FullFlex™ Synchronous
DDR Dual-Port SRAM
FullFlex
Cypress Semiconductor Corporation 198 Champion Court San Jose, CA 95134-1709 408-943-2600
Document #: 38-06072 Rev. *I Revised December 21, 2006
Features
True dual-ported memory allows simultaneous access
to the shared array from each port
Synchronous pipelined operation with selectable
Double Data Rate (DDR) or Single Data Rate (SDR)
operation on each port
DDR interface at 200 MHz
SDR interface at 250 MHz
Up to 36-Gb/s bandwidth (250 MHz * 72 bit * 2 ports)
Selectable pipelined or flow-through mode
1.5V or 1.8V core power supply
Commercial and Industrial temperature ranges
IEEE 1149.1 JTAG boundary scan
Available in 484-ball PBGA Packages and 256-ball
FBGA Packages
FullFlex72 family
18 Mbit: 256K x 36 x 2 DDR or 256K x 72 SDR
(CYDD18S72V18)
9 Mbit: 128K x 36 x 2 DDR or 128K x 72 SDR
(CYDD09S72V18)
4 Mbit: 64K x 36 x 2 DDR or 64 x 72 SDR
(CYDD04S72V18)
FullFlex36 family
36 Mbit: 512K x 36 x 2 DDR (CYDD36S36V18)
18 Mbit: 256K x 36 x 2 DDR (CYDD18S36V18)
9 Mbit: 128K x 36 x 2 DDR (CYDD09S36V18)
4 Mbit: 64K x 36 x 2 DDR (CYDD04S36V18)
FullFlex18 family
36 Mbit: 1M x 18 x 2 DDR (CYDD36S18V18)
18 Mbit: 512K x 18 x 2 DDR (CYDD18S18V18)
9 Mbit: 256K x 18 x 2 DDR (CYDD09S18V18)
4 Mbit: 128K x 18 x 2 DDR (CYDD04S18V18)
Built-in deterministic access control to manage
address collisions
Deterministic flag output upon collision detection
Collision detection on back-to-back clock cycles
First Busy Address readback
Advanced features for improved high-speed data
transfer and flexibility
Variable Impedance Matching (VIM)
Echo clocks
Selectable LVTTL (3.3V), Extended HSTL
(1.4V–1.9V), 1.8V LVCMOS, or 2.5V LVCMOS I/O on
each port
Burst counters for sequential memory access
Mailbox with interrupt flags for message passing
Dual Chip Enables for easy depth expansion
Functional Description
The FullFlex Dual-Port SRAM families consist of 4-Mbit,
9-Mbit, 18-Mbit, and 36-Mbit synchronous, true dual-port static
RAMs that are high-speed, low-power 1.8V/1.5V CMOS. Two
ports are provided, allowing the array to be accessed simulta-
neously. Simultaneous access to a location triggers determin-
istic access control. For FullFlex72, these ports can operate
independently in DDR mode with 36-bit bus widths or in SDR
mode with 72-bit bus widths. For FullFlex36 and FullFlex18,
the ports operate in DDR mode only. Each port can be
independently configured for two pipelined stages for SDR
mode or 2.5 stages in DDR mode. Each port can also be
configured to operate in pipelined or flow-through mode in
SDR mode.
Advanced features include built-in deterministic access
control to manage address collisions during simultaneous
access to the same memory location, Variable Impedance
Matching (VIM) to improve data transmission by matching the
output driver impedance to the line impedance, and echo
clocks to improve data transfer.
To reduce the static power consumption, chip enables can be
used to power down the internal circuitry. The number of
cycles of latency before a change in CE0 or CE1 will enable
or disable the databus matches the number of cycles of read
latency selected for the device. In order for a valid write or read
to occur, both chip enable inputs on a port must be active.
Each port contains an optional burst counter on the input
address register. After externally loading the counter with the
initial address, the counter will increment the address inter-
nally.
Additional features of this device include a mask register and
a mirror register to control counter increments and
wrap-around. The counter-interrupt (CNTINT) flags notify the
host that the counter will reach maximum count value on the
next clock cycle. The host can read the burst-counter internal
address, mask register address, and busy address on the
address lines. The host can also load the counter with the
address stored in the mirror register by utilizing the retransmit
functionality. Mailbox interrupt flags can be used for message
passing, and JTAG boundary scan and asynchronous Master
Reset (MRST) are also available. The logic block diagram in
Figure 1 displays these features.
The FullFlex72 DDR family of devices is offered in a 484-ball
plastic BGA package. The FullFlex36 and FullFlex18 DDR
only families of devices are offered in both 484-ball and
256-ball fine pitch BGA packages.
FullFlex
Document #: 38-06072 Rev. *I Page 2 of 53
Notes:
1. The CYDD36S18V18 device has 20 address bits. The CYDD36S36V18, and the CYDD18S18V18 devices have 19 address bits. The CYDD18S72V18,
CYDD18S36V18, and the CYDD09S18V18 devices have 18 address bits. The CYDD09S72V18, CYDD04S18V18, and the CYDD09S36V18 devices have 17
address bits. The CYDD04S36V18 and the CYDD04S72V18 devices have 16 address bits.
2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.
3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte
enables.
FTSELL
PORTSTD[1:0]L
DQ[71:0]L
BE [7:0]
L
CE0L
CE1L
OEL
R/W
L
CQ0L
FTSELR
PORTSTD[1:0]R
DQ [71:0]R
BE [7:0]
R
CE0R
CE1R
OER
R/W
R
CQ0R
A [19:0]L
CNT/MSK
L
ADSL
CNTENL
CNTRSTL
RETL
CNTINT
L
CL
A [19:0]R
CNT/MSK
R
ADSR
CNTENR
CNTRSTR
RETR
CNTINT
R
CR
WRPR
CONFIG Block CONFIG Block
IO
Control
IO
Control
Address &
Counter Logic Address &
Counter Logic
INTL
TRST
TMS
TDI
TDO
TCK
JTAG
MRST
READY
R
LowSPDR
READYL
LowSPDLRESET
LOGIC
INTR
BUSYLBUSYR
CQ1L
CQ1L
CQ1R
CQ1R
Mailboxes
Collision Detection
Logic
CQ0LCQ0R
Dual Ported Array
Figure 1. Block Diagram[1,2,3]
WRPL
CR
CL
ZQ0R
ZQ1R
ZQ0L
ZQ1L
CQENLCQENR
DDRONLDDRONR
FullFlex
Document #: 38-06072 Rev. *I Page 3 of 53
FullFlex72 SDR/DDR 484-ball BGA Pinout (Top View)
12345678910 11 12 13 14 15 16 17 18 19 20 21 22
ADNU DQ34
L
DQ32
L
DQ30
L
DQ27
L
DQ60
L
DQ57
L
DQ54
L
DQ24
L
DQ21
L
DQ18
L
DQ18
R
DQ21
R
DQ24
R
DQ54
R
DQ57
R
DQ60
R
DQ27
R
DQ30
R
DQ32
R
DQ34
R
DNU
BDQ63
L
DQ35
L
DQ33
L
DQ31
L
DQ28
L
DQ61
L
DQ58
L
DQ55
L
DQ25
L
DQ22
L
DQ19
L
DQ19
R
DQ22
R
DQ25
R
DQ55
R
DQ58
R
DQ61
R
DQ28
R
DQ31
R
DQ33
R
DQ35
R
DQ63
R
CDQ65
L
DQ64
L
VSS VSS DQ29
L
DQ62
L
DQ59
L
DQ56
L
DQ26
L
DQ23
L
DQ20
L
DQ20
R
DQ23
R
DQ26
R
DQ56
R
DQ59
R
DQ62
R
DQ29
R
VSS VSS DQ64
R
DQ65
R
D
DQ67
L
DQ66
L
VSS VSS VSS CQ1L CQ1L DDR
ONL
LOW
SPDL
PORT
STD0
L
ZQ0L
[4] BUSY
L
CNTI
NTL
PORT
STD1
L
DNU CQ1R CQ1R VSS VSS VSS DQ66
R
DQ67
R
EDQ69
L
DQ68
L
VDDI
OL
VSS VSS VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
DNU VSS VDDI
OR
DQ68
R
DQ69
R
FDQ71
L
DQ70
L
CE1L CE0L VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CE0R CE1R DQ70
R
DQ71
R
GA0L A1L RETL BE2L VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
BE2R RETR A1R A0R
HA2L A3L WRP
L
BE6L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE6R WRP
R
A3R A2R
JA4L A5L READ
YL
BE3L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE3R READ
YR
A5R A4R
KA6L A7L ZQ1L
[4] BE7L VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VDDI
OR
BE7R ZQ1R
[4] A7R A6R
LA8L A9L CL OEL VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL OER CR A9R A8R
MA10L A11L CL BE5L VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL BE5R CR A11R A10R
NA12L A13L ADSL BE1L VDDI
OL
VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL BE1R ADSR A13R A12R
P
A14L A15L CNT/
MSKL
BE4L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE4R CNT/
MSK
R
A15R A14R
RA16L
[7] A17L
[6] CNTE
NL
BE0L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE0R CNTE
NR
A17R
[6] A16R
[7]
TA18L
[5] DNU CNTR
STL
INTL VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
INTR CNTR
STR
DNU A18R
[5]
UDQ53
L
DQ52
L
R/WL CQE
NL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CQE
NR
R/WR DQ52
R
DQ53
R
VDQ51
L
DQ50
L
FTSE
LL
VDDI
OL
DNU VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
TRST VDDI
OR
FTSE
LR
DQ50
R
DQ51
R
W
DQ49
L
DQ48
L
VSS MRST VSS CQ0L CQ0L DNU PORT
STD1
R
CNTI
NTR
BUSY
R
ZQ0R
[4] PORT
STD0
R
LOW
SPDR
DDR
ONR
CQ0R CQ0R VSS TDI TDO DQ48
R
DQ49
R
YDQ47
L
DQ46
L
VSS VSS DQ11
L
DQ44
L
DQ41
L
DQ38
L
DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ38
R
DQ41
R
DQ44
R
DQ11
R
TMS TCK DQ46
R
DQ47
R
AA DQ45
L
DQ17
L
DQ15
L
DQ13
L
DQ10
L
DQ43
L
DQ40
L
DQ37
L
DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ37
R
DQ40
R
DQ43
R
DQ10
R
DQ13
R
DQ15
R
DQ17
R
DQ45
R
AB DNU DQ16
L
DQ14
L
DQ12
L
DQ9L DQ42
L
DQ39
L
DQ36
L
DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ36
R
DQ39
R
DQ42
R
DQ9R DQ12
R
DQ14
R
DQ16
R
DNU
Notes:
4. Leaving this pin DNU disables VIM
5. Leave this ball unconnected for CYDD18S72V18, CYDD09S72V18 and CYDD04S72V18.
6. Leave this ball unconnected for CYDD09S72V18 and CYDD04S72V18
7. Leave this ball unconnected for CYDD04S72V18
FullFlex
Document #: 38-06072 Rev. *I Page 4 of 53
FullFlex36 DDR 484-ball BGA Pinout (Top View)[8]
12345678910 11 12 13 14 15 16 17 18 19 20 21 22
ADNU DNU DNU DNU DNU DQ33
L
DQ30
L
DQ27
L
DQ24
L
DQ21
L
DQ18
L
DQ18
R
DQ21
R
DQ24
R
DQ27
R
DQ30
R
DQ33
R
DNU DNU DNU DNU DNU
BDNU DNU DNU DNU DNU DQ34
L
DQ31
L
DQ28
L
DQ25
L
DQ22
L
DQ19
L
DQ19
R
DQ22
R
DQ25
R
DQ28
R
DQ31
R
DQ34
R
DNU DNU DNU DNU DNU
CDNU DNU VSS VSS DNU DQ35
L
DQ32
L
DQ29
L
DQ26
L
DQ23
L
DQ20
L
DQ20
R
DQ23
R
DQ26
R
DQ29
R
DQ32
R
DQ35
R
DNU VSS VSS DNU DNU
D
DNU DNU VSS VSS VSS CQ1L CQ1L VDDI
OL
LOW
SPDL
PORT
STD0
L
ZQ0L
[4] BUSY
L
CNTI
NTL
PORT
STD1
L
DNU CQ1R CQ1R VSS VSS VSS DNU DNU
EDNU DNU VDDI
OL
VSS VSS VDDI
OL
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VTTL VTTL VTTL VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
DNU VSS VDDI
OR
DNU DNU
FDNU DNU CE1L CE0L VDDI
OL
VDDI
OL
VDDI
OR
VDDI
OR
VDDI
OR
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OR
VDDI
OR
CE0R CE1R DNU DNU
GA0L A1L RETL BE2L VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
BE2R RETR A1R A0R
HA2L A3L WRP
L
BE3L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE3R WRP
R
A3R A2R
JA4L A5L READ
YL
DNU VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
DNU READ
YR
A5R A4R
KA6L A7L ZQ1L
[4] DNU VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VDDI
OR
DNU ZQ1R
[4] A7R A6R
LA8L A9L CL OEL VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL OER CR A9R A8R
MA10L A11L CL DNU VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL DNU CR A11R A10R
NA12L A13L ADSL DNU VDDI
OL
VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL DNU ADSR A13R A12R
P
A14L A15L CNT/
MSKL
BE1L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE1R CNT/
MSK
R
A15R A14R
RA16L A17L CNTE
NL
BE0L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE0R CNTE
NR
A17R A16R
TA18L DNU CNTR
STL
INTL VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
INTR CNTR
STR
DNU A18R
UDNU DNU R/WL CQE
NL
VDDI
OL
VDDI
OL
VDDI
OR
VDDI
OR
VDDI
OR
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OR
VDDI
OR
CQE
NR
R/WR DNU DNU
VDNU DNU VDDI
OL
VDDI
OL
DNU VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VTTL VTTL VTTL VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OR
TRST VDDI
OR
VDDI
OR
DNU DNU
W
DNU DNU VSS MRST VSS CQ0L CQ0L DNU PORT
STD1
R
CNTI
NTR
BUSY
R
ZQ0R
[4] PORT
STD0
R
LOW
SPDR
VDDI
OR
CQ0R CQ0R VSS TDI TDO DNU DNU
YDNU DNU VSS VSS DNU DQ17
L
DQ14
L
DQ11
L
DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11
R
DQ14
R
DQ17
R
DNU TMS TCK DNU DNU
AA DNU DNU DNU DNU DNU DQ16
L
DQ13
L
DQ10
L
DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10
R
DQ13
R
DQ16
R
DNU DNU DNU DNU DNU
AB DNU DNU DNU DNU DNU DQ15
L
DQ12
L
DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12
R
DQ15
R
DNU DNU DNU DNU DNU
Note:
8. Use this pinout only for device CYDD36S36V18 of the FullFlex36 family.
FullFlex
Document #: 38-06072 Rev. *I Page 5 of 53
FullFlex18 DDR 484-ball BGA Pinout (Top View)[9]
12345678910 11 12 13 14 15 16 17 18 19 20 21 22
ADNU DNU DNU DNU DNU DNU DNU DNU DQ15
L
DQ12
L
DQ9L DQ9R DQ12
R
DQ15
R
DNU DNU DNU DNU DNU DNU DNU DNU
BDNU DNU DNU DNU DNU DNU DNU DNU DQ16
L
DQ13
L
DQ10
L
DQ10
R
DQ13
R
DQ16
R
DNU DNU DNU DNU DNU DNU DNU DNU
CDNU DNU VSS VSS DNU DNU DNU DNU DQ17
L
DQ14
L
DQ11
L
DQ11
R
DQ14
R
DQ17
R
DNU DNU DNU DNU VSS VSS DNU DNU
D
DNU DNU VSS VSS VSS CQ1L CQ1L VDDI
OL
LOW
SPDL
PORT
STD0
L
ZQ0L
[4] BUSY
L
CNTI
NTL
PORT
STD1
L
DNU CQ1R CQ1R VSS VSS VSS DNU DNU
EDNU DNU VDDI
OL
VSS VSS VDDI
OL
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VTTL VTTL VTTL VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
DNU VSS VDDI
OR
DNU DNU
FDNU DNU CE1L CE0L VDDI
OL
VDDI
OL
VDDI
OR
VDDI
OR
VDDI
OR
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OR
VDDI
OR
CE0R CE1R DNU DNU
GA0L A1L RETL BE1L VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
BE1R RETR A1R A0R
HA2L A3L WRP
L
DNU VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
DNU WRP
R
A3R A2R
JA4L A5L READ
YL
DNU VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
DNU READ
YR
A5R A4R
KA6L A7L ZQ1L
[4] DNU VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VDDI
OR
DNU ZQ1R
[4] A7R A6R
LA8L A9L CL OEL VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL OER CR A9R A8R
MA10L A11L CL DNU VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL DNU CR A11R A10R
NA12L A13L ADSL DNU VDDI
OL
VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL DNU ADSR A13R A12R
P
A14L A15L CNT/
MSKL
DNU VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
DNU CNT/
MSK
R
A15R A14R
RA16L A17L CNTE
NL
BE0L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE0R CNTE
NR
A17R A16R
TA18L A19L CNTR
STL
INTL VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
INTR CNTR
STR
A19R A18R
UDNU DNU R/WL CQE
NL
VDDI
OL
VDDI
OL
VDDI
OR
VDDI
OR
VDDI
OR
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OR
VDDI
OR
CQE
NR
R/WR DNU DNU
VDNU DNU VDDI
OL
VDDI
OL
DNU VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VTTL VTTL VTTL VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OR
TRST VDDI
OR
VDDI
OR
DNU DNU
W
DNU DNU VSS MRST VSS CQ0L CQ0L DNU PORT
STD1
R
CNTI
NTR
BUSY
R
ZQ0R
[4] PORT
STD0
R
LOW
SPDR
VDDI
OR
CQ0R CQ0R VSS TDI TDO DNU DNU
YDNU DNU VSS VSS DNU DNU DNU DNU DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DNU DNU DNU DNU TMS TCK DNU DNU
AA DNU DNU DNU DNU DNU DNU DNU DNU DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DNU DNU DNU DNU DNU DNU DNU DNU
AB DNU DNU DNU DNU DNU DNU DNU DNU DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DNU DNU DNU DNU DNU DNU DNU DNU
Note:
9. Use this pinout only for device CYDD36S18V18 of the FullFlex18 family.
FullFlex
Document #: 38-06072 Rev. *I Page 6 of 53
FullFlex36 DDR 256 Ball BGA (Top View)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ADQ32L DQ30L DQ28L DQ26L DQ24L DQ22L DQ20L DQ18L DQ18R DQ20R DQ22R DQ24R DQ26R DQ28R DQ30R DQ32R
BDQ33L DQ31L DQ29L DQ27L DQ25L DQ23L DQ21L DQ19L DQ19R DQ21R DQ23R DQ25R DQ27R DQ29R DQ31R DQ33R
CDQ34L DQ35L RETL INTL CQ1L CQ1L DNU TRST MRST ZQ0R[4] CQ1R CQ1R INTR RETR DQ35R DQ34R
DA0L A1L WRPL VREFL VDDIOL LOWSP
DL
VSS VTTL VTTL VSS LOWSP
DR
VDDIO
R
VREFR WRPR A1R A0R
EA2L A3L CE0L CE1L VDDIOL VDDIOL VDDIOL VCORE VCOR
E
VDDIO
R
VDDIO
R
VDDIO
R
CE1R CE0R A3R A2R
FA4L A5L CNTINTL BE3L VDDIOL VDDIOL VSS VSS VSS VSS VSS VDDIO
R
BE3R CNTINT
R
A5R A4R
GA6L A7L BUSYL BE2L ZQ0L[4] VSS VSS VSS VSS VSS VSS VDDIO
R
BE2R BUSYR A7R A6R
HA8L A9L CL VTTL VCORE VSS VSS VSS VSS VSS VSS VCORE VTTL CR A9R A8R
JA10L A11L CL PORTS
TD1L
VCORE VSS VSS VSS VSS VSS VSS VCORE PORTS
TD1R
CR A11R A10R
KA12L A13L OEL BE1L VDDIOL VSS VSS VSS VSS VSS VSS VDDIO
R
BE1R OER A13R A12R
LA14L A15L ADSL BE0L VDDIOL VSS VSS VSS VSS VSS VDDIO
R
VDDIO
R
BE0R ADSR A15R A14R
MA16L[11]A17L[10]R/WL CQENL VDDIOL VDDIOL VDDIOL VCORE VCOR
E
VDDIO
R
VDDIO
R
VDDIO
R
CQENR R/WR A17R[10]A16R[11]
NDNU DNU CNT/MS
KL
VREFL PORTS
TD0L
READY
L
ZQ1L[4] VTTL VTTL ZQ1R[4] READY
R
PORTS
TD0R
VREFR CNT/MS
KR
DNU DNU
PDQ16L DQ17L CNTENL CNTRS
TL
CQ0L CQ0L TCK TMS TDO TDI CQ0R CQ0R CNTRS
TR
CNTENR DQ17R DQ16R
RDQ15L DQ13L DQ11L DQ9L DQ7L DQ5L DQ3L DQ1L DQ1R DQ3R DQ5R DQ7R DQ9R DQ11R DQ13R DQ15R
TDQ14L DQ12L DQ10L DQ8L DQ6L DQ4L DQ2L DQ0L DQ0R DQ2R DQ4R DQ6R DQ8R DQ10R DQ12R DQ14R
Notes:
10. Leave this ball unconnected for CYDD09S36V18 and CYDD04S36V18.
11. Leave this ball unconnected for CYDD04S36V18.
FullFlex
Document #: 38-06072 Rev. *I Page 7 of 53
FullFlex18 DDR 256 Ball BGA (Top View)
12345678910 11 12 13 14 15 16
ADNU DNU DNU DQ17L DQ16L DQ13L DQ12L DQ9L DQ9R DQ12R DQ13R DQ16R DQ17R DNU DNU DNU
BDNU DNU DNU DNU DQ15L DQ14L DQ11L DQ10L DQ10R DQ11R DQ14R DQ15R DNU DNU DNU DNU
CDNU DNU RETL INTL CQ1L CQ1L DNU TRST MRST ZQ0R[4] CQ1R CQ1R INTR RETR DNU DNU
DA0L A1L WRPL VREFL VDDIOL LOWSP
DL
VSS VTTL VTTL VSS LOWSP
DR
VDDIOR VREFR WRPR A1R A0R
EA2L A3L CE0L CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CE1R CE0R A3R A2R
FA4L A5L CNTINTL DNU VDDIOL VDDIOL VSS VSS VSS VSS VSS VDDIOR DNU CNTINTR A5R A4R
GA6L A7L BUSYL DNU ZQ0L[4] VSS VSS VSS VSS VSS VSS VDDIOR DNU BUSYR A7R A6R
HA8L A9L CL VTTL VCORE VSS VSS VSS VSS VSS VSS VCORE VTTL CR A9R A8R
JA10L A11L CL PORTST
D1L
VCORE VSS VSS VSS VSS VSS VSS VCORE PORTST
D1R
CR A11R A10R
KA12L A13L OEL BE1L VDDIOL VSS VSS VSS VSS VSS VSS VDDIOR BE1R OER A13R A12R
LA14L A15L ADSL BE0L VDDIOL VSS VSS VSS VSS VSS VDDIOR VDDIOR BE0R ADSR A15R A14R
MA16L A17L[13]R/WL CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CQENR R/WR A17R[13]A16R
NA18L[12]DNU CNT/MS
KL
VREFL PORTST
D0L
READYL ZQ1L[4] VTTL VTTL ZQ1R[4] READY
R
PORTST
D0R
VREFR CNT/MS
KR
DNU A18R[12]
PDNU DNU CNTENL CNTRST
L
CQ0L CQ0L TCK TMS TDO TDI CQ0R CQ0R CNTRST
R
CNTENR DNU DNU
RDNU DNU DNU DNU DQ6L DQ5L DQ2L DQ1L DQ1R DQ2R DQ5R DQ6R DNU DNU DNU DNU
TDNU DNU DNU DQ8L DQ7L DQ4L DQ3L DQ0L DQ0R DQ3R DQ4R DQ7R DQ8R DNU DNU DNU
Table 1. Selection Guide
–200 –167 Unit
SDR fMAX[14]250 200 MHz
DDR fMAX[15]200 167 MHz
SDR Max. Access Time (Clock to Data) 2.64 3.3 ns
DDR Max. Access Time (Clock to Data) 0.50 0.60 ns
Typical Operating Current ICC 800[16]700[16]mA
Typical Standby Current for ISB3 (Both Ports CMOS Level) 210[16]] 210[16]mA
Notes:
12. Leave this ball unconnected for CYDD09S18V18 and CYDD04S18V18.
13. Leave this ball unconnected for CYDD04S18V18.
14. SDR mode with two pipelined stages.
15. DDR mode with 2.5 pipelined stages.
16. For 18-Mbit x36x2 DDR commercial configuration only, please refer to the electrical characteristics section for complete information.
FullFlex
Document #: 38-06072 Rev. *I Page 8 of 53
Pin Definitions
Left Port Right Port Description
A[19:0]LA[19:0]RAddress Inputs.[1]
DQ[71:0]LDQ[71:0]RData Bus Input/Output.[2]
BE[7:0]LBE[7:0]RByte Select Inputs.[3] Asserting these signals enables Read and Write operations to the
corresponding bytes of the memory array.
BUSYLBUSYRPort Busy Output. When there is an address match and both chip enables are active for
both ports, an external BUSY signal is asserted on the fifth clock cycle from when the collision
occurs.
C/CLC/CRClock Signal.[18] Maximum clock input rate is fMAX. Tie C to VSS when operating in SDR
mode.
CE0LCE0RActive LOW Chip Enable Input.
CE1LCE1RActive HIGH Chip Enable Input.
CQENLCQENREcho Clock Enable Input. Assert HIGH to enable echo clocking on respective port.
CQ0LCQ0REcho Clock Signal Output for DQ[35:0] for FullFlex72 devices. Echo Clock Signal Output
for DQ[17:0] for FullFlex36 devices. Echo Clock Signal Output for DQ[8:0] for FullFlex18
devices.
CQ0LCQ0RInverted Echo Clock Signal Output for DQ[35:0] for FullFlex72 devices. Inverted Echo
Clock Signal Output for DQ[17:0] for FullFlex36 devices. Inverted Echo Clock Signal Output
for DQ[8:0] for FullFlex18 devices.
CQ1LCQ1REcho Clock Signal Output for DQ[71:36] for FullFlex72 devices. Echo Clock Signal
Output for DQ[35:18] for FullFlex36 devices. Echo Clock Signal Output for DQ[17:9] for
FullFlex18 devices.
CQ1LCQ1RInverted Echo Clock Signal Output for DQ[71:36] for FullFlex72 devices. Inverted Echo
Clock Signal Output for DQ[35:18] for FullFlex36 devices. Inverted Echo Clock Signal Output
for DQ[17:9] forFullFlex18 devices.
DDRONL[17] DDRONR[17] DDR Enable Input. Assert HIGH to enable DDR clocking on respective port.
ZQ[1:0]LZQ[1:0]RVIM Output Impedance Matching Input. To use, connect a calibrating resistor between ZQ
and ground. The resistor must be five times larger than the intended line impedance driven
by the dual-port. Assert HIGH or leave DNU to disable Variable Impedance Matching.
OELOEROutput Enable Input. This asynchronous signal must be asserted LOW to enable the DQ
data pins during Read operations.
INTLINTRMailbox Interrupt Flag Output. The mailbox permits communications between ports. The
upper two memory locations can be used for message passing. INTL is asserted LOW when
the right port writes to the mailbox location of the left port, and vice versa. An interrupt to a
port is deasserted HIGH when it reads the contents of its mailbox.
LowSPDLLowSPDRPort Low Speed Select Input. Assert this pin LOW to disable the DLL. For operation at less
than 100 MHz, assert this pin LOW.
PORTSTD[1:0]L
[19]PORTSTD[1:0]R
[19]Port Clock/Address/Control/Data/Echo Clock/I/O Standard Select Input. Assert these
pins LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5V LVCMOS, and
HIGH/HIGH for 1.8V LVCMOS, respectively. These pins must be driven by VTTL referenced
levels.
R/WLR/WRRead/Write Enable Input. Assert this pin LOW to Write to, or HIGH to Read from the
dual-port memory array.
READYLREADYRPort DLL Ready Output. This signal will be asserted LOW when the DLL and Variable
Impedance Matching circuits have completed calibration. This is a wired OR capable output.
CNT/MSKLCNT/MSKRPort Counter/Mask Select Input. Counter control input.
ADSLADSRPort Counter Address Load Strobe Input. Counter control input.
CNTENLCNTENRPort Counter Enable Input. Counter control input.
Notes:
17. DDRONL and DDRONR needs to tie to the same voltage level for FullFlex36 and FullFlex18 Family.
18. C and C are complimentary for DDR operation.
19. PORTSTD[1:0]L and PORTSTD[1:0]R have internal pull-down resistors.
FullFlex
Document #: 38-06072 Rev. *I Page 9 of 53
Selectable I/O Standard
The FullFlex device families also offer the option of choosing
one of four port standards for the device. Each port can
independently select standards from single-ended HSTL class
I, single-ended LVTTL, 2.5V LVCMOS, or 1.8V LVCMOS. The
selection of the standard is determined by the PORTSTD pins
for each port. These pins must be connected to a VTTL power
supply. This will determine the input clock, address, control,
data, and Echo clock standard for each port as shown in
Table 2. Please note that only 1.8V LVCMOS and HSTL are
supported for 4-Mbit, 9-Mbit, 18-Mbit devices running at
250MHz SDR, and for 36-Mbit devices running at 200 MHz
SDR.
Clocking
Separate clocks synchronize the operations on each port.
Each port has two clock inputs C and C. In SDR mode only the
C input clock is used and C should be tied to VSS. In this
mode, all the transactions on the address, control, and data
will be on the C rising edge. In DDR mode, both C and C will
be used and these signals are complementary. In this mode,
all transactions on the address and control, except for the byte
enables, will occur on the C rising edge. Transactions on the
data input, output, and byte enables will be on the C and C
rising edges.
Double Data Rate (DDR)
In DDR mode with a x36 bus width, the input data is sampled
on both edges of the input clock. During a write, on the rising
edge of C, the first 36 bits (DQ[71:36]) will be latched into a
register. On the rising edge of C, the next 36 bits (DQ[35:0])
will be latched into a register. During a read, the first 36 bits
are driven out first on the rising edge of C. The next 36 bits will
be driven out on the rising edge of C. The internal bus width of
the FullFlex72 family is still x72. All counter operation is based
upon the x72 word width. The DDR option is set on a per port
basis by the configuration of the DDRON pin. Table 3 shows
the data assignment for SDR and DDR configuration. The
column on the right (Data Pin Name) shows the pins on which
data is presented on the data lines.
CNTRSTLCNTRSTRPort Counter Reset Input. Counter control input.
CNTINTLCNTINTRPort Counter Interrupt Output. This pin is asserted LOW one cycle before the unmasked
portion of the counter is incremented to all “1s”.
WRPLWRPRPort Counter Wrap Input. When the burst counter reaches the maximum count, on the next
counter increment WRP can be set LOW to load the unmasked counter bits to 0 or set HIGH
to load the counter with the value stored in the mirror register.
RETLRETRPort Counter Retransmit Input. Assert this pin LOW to reload the initial address for
repeated access to the same segment of memory.
VREFLVREFRPort External HSTL I/O Reference Input. This pin is left DNU when HSTL is not used.
VDDIOLVDDIORPort Data I/O Power Supply.
FTSELLFTSELRPort Flow-through Mode Select Input. Assert this pin LOW to select Flow-through mode.
Assert this pin HIGH to select Pipelined mode. Selection for SDR only.
MRST Master Reset Input. MRST is an asynchronous input signal and affects both ports. Asserting
MRST LOW performs all of the reset functions as described in the text. A MRST operation
is required at power-up. This pin must be driven by VDDIOL referenced levels.
TMS JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State
machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5V LVCMOS.
TDI JTAG Test Data Input. Data on the TDI input will be shifted serially into selected registers.
Operation for LVTTL or 2.5V LVCMOS.
TRST JTAG Reset Input. Operation for LVTTL or 2.5V LVCMOS.
TCK JTAG Test Clock Input. Operation for LVTTL or 2.5V LVCMOS.
TDO JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally
three-stated except when captured data is shifted out of the JTAG TAP. Operation for LVTTL
or 2.5V LVCMOS.
VSS Ground Inputs.
VCORE Device Core Power Supply.
VTTL LVTTL Power Supply.
Pin Definitions (continued)
Left Port Right Port Description
Table 2. Port Standard Selection
PORTSTD1 PORTSTD0 I/O Standard
VSS VSS LVTTL
VSS VTTL HSTL
VTTL VSS 2.5V LVCMOS
VTTL VTTL 1.8V LVCMOS
FullFlex
Document #: 38-06072 Rev. *I Page 10 of 53
Table 3. Data Pin Assignment for SDR and DDR Configuration
BE Pin Name for
DDR
BE Pin Name for
SDR
x72 SDR Mode x36 DDR Mode
Data Pin Name
Related Rising Edge
Clock for Write
Related Rising Edge
Clock for Read
Data Pin
Name
BE[3] BE[7] DQ[71] C C DQ[35]
BE[3] BE[3] DQ[35] C C
BE[3] BE[7] DQ[70] C C DQ[34]
BE[3] BE[3] DQ[34] C C
BE[3] BE[7] DQ[69] C C DQ[33]
BE[3] BE[3] DQ[33] C C
BE[3] BE[7] DQ[68] C C DQ[32]
BE[3] BE[3] DQ[32] C C
BE[3] BE[7] DQ[67] C C DQ[31]
BE[3] BE[3] DQ[31] C C
BE[3] BE[7] DQ[66] C C DQ[30]
BE[3] BE[3] DQ[30] C C
BE[3] BE[7] DQ[65] C C DQ[29]
BE[3] BE[3] DQ[29] C C
BE[3] BE[7] DQ[64] C C DQ[28]
BE[3] BE[3] DQ[28] C C
BE[3] BE[7] DQ[63] C C DQ[27]
BE[3] BE[3] DQ[27] C C
BE[2] BE[6] DQ[62] C C DQ[26]
BE[2] BE[2] DQ[26] C C
BE[2] BE[6] DQ[61] C C DQ[25]
BE[2] BE[2] DQ[25] C C
BE[2] BE[6] DQ[60] C C DQ[24]
BE[2] BE[2] DQ[24] C C
BE[2] BE[6] DQ[59] C C DQ[23]
BE[2] BE[2] DQ[23] C C
BE[2] BE[6] DQ[58] C C DQ[22]
BE[2] BE[2] DQ[22] C C
BE[2] BE[6] DQ[57] C C DQ[21]
BE[2] BE[2] DQ[21] C C
BE[2] BE[6] DQ[56] C C DQ[20]
BE[2] BE[2] DQ[20] C C
BE[2] BE[6] DQ[55] C C DQ[19]
BE[2] BE[2] DQ[19] C C
BE[2] BE[6] DQ[54] C C DQ[18]
BE[2] BE[2] DQ[18] C C
BE[1] BE[5] DQ[53] C C DQ[17]
BE[1] BE[1] DQ[17] C C
BE[1] BE[5] DQ[52] C C DQ[16]
BE[1] BE[1] DQ[16] C C
FullFlex
Document #: 38-06072 Rev. *I Page 11 of 53
Selectable Pipelined/Flow-through Mode
To meet data rate and throughput requirements, the FullFlex
families offer selectable pipelined or flow-through mode.
Flow-through mode is only supported in the FullFlex72
devices when the port is configured in SDR mode. Echo clocks
are not supported in flow-through mode and the DLL must be
disabled.
Flow-through mode is selected by the FTSEL pin. Strapping
this pin HIGH selects pipelined mode. Strapping this pin LOW
selects flow-through mode.
DLL
The FullFlex families of devices have an on-chip DLL.
Enabling the DLL reduces the clock to data valid (tCD) time
allowing more setup time for the receiving device. For
operation at or below 100 MHz, the DLL must be disabled. This
is selectable by strapping LowSPD LOW.
Whenever the operating frequency is altered beyond the Clock
Input Cycle to Cycle Jitter spec, the DLL is required to be reset
followed by 1024 clocks before any valid operation.
LowSPD pins can be used to reset the DLL(s) for a single port
independent of all other circuitry. MRST can be used to reset
BE[1] BE[5] DQ[51] C C DQ[15]
BE[1] BE[1] DQ[15] C C
BE[1] BE[5] DQ[50] C C DQ[14]
BE[1] BE[1] DQ[14] C C
BE[1] BE[5] DQ[49] C C DQ[13]
BE[1] BE[1] DQ[13] C C
BE[1] BE[5] DQ[48] C C DQ[12]
BE[1] BE[1] DQ[12] C C
BE[1] BE[5] DQ[47] C C DQ[11]
BE[1] BE[1] DQ[11] C C
BE[1] BE[5] DQ[46] C C DQ[10]
BE[1] BE[1] DQ[10] C C
BE[1] BE[5] DQ[45] C C DQ[9]
BE[1] BE[1] DQ[9] C C
BE[0] BE[4] DQ[44] C C DQ[8]
BE[0] BE[0] DQ[8] C C
BE[0] BE[4] DQ[43] C C DQ[7]
BE[0] BE[0] DQ[7] C C
BE[0] BE[4] DQ[42] C C DQ[6]
BE[0] BE[0] DQ[6] C C
BE[0] BE[4] DQ[41] C C DQ[5]
BE[0] BE[0] DQ[5] C C
BE[0] BE[4] DQ[40] C C DQ[4]
BE[0] BE[0] DQ[4] C C
BE[0] BE[4] DQ[39] C C DQ[3]
BE[0] BE[0] DQ[3] C C
BE[0] BE[4] DQ[38] C C DQ[2]
BE[0] BE[0] DQ[2] C C
BE[0] BE[4] DQ[37] C C DQ[1]
BE[0] BE[0] DQ[1] C C
BE[0] BE[4] DQ[36] C C DQ[0]
BE[0] BE[0] DQ[0] C C
Table 3. Data Pin Assignment for SDR and DDR Configuration (continued)
BE Pin Name for
DDR
BE Pin Name for
SDR
x72 SDR Mode x36 DDR Mode
Data Pin Name
Related Rising Edge
Clock for Write
Related Rising Edge
Clock for Read
Data Pin
Name
FullFlex
Document #: 38-06072 Rev. *I Page 12 of 53
all DLLs on the chip, for information on DLL lock and reset
time, please see the Master Reset section below.
Echo Clocking
As the speed of data increases, on-board delays caused by
parasitics make providing accurate clock trees extremely
difficult. To counter this problem, the FullFlex families incor-
porate Echo Clocks. Echo Clocks are enabled on a per port
basis. The dual-port receives input clocks (C and C for DDR
mode, C for SDR mode) that are used to clock in the address
and control signals for a read operation. The dual-port
retransmits the input clocks relative to the data output. The
buffered clocks are provided on the CQ1, CQ1, CQ0, and CQ0
outputs. Each port has two pairs of Echo clocks. Each clock is
associated with half the data bits. The output clock will match
the corresponding ports I/O configuration.
To enable Echo clock outputs, tie CQEN HIGH. To disable
Echo clock outputs, tie CQEN LOW.
Deterministic Access Control
Deterministic Access Control is provided for ease of design.
The circuitry detects when both ports are accessing the same
location and provides an external BUSY flag to the port on
which data may be corrupted. The collision detection logic
saves the address in conflict (Busy Address) to a readable
register. In the case of multiple collisions, the first Busy
address will be written to the Busy Address register.
If both ports are accessing the same location at the same time
and only one port is doing a write, if tCCS is met, then the data
being written to and read from the address is valid data. For
example, if the right port is reading and the left port is writing
and the left ports clock meets tCCS, then the data being read
from the address by the right port will be the old data. In the
same case, if the right ports clock meets tCCS, then the data
being read out of the address from the right port will be the new
data. In the above case, if tCCS is violated by the either ports
clock with respect to the other port and the right port gets the
external BUSY flag, the data from the right port is corrupted.
Tab le 4 shows the tCCS timing that must be met to guarantee
the data.
Tab le 5 shows that in the case of the left port writing and the
right port reading, when an external BUSY flag is asserted on
the right port, the data read out of the device will not be
guaranteed.
The value in the busy address register can be read back to the
address lines. The required input control signals for this
function are shown in Table 8. The value in the busy address
register will be read out to the address lines tCA after the same
amount of latency as a data read operation in SDR mode. In
DDR mode, the address latency is only 2 cycles instead of 2.5
which is the data latency. After an initial address match, the
address under contention is saved in the busy address
register. All following address matches cause the BUSY flag
to be generated, however, none of the addresses are saved
into the busy address register. Once a busy readback is
performed, the address of the first match which happens at
least two clock cycles after the busy readback is saved into the
busy address register.
Figure 2. SDR Echo Clock Delay
Figure 3. DDR Echo Clock Delay
Input Clock
Echo Clock
Data Out
Echo Clock
Echo Clock
Input Clock
Data Out
Input Clock
Echo Clock
FullFlex
Document #: 38-06072 Rev. *I Page 13 of 53
Variable Impedance Matching (VIM)
Each port contains a Variable Impedance Matching circuit to
set the impedance of the I/O driver to match the impedance of
the on-board traces. The impedance is set for all outputs
except JTAG and is done on a per port basis. To take
advantage of the VIM feature, connect a calibrating resistor
(RQ) that is five times the value of the intended line impedance
from the ZQ pin to VSS. The output impedance is then
adjusted to account for drifts in supply voltage and temper-
ature every 1024 clock cycles. If a port’s clock is suspended,
the VIM circuit will retain its last setting until the clock is
restarted. On restart, it will then resume periodic adjustment.
In the case of a significant change in device temperature or
supply voltage, recalibration will happen every 1024 clock
cycles. A Master Reset will initialize the VIM circuitry. Ta ble 6
shows the VIM parameters and Table 7 describes the VIM
operation modes.
In order to disable VIM, the ZQ pin must be connected to
VDDIO of the relative supply for the I/Os before a Master
Reset.
Address Counter and Mask Register Operations[1]
Each port of the FullFlex families contains a programmable
burst address counter. The burst counter contains four
registers: a counter register, a mask register, a mirror register,
and a busy address register.
The counter register contains the address used to access the
RAM array. It is changed only by the master reset (MRST),
Counter Reset, Counter Load, Retransmit, and Counter
Increment operations.
Table 4. tCCS Timing for All Operating Modes
Port A – Early Arriving Port Port B – Late Arriving Port tCCS C/C Rise to Opposite C/C Rise Set-up Time
for Non-corrupt Data UnitMode Active Edge Mode Active Edge
SDR CSDR C tCYC(min) – 0.5 ns
SDR CDDR C tCYC(min) – 0.5 ns
DDR CSDR C0.55 * tCYC + tCYC(min) – 1 ns
DDR CDDR C0.55 * tCYC + tCYC(min) – 1 ns
Table 5. Deterministic Access Control Winning Port
Left Port Right Port
Clock Timing
BUSYLBUSYRDescriptionLeft Clock Right Clock
Read Read X X H H No Collision
Write Read >tCCS 0 H H Read OLD Data
0>tCCS H H Read NEW Data
<tCCS 0 H H Read OLD Data
H L Data Not Guaranteed
0<tCCS H H Read NEW Data
H L Data Not Guaranteed
Read Write >tCCS 0 H H Read NEW Data
0>tCCS H H Read OLD Data
<tCCS 0 H H Read NEW Data
L H Data Not Guaranteed
0<tCCS H H Read OLD Data
L H Data Not Guaranteed
Write Write 0>–tCCS & <tCCS L L Array Data Corrupted
0>tCCS L H Array Stores Right Port Data
>tCCS 0 H L Array Stores Left Port Data
Table 6. Variable Impedance Matching Parameters
Parameter Min. Max. Unit Tolerance
RQ Value 100 275 ±2%
Output Impedance 20 55 ±15%
Reset Time N/A 1024 Cycles N/A
Update Time N/A 1024 Cycles N/A
Table 7. Variable Impedance Matching Operation
RQ Connection Output Configuration
100–275 to
VSS
Output Driver Impedance = RQ/5 ± 15% at
Vout = VDDIO/2
ZQ to VDDIO VIM Disabled. Rout < 20 at Vout =
VDDIO/2
FullFlex
Document #: 38-06072 Rev. *I Page 14 of 53
The mask register value affects the Counter Increment and
Counter Reset operations by preventing the corresponding
bits of the counter register from changing. It also affects the
counter interrupt output (CNTINT). The mask register is only
changed by Mask Reset, Mask Load, and MRST. The Mask
Load operation loads the value of the address bus into the
mask register. The mask register defines the counting range
of the counter register. The mask register is divided into two or
three consecutive regions. Zero or more “0s” define the
masked region and one or more “1s” define the unmasked
portion of the counter register. The counter register may only
be divided into up to three regions. The region containing the
least significant bits must be no more than two “0s”. Bits one
and zero may be “10” respectively, masking the least signif-
icant counter bit and causing the counter to increment by two
instead of one. If bits one and zero are “00”, the two least
significant bits are masked and the counter will increment by
four instead of one. For example, in the case of a 256Kx72
configuration, a mask register value of 003FC divides the
mask register into three regions. With bit 0 being the least
significant bit and bit 17 being the most significant bit, the two
least significant bits are masked, the next eight bits are
unmasked, and the remaining bits are masked.
The mirror register is used to reload the counter register on
retransmit operations (see “retransmit” below) and wrap
functions (see “counter increment” below). The last value
loaded into the counter register is stored in the mirror register.
The mirror register is only changed by master reset (MRST),
Counter Reset, and Counter Load.
Tab le 8 summarizes the operations of these registers and the
required input control signals. All signals except MRST are
synchronized to the ports clock.
Counter Load Operation[1]
The address counter and mirror registers are both loaded with
the address value presented on the address lines. This value
ranges from 0 to FFFFF.
Mask Load Operation[1]
The mask register is loaded with the address value presented
on the address bus. This value ranges from 0 to FFFFF though
not all values permit correct increment operations. Permitted
values are in the form of 2n–1, 2n–2, or 2n4. The counter
register can only be segmented in up to three regions. From
the most significant bit to the least significant bit, permitted
values have zero or more “0s”, one or more “1s”, and the least
significant two bits can be “11”, “10”, or “00”. Thus FFFFE,
7FFFF, and 03FFC are permitted values but 2FFFF, 03FFA,
and 7FFE4 are not.
Counter Readback Operation
The internal value of the counter register can be read out on
the address lines. The address will be valid tCA after the
selected number of latency cycles configured by FTSEL. This
is the same as data in SDR mode and one half cycle earlier
than data latency for DDR mode. The data bus (DQ) is
tri-stated on the cycle that the address is presented on the
address lines. Figure 4 shows a block diagram of the logic.
Mask Readback Operation
The internal value of the mask register can be read out on the
address lines. The address will be valid tCA after the selected
number of latency cycles configured by FTSEL. For pipelined
SDR and DDR mode this is two cycles. The data bus (DQ) is
tri-stated on the cycle that the address is presented on the
address lines. Figure 4 shows a block diagram of the
operation.
Table 8. Burst Counter and Mask Register Control Operation (Any Port) [20,21]
CMRST CNTRST CNT/MSK CNTEN ADS RET Operation Description
X L X X X X X Master Reset Reset address counter to all 0s, mask register
to all 1s, and busy address to all 0’s.
H L H X X X Counter Reset Reset counter and mirror unmasked portion to
all 0s.
H L L X X X Mask Reset Reset mask register to all 1s.
H H H L L X Counter Load Load burst counter and mirror with external
address value presented on address lines.
H H L L L X Mask Load Load mask register with value presented on the
address lines.
H H H L H L Retransmit Load counter with value in the mirror register
H H H L H H Counter
Increment
Internally increment address counter value.
H H H H H H Counter Hold Constantly hold the address value for multiple
clock cycles.
H H H H L H Counter
Readback
Read out counter internal value on address
lines.
H H L H L H Mask Readback Read out mask register value on address lines.
Notes:
20. X” = “Don’t Care”, “H” = HIGH, “L” = LOW.
21. Counter operation and mask register operation is independent of chip enables.
FullFlex
Document #: 38-06072 Rev. *I Page 15 of 53
Counter Reset Operation
All unmasked bits of the counter are reset to “0”. All masked
bits remain unchanged. The new burst counter value is loaded
into the mirror registers. A mask reset followed by a counter
reset will reset the counter and mirror registers to 00000.
Mask Reset Operation
The mask register is reset to all “1s”, which unmasks every bit
of the burst counter.
Increment Operation[1]
Once the address counter is initially loaded with an external
address, the counter can internally increment the address
value and address the entire memory array. Only the
unmasked bits of the counter register are incremented. In
order for a counter bit to change, the corresponding bit in the
mask register must be “1”. If the two least significant bits of the
mask register are “11”, the burst counter will increment by one.
If the two least significant bits are “10”, the burst counter will
increment by two, and if they are “00”, the burst counter will
increment by four. If all unmasked counter bits are incre-
mented to “1” and WRP is deasserted, the next increment will
wrap the counter back to the initially loaded value. The cycle
before the increment that results in all unmasked counter bits
to become “1s”, a counter interrupt flag (CNTINT) is asserted
if the counter is incremented again. This increment will cause
the counter to reach its maximum value and the next increment
will return the counter register to its initial value that was stored
in the mirror register if WRP is deasserted. If WRP is asserted,
the unmasked portion of the counter is filled with “0” instead.
The example shown in Figure 5 shows an example of the
CYDD36S18V18 device with the mask register loaded with a
mask value of 0007F unmasking the seven least significant
bits. Setting the mask register to this value allows the counter
to access the entire memory space. The address counter is
then loaded with an initial value of 00005 assuming WRP is
deasserted. The base address bits (in this case, the seventh
address through the twentieth address) do not increment once
the counter is configured for increment operation. The counter
address will start at address 00005 and will increment its
internal address value until it reaches the mask register value
of 0007F. The counter wraps around the memory block to
location 00005 at the next count. CNTINT is issued when the
counter reaches the maximum –1 count.
Hold Operation
The value of all three registers can be constantly maintained
unchanged for an unlimited number of clock cycles. Such
operation is useful in applications where wait states are
needed, or when address is available a few cycles ahead of
data in a shared bus interface.
Retransmit
Retransmit allows repeated access to the same block of
memory without the need to reload the initial address. An
internal mirror register stores the address counter value last
loaded. While RET is asserted low, the counter will continue to
wrap back to the value in the mirror register independent of the
state of WRP.
Counter Interrupt
The counter interrupt (CNTINT) is asserted LOW one clock
cycle before an increment operation that results in the
unmasked portion of the counter register being all “1s”. It is
deasserted by counter reset, counter load, mask reset, mask
load, counter increment, re-transmit, and MRST.
Counting by Two
When the two least significant bits of the mask register are
“10,” the counter increments by two.
Counting by Four
When the two least significant bits of the mask register are
“00,” the counter increments by four.
Mailbox Interrupts
The upper two memory locations can be used for message
passing and permit communications between ports. Table 9
shows the interrupt operation for both ports. The highest
memory location is the mailbox for the right port and the
maximum address–1 is the mailbox for the left port.
When one port Writes to the other ports mailbox, the INT flag
of the port that the mailbox belongs to is asserted LOW. The
INT flag remains asserted until the mailbox location is read by
the other port. When a port reads it’s mailbox, the INT flag is
deasserted HIGH after one cycle of latency with respect to the
input clock of the port to which the mailbox belongs and is
independent of OE.
Tab le 9 shows that in order to set the INTR flag, a Write
operation by the left port to address FFFFF will assert INTR
LOW. A valid Read of the FFFFF location by the right port will
reset INTR HIGH after one cycle of latency with respect to the
H H L H H L Busy Address
Readback
Read out first busy address after last busy
address readback
H H L L H X Reserved
H H L H L L Reserved
H H L H H H Reserved
H H H H L L Reserved
H H H H H L Reserved
Table 8. Burst Counter and Mask Register Control Operation (Any Port) (continued)[20,21]
CMRSTCNTRST CNT/MSK CNTEN ADS RET Operation Description
FullFlex
Document #: 38-06072 Rev. *I Page 16 of 53
right port’s clock. At least one byte enable has to be activated
to set or reset the mailbox interrupt.
From
Mask
Register
Mirror Counter
Address
Decode
RAM
Array
Wrap
1
0
Increment
Logic
1
0
+1
+2
1
0
Wrap
Detect
From
Mask
From
Counter
To
Counter
Bit 0
and 1
Wrap
Figure 4. Counter, Mask, and Mirror Logic Block Diagram[1]
19 19
19
19
19
1
0
Load / Increment
CNT/MSK
CNTEN
A
CNTRST
C
Decode
Logic
AMask
Register
Counter/
Address
Register
From
Address
Lines To Readback
and Address
Decode
19
19
MRST
RET
+4
FullFlex
Document #: 38-06072 Rev. *I Page 17 of 53
Master Reset
The FullFlex family of dual-ports undergo a complete reset
when MRST is asserted. MRST must be driven by VDDIOL
referenced levels. The MRST can be asserted asynchronously
to the clocks and must remain asserted for at least tRS. Once
asserted MRST deasserts READY, initializes the internal burst
counters, internal mirror registers, and internal Busy
Addresses to zero, and initializes the internal mask register to
all “1s”. All mailbox interrupts (INT), Busy Address Outputs
(BUSY), and burst counter interrupts (CNTINT) are
deasserted upon master reset. Additionally, MRST must not
be released until all power supplies including VREF are fully
ramped, all port clocks and mode select inputs (LOWSPD, ZQ,
CQEN, DDRON, FTSEL, and PORTSTD) are valid and stable.
This begins calibration of the DLL and VIM circuits. READY
will be asserted within 1024 clock cycles. READY is a wired
OR capable output with a strong pull-up and weak pull-down.
Up to four outputs may be connected together. For faster
pull-down of the signal, connect a 250- resistor to VSS. If the
DLL and VIM circuits are disabled for a port, the port will be
operational within five clock cycles. However, the READY will
be asserted within 160 clock cycles.
IEEE 1149.1 Serial Boundary Scan (JTAG)
The FullFlex families incorporate an IEEE 1149.1 serial
boundary scan test access port (TAP). The TAP operates
using JEDEC-standard 3.3V or 2.5V I/O logic levels depending
on the VTTL power supply. It is composed of four input
connections and one output connection required by the test
logic defined by the standard.
Notes:
22. CE is internal signal. CE = LOW if CE0 = LOW and CE1 = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the C and
can be deasserted after that. Data will be out after the following C edge and will be tri-stated after the next C edge.
23. OE is “Don’t Care” for mailbox operation.
24. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW.
25. The “X” in this diagram represents the counter’s upper bits.
219 218 2621
2522
242320
219 218 2621
2522
242320
219 218 2621
2522
242320
219 218 2621
2522
242320
H
H
L
H
11
0s 1
01
0111
00
Xs 0
X1
X001
11
Xs 1
X1
X111
00
Xs 0
X1
X001
Masked Address Unmasked Address
Mask
Register
LSB
Address
Counter
LSB
CNTINT
Example:
Load
Counter-Mask
Register = 00007F
Load
Address
Counter = 000005
Max
Address
Value
Max + 1
Address
Value
Figure 5. Programmable Counter-Mask Register Operation with WRP deasserted[1,25]
0
27
X
27
X
27
X
27
Table 9. Interrupt Operation Example [1, 20, 22, 23, 24]
Function
Left Port Right Port
R/WLCELA0L–19L INTLR/WRCERA0R–19R INTR
Set Right INTR Flag L L Max. Address X X X X L
Reset Right INTR Flag X X X X H L Max. Address H
Set Left INTL Flag X X X L L L Max. Address–1 X
Reset Left INTL Flag H L Max. Address–1 H X X X X
FullFlex
Document #: 38-06072 Rev. *I Page 18 of 53
Table 10.JTAG IDCODE Register Definitions
Part Number Configuration Value
CYDD36S36V18 512Kx72 0C041069h
CYDD36S18V18 1024Kx36 0C042069h
CYDD18S72V18 256Kx72 0C043069h
CYDD18S36V18 256Kx72 0C044069h
CYDD18S18V18 512Kx36 0C045069h
CYDD09S72V18 128Kx72 0C046069h
CYDD09S36V18 128Kx72 0C047069h
CYDD09S18V18 256Kx36 0C048069h
CYDD04S72V18 64Kx72 0C049069h
CYDD04S36V18 64Kx72 0C04A069h
CYDD04S18V18 128Kx36 0C04B069h
Table 11.Scan Registers Sizes
Register Name Bit Size
Instruction 4
Bypass 1
Identification 32
Boundary Scan n[26]
Table 12.Instruction Identification Codes
Instruction Code Description
EXTEST 0000 Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.
BYPASS 1111 Places the BYR between TDI and TDO.
IDCODE 1011 Loads the IDR with the vendor ID code and places the register between TDI and TDO.
HIGHZ 0111 Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers
to a High-Z state.
CLAMP 0100 Controls boundary to 1/0. Places BYR between TDI and TDO.
SAMPLE/PRELOAD 1000 Captures the input/output ring contents. Places BSR between TDI and TDO.
RESERVED All other codes Other combinations are reserved. Do not use other than the above.
Note:
26. Details of the boundary scan length can be found in the BSDL file for the device.
FullFlex
Document #: 38-06072 Rev. *I Page 19 of 53
Maximum Ratings
(Above which the useful life may be impaired. For user guide-
lines, not tested.)
Storage Temperature ................................ –65°C to + 150°C
Ambient Temperature with
Power Applied............................................–55°C to + 125°C
Supply Voltage to Ground Potential .............. –0.5V to + 4.1V
DC Voltage Applied to
Outputs in High-Z State.......................–0.5V to VDDIO + 0.5V
DC Input Voltage.................................–0.5V to VDDIO + 0.5V
Output Current into Outputs (LOW) ............................ 20 mA
Static Discharge Voltage ...........................................> 2200V
(JEDEC JESD8-6, JESD8-B)
Latch-up Current .....................................................> 200 mA
Operating Range
Range Ambient Temperature VCORE
Commercial 0°C to +70°C 1.8V ± 100 mV
1.5V ± 80 mV
Industrial –40°C to +85°C 1.8V ± 100 mV
1.5V ± 80 mV
Power Supply Requirements
Min. Typ. Max.
LVTTL VDDIO 3.0V 3.3V 3.6V
2.5V LVCMOS VDDIO 2.3V 2.5V 2.7V
HSTL VDDIO 1.4V 1.5V 1.9V
1.8V LVCMOS VDDIO 1.7V 1.8V 1.9V
3.3V VTTL 3.0V 3.3V 3.6V
2.5V VTTL 2.3V 2.5V 2.7V
HSTL VREF 0.68V 0.75V 0.95V
Electrical Characteristics Over the Operating Range
Parameter Description Configuration
All Speed Bins[27]
UnitMin. Typ. Max.
VOH Output HIGH Voltage
(VDDIO = Min., IOH = –8 mA)
LVTTL 2.4[28]V
(VDDIO = Min., IOH = –4 mA) HSTL(DC)[29]VDDIO – 0.4[28]V
(VDDIO= Min., IOH = –4 mA) HSTL(AC)[29]VDDIO – 0.5[28]V
(VDDIO = Min., IOH = –6 mA) 2.5V LVCMOS 1.7[28]V
(VDDIO = Min., IOH = –4 mA) 1.8V LVCMOS VDDIO – 0.45[28]V
VOL Output HIGH Voltage
(VDDIO = Min., IOL = 8 mA)
LVTTL 0.4[28]V
(VDDIO = Min., IOL = 4 mA) HSTL(DC)[29]0.4[28]V
(VDDIO = Min., IOL = 4 mA) HSTL(AC)[29]0.5[28]V
(VDDIO = Min., IOL = 6 mA) 2.5V LVCMOS 0.7[28]V
(VDDIO = Min., IOL = 4 mA) 1.8V LVCMOS 0.45[28]V
VIH Input HIGH Voltage LVTTL 2VDDIO + 0.3 V
HSTL(DC)[29]VREF + 0.1 VDDIO + 0.3 V
2.5V LVCMOS 1.7 V
1.8V LVCMOS 1.26 V
VIL Input LOW Voltage LVTTL –0.3 0.8 V
HSTL(DC)[29]–0.3 VREF – 0.1 V
2.5V LVCMOS 0.7 V
1.8V LVCMOS 0.36 V
Notes:
27. LVTTL and 2.5V LVCMOS are not available for 4-Mbit, 9-Mbit, 18-Mbit devices running at 250 MHz SDR and 36-Mbit devices running at 200 MHz SDR.
28. These parameters are met with VIM disabled.
29. The (DC) specifications are measured under steady state conditions. The (AC) specifications are measured while switching at speed. AC VIH/VIL in HSTL mode
are measured with 1V/ns input edge rates
FullFlex
Document #: 38-06072 Rev. *I Page 20 of 53
READY
VOH
Output HIGH Voltage
(VDDIO = Min., IOH = –24 mA)
LVTTL 2.7[28]V
(VDDIO = Min., IOH = –12 mA) HSTL(DC)[29]VDDIO – 0.4[28]V
(VDDIO = Min., IOH = –12 mA) HSTL(AC)[29]VDDIO – 0.5[28]V
(VDDIO = Min., IOH = –15 mA) 2.5V LVCMOS 2.0[28]V
(VDDIO = Min., IOH = –12 mA) 1.8V LVCMOS VDDIO – 0.45[28]V
READY
VOL
Output HIGH Voltage
(VDDIO = Min., IOL = 0.12 mA)
LVTTL 0.4[28]V
(VDDIO = Min., IOL = 0.12 mA) HSTL(DC)[29]0.4[28]V
(VDDIO = Min., IOL = 0.12 mA) HSTL(AC)[29]0.5[28]V
(VDDIO = Min., IOL = 0.15 mA) 2.5V LVCMOS 0.7[28]V
(VDDIO = Min., IOL = 0.08 mA) 1.8V LVCMOS 0.45[28]V
IOZ Output Leakage Current –10 10 µA
IIX1 Input Leakage Current –10 10 µA
IIX2 Input Leakage Current TDI, TMS, MRST,
TRST, TCK
–300 10 µA
IIX3 Input Leakage Current PORTSTD,
DDRON
–10 300 µA
Electrical Characteristics Over the Operating Range (continued)
FullFlex
Document #: 38-06072 Rev. *I Page 21 of 53
Electrical Characteristics Over the Operating Range
Parameter Description Configuration
–200[27]–167[27]–133
UnitTyp. Max. Typ. Max. Typ. Max.
ICC Operating Current
(VCORE = Max.,IOUT = 0 mA)
Outputs Disabled
512Kx72
SDR[30]Com. N/A N/A 1440 1800 1280 1620 mA
Ind. N/A N/A N/A N/A 1330 1730 mA
512Kx36x2
DDR
Com. N/A N/A 1280 1620 1120 1430 mA
Ind. N/A N/A N/A N/A 1170 1550 mA
1024Kx18x2
DDR
Com. N/A N/A 1050 1350 930 1220 mA
Ind. N/A N/A N/A N/A 980 1330 mA
256Kx72
SDR[30]Com. 930 1140 800 980 N/A N/A mA
Ind. N/A N/A 820 1030 N/A N/A mA
256Kx36x2
DDR
Com. 800 980 700 880 N/A N/A mA
Ind. N/A N/A 730 930 N/A N/A mA
512Kx18x2
DDR
Com. 640 800 570 720 N/A N/A mA
Ind. N/A N/A 590 780 N/A N/A mA
128Kx72
SDR[30]Com. 770 930 640 790 N/A N/A mA
Ind. N/A N/A 660 830 N/A N/A mA
128Kx36x2
DDR
Com. 640 790 560 700 N/A N/A mA
Ind. N/A N/A 580 740 N/A N/A mA
256Kx18x2
DDR
Com. 540 640 470 570 N/A N/A mA
Ind. N/A N/A 490 600 N/A N/A mA
64Kx72
SDR[30]Com. 740 880 620 740 N/A N/A mA
Ind. N/A N/A 630 770 N/A N/A mA
64Kx36x2
DDR
Com. 620 740 540 650 N/A N/A mA
Ind. N/A N/A 550 680 N/A N/A mA
128Kx18x2
DDR
Com. 510 590 450 520 N/A N/A mA
Ind. N/A N/A 460 530 N/A N/A mA
Note:
30. Use this number if any one of the two ports is operating in SDR mode.
FullFlex
Document #: 38-06072 Rev. *I Page 22 of 53
ISB1 Standby Current
(Both Ports TTL Level)
CEL and CER VIH,
f = fMAX
512Kx72
SDR[30]Com. N/A N/A 1000 1250 920 1160 mA
Ind. N/A N/A N/A N/A 970 1260 mA
512Kx36x2
DDR
Com. N/A N/A 920 1160 830 1060 mA
Ind. N/A N/A N/A N/A 880 1170 mA
1024Kx18x2
DDR
Com. N/A N/A 820 1050 740 960 mA
Ind. N/A N/A N/A N/A 790 1080 mA
256Kx72
SDR[30]Com. 570 700 500 630 N/A N/A mA
Ind. N/A N/A 530 680 N/A N/A mA
256Kx36x2
DDR
Com. 500 630 460 580 N/A N/A mA
Ind. N/A N/A 490 630 N/A N/A mA
512Kx18x2
DDR
Com. 460 570 410 530 N/A N/A mA
Ind. N/A N/A 440 580 N/A N/A mA
128Kx72
SDR[30]Com. 460 560 400 490 N/A N/A mA
Ind. N/A N/A 420 540 N/A N/A mA
128Kx36x2
DDR
Com. 400 490 360 450 N/A N/A mA
Ind. N/A N/A 380 490 N/A N/A mA
256Kx18x2
DDR
Com. 380 440 340 400 N/A N/A mA
Ind. N/A N/A 360 430 N/A N/A mA
64Kx72
SDR[30]Com. 440 520 380 450 N/A N/A mA
Ind. N/A N/A 390 480 N/A N/A mA
64Kx36x2
DDR
Com. 380 450 340 400 N/A N/A mA
Ind. N/A N/A 350 430 N/A N/A mA
128Kx18x2
DDR
Com. 360 400 320 360 N/A N/A mA
Ind. N/A N/A 330 370 N/A N/A mA
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
–200[27] –167[27] –133
UnitTyp. Max. Typ. Max. Typ. Max.
FullFlex
Document #: 38-06072 Rev. *I Page 23 of 53
ISB2 Standby Current
(One Port TTL or CMOS
Level)
CEL | CER VIH,
f = fMAX
512Kx72
SDR[30]Com. N/A N/A 1300 1570 1160 1410 mA
Ind. N/A N/A N/A N/A 1210 1520 mA
512Kx36x2
DDR
Com. N/A N/A 1160 1410 1020 1260 mA
Ind. N/A N/A N/A N/A 1070 1370 mA
1024Kx18x2
DDR
Com. N/A N/A 980 1210 870 1100 mA
Ind. N/A N/A N/A N/A 920 1210 mA
256Kx72
SDR[30]Com. 760 890 650 790 N/A N/A mA
Ind. N/A N/A 680 840 N/A N/A mA
256Kx36x2
DDR
Com. 650 790 580 710 N/A N/A mA
Ind. N/A N/A 610 760 N/A N/A mA
512Kx18x2
DDR
Com. 550 670 490 610 N/A N/A mA
Ind. N/A N/A 520 670 N/A N/A mA
128Kx72
SDR[30]Com. 620 730 520 630 N/A N/A mA
Ind. N/A N/A 550 670 N/A N/A mA
128Kx36x2
DDR
Com. 520 630 460 560 N/A N/A mA
Ind. N/A N/A 480 610 N/A N/A mA
256Kx18x2
DDR
Com. 460 530 400 470 N/A N/A mA
Ind. N/A N/A 430 500 N/A N/A mA
64Kx72
SDR[30]Com. 590 680 500 580 N/A N/A mA
Ind. N/A N/A 510 610 N/A N/A mA
64Kx36x2
DDR
Com. 500 580 440 510 N/A N/A mA
Ind. N/A N/A 450 550 N/A N/A mA
128Kx18x2
DDR
Com. 440 480 380 420 N/A N/A mA
Ind. N/A N/A 390 440 N/A N/A mA
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
–200[27] –167[27] –133
UnitTyp. Max. Typ. Max. Typ. Max.
FullFlex
Document #: 38-06072 Rev. *I Page 24 of 53
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
All Speed Bins[27]
UnitTyp. Max.
ISB3 Standby Current
(Both Ports CMOS Level)
CEL and CER VCORE – 0.2V,
f = 0
512Kx72
SDR[30]Com. 410 590 mA
Ind. 460 700 mA
512Kx36x2
DDR
Com. 410 590 mA
Ind. 460 700 mA
1024Kx18x2
DDR
Com. 410 590 mA
Ind. 460 700 mA
256Kx72
SDR[30]Com. 210 300 mA
Ind. 230 350 mA
256Kx36x2
DDR
Com. 210 300 mA
Ind. 230 350 mA
512Kx18x2
DDR
Com. 210 300 mA
Ind. 230 350 mA
128Kx72
SDR[30]Com. 150 200 mA
Ind. 170 220 mA
128Kx36x2
DDR
Com. 150 200 mA
Ind. 170 220 mA
256Kx18x2
DDR
Com. 150 200 mA
Ind. 170 220 mA
64Kx72
SDR[30]Com. 130 150 mA
Ind. 140 170 mA
64Kx36x2
DDR
Com. 130 150 mA
Ind. 140 170 mA
128Kx18x2
DDR
Com. 130 150 mA
Ind. 140 170 mA
Table 13.Capacitance
Signals Packages
CYDD18S72V18
CYDD09S72V18
CYDD04S72V18
CYDD18S36V18
CYDD09S36V18
CYDD04S36V18
CYDD18S18V18
CYDD09S18V18
CYDD04S18V18
CYDD36S36V18 CYDD36S18V18
OE 12 pF 12 pF 20 pF 20 pF
BE, DQ 10 pF 18 pF 16 pF 30 pF
All other signals 10 pF 10 pF 16 pF 16 pF
FullFlex
Document #: 38-06072 Rev. *I Page 25 of 53
AC Test Load and Waveforms
Figure 6. Output Test Load for LVTTL/CMOS
Figure 7. Output Test Load for HSTL
Output
50 Ohm 50 Ohm
VTH = 1.5V for LVTTL
VTH = 50% VDDIO for 2.5V CMOS
VTH = 50% VDDIO for 1.8V CMOS
ZQ
RQ=250 Ohm
Device under
test
VREF
VREF = NC
Test Point
C = 10pF
R=250 Ohm
READY VTH
Output
50 Ohm 50 Ohm
VTH = 50% VDDIO
ZQ
RQ=250 Ohm
D evice under
te s t
VREF
VREF = 0.75V
Test P oint
C = 0pF for DD R
C = 10pF for S D R
R=250 Ohm
READY
VTH
Figure 8. HSTL Input Waveform
FullFlex
Document #: 38-06072 Rev. *I Page 26 of 53
Switching Characteristics Over the Operating Range
Table 14.DDR Mode with 2.5 Pipelined Stages and DLL Enabled (LOWSPD-HIGH)[33]
Parameter Description
–200 –167 –133
UnitMin. Max. Min. Max. Min. Max.
fMAX Maximum Operating Frequency 159 200 127 167 100 133 MHz
tCYC C/C Clock Cycle Time 5.00[34]6.3 6.00[34]7.88 7.50[34]10.00 ns
tCH C/C Clock HIGH Time 2.00 2.40 3.00 ns
tCL C/C Clock LOW Time 2.00 2.40 3.00 ns
tCHCH C/C Clock Rise to C/C Clock Rise 2.20 2.70 3.38 ns
tSD Data Input Set-up Time to
C/C Rise
HSTL
1.8V LVCMOS
0.45[32]0.55[32]0.75[32]ns
2.5V LVCMOS
3.3V LVTTL
0.65[32]0.75[32]0.95[32]ns
tHD Data Input Hold Time after C/C Rise 0.45 0.55 0.75 ns
tSBE Byte enable Set-up Time to
C/C Rise
HSTL
1.8V LVCMOS
0.45[32]0.55[32,] 0.65[32]ns
2.5V LVCMOS
3.3V LVTTL
0.65[32]0.75[32]0.85[32]ns
tHBE Byte enable Hold Time after C/C Rise 0.45 0.55 0.65 ns
tSAC Address & Control Input
except BE Set-up Time to C
Rise
HSTL
1.8V LVCMOS
1.50[34]1.70[34]1.80[34]ns
2.5V LVCMOS
3.3V LVTTL
1.75[34]1.95[34]2.05[34]ns
tHAC Address & Control Input except BE Hold Time
after C Rise
0.50 0.60 0.70 ns
tOE Output Enable to Data Valid 4.40[32,34]5.00[32,34]5.50[32,34]ns
tOLZ[31]OE to Low Z 1.00 1.00 1.00 ns
tOHZ[31]OE to High Z 1.00 4.40[32,34]1.00 5.00[32,34]1.00 5.50[32,34]ns
tCD[35]C/C Rise to DQ Valid HSTL
1.8V LVCMOS
0.65[32]0.75[32]0.85[32]ns
2.5V LVCMOS
3.3V LVTTL
0.65[32]0.75[32]0.85[32]ns
tDC[35]DQ Output Hold after C/C
Rise
HSTL
1.8V LVCMOS
–0.65 –0.75 –0.85 ns
2.5V LVCMOS
3.3V LVTTL
–0.65 –0.75 –0.85 ns
tCCQ[35]C/C Rise to CQ/CQ Rise HSTL
1.8V LVCMOS
–0.65[36]0.65 –0.75[36]0.75 –0.85[36]0.85 ns
2.5V LVCMOS
3.3V LVTTL
–0.65[36]0.60 –0.75[36]0.70 –0.85[36]0.80 ns
tCQHQV[35]Echo Clock (CQ/CQ) High
to Output Valid
HSTL
1.8V LVCMOS
0.35[32]0.40[32]0.50[32]ns
2.5V LVCMOS
3.3V LVTTL
0.45[32]0.50[32]0.60[32]ns
Notes:
31. Parameters specified with the load capacitance in Figure 6 and Figure 7.
32. For the x18 devices, add 200 ps to this parameter in the table above.
33. Test conditions assume a signal transition time of 2 V/ns.
34. Add 15% to this parameter if a VCORE of 1.5V is used.
35. This parameter assumes input clock cycle to cycle jitter of +/- 0ps.
36. For the x18 devices, subtract 200ps from this parameter in the table above.
FullFlex
Document #: 38-06072 Rev. *I Page 27 of 53
tCQHQX[35]Echo Clock (CQ/CQ) High
to Output Hold
HSTL
1.8V LVCMOS
–0.35[36]–0.40[36]–0.50[36]ns
2.5V LVCMOS
3.3V LVTTL
–0.50[36]–0.55[36]–0.65[36]ns
tCKHZ[31,35]C Rise to DQ Output High Z HSTL
1.8V LVCMOS
0.65[32]0.75[32]0.85[32]ns
2.5V LVCMOS
3.3V LVTTL
0.65[32]0.75[32]0.85[32]ns
tCKLZ[31,35]C Rise to DQ Output Low Z HSTL
1.8V LVCMOS
–0.65 –0.75 –0.85 ns
2.5V LVCMOS
3.3V LVTTL
–0.65 –0.75 –0.85 ns
tCA C Rise to Address Readback Valid 5.00[34]6.00[34]7.50[34]ns
tAC Address Output Hold after C Rise 1.00 1.00 1.00 ns
tCKHZA[31]C Rise to Address Output High Z 1.00 5.00[34]1.00 6.00[34]1.00 7.50[34]ns
tCKLZA[31]C Rise to Address Output Low Z 1.00 1.00 1.00 ns
tSCINT C Rise to CNTINT Low 1.00 3.30[34]1.00 4.00[34]1.00 5.00[34]ns
tRCINT C Rise to CNTINT High 1.00 3.30[34]1.00 4.00[34]1.00 5.00[34]ns
tSINT C Rise to INT Low 0.50 7.00[34]0.50 8.00[34]0.50 9.00[34]ns
tRINT C Rise to INT High 0.50 7.00[34]0.50 8.00[34]0.50 9.00[34]ns
tBSY C Rise to BUSY Valid 1.00 3.30[34]1.00 4.00[34]1.00 5.00[34]ns
tJIT Clock Input Cycle to Cycle Jitter +/- 200 +/- 200 +/- 200 ps
Table 15.SDR Mode with Flow-Through Mode
Parameter Description
–200[27]–167[27]–133
UnitMin. Max. Min. Max. Min. Max.
fMAX
(FLOW-THROUGH)
Maximum Operating Frequency for
Flow-through Mode
100 77 66.7 MHz
tCYC
(FLOW-THROUGH)
C Clock Cycle Time for Flow-through
mode
10.00[34]13.00[34]15.00[34]ns
tCD1 C Rise to DQ Valid for Flow-through
Mode (LowSPD = 1)
7.20[32,34]9.00[32,34]11.00[32,
34]ns
tCA1 C Rise to Address Readback Valid for
Flow-through Mode
7.20[34]9.00[34]11.00[34]ns
tCKHZ1[31]C Rise to DQ Output High Z in
Flow-through Mode
1.00 7.20[32,34]1.00 9.00[32,34]1.00 11.00[32,
34]ns
tCKLZ1[31]C Rise to DQ Output Low Z in
Flow-through Mode
1.00 1.00 1.00 ns
tCKHZA1[31]C Rise to Address Output High Z for
Flow-through Mode
1.00 7.20[34]1.00 9.00[34]1.00 11.00[34]ns
Table 14.DDR Mode with 2.5 Pipelined Stages and DLL Enabled (LOWSPD-HIGH)[33]
Parameter Description
–200 167 –133
UnitMin. Max. Min. Max. Min. Max.
Table 16.SDR Mode with Pipeline Mode, DLL Enabled (LOWSPD-HIGH)[33]
Parameter Description
–200[27]–167[27]–133
UnitMin. Max. Min. Max. Min. Max.
fMAX (PIPELINED)Maximum Operating Frequency for
Pipelined Mode
100 250 100 200 100 167 MHz
FullFlex
Document #: 38-06072 Rev. *I Page 28 of 53
tCYC (PIPELINED)C Clock Cycle Time for Pipelined Mode 4.00[34]10.00 5.00[34]10.00 6.00[34]10.00 ns
tCKD C Clock Duty Time 45 55 45 55 45 55 %
tSD Data Input Set-up
Time to C Rise
HSTL
1.8V LVCMOS
1.20[32,34]1.50[32,34]1.70[32,34]ns
2.5V LVCMOS
3.3V LVTTL
1.45[32,34]1.75[32,34]1.95[32,34]ns
tHD Data Input Hold Time after C Rise 0.50 0.50 0.50 ns
tSAC Address & Control
Input Set-up Time
to C Rise
HSTL
1.8V LVCMOS
1.20[32,34]1.50[32,34]1.70[32,34]ns
2.5V LVCMOS
3.3V LVTTL
1.45[32,34]1.75[32,34]1.95[32,34]ns
tHAC Address & Control Input Hold Time
after C Rise
0.50 0.50 0.60 ns
tOE Output Enable to Data Valid 3.40[32,34]4.40[32,34]5.00[32,34]ns
tOLZ[31]OE to Low Z 1.00 1.00 1.00 ns
tOHZ[31]OE to High Z 1.00 3.40[32,34]1.00 4.40[32,34]1.00 5.00[32,34]ns
tCD2[35]C Rise to DQ Valid for Pipelined Mode
(LowSPD = 1)
2.64[32,34]3.30[32,34]4.00[32,34]ns
tCA2 C Rise to Address Readback Valid for
Pipelined Mode
4.00[34]5.00[34]6.00[34]ns
tDC[35]DQ Output Hold after C Rise 1.00 1.00 1.00 ns
tCCQ[35]C Rise to CQ Rise 1.00 2.64[34]1.00 3.30[34]1.00 4.00[34]ns
tCQHQV[35]Echo Clock (CQ)
High to Output Valid
HSTL
1.8V LVCMOS
0.60[32]0.70[32]0.80[32]ns
2.5V LVCMOS
3.3V LVTTL
0.70[32]0.80[32]0.90[32]ns
tCQHQX[35]Echo Clock (CQ)
High to Output Hold
HSTL
1.8V LVCMOS
–0.60 –0.70 –0.80 ns
2.5V LVCMOS
3.3V LVTTL
–0.75 –0.85 –0.95 ns
tCKHZ2[31,35]C Rise to DQ Output High Z in
Pipelined Mode
1.00 2.64 [32,
34]1.00 3.30[32,34]1.00 4.00[32,34]ns
tCKLZ2[31,35]C Rise to DQ Output Low Z in
Pipelined Mode
1.00 1.00 1.00 ns
tAC Address Output Hold after C Rise 1.00 1.00 1.00 ns
tCKHZA2[31]C Rise to Address Output High Z for
Pipelined Mode
1.00 4.00[34]1.00 5.00[34]1.00 6.00[34]ns
tCKLZA[31]C Rise to Address Output Low Z 1.00 1.00 1.00 ns
tSCINT C Rise to CNTINT Low 1.00 2.64[34]1.00 3.30[34]1.00 4.00[34]ns
tRCINT C Rise to CNTINT High 1.00 2.64[34]1.00 3.30[34]1.00 4.00[34]ns
tSINT C Rise to INT Low 0.50 6.00[34]0.50 7.00[34]0.50 8.00[34]ns
tRINT C Rise to INT High 0.50 6.00[34]0.50 7.00[34]0.50 8.00[34]ns
tBSY C Rise to BUSY Valid 1.00 2.64[34]1.00 3.30[34]1.00 4.00[34]ns
tJIT Clock Input Cycle to Cycle Jitter +/- 200 +/- 200 +/- 200 ps
Table 16.SDR Mode with Pipeline Mode, DLL Enabled (LOWSPD-HIGH)[33] (continued)
Parameter Description
–200[27] –167[27] –133
UnitMin. Max. Min. Max. Min. Max.
FullFlex
Document #: 38-06072 Rev. *I Page 29 of 53
Table 17.SDR Mode with Pipeline Mode, DLL Disabled (LOWSPD-LOW)[33]
Parameter Description
All Speed Bins
UnitMin. Max.
fMAX (PIPELINED)Maximum Operating Frequency for Pipelined Mode 100 MHz
tCYC (PIPELINED)C Clock Cycle Time for Pipelined Mode 10.00[34]ns
tCKD C Clock Duty Time 45 55 %
tSD Data Input Set-up Time to C Rise HSTL
1.8V LVCMOS
1.80[32,34]ns
2.5V LVCMOS
3.3V LVTTL
2.05[32,34]ns
tHD Data Input Hold Time after C Rise 0.50 ns
tSAC Address & Control Input Set-up
Time to C Rise
HSTL
1.8V LVCMOS
1.80[32,34]ns
2.5V LVCMOS
3.3V LVTTL
2.05[32,34]ns
tHAC Address & Control Input Hold Time after C Rise 0.70 ns
tOE Output Enable to Data Valid 5.50[32,34]ns
tOLZ[31]OE to Low Z 1.00 ns
tOHZ[31]OE to High Z 1.00 5.50[32,34]ns
tCD2[35]C Rise to DQ Valid for Pipelined Mode (LowSPD = 0) 6.00[32,34]ns
tCA2 C Rise to Address Readback Valid for Pipelined Mode 7.50[34]ns
tDC[35]DQ Output Hold after C Rise 1.00 ns
tCCQ[35]C Rise to CQ Rise 1.00 6.00[34]ns
tCQHQV[35]Echo Clock (CQ) High to Output
Valid
HSTL
1.8V LVCMOS
0.90[32]ns
2.5V LVCMOS
3.3V LVTTL
1.00[32]ns
tCQHQX[35]Echo Clock (CQ) High to Output
Hold
HSTL
1.8V LVCMOS
–0.90 ns
2.5V LVCMOS
3.3V LVTTL
–1.05 ns
tCKHZ2[31,35]C Rise to DQ Output High Z in Pipelined Mode 1.00 6.00[32,34]ns
tCKLZ2[31,35]C Rise to DQ Output Low Z in Pipelined Mode 1.00 ns
tAC Address Output Hold after C Rise 1.00 ns
tCKHZA2[31]C Rise to Address Output High Z for Pipelined Mode 1.00 7.50[34]ns
tCKLZA[31]C Rise to Address Output Low Z 1.00 ns
tSCINT C Rise to CNTINT Low 1.00 4.50[34]ns
tRCINT C Rise to CNTINT High 1.00 4.50[34]ns
tSINT C Rise to INT Low 0.50 8.50[34]ns
tRINT C Rise to INT High 0.50 8.50[34]ns
tBSY C Rise to BUSY Valid 1.00 4.50[34]ns
Table 18.Master Reset Timing
Parameter Description
–200[27]–167[27]–133
UnitMin. Max. Min. Max. Min. Max.
tPUP Power-up Time 111ms
tRS Master Reset Pulse Width 555cycles
FullFlex
Document #: 38-06072 Rev. *I Page 30 of 53
tRSR Master Reset Recovery Time 555cycles
tRSF Master Reset to Outputs Inactive/Hi-Z 12 15 18 ns
tRDY[37]Master Reset Release to Port Ready 1024 1024 1024 cycles
tCORDY[38]C Rise to Port Ready 8[34]9.5[34]11[34]ns
Table 19.JTAG Timing
Parameter Description
–200[27]–167[27]–133
UnitMin. Max. Min. Max. Min. Max.
fJTAG JTAG TAP Controller Frequency 20 20 20 MHz
tTCYC TCK Cycle Time 50 50 50 ns
tTH TCK High Time 20 20 20 ns
tTL TCK Low Time 20 20 20 ns
tTMSS TMS Set-up to TCK Rise 10 10 10 ns
tTMSH TMS Hold to TCK Rise 10 10 10 ns
tTDIS TDI Set-up to TCK Rise 10 10 10 ns
tTDIH TDI Hold to TCK Rise 10 10 10 ns
tTDOV TCK Low to TDO Valid 10 10 10 ns
tTDOX TCK Low to TDO Invalid 0 0 0 ns
tJXZ TCK Low to TDO hi-Z 15 15 15 ns
tJZX TCK Low to TDO Active 15 15 15 ns
Notes:
37. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250 resistor to VSS.
38. Add this propagation delay after tRDY for all Master Reset Operations
Table 18.Master Reset Timing
Parameter Description
–200[27] –167[27] –133
UnitMin. Max. Min. Max. Min. Max.
FullFlex
Document #: 38-06072 Rev. *I Page 31 of 53
Switching Waveforms
JTAG Timing
Master Reset[37]
Test Clock
Test Mode Select
TCK
TMS
Test Data-In
TDI
Tes t D a t a- Ou t
TDO
tTCYC
tTMSH
tTL
tTH
tTMSS
tTDIS tTDIH
tTDOX
tTDOV
tPUP tRS
tRDY
tRSF
tRSR
VCORE
MRST
C
READY
All Address
& Data
All Other
Inputs
tCORDY
~
~
~
~
~
~
FullFlex
Document #: 38-06072 Rev. *I Page 32 of 53
READ Cycle for Pipelined Mode, DDRON = LOW
WRITE Cycle for Pipelined and Flow-through Modes, DDRON = LOW
Switching Waveforms (continued)
C
tCYC
R/W
A
2 pipelined stages
AnAn+1 An+2 An+3 An+4 An+5 An+6
DQx-1 DQxDQnDQn+1 DQn+2 DQn+3 DQn+4
tDC tCD
tSAC tHAC
DQ
tCYC
C
R/W
AAnAn+1 An+2 An+3 An+4 An+5 An+6
DQnDQn+1 DQn+2 DQn+3 DQn+4 DQn+5 DQn+6
2 pipelined stages
tSD tHD
DQ
FullFlex
Document #: 38-06072 Rev. *I Page 33 of 53
READ with Address Counter Advance for Pipelined Mode, DDRON = LOW
READ with Address Counter Advance for Flow-through Mode, DDRON = LOW
Switching Waveforms (continued)
C
tCYC
DQx-1 DQxDQnDQn+1 DQn+2
A
Internal
ADS
Address
CNTEN
An
An
An+1 An+2 An+3
DQn+3
DQ
tCYC
C
tSAC tHAC
tHAC
tDC
tCD1
tSAC
READ EXTERNAL ADDRESS READ W ITH COUNTERCOUNTER HOLDREAD WITH COUNTER
DQx DQn + 1 DQn + 2 DQn + 3 DQn + 4DQn
An
A
DQ
CNTEN
ADS
FullFlex
Document #: 38-06072 Rev. *I Page 34 of 53
Mailbox Interrupt Output, DDRON = LOW
Switching Waveforms (continued)
tCYC
CL
AL
R/WL
DQL
INTR
CR
AR
R/WR
DQR
AMAX
DQMAX
AMAX
tSINT tRINT
FullFlex
Document #: 38-06072 Rev. *I Page 35 of 53
Port-to-Port WRITE–READ for Pipelined Mode, DDRON = LOW
Chip Enable READ for Pipelined Mode, DDRON = LOW
Switching Waveforms (continued)
CL
An
DQn
Left Port
R/WL
CR
Right Port
An
R/WR
DQRDQn
tCD2 tDC
tSAC tHAC
tCYC
tCYC
tCCS
DQL
AL
AR
C
R/W
AAnAn+1 An+2 An+3 An+4 An+5 An+6
tSAC tHAC
tCYC
CE0
CE1
DQ DQnDQn+3
tCD2 tCKHZ2 tCKLZ2
FullFlex
Document #: 38-06072 Rev. *I Page 36 of 53
OE Controlled WRITE for Pipelined Mode, DDRON = LOW
OE Controlled WRITE for Flow-through Mode, DDRON = LOW
Switching Waveforms (continued)
C
R/W
AAx+1 Ax+2 Ax+3 AnAn+1 An+2 An+3
tCYC
DQx-1 DQx
DQx+1
DQnDQn+1 DQn+2 DQn+3
OE
DQ
t
OHZ
C
R/W
AAx+1 Ax+2 Ax+3 AnAn+1 An+2 An+3
tCYC
DQxDQx+1
DQx+2
DQnDQn+1 DQn+2 DQn+3
OE
DQ
tOHZ
FullFlex
Document #: 38-06072 Rev. *I Page 37 of 53
Byte-Enable READ for Pipelined Mode, DDRON = LOW
Switching Waveforms (continued)
C
R/W
AAnAn+1 An+2 An+3
tCYC
BE7
BE6
BE5
BE4
BE3
BE2
BE1
BE0
DQ63:71
DQ54:62
DQ45:53
DQ36:44
DQ27:35
DQ18:26
DQ9:17
DQ0:8
DQn+1(63:71)
DQn+1(54:62)
DQn+1(27:35)
DQn+2(45:53)
DQn+2(36:44)
DQn+2(18:26)
DQn+3(9:17)
DQn+3(0:8)
tCKLZ2 tCKHZ2
FullFlex
Document #: 38-06072 Rev. *I Page 38 of 53
Port-to-Port WRITE-to-READ for Flow-through Mode, DDRON = LOW
BUSY Address Readback for Pipelined and Flow-through Modes, DDRON = CNT/MSK = RET = LOW[39]
Note:
39. Amatch is the matching address which will be reported on the address bus of the losing port. The counter operation selected for reporting the address is “Busy
Address Readback.”
Switching Waveforms (continued)
tHD
tSD
tCD1
tDC
tDC
tSAC tHAC
tCD1
tCCS
tHAC
tSAC
MATCH
VALID
NO MATCH
NO MATCH
MATCH
VALID VALID
CL
R/WL
CR
AL
DQL
R/WR
AR
DQR
`
Internal
Amatch+2 Amatch+3 Amatch+4
tCYC
C
BUSY
~
~
~
~
~
~
CNTEN
ADS
External
Amatch
tCA2 tAC
A
ddress
Address
External
tCA1 tAC
Address
Pipelined
Flow-through
Amatch
FullFlex
Document #: 38-06072 Rev. *I Page 39 of 53
Read Cycle for Flow-through Mode, DDRON = LOW
READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE = VIL)[40, 41, 42]
Notes:
40. When OE = VIL, the last read operation is allowed to complete before the DQ bus is tri-stated and the user is allowed to drive write data.
41. Two dummy writes should be issued to accomplish bus turnaround. The third instruction is the first valid write.
42. Chip enable or all byte enables should be held inactive during the two dummy writes to avoid data corruption.
Switching Waveforms (continued)
tCYC
tSAC tHAC
tCKHZ1
tDC
tOE
tOLZ
tOHZ
tDCtCD1
tCKLZ1
An
tHACtSAC
CE1
CE0
C
An + 1 An + 3An + 2
DQn DQn + 1 DQn + 2
R/W
OE
BEn
A
DQ
C
AAxAnAn+1 An+2
tCYC
DQx-2 DQx-1 DQxDQnDQn+1 DQn+2
tCH
tCL
tSAC tHAC tSAC tHAC
tDC
tCD2 tCKHZ2 tSD tHD
R/W
DQ
FullFlex
Document #: 38-06072 Rev. *I Page 40 of 53
READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE Controlled)[43, 44]
READ-to-WRITE-to-READ for DDR, DDRON = HIGH[40,41,45,46]
Notes:
43. OE should be deasserted and tOHZ allowed to elapse before the first write operation is issued.
44. Any write scheduled to complete after OE is deasserted will be preempted.
45. The address should be held constant during the two dummy writes and first valid write to avoid data corruption.
46. D[1]/Q [1] contains data [71:36]; D[0]/Q[0] contains data [35:0].
Switching Waveforms (continued)
C
R/W
AAxAx+1 Ax+2 AnAn+1 An+2 An+3
tCYC
DQx-2 DQx-1
DQx
DQnDQn+1 DQn+2 DQn+3
tSAC tHAC
tOHZ tSD tHD
OE
DQ
C
tCYC
C
AAxAnAn+1 An+2
tSAC tHAC
tSAC tHAC
R/W
tCD tDC
tCKHZ
tSD tHD
DQx-2[0]
DQx-1[1] DQx-1[0] DQx[1] DQx[0]
DQn[1] DQn[0]
DQn+1[1]
DQn+1[0]
tCH tCL
tCHCH tCHCH
DQn+2[1]
DQn+2[0]
DQn+2[1]
DQ
FullFlex
Document #: 38-06072 Rev. *I Page 41 of 53
Read-to-Write-to-Read for Flow-through Mode, DDRON = LOW (OE = LOW)
Switching Waveforms (continued)
tHDtSD
tSAC
tCKHZ1
tDC
tCD1
tCD1
tSAC
tCYC
tHAC
tDC
tCD1tCD1
tCKLZ1
READ READWRITENOP
An An + 1 An + 2 An + 2 An + 3 An + 4
DQn + 2
DQn DQn + 1 DQn + 3
C
R/W
BEn
CE1
DQOUT
DQIN
A
tHAC
CE0
FullFlex
Document #: 38-06072 Rev. *I Page 42 of 53
Read-to-Write-to-Read for Flow-through Mode, DDRON = LOW (OE Controlled)
Switching Waveforms (continued)
tCD1
tCKLZ1
tHDtSD
tOHZ
tDCtCD1
tHAC
tSAC
tCYC
tDC
tCD1
tOE
READ READWRITE
An An + 1 An + 2 An + 3 An + 4 An + 5
DQn + 2 DQn + 3
DQn DQn + 4
C
R/W
BEn
CE1
DQOUT
DQIN
A
OE
tHAC
tSAC
CE0
FullFlex
Document #: 38-06072 Rev. *I Page 43 of 53
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-through Modes, Clock Timing Violates tCCS. (Flag Both
Ports)
Switching Waveforms (continued)
Port A
A
R/W
tBSY tBSY
BUSY
Port B
< tCCS
A
R/W
tBSY tBSY
BUSY
C
Losing Port
C
A
R/W
tBSY tBSY
BUSY
Winning Port
A
R/W
C
tccs
Match
C
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-through Modes, Clock Timing Meets tCCS. (Flag Losing
Port)
BUSY
FullFlex
Document #: 38-06072 Rev. *I Page 44 of 53
Read with Echo Clock for Pipelined Mode (CQEN = HIGH)
Switching Waveforms (continued)
C
R/W
AAnAn+1 An+2 An+3 An+4 An+5 An+6
DQx-1 DQxDQnDQn+1 DQn+2 DQn+3 DQn+4
tSAC tHAC
DQ
CQ1
CQ1
CQ0
CQ0
tCCQ
tCQHQV tCQHQX
FullFlex
Document #: 38-06072 Rev. *I Page 45 of 53
Ordering Information
256K
×
72/256K
×
36
×
2 (18 Mbit) 1.8V/1.5V Synchronous CYDD18S72V18 Dual-Port SRAM (SDR and DDR I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD18S72V18-200BGXC BY484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD18S72V18-200BGC BG484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded)
Commercial
167 CYDD18S72V18-167BGXC BY484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD18S72V18-167BGC BG484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD18S72V18-167BGXI BY484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD18S72V18-167BGI BG484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded)
Industrial
128K
×
72/128K
×
36
×
2 (9 Mbit) 1.8V/1.5V Synchronous CYDD09S72V18 Dual-Port SRAM (SDR and DDR I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD09S72V18-200BGXC BY484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD09S72V18-200BGC BG484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded)
Commercial
167 CYDD09S72V18-167BGXC BY484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD09S72V18-167BGC BG484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD09S72V18-167BGXI BY484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD09S72V18-167BGI BG484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded)
Industrial
64K
×
72/64K
×
36
×
2 (4 Mbit) 1.8V/1.5V Synchronous CYDD04S72V18 Dual-Port SRAM (SDR and DDR I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD04S72V18-200BGXC BY484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD04S72V18-200BGC BG484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded)
Commercial
167 CYDD04S72V18-167BGXC BY484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD04S72V18-167BGC BG484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD04S72V18-167BGXI BY484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD04S72V18-167BGI BG484A
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded)
Industrial
1024K
×
36
×
2 (36 Mbit) 1.8V/1.5V Synchronous CYDD36S36V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
167 CYDD36S36V18-167BGXC BY484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD36S36V18-167BGC BG484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded)
Commercial
133 CYDD36S36V18-133BGXC BY484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD36S36V18-133BGC BG484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD36S36V18-133BGXI BY484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD36S36V18-133BGI BG484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded)
Industrial
FullFlex
Document #: 38-06072 Rev. *I Page 46 of 53
512K
×
36
×
2 (18 Mbit) 1.8V/1.5V Synchronous CYDD18S36V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD18S36V18-200BBXC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD18S36V18-200BBC BB256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded)
Commercial
167 CYDD18S36V18-167BBXC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD18S36V18-167BBC BB256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD18S36V18-167BBXI BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD18S36V18-167BBI BB256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded)
Industrial
256K
×
36
×
2 (9 Mbit) 1.8V/1.5V Synchronous CYDD09S36V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD09S36V18-200BBXC BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD09S36V18-200BBC BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Commercial
167 CYDD09S36V18-167BBXC BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD09S36V18-167BBC BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD09S36V18-167BBXI BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD09S36V18-167BBI BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Industrial
128K
× 36 × 2
(4 Mbit) 1.8V/1.5V Synchronous CYDD04S36V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD04S36V18-200BBXC BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD04S36V18-200BBC BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Commercial
167 CYDD04S36V18-167BBXC BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD04S36V18-167BBC BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD04S36V18-167BBXI BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD04S36V18-167BBI BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Industrial
2048K
×
18
×
2 (36 Mbit) 1.8V/1.5V Synchronous CYDD36S18V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
167 CYDD36S18V18-167BGXC BY484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD36S18V18-167BGC BG484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded)
Commercial
133 CYDD36S18V18-133BGXC BY484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD36S18V18-133BGC BG484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD36S18V18-133BGXI BY484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD36S18V18-133BGI BG484S
484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded)
Industrial
1024K
×
18
×
2 (18 Mbit) 1.8V/1.5V Synchronous CYDD18S18V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD18S18V18-200BBXC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD18S18V18-200BBC BB256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded)
Commercial
167 CYDD18S18V18-167BBXC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD18S18V18-167BBC BB256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD18S18V18-167BBXI BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD18S18V18-167BBI BB256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded)
Industrial
Ordering Information (continued)
FullFlex
Document #: 38-06072 Rev. *I Page 47 of 53
512K
×
18
×
2 (9 Mbit) 1.8V/1.5V Synchronous CYDD09S18V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD09S18V18-200BBXC BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD09S18V18-200BBC BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Commercial
167 CYDD09S18V18-167BBXC BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD09S18V18-167BBC BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD09S18V18-167BBXI BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD09S18V18-167BBI BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Industrial
256K
×
18
×
2 (4 Mbit) 1.8V/1.5V Synchronous CYDD04S18V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD04S18V18-200BBXC BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD04S18V18-200BBC BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Commercial
167 CYDD04S18V18-167BBXC BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Commercial
CYDD04S18V18-167BBC BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Commercial
CYDD04S18V18-167BBXI BW256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free)
Industrial
CYDD04S18V18-167BBI BB256E
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded)
Industrial
Ordering Information (continued)
FullFlex
Document #: 38-06072 Rev. *I Page 48 of 53
Package Diagrams
BOTTOM VIEW
TOP VIEW
10987654321
A
B
C
D
E
F
G
H
J
K
PIN 1 CORNER
PIN 1 CORNER
0.20(4X)
Ø0.25MCAB
Ø0.05 M C
Ø0.45±0.05(256X)-CPLD DEVICES (37K & 39K)
0.25 C
0.70±0.05
C
SEATING PLANE
0.15 C
16 15 14 13 12 11
T
R
P
M
N
L
N
T
R
P
M
L
K
J
F
G
H
E
D
A
C
B
161513 141210 11928765431
A
B
Ø0.50 (256X)-ALL OTHER DEVICES
+0.10
-0.05
A1 0.36 0.56
A 1.40 MAX. 1.70 MAX.
REFERENCE JEDEC MO-192
15.00
1.00
0.35
A
17.00±0.10
7.50
7.50
15.00
17.00±0.10
1.00
A1
-0.05
+0.10
256-ball Leaded FBGA (17 x 17 mm) BB256
51-85108-*F
256-ball Lead-Free FBGA (17 x 17 mm) BW256
FullFlex
Document #: 38-06072 Rev. *I Page 49 of 53
Package Diagrams (continued)
Package Weight - 1.1 grams
0.70 (REF)
0.56 (REF)
SEATING PLANE
-C-
T
R
H
L
P
N
M
K
J
G
F
E
C
D
B
3
A
24
PIN A1 CORNER
17
56810
9
TOP VIEW
0.15 C
1.70 MAX.
0.35 +0.10/-0.05 0.25 C
0.15(4X)
-A-
-B-
19.00 +/- 0.10
15.00 (REF)
1.00 (REF)
T
R
11
19.00 +/- 0.10
15.00 (REF)
1.00 (REF)
1412 16
11 13 15 16 14 12
15 13
H
L
P
N
M
K
J
G
F
E
C
D
B
A1 CORNER
Ø0.05 M C
5
7
8
10 6
93
42
A
Ø0.50 (256 X)
Ø0.25 M C A B
1
BOTTOM VIEW
Jedec Outline - Design Guide 4.14
256-ball Leaded FBGA (19 x 19 x 1.7 mm) BB256
001-00915-*A
256-ball Lead-Free FBGA (19 x 19 x 1.7 mm) BW256
FullFlex
Document #: 38-06072 Rev. *I Page 50 of 53
Package Diagrams (continued)
Ø0.50~Ø0.70(484X)
0.97 REF.
0.20 C
0.56 REF.
f
SEATING PLANE
-C-
30° TYP.
f
0.40~0.60
0.132.03 ±
PIN #1 CORNER
1.00
G
20.00 REF.
AB
AA
3.20*45°(4x)
U
W
Y
V
R
T
P
K
M
N
L
J
H
20.00 REF.
-A-
0.20(4X)
-B-
23.00±0.20
21.00
23.00±0.20
21.00
Ø1.00(3X) REF.
E
F
D
B
C
A
1
24
359
6
7
8
11
10 12
19
1614
13 15
18
17 21
20 22 22
15
19
20
21 17
18 16 1214
13
10
11 9
G
1.00
AB
AA
U
Y
W
V
R
T
P
K
M
N
L
J
H
E
F
D
B
C
A
5
7
8642
31
Package Weight - 2.0 grams
Jedec Outline - Design Guide 4.14
0.25 C
0.35 C
484-ball Leaded PBGA (23 mm x 23 mm x 2.03 mm) BG484
51-85218-**
484-ball Lead-Free PBGA (23 mm x 23 mm x 2.03 mm) BY484
FullFlex
Document #: 38-06072 Rev. *I Page 51 of 53
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
FullFlex is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are
trademarks of their respective holders.
Package Diagrams (continued)
484-ball Leaded PBGA (27 mm x 27 mm x 2.33 mm) BG484S
001-07825-**
484-ball Lead-Free PBGA (27 mm x 27 mm x 2.33 mm) BY484S
FullFlex
Document #: 38-06072 Rev. *I Page 52 of 53
Document History Page
Document Title: FullFlex™ Synchronous DDR Dual-Port SRAM
Document Number: 38-06072
REV. ECN NO.
Issue
Date
Orig. of
Change Description of Change
** 274729 See ECN SPN New data sheet
*A 294239 See ECN SPN Updated VIM section
Added notes 7
Added timing for 100 MHz with DLL Disabled
Removed tPS
*B 301331 See ECN SPN Added note 19
Updates Selectable I/O Standard Section
*C 318834 See ECN SPN Updated Block Diagram
Updated 484 pinouts, changed pins D11, W12, K3, K20
Added note 4 - Leaving pin DNU disables VIM
Updated 256 pinout, changed pins C10, G5, N7, N10
Added note 18, 19, 20, 21
Updated parameters in table 16
Updated note 1
*D 386692 See ECN SPN Updated ordering information
Added statement about no echo clocks for flow-through mode
Updated electrical characteristics
Added note 27 (timing for x18 devices)
Updated address readback latency to 2 cycles for DDR mode
Updated DDR timing numbers for tCD, tDC, tCCQ, tCQHQV, tCQHQX, tCKHZ, tCKLZ
Updated input edge rate
Removed -133 speed bin electrical characteristics and timing columns
Updated Table 5 on collision detection to be the same as the one found in the EROS
Added description of busy readback in collision detection section
Changed dummy write descriptions
Updated PORTSTD[1:0] connection details
Updated ZQ pins connection details
Updated address count notes
Updated note 17, BO to BEO
Added power supply requirements to MRST and VC_SEL
Updated 484 ball package
Changed name from FLEX72-E, FLEX36-E, AND FLEX18-E to FullFlex72,
FullFlex36, and FullFlex18
*E 401662 See ECN KGH Updated READY description to include Wired OR note
Updated master reset to include wired OR note for READY
Updated electrical characteristics to include IOH and IOL values
Updated electrical characteristics to include READY
Added IIX3
Updated maximum input capacitance
Added note 29
Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1
Changed voltage name from VDDQ to VDDIO
Changed voltage name from VDD to VCORE
Updated the Package Type for the CYDXXS36V18 parts
Updated the Package Type for the CYDXXS18V18 parts
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256
Included an OE Controlled Write for Flow-through Mode Switching Waveform
Included a Read with Echo Clock Switching Waveform
Included a Unit column for Table 5
Removed Switching Characteristic tCA from chart
Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode
Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow-through Mode
Updated AC Test Load and Waveforms
Included FullFlex36 DDR 484-ball BGA Pinout (Top View)
Included FullFlex18 DDR 484-ball BGA Pinout (Top View) Included Timing
Parameter tCORDY
FullFlex
Document #: 38-06072 Rev. *I Page 53 of 53
*F 458129 SEE ECN YDT Changed ordering information with lead-free part numbers
Removed VC_SEL
Added I/O and core voltage adders
Removed references to bin drop for LVTTL/2.5V LVCMOS and 1.5V core modes
Updated Cin and Cout
Updated ICC, ISB1, ISB2 and ISB3 tables
Updated device widths information on first page
Updated busy address read back timing diagram
Added HTSL input waveform
Removed HSTL (AC) from DC tables
Added 484-ball 27mmx27mmx2.33mm PBGA package
*G 470037 SEE ECN YDT Changed VOL of 1.8V LVCMOS to 0.45V and VOH to VDDIO - 0.45V
Updated tRSF
VREF is left DNU when HSTL is not used
Changed LVTTL/LVCMOS adder for DDR
Formatted pin description table
Changed VDDIO pins for 36Mx36 and 36Mx18
Changed 36Mx72 JTAG IDCODE
*H 499993 SEE ECN YDT DLL Change, added Clock Input Cycle to Cycle Jitter
Modified DLL description
Changed Input Capaciance Table
Changed tCCS number
Added note 34
*I 627539 SEE ECN QSL change all NC to DNU
corrected switching waveform for (CQEN = High) from both Pipeline and
Flowthrough mode to only pipeline mode
Added note 17 to DDRON restriction
Modified Master Reset Description
Created a new table for flow-through mode only
changed note 29 description
Modified tSD, tHD, tSBE, tHBE, tCD, tDC, tCCQ, tCQHQV, tCQHQX, tCKHZ, and
tCKLZ timing parameter
Removed all instances of CYDD36S72V18
Document Title: FullFlex™ Synchronous DDR Dual-Port SRAM
Document Number: 38-06072
REV. ECN NO.
Issue
Date
Orig. of
Change Description of Change