SDR and DDR I/O) Speed (MHz) Ordering Code Package Name 200 CYDD18S72V18-200BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD18S72V18-200BGC BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial CYDD18S72V18-167BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD18S72V18-167BGC BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial CYDD18S72V18-167BGXI BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD18S72V18-167BGI BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Industrial 167 Operating Range Package Type 128K x 72/128K x 36 x 2 (9 Mbit) 1.8V/1.5V Synchronous CYDD09S72V18 Dual-Port SRAM (SDR and DDR I/O) Speed (MHz) Ordering Code Package Name 200 CYDD09S72V18-200BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD09S72V18-200BGC BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial CYDD09S72V18-167BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD09S72V18-167BGC BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial CYDD09S72V18-167BGXI BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD09S72V18-167BGI BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Industrial 167 Operating Range Package Type 64K x 72/64K x 36 x 2 (4 Mbit) 1.8V/1.5V Synchronous CYDD04S72V18 Dual-Port SRAM (SDR and DDR I/O) Speed (MHz) Ordering Code 200 CYDD04S72V18-200BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD04S72V18-200BGC BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial CYDD04S72V18-167BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD04S72V18-167BGC BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial CYDD04S72V18-167BGXI BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD04S72V18-167BGI BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Industrial 167 Package Name Package Type Operating Range 1024K x 36 x 2 (36 Mbit) 1.8V/1.5V Synchronous CYDD36S36V18 Dual-Port SRAM (DDR only I/O) Speed (MHz) Ordering Code 167 CYDD36S36V18-167BGXC BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD36S36V18-167BGC BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Commercial CYDD36S36V18-133BGXC BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD36S36V18-133BGC BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Commercial CYDD36S36V18-133BGXI BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD36S36V18-133BGI BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Industrial 133 Document #: 38-06072 Rev. *I Package Name Package Type Operating Range Page 45 of 53 FullFlex Ordering Information (continued) 512K x 36 x 2 (18 Mbit) 1.8V/1.5V Synchronous CYDD18S36V18 Dual-Port SRAM (DDR only I/O) Speed (MHz) Ordering Code Package Name 200 CYDD18S36V18-200BBXC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD18S36V18-200BBC BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Commercial CYDD18S36V18-167BBXC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD18S36V18-167BBC BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Commercial CYDD18S36V18-167BBXI BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD18S36V18-167BBI BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Industrial 167 Package Type Operating Range 256K x 36 x 2 (9 Mbit) 1.8V/1.5V Synchronous CYDD09S36V18 Dual-Port SRAM (DDR only I/O) Speed (MHz) Ordering Code Package Name 200 CYDD09S36V18-200BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD09S36V18-200BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial CYDD09S36V18-167BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD09S36V18-167BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial CYDD09S36V18-167BBXI BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD09S36V18-167BBI BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Industrial 167 Package Type Operating Range 128K x 36 x 2 (4 Mbit) 1.8V/1.5V Synchronous CYDD04S36V18 Dual-Port SRAM (DDR only I/O) Speed (MHz) Ordering Code Package Name 200 CYDD04S36V18-200BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD04S36V18-200BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial CYDD04S36V18-167BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD04S36V18-167BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial CYDD04S36V18-167BBXI BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD04S36V18-167BBI BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Industrial 167 Package Type Operating Range 2048K x 18 x 2 (36 Mbit) 1.8V/1.5V Synchronous CYDD36S18V18 Dual-Port SRAM (DDR only I/O) Speed (MHz) Ordering Code 167 CYDD36S18V18-167BGXC BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD36S18V18-167BGC BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Commercial CYDD36S18V18-133BGXC BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD36S18V18-133BGC BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Commercial CYDD36S18V18-133BGXI BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD36S18V18-133BGI BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Industrial 133 Package Name Package Type Operating Range 1024K x 18 x 2 (18 Mbit) 1.8V/1.5V Synchronous CYDD18S18V18 Dual-Port SRAM (DDR only I/O) Speed (MHz) Ordering Code Package Name 200 CYDD18S18V18-200BBXC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD18S18V18-200BBC BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Commercial CYDD18S18V18-167BBXC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD18S18V18-167BBC BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Commercial CYDD18S18V18-167BBXI BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD18S18V18-167BBI BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Industrial 167 Document #: 38-06072 Rev. *I Package Type Operating Range Page 46 of 53 FullFlex Ordering Information (continued) 512K x 18 x 2 (9 Mbit) 1.8V/1.5V Synchronous CYDD09S18V18 Dual-Port SRAM (DDR only I/O) Speed (MHz) Ordering Code Package Name 200 CYDD09S18V18-200BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD09S18V18-200BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial CYDD09S18V18-167BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD09S18V18-167BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial CYDD09S18V18-167BBXI BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD09S18V18-167BBI BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Industrial 167 Package Type Operating Range 256K x 18 x 2 (4 Mbit) 1.8V/1.5V Synchronous CYDD04S18V18 Dual-Port SRAM (DDR only I/O) Speed (MHz) Ordering Code Package Name 200 CYDD04S18V18-200BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD04S18V18-200BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial CYDD04S18V18-167BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial CYDD04S18V18-167BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial CYDD04S18V18-167BBXI BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Industrial CYDD04S18V18-167BBI BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Industrial 167 Document #: 38-06072 Rev. *I Package Type Operating Range Page 47 of 53 FullFlex Package Diagrams 256-ball Lead-Free FBGA (17 x 17 mm) BW256 TOP VIEW 256-ball Leaded FBGA (17 x 17 mm) BB256 BOTTOM VIEW O0.05 M C O0.25 M C A B PIN 1 CORNER O0.450.05(256X)-CPLD DEVICES (37K & 39K) PIN 1 CORNER +0.10 -0.05 O0.50 (256X)-ALL OTHER DEVICES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A A B B C D 1.00 C D E E F F G H J K H 15.00 17.000.10 G J K L M 7.50 L M N N P P R R T T 1.00 7.50 0.15 C 0.700.05 0.25 C B 15.00 A 17.000.10 A 0.20(4X) SEATING PLANE +0.10 -0.05 C A1 0.36 0.56 A 1.40 MAX. 1.70 MAX. Document #: 38-06072 Rev. *I REFERENCE JEDEC MO-192 0.35 A1 51-85108-*F Page 48 of 53 FullFlex Package Diagrams (continued) 256-ball Lead-Free FBGA (19 x 19 x 1.7 mm) BW256 256-ball Leaded FBGA (19 x 19 x 1.7 mm) BB256 BOTTOM VIEW TOP VIEW A1 CORNER O0.05 M C O0.25 M C A B PIN A1 CORNER 1 O0.50 (256 X) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 B C C D D E E F F G G 19.00 +/- 0.10 H J K L 1.00 (REF) A B 15.00 (REF) A H J K L M M N N P P R R T T 1.00 (REF) -B- 15.00 (REF) -A- 19.00 +/- 0.10 Package Weight - 1.1 grams 0.15 C 0.70 (REF) 0.25 C 0.15(4X) 001-00915-*A Document #: 38-06072 Rev. *I 1.70 MAX. 0.35 +0.10/-0.05 SEATING PLANE 0.56 (REF) -C- Jedec Outline - Design Guide 4.14 Page 49 of 53 FullFlex Package Diagrams (continued) 484-ball Lead-Free PBGA (23 mm x 23 mm x 2.03 mm) BY484 484-ball Leaded PBGA (23 mm x 23 mm x 2.03 mm) BG484 O0.50~O0.70(484X) PIN #1 CORNER 1 3 2 5 4 7 6 9 8 10 15 13 11 12 14 19 17 16 18 21 20 21 22 22 O1.00(3X) REF. 20 18 16 14 9 11 13 15 12 10 7 8 1 3 5 6 4 2 A B C D E F G H J K L M N P R T U V W Y AA AB 21.00 23.000.20 20.00 REF. 1.00 A B C D E F G H J K L M N P R T U V W Y AA AB 17 19 1.00 -B- 21.00 3.20*45(4x) -A20.00 REF. 23.000.20 0.35 C 0.20 C f 0.25 C 30 TYP. f 0.97 REF. 0.20(4X) Document #: 38-06072 Rev. *I 2.03 0.13 0.40~0.60 SEATING PLANE 0.56 REF. -C- Package Weight - 2.0 grams Jedec Outline - Design Guide 4.14 51-85218-** Page 50 of 53 FullFlex Package Diagrams (continued) 484-ball Lead-Free PBGA (27 mm x 27 mm x 2.33 mm) BY484S 484-ball Leaded PBGA (27 mm x 27 mm x 2.33 mm) BG484S 001-07825-** FullFlex is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are trademarks of their respective holders. Document #: 38-06072 Rev. *I Page 51 of 53 (c) Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. FullFlex Document History Page Document Title: FullFlexTM Synchronous DDR Dual-Port SRAM Document Number: 38-06072 REV. ECN NO. Issue Date Orig. of Change Description of Change ** 274729 See ECN SPN New data sheet *A 294239 See ECN SPN Updated VIM section Added notes 7 Added timing for 100 MHz with DLL Disabled Removed tPS *B 301331 See ECN SPN Added note 19 Updates Selectable I/O Standard Section *C 318834 See ECN SPN Updated Block Diagram Updated 484 pinouts, changed pins D11, W12, K3, K20 Added note 4 - Leaving pin DNU disables VIM Updated 256 pinout, changed pins C10, G5, N7, N10 Added note 18, 19, 20, 21 Updated parameters in table 16 Updated note 1 *D 386692 See ECN SPN Updated ordering information Added statement about no echo clocks for flow-through mode Updated electrical characteristics Added note 27 (timing for x18 devices) Updated address readback latency to 2 cycles for DDR mode Updated DDR timing numbers for tCD, tDC, tCCQ, tCQHQV, tCQHQX, tCKHZ, tCKLZ Updated input edge rate Removed -133 speed bin electrical characteristics and timing columns Updated Table 5 on collision detection to be the same as the one found in the EROS Added description of busy readback in collision detection section Changed dummy write descriptions Updated PORTSTD[1:0] connection details Updated ZQ pins connection details Updated address count notes Updated note 17, BO to BEO Added power supply requirements to MRST and VC_SEL Updated 484 ball package Changed name from FLEX72-E, FLEX36-E, AND FLEX18-E to FullFlex72, FullFlex36, and FullFlex18 *E 401662 See ECN KGH Updated READY description to include Wired OR note Updated master reset to include wired OR note for READY Updated electrical characteristics to include IOH and IOL values Updated electrical characteristics to include READY Added IIX3 Updated maximum input capacitance Added note 29 Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1 Changed voltage name from VDDQ to VDDIO Changed voltage name from VDD to VCORE Updated the Package Type for the CYDXXS36V18 parts Updated the Package Type for the CYDXXS18V18 parts Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256 Included an OE Controlled Write for Flow-through Mode Switching Waveform Included a Read with Echo Clock Switching Waveform Included a Unit column for Table 5 Removed Switching Characteristic tCA from chart Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow-through Mode Updated AC Test Load and Waveforms Included FullFlex36 DDR 484-ball BGA Pinout (Top View) Included FullFlex18 DDR 484-ball BGA Pinout (Top View) Included Timing Parameter tCORDY Document #: 38-06072 Rev. *I Page 52 of 53 FullFlex Document Title: FullFlexTM Synchronous DDR Dual-Port SRAM Document Number: 38-06072 REV. ECN NO. Issue Date Orig. of Change *F 458129 SEE ECN YDT Changed ordering information with lead-free part numbers Removed VC_SEL Added I/O and core voltage adders Removed references to bin drop for LVTTL/2.5V LVCMOS and 1.5V core modes Updated Cin and Cout Updated ICC, ISB1, ISB2 and ISB3 tables Updated device widths information on first page Updated busy address read back timing diagram Added HTSL input waveform Removed HSTL (AC) from DC tables Added 484-ball 27mmx27mmx2.33mm PBGA package *G 470037 SEE ECN YDT Changed VOL of 1.8V LVCMOS to 0.45V and VOH to VDDIO - 0.45V Updated tRSF VREF is left DNU when HSTL is not used Changed LVTTL/LVCMOS adder for DDR Formatted pin description table Changed VDDIO pins for 36Mx36 and 36Mx18 Changed 36Mx72 JTAG IDCODE *H 499993 SEE ECN YDT DLL Change, added Clock Input Cycle to Cycle Jitter Modified DLL description Changed Input Capaciance Table Changed tCCS number Added note 34 *I 627539 SEE ECN QSL change all NC to DNU corrected switching waveform for (CQEN = High) from both Pipeline and Flowthrough mode to only pipeline mode Added note 17 to DDRON restriction Modified Master Reset Description Created a new table for flow-through mode only changed note 29 description Modified tSD, tHD, tSBE, tHBE, tCD, tDC, tCCQ, tCQHQV, tCQHQX, tCKHZ, and tCKLZ timing parameter Removed all instances of CYDD36S72V18 Document #: 38-06072 Rev. *I Description of Change Page 53 of 53