Marvell. Moving Forward Faster
Doc. No. MV-S103978-01, Rev. –
February 4, 2009
Document Classification: Proprietary
4.75VCover
88PH8101
Field Programmable, High Voltage
Synchronous Switching Regulator
Controller
Datasheet
Document Conventions
Note: Provides related information or information of special importance.
Caution: Indicates potential damage to h ardware or software, or loss of data.
Warning: Indicates a risk of personal injury.
Document Status
Doc Status: 2.00 Technical Publication: 0.xx
For more information, visit our website at: www.marvell.com
Disclaimer
No part of th i s docu m en t ma y be reproduced or transm itted i n an y for m or by a ny means, electronic or mechani c a l, in cluding photocopying and recor d in g, for any purpose,
without the express written permissi on of Marvell. Marvell retains the right to make cha ng es to this document at any ti me , w itho ut not ice. Marve ll makes no warran ty of an y
kind, expre ssed or impl ied, wi th regar d to any informa tion con tai ned in thi s docum ent, inclu ding, but not li mited to , the i mplied wa rrantie s of merc hant ability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.
With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:
1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations (" EA R"), to a national of EAR Country Groups D:1 or E:2;
2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,
3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant,
not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons
by the EAR, or is subject to controls under the U.S. Munitions List ("USML").
At all times her eund er, the reci pient o f any such info rmati on ag rees t hat the y sha ll be deem ed to h ave m anuall y sign ed this document in con nection with their receip t of an y
such information.
Copyright © 2009. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas,
Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell.
Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, a nd VCT are trad emarks of Marvell. All
other trademarks are the property of their respective owners.
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 2 Document Classification: Proprietary February 4, 2009, 2.00
88PH8101
Field Programmable, High Voltage Synchronous
Switching Regulator Controller
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 3
PRODUCT OVERVIEW
The Marvell® 88PH8101 is a simple, easy to use
synchronous switching regulator controller. A digital
control algorithm provides a fast transient response and
requires no external compensation components,
minimizing the external componen t count. A feature
unique with Marvell regulators is the abi lity to set the
output voltage with either an external resistor , logic
programmability, or serial interface.
Portable devices place tough design requirements on the
power supply. To address these applications, the
88PH8101 operates as a fixed-frequency PWM when
the load currents are high and automatically switches
over to a pulse-skipping DCM mode at light loads. This
characteristic results in high efficiency over a wide range
of load currents.
Current limit utilizes the RDS(ON) of the upper MOSFET
eliminating the need for a current sense resistor . Other
key features of the 88PH8101 include soft start, short
detection, under/over input voltage detection, diode
emulation, forced PWM mode, adaptive dead time, and a
power good signal.
Features
Operates from a 4.75V to 16V input
Output voltage from 0.9V to 5.5V
500kHz switching frequency
Stable with low-ESR ceramic output capacitors
Up to 95% efficiency
Drives N-channel MOSFETs
Upper MOSFETs RDS (on) current limiting
2.5mA quiescent current (DCM-mode)
Pre-bias Soft Start (DCM-Mode)
Serial / Logic Programmability
AnyVoltage™ Technology provides 72 output voltage
selections to provide up most flexibility
Input over voltage protection
Output voltage margining capability
Lead-free package
TSSOP-16L package
Applications
Point-of-load power supplies
12V PCI Express Bus
Figure 1: Typical Application Diagram for High Efficiency Step-Down Regulator
Caution! Caution: This is a very high frequency device. Proper PCB layout is required. Section 6.1, PC Board Layout
Considerations and Guidelines, on page 45.
R4
470k
PG
R1
43k
Q2
IRF7832
C2
0.22uF
C9
47uF/6.3V
C6
0.1uF
V
OUT
U1
88PH8101
CSH 15
VIN 16
EN
1
PSET
2
PWM/SDI
7
VSET
3
ILIM
4
SFB
5
TG 13
PG
8PGND 9
BG 10
VCC 11
GND
6
VBS 12
VSW 14
C3
10uF/25V
R2
100K
C4
10uF/25V
V
IN
C1
4.7uF
5V/5A
L1
4.2uH
Q1
IRF7821
12V
R3
0 Ohm
C5
NOB
C10
47uF/6.3V C11
47uF/6.3V C12
47uF/6.3V
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 4 Document Classification: Proprietary February 4, 2009, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Table of Contents
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 5
Table of Contents
Table of Contents .......................................................................................................................................5
List of Figures.............................................................................................................................................7
List of Tables ..............................................................................................................................................9
1 Signal Description.......................................................................................................................11
1.1 Pin Configuration.............................................................................................................................................11
1.2 Pin Descriptions..............................................................................................................................................11
2 Electrical Specifications .............................................................................................................15
2.1 Absolute Maximum Ratings ............................................................................................................................15
2.2 Recommended Operating Conditions.............................................................................................................16
2.3 Electrical Characteristics.................................................................................................................................16
2.4 Switching Step-down Regulator.............. ... ...................... ...................... ....................... ... ........ .......................18
3 Functional Description................................................................................................................21
3.1 Overview .........................................................................................................................................................21
3.2 Regulation and Start-up.......................... ...................... ....................... ...................... .....................................22
3.3 Soft Start.........................................................................................................................................................23
3.4 Output Voltage Setting................... .................................................................................................................23
3.4.1 Logic Programmability......................................................................................................................23
3.4.2 Serial Programmability........................................................ .......................................... ....................24
3.5 Output Voltage—AnyVoltage™ Technology...................................................................................................26
3.6 Thermal Shutdown..........................................................................................................................................28
3.7 PFM or PWM Mode Selection...... .. .......................................... .......................................... .............................28
3.8 Under Voltage Lockout (UVLO) ................................. ....................... ...................... ........................................28
3.9 Over Voltage Protection (OVP).......................................................................................................................28
3.10 Power Good (PG)............................................................................................................................................29
3.11 Hiccup Current Limit........................................................................................................................................29
4 Functional Characteristics .........................................................................................................31
4.1 Startup Waveforms .......... ... ... .........................................................................................................................31
4.2 Switching Waveforms..................... ....................... .......................................... ................................................32
4.3 Load Transient Waveforms.............................................................................................................................34
4.3.1 Step-Down Regulator ......................................................................................................................34
4.4 Output Voltage Transient Waveforms.............................................................................................................36
4.4.1 Step-Down Regulator .......................................................................................................................36
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 6 Document Classification: Proprietary February 4, 2009, 2.00
5 Typical Characteristics ...............................................................................................................37
5.1 Efficiency.........................................................................................................................................................37
5.2 IC Case, MOSFET, and Inductor Temperature................ ... ... ...................... ...................... .............................37
5.3 Input Voltage ..................................................................................................................................................40
5.3.1 Step-down Regulator........................................................................................................................41
5.4 Temperature....................................................................................................................................................42
5.4.1 Step-down Regulator ......................................................................................................................43
6 Applications Information ........ ... .... ... ... ................ ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ......................45
6.1 PC Board Layout Considerati ons and Guidelines...........................................................................................45
6.1.1 PC Board Layout Example ...............................................................................................................47
6.1.2 Bill of Materials .......................................................... .......................................... .............................51
7 Mechanical Drawings..................................................................................................................53
7.1 Mechanical Drawing........................................................................................................................................53
7.2 Mechanical Dimensions ..................................................................................................................................54
7.3 Typical Pad Layout Dimensions......................................................................................................................55
7.3.1 Recommended Solder Pad Layout...................................................................................................55
8 Part Order Numbering / Package Marking ................................................................................57
8.1 Part Order Numbering Scheme.......................................................................................................................57
8.2 Part Ordering Options...... .......................................... .......................................... ...........................................57
8.3 Package Marking ....................................................... .....................................................................................58
A Revision History ..........................................................................................................................59
List of Figures
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 7
List of Figures
Figure 1: Typical Application Diagram for High Efficiency Step-Down Regulator..............................................3
1 Signal Description ........................................................................................................................... 11
Figure 2: TSSOP-16 Diagram (Top View) .......................................................................................................11
2 Electrical Specifications ................................................................................................................. 15
3 Functional Description.................................................................................................................... 21
Figure 3: Block Diagram ..................................................................................................................................21
Figure 4: Output Voltage Window....................................................................................................................22
Figure 5: Soft Startup (1V, 1.5V, 2.5V, 3.3V, 5V) ............................................................................................23
Figure 6: Serial Programmability......................................................................................................................24
Figure 9: Power Good Operating Waveform....................................................................................................29
4 Functional Characteristics.............................................................................................................. 31
Figure 10: Startup Using the Enable Pin ...........................................................................................................31
Figure 11: Turn Off Using the Enable Pin................... ...................... ... ...................... ........................................31
Figure 12: Soft Start ..........................................................................................................................................31
Figure 13: Hot Plug............................................................................................................................................31
Figure 14: PWM Mode ......................................................................................................................................32
Figure 15: PWM Mode ......................................................................................................................................32
Figure 16: DCM Mode .......................................................................................................................................32
Figure 17: DCM Mode-zoom..............................................................................................................................32
Figure 18: PWM Output Ripple Voltage .........................................................................................................33
Figure 19: Fast Load Rise Time ........................................................................................................................34
Figure 20: Slow Load Rise Time........................................................................................................................34
Figure 21: Fast Load Fall Time .........................................................................................................................34
Figure 22: Slow Load Fall Time.........................................................................................................................34
Figure 23: Load Transient Response ................................................................................................................35
Figure 24: Double-Pulsed Load Response........................................................................................................35
Figure 25: Load Transient Response ................................................................................................................35
Figure 26: Double-Pulsed Load Response........................................................................................................35
Figure 27: VOUT = 1.0V to 1.2V with ILoad = 0A ...............................................................................................36
Figure 28: VOUT = 1.0V to 1.5V with ILoad = 0A ................................................................................................36
5 Typical Characteristics ................................................................................................................... 37
Figure 29: Efficiency vs. Output Current............................................................................................................37
Figure 30: Efficiency vs. Output Current in Log Scale .......................................................................................37
Figure 31: Input Current vs. Output Current ......................................................................................................38
Figure 32: IC Case Temperature vs. Output Current.........................................................................................38
Figure 33: Top FET Temperature vs. Output Current........................................................................................38
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 8 Document Classification: Proprietary February 4, 2009, 2.00
Figure 34: Bottom FET Temperature vs. Output Current...................................................................................39
Figure 35: Inductor Temperature vs. Output Current.........................................................................................39
Figure 36: Supply Current vs. Input Voltage............... .. ....................... ... ...................... ... ..................................40
Figure 37: Shutdown Supply Current vs. Input Voltage.....................................................................................40
Figure 38: Enable Threshold vs. Input Voltage..................................................................................................40
Figure 39: Output Voltage vs. Input Voltage......................................................................................................41
Figure 40: Efficiency vs. Input Voltage...............................................................................................................41
Figure 41: Load Regu lation vs. Input Voltage....................................................................................................41
Figure 42: Frequency vs. Input Voltage.............................................................................................................41
Figure 43: Average Output Current Limit vs. Input Voltage ...............................................................................41
Figure 44: Supply Current vs. Temperature............................................ .. ....................... ... ...............................42
Figure 45: UVLO Threshold vs. Temperature....................................................................................................42
Figure 46: OVP Threshold vs. Temperature......................................................................................................42
Figure 47: Enable Threshold vs. Temperature ..................................................................................................42
Figure 48: Shutdown Supply Current vs. Temperature......................................................................................42
Figure 49: Output Voltage vs. Temperature.......................................................................................................43
Figure 50: Efficiency vs. Temperature...............................................................................................................43
Figure 51: Load Regulation vs. Temperature ....................................................................................................43
Figure 52: Line Regulation vs. Temperature......................................................................................................43
Figure 53: Frequency vs. Tempera ture..............................................................................................................43
Figure 54: Average Output Current Limit vs. Temperature................................................................................43
6 Applications Information .................................... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ................ ............ 45
Figure 55: PCB Board Schematic......................................................................................................................46
Figure 56: Top Silk-Screen, Top Traces, Vias, and Copper (Not to Scale) .......................................................47
Figure 57: GND_La yer2 Vias, and Copper (Not to Scale).................................................................................48
Figure 58: GND_La yer3 Vias, and Copper (Not to Scale).................................................................................49
Figure 59: Bottom Silk Screen, Bottom Traces, Vias, and Copper (Not to Scale).............................................50
7 Mechanical Drawings ...................................................................................................................... 53
Figure 60: 16-Pin TSSOP Mechanical Dr awing.................................................................................................53
Figure 61: TSSOP-16 Land Pattern (mm) .........................................................................................................55
8 Part Order Numbering / Package Marking..................................................................................... 57
Figure 62: Sample Part Number........................................................................................................................57
Figure 63: Package Marking and Pin 1 Location ...............................................................................................58
List of Tables
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 9
List of Tables
1 Signal Description ............................................................................................................................11
Table 1: Pin Types..........................................................................................................................................11
Table 2: Pin Descriptions................................................................................................................................12
2 Electrical Specifications ..................................................................................................................15
Table 3: Absolute Maximum Ratings..............................................................................................................15
Table 4: Recommended Operating Conditions...............................................................................................16
Table 5: Electrical Characteristics ..................................................................................................................16
Table 6: Switching Step-down Regulator ........................................................................................................18
3 Functional Description.....................................................................................................................21
Table 7: Output Voltage Setting......................................................................................................................23
Table 8: Default Value of Data Field...............................................................................................................24
Table 9: Voltage and Percent Set...................................................................................................................25
Table 10: VSET and PSET Programming Table for 5% Resistors...................................................................26
Table 11: Number of Voltage Steps for Each Output .......................................................................................27
4 Functional Characteristics...............................................................................................................31
5 Typical Characteristics ....................................................................................................................37
6 Applications Information .................................... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ................ .............45
Table 12: BOM ..................................................................................................................................................51
7 Mechanical Drawings .......................................................................................................................53
Table 13: 16-Pin TSSOP Dimensions ..............................................................................................................54
8 Part Order Numbering / Package Marking......................................................................................57
Table 14: Part Ordering Options.......................................................................................................................57
Table 15: Revision History................................................................................................................................59
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 10 Document Classification: Proprietary February 4, 2009, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Signal Description
Pin Configuration
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 11
1Signal Description
1.1 Pin Configuration
Figure 2: TSSOP-16 Diagram (Top View)
1.2 Pin Descriptions
Table 1: Pin Types
15 CSH
14 VSW
16 VIN
12 VBS
11 VCC
13 TG
9PGND
10 BG
2
3
1
5
6
4
8
7
PSET
VSET
EN
SFB
GND
ILIM
PG
PWM/SDI
Pin Type Definitions
I Input Only
O Output Only
S Supply
NC Not Connected
GND Ground
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 12 Document Classification: Proprietary February 4, 2009, 2.00
Table 2: Pin Descriptions
Pin # Pin Name Pin Type Pin Function
1 EN I Enable
Logic high (> 2.0V) enables the regulator and logic low (< 0.8V) disables
the regulator. If the pin is left fl oating, an internal 10 μA current source pulls
this pin high to enable the regulator. (see Table 5, Electrical
Characteristics, on p age 16)
Do not float this pin.
2 PSET I Percent Set
1. This is used for selecting the output voltage leve l when it is connected
to GND or VCC in conjunction with VSET connection to GND or VCC.
2. Connect an external resistor to ground to set the output voltage of the
step-down switching regulator. See Table 5, Electrical Characteristics,
on page 16 for resistor values and Output Voltage Settings section.
The total capacitance across this pin and GND should be equal to 25pF o r
less. Use resistor values with a tolerance of 5% tolerance or better.
Do not float this pin.
3 VSET I Voltage Set
1. This is used f or select in g t he o utp ut vo ltage level, when i t i s conn ected
to GND or VCC in conjunction with PSET connection GND or VCC.
2. Connect to an external resistor f rom VSET to GND to set eight nominal
output voltages. See Table 11, Number of Voltage Steps for Each
Output, on page 27.
The total capacitance across this pin and GND should be equal to 25pF o r
less. Use resistor va lues wi t h a to lera nce of 5% t ole ra nce or be tter. Do not
float this pin.
4 ILIM I Current Limit Setting Point
Connect a resistor to GND to set the peak current limit.
ILIM = 0.2 * 20 µA * REXT/RDSON (Top FET)
5 SFB I Switch Regulator Output Voltage Sense Feedback
Senses the output volt age of the switching regul ator. Connect to the output
capacitor of the switching regulator.
6 GND GND Signal Ground
This pin must be connected to PGND and make a star connection to
system ground.
7PWM/
SDI I PWM / Serial Data Input
1. Logic high (> 2.0V) enables PWM mode operation and logic low (<
0.8V) to enable DCM mode operation at light loads. If the pin is lef t
floating, an internal 10μA current source pulls this pin low, enabling
DCM mode operation.
2. The input data into this pin is used to program the output voltage. See
Section 3.4.2, Serial Programmability, on page 24.
3. Do not float this pin.
8 PG O Power Good (active high)
This is an open-drain output that indicates the status of the output voltage.
The output is pulled to ground when the output volt age is not within the
specified tole rance. A 40μs fa lling edge de -glitch delay prevent s tripp ing of
the power good comparat or due to high frequency noise.
Signal Description
Pin Descriptions
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 13
9 PGND GND Power Ground
It must be connected to the negative terminals of the input and output
capacitors.
10 BG O Gate drive for bottom MOSFET
This pin drives the bottom MOSFET gate between 0V and VCC.
11 VCC O Internal 5V Regulator Output
Place a ceramic cap acitor close to this pin.
For 5V input operation, th e internal LDO is one VTH below VIN. The
internal LDO is not disabled. The VCC pin is connected to VIN for
better efficiency.
12 VBS I Boot-Strap Voltage Node
Place a ceramic capacitor as close as possible to the VBS and VSW pins.
13 TG O Gate drive for top MOSFET
This pin drives the top MOSFET gate between 0V and VIN + VCC
14 VSW I Switching Node
This pin must be con nected to the So urce of top N-channel MOSFET us ing
a Kelvin connection for more accurate current sensing.
15 CSH I Hig h Side Current Sense Input
This pin must be connected to the Drain of top N-channe l MOSFET using a
Kelvin connection for more accurate current sensing.
16 VIN S Internal LDO Input
Power supply for internal LDO for gene rating VCC (5V).
Table 2: Pin Descriptions
Pin # Pin Name Pin Type Pin Function
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 14 Document Classification: Proprietary February 4, 2009, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Electri ca l Specific at io ns
Absolute Maximum Ratings
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 15
2Electrical Specifications
2.1 Absolute Maximum Ratings
Table 3: Ab solu t e Ma ximu m Rat ings 1
NOTE: Stresses above those listed in Absolute Maximum Ratings may cause permanent device failure . Functionality
at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device
reliability.
1. Exceeding the absolute maximum rating may damage the device.
Parameter Range Units
VVIN to GND -0.3 to 20.0 V
PGND to GND -0.3 to 0.3 V
VSW to PGND2
2. Capable of -1.0V to (VIN +0.3) for less than 50ns.
-0.3 to (VIN + 3.0 ) V
VVCC to GND -0.3 to Minimum (VIN + 0.3, 6.0) V
VEN, VCSH to GND -0.3 to VIN V
VVSET, VPSET to GND -0.3 to 6.0 V
VSFB, VPG, VPWM/SDI, VILIM to GND -0.3 to 6.0 V
VBG to PGND -0.3 to 6.0 V
VTG to VSW -0.3 to 6.0 V
VBS to VSW3
3. During normal operation, VBS is periodically boosted to (VIN + VCC). However, do not externally force the VBS pin to
more than (VCC + 0.3V).
-0.3 to 6.0 V
Operating Ambient Temperature Range4
4. Specifications over the -40°C to 85°C operating temperature ranges are assured by design, characterization and
correlation with statistical process controls.
-40 to 85 °C
Maximum Junction Temperature 150 °C
Storage Temperature Range -65 to 150 °C
Lead Temperature (soldering, 10s) 300 °C
ESD Rating5 Human Body Model
5. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kΩ in series with 100pF.
2.0 kV
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 16 Document Classification: Proprietary February 4, 2009, 2.00
2.2 Recommended Operating Conditions
Table 4: Recommended Operating Conditions1
Symbol Parameter Min Typ Max Units
VVIN Input Voltage 4.75 16 V
θJA Package Thermal Resistance286.3 °C/W
θJC 21.5 °C/W
TJMAX Maximum Operating Junction Temperature 125 °C
1. This device is not guaranteed to function outside the specified operating range.
2. Test on 4-layer (JESD51-7) and vias (JESD51-5) board.
2.3 Electrical Characteristics
Table 5: Electrical Characteristics
The following applies unless otherwise noted (refer to schematic shown in Figure 1): VVIN = VEN =12V, VPFM = GND,
GND = PGND, VOUT = 5V, L1 = 4.2μH, C1 = 4.7μF, C2 = 0.22μF, C3 = C4 = 10μF, C6 = 0.1μF, C9 = C10 = C11 = C12
= 47μF, TA = 25°C. Bold values indicate –40°C < TA < 85°C.
Symbol Parameter Conditions Min Typ Max Units
VVIN Input Voltage Range 4.75 12 16 V
IQTotal Quiescent Cu rrent
(PFM Mode) No load, VPWM = 0V 2.5 5.8 mA
IQTotal Quiescent Cu rrent
(PWM Mode) No load, VPWM = 5V 21 40 mA
ISHDN Shutdown Supply
Current VEN = 0V, VVIN = 12V 45 65 μA
VUVLO Under Voltage Lockout High Threshold, VVIN
increasing 4.44 TBD V
VUVLO Under Voltage Lockout Low Threshold, VVIN
decreasing TBD 4.35 V
VOVP Over Volt age Protection High Threshold, VVIN
increasing 17.5 18.5 V
VOVP Over Voltage Protection Low Threshold, VVIN
decreasing 16.5 16.7 V
TOTS Over Temperature
Shutdown TJ increasing
(Disable regulat ors) 150 °C
TOTS Over Temperature Shut-
down TJ decreasing
(Enable regulators) 100 °C
VIH EN and PWM Input
Voltage Threshold Logic high 2.0 V
VIL EN and PWM Input
Voltage Threshold Logic low 0.4 V
IEN Enable Input Current VEN = 12V 1μA
IEN Enable Input Current VEN = 0V -10 μA
IPWM PWM Input Current VPWM = 5V 1μA
IPWM PWM Input Current VPWM = 0V 1μA
Electri ca l Specific at io ns
Electrical Characteristics
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 17
IILIM ILIM Pin Current -5 -10 μA
TC Current Limit ILIM Temperature
Coefficient 2000 ppm
2.3 Electrical Characteristics
Table 5: Electrical Characteristics
The following applies unless otherwise noted (refer to schematic shown in Figure 1): VVIN = VEN =12V, VPFM = GND,
GND = PGND, VOUT = 5V, L1 = 4.2μH, C1 = 4.7μF, C2 = 0.22μF, C3 = C4 = 10μF, C6 = 0.1μF, C9 = C10 = C11 = C12
= 47μF, TA = 25°C. Bold values indicate –40°C < TA < 85°C.
Symbol Parameter Conditions Min Typ Max Units
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 18 Document Classification: Proprietary February 4, 2009, 2.00
2.4 Switching Step-down Regulator
Table 6: Switching S tep-down Regulator
The following applies unless otherwise noted (refer to schematic shown in Figure 1): VVIN = VEN
=12V, VPFM = GND, GND = PGND, VOUT = 5V, L1 = 4.2μH, C1 = C9 = C10 = C11 = C12 = 4.7μF, C2
= 0.22μF, C3 = C4 = 10μF, C6 = 0.1μF, TA = 25°C. Bold valu es indicate –40°C < TA < 85°C.
Symbol Parameter Conditions Min Typ Max Units
VOUT Output Voltage
(PFM Mode) RVSET = 11K, PFM Mode,
ILOAD = 10mA 1.0 V
RVSET = 18K, PFM Mode,
ILOAD = 10mA 1.2 V
RVSET = 30K, PFM Mode,
ILOAD = 10mA 1.5 V
RVSET = 51K, PFM Mode,
ILOAD = 10mA 1.8 V
RVSET = 100K, PFM Mode,
ILOAD = 10mA 2.5 V
VVSET = 0V, VPSET = 0V, PFM
Mode, ILOAD = 10mA
RVSET = 160K, PFM Mode,
ILOAD = 10mA 3.0 V
VVSET = 0V, VPSET = VCC,
PFM Mode, ILOAD = 10mA
RVSET = 270K, PFM Mode,
ILOAD = 10mA 3.3 V
VVSET = VCC, VPSET = 0V,
PFM Mode, ILOAD = 10mA
RVSET = 470K, PFM Mode,
ILOAD = 10mA 5.0 V
VVSET = VCC, VPSET = VCC,
PFM Mode, ILOAD = 10mA
Electri ca l Specific at io ns
Switching Step-down Regulator
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 19
VOUT Output Voltage
(PWM Mode) RVSET = 11K, PWM Mode,
ILOAD = 100mA 1.0 V
TA = 25°C -3 +3 %
RVSET = 18K, PWM Mode,
ILOAD = 100mA 1.2 V
TA = 25°C -3 +3 %
RVSET = 30K, PWM Mode,
ILOAD = 100mA 1.5 V
TA = 25°C -2.5 +2.5 %
RVSET = 51K, PWM Mode,
ILOAD = 100mA 1.8 V
TA = 25°C -2.5 +2.5 %
RVSET = 100K, PWM Mode,
ILOAD = 100mA 2.5 V
VVSET = 0V, VPSET = 0V, PWM
Mode, ILOAD = 100mA
TA = 25°C -2 +2 %
RVSET = 160K, PWM Mode,
ILOAD = 100mA 3.0 V
VVSET = 0V, VPSET = VCC,
PWM Mode, ILOAD = 100mA
TA = 25°C -2 +2 %
RVSET = 270K, PWM Mode,
ILOAD = 100mA 3.3 V
VVSET = VCC, VPSET = 0V,
PWM Mode, ILOAD = 100mA
TA = 25°C -2 +2 %
RVSET = 470K, PWM Mode,
ILOAD = 100mA 5.0 V
VVSET = VCC, VPSET = VCC,
PWM Mode, ILOAD = 100mA
TA = 25°C -2 +2 %
PSET Percentage Set RPSET = 11K -10.0 %
PSET Percentage Set RPSET= 18 K -7.5 %
PSET Percentage Set RPSET = 30K -5.0 %
PSET Percentage Set RPSET = 51K -2.5 %
PSET Percentage Set RPSET = 0K 0 %
PSET Percentage Set RPSET = 100K 2.5 %
PSET Percentage Set RPSET = 160K 5.0 %
PSET Percentage Set RPSET = 270K 7.5 %
PSET Percentage Set RPSET = 470K 10.0 %
Symbol Parameter Conditions Min Typ Max Units
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 20 Document Classification: Proprietary February 4, 2009, 2.00
VLNREG Output Voltage Line
Regulation VVIN = 9V to 12V,
ILOAD = 2.5A 0.01 %
VLDREG Output Voltage Load
Regulation VVIN = 12V,
ILOAD = 2.5A to 5A 0.1 %
fSW Switching Frequency 400 500 600 kHz
DMAX Maximum Duty Cycle 90 %
tDEGLITCH Deglitch 40 µs
VPGTH Power Good (PG)
Threshold Voltage VOUT > 1.35V VOUT ×
90% V
VPGTH Power Good (PG)
Threshold Voltage VOUT < 1.32V VOUT
130mV V
VPGL Maximum PG Output
Low Volt age ISINK = 1mA 0.4 V
tDELAY PG Delay Time 512 µs
IPG PG Leakage Current VEN = 5.0V 1 20 µA
tDNV Driver Non Overlap CL = 3300 pF 30 ns
tR, tFDriver Rise/Fall Time CL = 3300 pF 15 ns
RSOURCE Output Driver
Impedance
Top Driver
1.5 3 Ω
RSINK Output Driver
Impedance
Top Driver
1.0 2.5 Ω
RSOURCE Output Driver
Impedance
Bottom Driver
1.5 4.2 Ω
RSINK Output Driver
Impedance
Bottom Driver
0.5 2.5 Ω
Symbol Parameter Conditions Min Typ Max Units
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 21 Document Classification: Proprietary February 4, 2009, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
3Functional Description
Figure 3: Block Diagram
3.1 Overview
The 88PH8101 incorporates a new controller architecture that minimizes the number of external
passive components, improves efficiency and provides fast transient response. A non-linear control
algorithm is able to detect and react to severe load changes in le ss than 100 ns and requires no
external compensation components, reducing desig n time. Efficiency is improved by having an
adaptive dead time control that reduces the on time of the parasitic diode of the low-side MOSFET.
Lossless switch current sensing utilizes the RDS (ON) of the high-side MOSFET to eliminate the
need for a current sense resistor, improving efficiency. Other features include under and over
voltage lockout, over temperature shutdown, power good detection, and cycle-by-cycle current
limiting.
Additionally, there are 3 simple ways to set the output voltage using external resistors, logic control
or a serial interface. External resistors connected to the VSET and PSET pins are measured once
before start up. These 2 resistors provide up to 72 output voltage options from 0.9V to 5.5V. These
external resistors can be eliminated by tying the VSET and PSET pin high or low, generating 2.5V,
3.0V, 3.3V or 5.0V.
Some applications require voltage margining, forcin g the output voltage a percentage above and
below its nominal value. In this case, the serial interface can be used to change the output ±0%,
±2.5%, ±5.0%, ±7.5%, ±10% or any one of the 72 voltage options.
OSCILLATOR
RESISTOR
SENSIN G
CIRCUITRY
DSP PWM
CONTROL
ANALOG-
DIGITAL
CONVERTER
VSW
SFB
PSET
VSET
L1
C9-C12
R3R4
CSH
PGND
RESISTOR
NETWORK
Serial Data Interface
PWM/SDI
PG
PG
Vout
Power
Good
VBS
R2
C2
V
IN
4.75 V t o 16V
FAULT
BAND-GAP
VOLTAGE
REFERENCE
EN
OFF
ON
GND
THERMAL
SHUTDOWN
UNDER-
VOLTAGE
LOCKOUT
V
OUT
VCC
INTERNAL CIRCUITRY
POWER SU PPLY
VIN
VCC
C3-C4
TG
BG
10
μ
A
20
μ
A10
μ
A
DCM
PWM
-
+
Current
Sense
LDO
C1
ILIM
R1
Level
Shift
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 22 Document Classification: Proprietary February 4, 2009, 2.00
To address portable applications, the 88PH8101 operates as a fixed frequency PWM when the load
currents are high and automatically switches over to pulse skippi ng DCM mode at light loads,
reducing no-load supply current from 21 mA to 2.5mA. F or DDR applications where the converter
must source and sink current, the PWM pin can be tied high, forcing PWM mode under all output
current conditions.
3.2 Regulation and Start-up
The step-down switching regulator can operate in Pulse Width Modulation Mode (PWM), Discontinu-
ous Current Operating Mode (DCM), or Pulse Frequency Mode (PFM). The mode of operation
depends on the level of output current and the output voltage.
In steady states, the step-down switching regulator monitors the current flowing through the inductor
to determine if the regulator is handling a heavy or light load. For heavy loads, the step-d own
regulator operates in the PWM mode (B) to minimize the ripple current for optimum efficiency and to
minimize the ripple output voltage. The step-down regulator automatically switches over to pulse
frequency (PFM) mode (A) at light loads for optimum efficiency in light load applications. In this
mode, the average output voltage is slightly higher than the average output voltage when operating
in PWM mode. In over current conditions and during start up, the regulator operates in PFM mode
(C).
Figure 4: Output Voltage Window
Typical V
OUT
PF M Mod e
PWM Mode
PFM Mode
A
B
C
D
Functional Description
Soft Start
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 23
3.3 Soft Start
Soft start is a highly desirable property in “Hot-Plug” applications. It limits the large inrush currents
on the input power supply during start up. The 88PH8101 device controls the rise time of the output
voltage, thereby dramatically reducing the inru sh current. The rise time is tyically 5ms for VOUT
higher than 1.65V and 0.33V/ms for VOUT < 1.65V and it is independent of output capacitance and
load current. Figure 5 shows the rise time for various output voltage settings.
3.4 Output Voltage Setting
3.4.1 Logic Programmability
The output voltage of the step-down switching regulator can be programmed for the standard output
voltages by connecting VSET and PSET pins to GND and/or VCC. This method will eliminate the
use of external resistor to set the output voltage.
VOUT
Figure 5: Soft Startup (1V, 1.5V,
2.5V, 3.3V, 5V)
1V/DIV
1ms/DIV
ILOAD = 1A, COUT = 4x22μF
Table 7: Output Voltage Setting
VVSET VPSET VOUT
GND GND 2.5V
GND VCC 3.0V
VCC GND 3.3V
VCC VCC 5.0V
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 24 Document Classification: Proprietary February 4, 2009, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
3.4.2 Serial Programmability
The output voltage of the step-down switching regulator can also be programmed by using 18-bit
serial data into the SDI pin.
Figure 6: Serial Programmability
The first 4 bits (MSB) of the data field are used to select the output voltage where the second 4 bits
(LSB) of the data field are used to trim the output voltage (percent of output voltage). The default
value for the data field is as follows:
BIT
2
"1"
Pulse "0"
pulse "0"
pulse "0"
pulse "0"
pulse "0"
pulse
"1"
Pulse
"1"
Pulse
"1"
Pulse "1"
Pulse
DATA FIELD
D7 D6 D5 D4 D3 D2 D1 D0
The period of a pul se is 1 μs +/- 200 ns
V
HIGH
> V
IH
V
Low
< V
IL
V
HIGH
V
LOW
For " 1" pul se, the hi gh i s 0. 75 μs +/- 150 ns
and the low period is 0. 25 μs+/ - 50 ns
For "0" puls e, the high is 0.25 μs +/- 50 ns
and the low period is 0. 75 μs+/- 150 ns
V
LOW
V
HIGH
Th e wr i te op er ati o n:
1 ) Ea ch write se quence needs 18 pulses to c ompl e te.
2 ) During a non-writ e operation, t he i npu t need s to be at V
LOW
(<0.8V).
3 ) I n betw een two s ucc essive write operations, the SDI input needs to
be at V
LOW
(<0.8V) for a minimum of 10 μs
1
st
Write
sequence 2
nd
Write
sequence
Low fo r at l east
10 μs
WR I TE MODE
"1" p ul se
"0" pulse
BIT
7BIT
6BIT
5BIT
4BIT
3BIT
1BIT
0
Registor
Address
Chip
Select
Start Stop
Table 8: Default Value of Data Fi el d
Data Field
Description Voltage Set Percent Set
Bits 76543210
Default value 00100100
Functional Description
Output Voltage Setting
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 25
The value for position 7 and 3 of the register will enable use of either logic or serial output voltage
programmability. Bit value of “0” for positions 7 and 3 will enable the resistor/logic programmability
and the output voltage will be set according to Section 3.4.1 A bit value of “1” will enable the serial
programmability. The output voltage and percent set are selected per following table:
All combinations of the Voltage Set and Percentage Set provide flexability in output voltage
selection, as shown in Table 9.
Table 9: Voltage and Percent Set
Data Field VOUT (V) Data Field Percent Set
Bits 7654 3 210
Value 1000 1.0 1 000 -10%
1 0 0 1 1.2 1 0 0 1 -7.5%
1 0 1 0 1.5 1 0 1 0 -5.0%
1 0 1 1 1.8 1 0 1 1 -2.5%
1 1 0 0 2.5 1 1 0 0 +2.5%
1 1 0 1 3.0 1 1 0 1 +5.0%
1 1 1 0 3.3 1 1 1 0 +7.5%
1 1 1 1 5.0 1 1 1 1 +10%
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 26 Document Classification: Proprietary February 4, 2009, 2.00
3.5 Output Voltage—AnyVoltage™ Technology
The output voltage of the step-down switching regulator is programmed by using Table 10 to select
resistor values for VSET and PSET pin. The VSET pin sets the output voltage and the PSET pin
trims the set voltage to a percentage value. For example, to program 2.25V output, a 100 kΩ resistor
is selected for the VSET pin, and an 11 kΩ resistor is selected for the PSET pin. The 100 kΩ resistor
sets the output voltage to 2.5V and the 11 kΩ resistor trims the set voltage by -10%.
Using the VSET resistor’s value greater than 619 kΩ or less than 7.68 kΩ disables the step-down
switching regulator and sets the SW pin to high impedance. If the VSET resistor’s value is outside
the 5% tolerance, the output can be either hig her or lower than the set voltage.
Using resistor values greater than 61 9 kΩ or less than 7.68 kΩ for the PSET pin does not affect the
set voltage. When the PSET pin is not used, it must be connected to ground. Like the VSET resistor,
the percent value is either higher or lower if the PSET resistors value is outside the 5% tolerance.
The VSET and PSET resistors are read once during start-up before the output voltage is turned on.
After the output voltage is turned on, the output voltage can change to different values using serial
programming interface. Otherwise to configure the output to a different voltage, power has to recycle
or the 88PH8101 has to turn OFF and back ON using the enable pin.
Figure 7 shows the startup waveforms of the 88PH8101. Once the input voltage (VIN) is above the
under voltage lockout (UVLO) upper threshold (UTH), the VSET and PSET pin become active. Cur-
rent is first sourced out of PSET pin and then the VSET pin, in exponentially increasing steps. After
each step there is a blanking time before the VSET voltage is compared to an internal 1.2V refer-
ence. If the VSET voltage is below internal reference voltage and the current source proceeds to the
next set. Once the VSET voltage is above the internal reference voltage the sequence stops and the
output voltage (VOUT) is allowed to turn-on. Figure 7 shows the VSET waveform for VSET = 2.5V
and PSET = –5% output in low-voltage mode. The 88PH8101 keeps track of how many steps were
required to determine the appropriate output voltage. Table 11 provides the number of steps neces-
sary for each output voltage option. Using a VSET resistor of 100kΩ requires the current source to
step 5 times, and a PSET resistor of 30 kΩ requires 7 steps.
Table 10: VSET and PSET Programming Table for 5% Resistors
Percentage Set (%)
-10.00% -7.50% -5.00% -2.50% 0% 2.50% 5.00% 7.50% 10%
11K 18K 30K 51K GND 100K 160K 270K 470K
Voltage Set (V)
11K 0.900 0.925 0.950 0.975 1.00 1.025 1.050 1.075 1.100
18K 1.080 1.110 1.140 1.170 1.20 1.230 1.260 1.290 1.320
30K 1.350 1.388 1.425 1.463 1.50 1.538 1.575 1.613 1.650
51K 1.620 1.665 1.710 1.755 1.80 1.845 1.890 1.935 1.980
100K 2.250 2.313 2.375 2.438 2.50 2.563 2.625 2.688 2.750
160K 2.700 2.775 2.850 2.925 3.00 3.075 3.150 3.225 3.300
270K 2.970 3.053 3.135 3.218 3.30 3.383 3.465 3.548 3.630
470K 4.500 4.625 4.750 4.875 5.00 5.125 5.250 5.375 5.500
Functional Description
Output Voltage—AnyVoltage™ Technology
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 27
The 88PH8101 provides an innovative techni que to set the output voltage. During start-up it reads
the value of external resistors, which are located outside the regulator’s feedback loop, to program
the output voltage. By placing the output voltage programmi ng resistor outside the regulator’s
feedback loop, its tolerance does not affect the accuracy of the output voltage. While in conventional
designs, adjustable regulators use 1% resistors to set the output voltage. However, these resistors
are located inside the feedback loop, introducing as much as 2% of initial accuracy error to the
output voltage, resulting in an overall initial accuracy of 3%. Whereas, the 88PH8101 initial accuracy
is 2% for any of the eight output voltages.
The VSET and PSET pins are sensitive to excessive leakage currents and stray capacitance. The
output voltage can potentially be programmed to the lower output voltage if ther e is contamination,
which introduces excessive leakage current on the VSET and PSET pin, especially for a RVSET and
RPSET of 470kΩ. The parasitic resistance on these nodes must be greater th an 3MΩ and the stray
capacitance must be less than 25pF; otherwise, a 5.0V output can po tential end up at 3.3V in
low-voltage mode.
VIN
VOUT
VVSET
VPSET
Figure 7: Startup Sequence
5V/DIV
2V/DIV
2V/DIV
2V/DIV
VVSET
VPSET
Figure 8: Soft Startup
500 mV/DIV
500 mV/DIV
10ms/DIV 200µs/DIV
Table 11: Number of Voltage Steps for Each Output
Step VOUT (V) RVSET (kΩ)Step PSET (%) RPSET (kΩ)
100 100
25.0 470 2+10 470
33.3 270 3+7.5 270
43.0 160 4+5.0 160
52.5 100 5+2.5 100
61.8 51 6-2.5 51
71.5 30 7-5.0 30
81.2 18 8-7.5 18
91.0 11 9-10 11
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 28 Document Classification: Proprietary February 4, 2009, 2.00
3.6 Thermal Shutdown
When the junction temperature of the 88PH8101 exceeds OTS high threshold, the th ermal
shutdown circuitry disables the step-down regulator. The step-down switching regulator is enabled
when the junction temperature is decreased to OTS low threshold.
3.7 PFM or PWM Mode Selection
When PFM pin is connected to high state, the regulator is in the forced PWM mode , where the
regulator runs at a constant frequency. The quiescent current of t he f orced PWM mode increases to
21mA (typical). When PFM pin is connected to a low state, the regulator runs in PFM mode, where
the switching frequency decreases when the load current reduces, thus improving the light load
efficiency.
3.8 Under Voltage Lockout (UVLO)
The Under Voltage Lockout (UVLO) feature insures that both MOSFETs have adequate voltage
levels to operate properly. When the input voltage drops below UVLO low threshold, both MOSFETs
are off until the input rises above UVLO high threshold. See Section 2.3 for the UVLO low and high
threshold voltages.
3.9 Over Voltage Protection (OVP)
For Over Voltage Protection (OVP), an over voltage comparator guards against transient
overshoots, as well as other serious conditions, that may damage the IC. When the input voltage is
above the OVP high threshold voltage, both external high-side N-channel MOSFET are turned off
until the input voltage drops below the OVP low threshold voltage. See section 2.3 for the OVP low
and high voltages..
VOVP_HTH
VUVLO-HTH
VUVLO-LTH
VOVP-LTH
Undefined
BUCK Output
Disable
BUCK Output
Enable
VIN
Functional Description
Power Good (PG)
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 29
3.10 Power Good (PG)
The Power Good (PG) pin is an active-high, open-drain output pin. It is low when the output voltage
of the step-down regulator is below the threshold. When the output voltage is above the threshold for
more than 512µs (tDELAY), the power good pin goes high. The threshold voltage is 0.9% * VOUT
(typical) for all output voltage settings. A built-in tDEGLITCH (40µs typical) delay is incorporated to
prevent nuisance tripping.
Figure 9: Power Good Operating Waveform
3.11 Hiccup Current Limit
The “Hiccup“ short-circuit protection is a featur e that is not common among other switching
regulators. Hiccup mode offers extra protection against over current situations, since it limits the
average current to the load, reducing power dissipation and case temperature of the IC. When the
current-sense circuit sees an over-current condition together with a low output voltage condition
(VOUT < 75% nominal), the 88PH8101 device shuts off for about 2ms and then tries to start up
again. If the over-load condition is removed, the devices will start-up normally; otherwise, the IC will
see another over-current event and shut off once again, repeating the previous cycle.
0V
t
DELAY
t
DEGLITCH
< t
DEGLITCH
RPG_PULLUP × IPG
VPGL
V
PG
V
PG_TH
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 30 Document Classification: Proprietary February 4, 2009, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Functional Characteristics
S tar tup Waveform s
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 31
4Functional Characteristics
Unless otherwise noted, the following typical scope photographs were taken using test circuit shown
in figure 1 at TA = 25°C.
4.1 Startup Waveforms
NOTE: When the input voltage rises above the UVLO’s upper threshold, then there is a delay (4ms typ)
before the step-down regulator ’s output voltage powers on.
VEN
VOUT
Figure 10: Startup Using the Enable
Pin
5V/DIV
2V/DIV
VEN
VOUT
Figure 11: Turn Off Using the
Enable Pin
5V/DIV
2V/DIV
5ms/DIV 5ms/DIV
VIN = 12V ILOAD = 10mA VIN = 12V ILOAD = 10mA
VOUT = 5V VOUT = 5V
VIN
VOUT
VPG
Figure 12: Soft Start
5V/DIV
5V/DIV
5V/DIV
VIN
VOUT
VPG
Figure 13: Hot Plug
5V/DIV
5V/DIV
5V/DIV
10ms/DIV 10ms/DIV
VIN = 12V ILOAD = No Load VIN = 12V ILOAD = No Load
VOUT = 5V VOUT = 5V
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 32 Document Classification: Proprietary February 4, 2009, 2.00
4.2 Switching Waveforms
NOTE: For repeatabili ty of measuring output ripple (VOUT (P-P)) for th e BUCK regulator, the standard test
procedure limit s the scope bandwidth to 20MHz and uses a coax cable with very short leads
terminated into 50Ω. The coax leads must be routed away from the switching node as much as
possible.
.
VSW
IIND
VOUT
VIN
Figure 14: PWM Mode
10V/DIV
5A/DIV
50mV/DIV
50mV/DIV
VSW
IIND
VOUT
VIN
Figure 15: PWM Mode
10V/DIV
5A/DIV
50mV/DIV
50mV/DIV
1μs/DIV 1μs/DIV
CIN = 4x22μFVIN(P-P) = 57.1mV CIN = 8x22μFVIN(P-P) = 47.6mV
VIN = 12V IIND(P-P) = 2. 1A VIN = 12V IIND(P-P) = 2.06A
VOUT = 5V IIND(PK) = 6A VOUT = 5V IIND(PK) = 6.05A
ILOAD = 5A Frequency = 500kHz ILOAD = 5A Frequency = 500kHz
VOUT(P-P) = 22.7mV (note) VOUT(P-P) = 28.3mV (note)
VSW
VOUT
IIND
Figure 16: DCM Mode
10V/DIV
50mV/DIV
1A/DIV
VSW
VOUT
IIND
Figure 17: DCM Mode-zoom
10V/DIV
50mV/DIV
1A/DIV
5μs/DIV 2μs/DIV
VIN = 12V ILOAD = 24mA VIN = 12V ILOAD = 24mA
VOUT = 5V IIND(PK) = 1.82A VOUT = 5V Ringing Frequency = 1.8MHz
VOUT(P-P) = 60.4mV (note) Frequency = 49kHz
Functional Characteristics
Switching Waveforms
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 33
VOUT
Figure 18: PWM Output Ripple
Voltage
20mV/DIV
100ms/DIV
VIN = 12V ILOAD = 5A
VOUT = 5V VOUT(P-P) = 35.3mV (Note)
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 34 Document Classification: Proprietary February 4, 2009, 2.00
4.3 Load Transient Waveforms
4.3.1 Step-Down Regulator
VSW
VOUT
ILOAD
IIND
Figure 19: Fast Load Rise Time
10V/DIV
50mV/DIV
2A/DIV
VSW
VOUT
ILOAD
IIND
Figure 20: Slow Load Rise Time
10V/DIV
50mV/DIV
2A/DIV
5μs/DIV 5μs/DIV
VIN = 12V COUT = 4 x 47μFVIN = 12V COUT = 4 x 47μF
VOUT = 5V tRISE = 50A/μsV
OUT = 5V tRISE = 2.5A/μs
ILOAD = 2A to 5A ILOAD = 2A to 5A
VSW
VOUT
ILOAD
IIND
Figure 21: Fast Load Fall Time
10V/DIV
50mV/DIV
2A/DIV
VSW
VOUT
ILOAD
IIND
Figure 22: Slow Load Fall Time
10V/DIV
50mV/DIV
2A/DIV
5μs/DIV 5μs/DIV
VIN = 12V COUT = 4 x 47μFVIN = 12V COUT = 4 x 47μF
VOUT = 5V tRISE = 230A/μsV
OUT = 5V tRISE = 2.5A/μs
ILOAD = 5A to 2A ILOAD = 5A to 2A
Functional Characteristics
Load Transient Waveforms
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 35
VOUT
ILOAD
Figure 23: Load T ransient Response
200mV/DIV
2A/DIV
VOUT
ILOAD
Figure 24: Double-Pulsed Load
Response
200mV/DIV
2A/DIV
20μs/DIV 20μs/DIV
VIN = 12V COUT = 4 x 47μFVIN = 12V COUT = 4 x 47μF
VOUT = 5V tRISE = 50A/μsV
OUT = 5V tRISE = 50A/μs
ILOAD = 2A to 5A tFALL = 230A/μsI
LOAD = 2A to 5A tFALL = 230A/μs
VOUT
ILOAD
Figure 25: Load T ransient Response
200mV/DIV
2A/DIV
VOUT
ILOAD
Figure 26: Double-Pulsed Load
Response
200mV/DIV
2A/DIV
20μs/DIV 20μs/DIV
VIN = 12V COUT = 4 x 47μFVIN = 12V COUT = 4 x 47μF
VOUT = 5V tRISE = 50A/μsV
OUT = 5V tRISE = 50A/μs
ILOAD = 1A to 3A tFALL = 230A/μs I
LOAD = 1A to 3A tFALL = 230A/μs
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 36 Document Classification: Proprietary February 4, 2009, 2.00
4.4 Output Voltage Transient Waveforms
The following graphs show the effect of changing the step-down regulator’s output voltage using the
serial interface. Depending on the change in the step-size of the output voltage, the output load, and
the output capacitance, the power-on reset pin de-asserts when the changes of the output voltage
occur beyond the 25μs (typical) delay.
4.4.1 Step-Down Regulator
VOUT
VPG
VSDI
Figure 27: VOUT = 1.0V to 1.2V with
ILoad = 0A
1V/DIV
1V/DIV
5V/DIV
VOUT
VPG
VSDI
Figure 28: VOUT = 1.0V to 1.5V with
ILoad = 0A
1V/DIV
1V/DIV
5V/DIV
100μs/DIV 100μs/DIV
VIN = 12V VIN = 12V
COUT = (4 x 47μF) + 1000μFC
OUT = (4 x 47μF) +1000μF
Typical Ch ara ct erist ics
Efficiency
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 37
5Typical Characteristics
Unless otherwise noted, the following typical scope photographs were taken using test circuit shown
in figure 1 at TA = 25°C.
5.1 Efficiency
Figure 29: Efficiency vs. Output Current
Figure 30: Efficiency vs. Output Current in Log Scale
5.2 IC Case, MOSFET, and Inductor Temperature
The following data was taken using a 2.0 square inch PCB 1 oz. copper and L = 4.2μH. Actual
results depend upon the size of the PCB proximity to other heat emitting components
Efficiency vs. Output Current
Vin = 9.0V
0
20
40
60
80
100
012345
Output Current (A)
Effici ency (%)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Effi ciency vs. Output Current
Vin = 12.0 V
0
20
40
60
80
100
0.01 0.1 1 10
Ou tp u t Current (A)
E fficien cy (%)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Efficiency vs. Output Current
Vin = 9.0V
0
20
40
60
80
100
0.01 0.1 1 10
Output Current (A)
Effi ciency (%)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 38 Document Classification: Proprietary February 4, 2009, 2.00
Figure 31: Input Current vs. Output Current
Figure 32: IC Case Temperatur e vs. Output Current
Figure 33: Top FET Temperature vs. Output Current
Input Curr ent vs. Out put Curr ent
Vin = 12V, TA = 25°C
0.0
1.0
2.0
3.0
4.0
5.0
6.0
012345678910
Output Curre nt (A)
In put Cu r r en t (A)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Input Current vs. Output Current
Vin = 9.0V, TA = 25°C
0.0
1.0
2.0
3.0
4.0
5.0
012345678910
Output Curre nt (A)
Input Current (A)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
IC Case Tem per a t ur e vs. O utput Current
Vin = 12V, TA = 2 C
20
30
40
50
60
70
80
90
100
012345678910
Outp u t Cu r r ent (A)
Tem p er atu re (°C)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
IC Case Temperature vs. Output Current
Vin = 9 . 0 V, TA = 25°C
20
30
40
50
60
70
80
90
012345678910
Output Curre nt (A)
Tem p eratu r e (°C)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Top FET Temperatur e vs. Out put Curr ent
Vin = 12V, TA = 25°C
20
30
40
50
60
70
80
90
100
110
012345678910
Output Current (A)
Tem per atur e (°C)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Top FET Tem per ature v s. O u t put Curr e nt
Vin = 9.0V, TA = 25°C
20
30
40
50
60
70
80
90
100
012345678910
Output Current (A)
Temperatu r e (°C)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Typical Ch ara ct erist ics
IC Case, MOSFET, and Inductor Temperature
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 39
Figure 34: Bottom FET Temperature vs. Output Current
Figure 35: Inductor Temperature vs. Output Current
Bottom FET Temperat ure vs. O ut put Curr ent
Vin = 1 2V, TA = 25° C
20
30
40
50
60
70
80
90
100
110
120
012345678910
Out put Cur rent (A )
Tem p eratu re (°C)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Bott o m FET Tem p er atur e v s. Outp ut Cur r e nt
Vin = 9. 0V, TA = 25 ° C
20
30
40
50
60
70
80
90
100
110
012345678910
Output Current (A)
Tem p er atu r e (°C)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Inductor Temperat ur e vs. Output Current
Vin = 12V, TA = 2 C
20
30
40
50
60
70
80
90
012345678910
Outp ut Cur r en t ( A)
Tem p eratur e (°C)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Induct or Tem pera t ure vs. Output Curre nt
Vin = 9. 0V, TA = 2 C
20
30
40
50
60
70
80
90
012345678910
Outp u t Cu r r ent (A)
Tem p eratu re (°C)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 40 Document Classification: Proprietary February 4, 2009, 2.00
5.3 Input Voltage
Figure 36: Supply Current vs . Input
Voltage Figure 37: Shutdown Supply
Current vs. Input Voltage
ILOAD = No Load VIN = 12V; ILOAD = No Load; VEN = 0V
Figure 38: Enable Threshold vs.
Input Voltage
ILOAD = 10mA
Supply Current vs. Input Voltage
PFM Mode
0.0
1.0
2.0
3.0
9.0 10.0 11.0 12.0 13.0 14.0
Input Voltage (V)
Cu rrent (mA)
Shutdow n Supply Current vs. Input Voltage
10
15
20
25
30
9.0 10.0 11.0 12.0 13.0 14.0
Input Voltage (V)
Current (μA)
Enable Threshold vs. Input Voltage
0.5
1.0
1.5
2.0
2.5
9 1011121314
Input Voltage (V)
Voltage (V)
UTH-Enable
LTH-Disable
Typical Ch ara ct erist ics
Input Voltage
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 41
5.3.1 Step-down Regulator
Figure 39: Output Voltage vs. Input
Voltage Figure 40: Efficiency vs. Input
Voltage
ILOAD = 2.5A VOUT = 5V; ILOAD = 5A
Figure 41: Load Regulation vs.
Input Voltage Figure 42: Frequency vs. Input
Voltage
VOUT = 5V; ILOAD = 2. 5 - 5A VOUT = 5V; ILOAD = 5A
Figure 43: Average Output Current
Limit vs. Input Voltage
Output Voltage vs. Input Voltage
4.90
4.95
5.00
5.05
5.10
91011121314
Input Voltage (V)
Output Voltage (V)
Efficiency vs. I n pu t Voltage
90%
93%
95%
98%
100%
9 1011121314
Input Voltage (V)
Efficiency
Load Regulation vs. Input Voltage
-0.20%
-0.10%
0.00%
0.10%
0.20%
9 1011121314
Input Voltage (V)
Load Regulation
Frequency vs. I np ut Voltage
450
475
500
525
550
9 1011121314
Input V oltage (V)
Frequenc y (kHz
)
Average Output Current Limit vs. Input Voltage
6
7
8
9
9 1011121314
Input Voltage (V)
Curr ent (A)
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 42 Document Classification: Proprietary February 4, 2009, 2.00
5.4 Temperature
Figure 44: Supply Current vs.
Temperature Figure 45: UVLO Threshold vs.
Temperature
ILOAD = No Load; VPWM = 0V ILOAD = 10mA
Figure 46: OVP Threshold vs.
Temperature Figure 47: Enable Threshold vs.
Temperature
ILOAD = 10mA ILOAD = 10mA
Figure 48: Shutdown Supply
Current vs. Temperature
ILOAD = No Load; VEN = 0V
Supply Current vs. T emperature
PFM Mode
0
1
2
3
-40-200 20406080
T emperature ( ° C)
Current (mA)
UVLO Threshold vs. Tem perature
3
4
5
6
7
-40 -20 0 20 40 60 80
Temperature (°C)
Voltage (V)
UTH
LTH
OVP Threshold vs. Temperature
15
16
17
18
19
-40 -20 0 20 40 60 80
Temperature (°C)
Voltage (V)
OVP HI GH
OVP LOW
Enabl e Threshold vs. Temperature
0.5
1.0
1.5
2.0
2.5
-40 -20 0 20 40 60 80
Temperature (°C)
Vol tage (V)
UTH - Enable
LTH - Disable
Shutdow n Supply Current vs.Temperature
0
20
40
60
80
-40-200 20406080
T emperature (°C)
Curre nt (uA)
Typical Ch ara ct erist ics
Temperature
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 43
5.4.1 Step-down Regulator
Figure 49: Output Voltage vs.
Temperature Figure 50: Efficiency vs.
Temperature
VIN = 12V; ILOAD = 2.5A VIN = 12V; VOUT = 5V; ILOAD = 5A
Figure 51: Load Regulation vs.
Temperature Figure 52: Line Regulation vs.
Temperature
VIN = 12V; VOUT = 5V; ILOAD = 2.5A - 5A VIN = 9V - 12V; VOUT = 5V; ILOAD = 5A
Figure 53: Frequency vs.
Temperature Figure 54: Average Output Current
Limit vs. Temperature
VIN = 12V; ILOAD = 5A VIN = 12V
Output Voltage vs. Temperature
5.00
5.05
5.10
5.15
-40-200 20406080
Temperature (°C)
Output Voltage (V)
Efficiency vs. Temperature
90%
93%
95%
98%
100%
-40-200 20406080
Temperature (°C)
Efficiency
Load Regulation vs. Temperature
-0.20%
-0.10%
0.00%
0.10%
0.20%
-40-200 20406080
Temperature (°C)
Load Regulation
Line Regulation vs. Temperature
-0.20%
-0.10%
0.00%
0.10%
0.20%
-40-200 20406080
Temperature (°C)
Line Regulation
Fr equency vs. Temperatur e
450
475
500
525
550
-40-200 20406080
Temperature (°C)
Frequency (kHz
)
Average Output Current Limit vs. Temperature
3
5
7
9
-40-200 20406080
Temperature (°C)
Current (A)
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 44 Document Classification: Proprietary February 4, 2009, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Applications Information
PC Board Layout Considerations and Guid el ines
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 45
6Applications Information
6.1 PC Board Layout Considerations and Guidelines
The PC board layout is very critical in any switching converter. An improper layout can contribute to
system instability, excessive Electro-Magnetic Interference (EMI), and high switching loss. Follow
these basic guidelines for good PC layout:
1. Copy the layout on page 47 as much as possible and use the recommend BOM on page 51.
Contact the factory if substitutions are made.
2. Review the recommended solder pad layout and notes on page 53.
3. Do not replace the Ceramic input or output capacitors with Tantalum capacitors!
4. Any type of capacitor can be placed in parallel with the input capacitor as long as the Ceramic
input capacitor is placed next to the IC. If Tantalum input capacitor is used, it must be rated for
switching regulator applications and t he operating voltage be derated by 50%.
5. Any type of capacitor can be placed in parallel with the output capacitor.
6. Low-ESR capacitors like the POSCAP from Sanyo can replace the Ceramic output capacitors
as long as the capacitor value is the same or greater. Note that the Ceramic capacitors provide
the lowest noise and smallest foot print solution.
7. Use planes for the ground, input and outputs power to maintain good voltage filtering and to
keep power losses low.
8. If there is not enough space for a power plane for the input supply, then th e input supply trace
must be at least 3/8 inch wide.
9. If there is not enough space for a power plane for the output supplie s, th en place the output as
close to the load as possible with a trace of at least 3/8 inch wide.
10. Do not lay out the inductor first. The input capacitors, Q1 and Q2 placement are the most
critical for prop er ope ration . These components must be placed as close as possible to each
other with as short and wide trace as possible. The AC current circu lating through these
components and loop 1 (LP1) are square wave with rise and fall times of 8ns and slew rates as
high as 300A/µs (see Figure 11). At these fast slew rates, stray PCB inductance can generate a
voltage spike as high as 3V per inch of PCB trace, VIND = L * di/dt. Also, the VIN and PGND
traces must be placed on the top layer . This will isolate the fast AC currents from interfering with
the analog ground plane.
11. Place the bootstrap capacitor, C2, as close as possible to the VBS and VSW pins.
12. The 88PH8101 has two internal grounds, analog (GND) and power (PGND). The analog ground
ties to all the noise sensitive signals (PSET, VSET, and VCC) while the power ground ties to the
higher current power paths. Noise on an analo g ground can cause problems with the IC’s
internal control and bias signals. For this reason, separate analog and power ground traces are
recommended. The signal ground is connected to the power ground at one point, which is th e
(-) terminal of the output capacitor.
13. Connect the CSH and VSW pins as close to Q1 drain and source as possib le. The se pins are
the sense terminals of the current limit comparator circuitry.
Warning
To avoid noise and abnormal operating behavior, follow these layout recommendations.
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 46 Document Classification: Proprietary February 4, 2009, 2.00
14. The VIN pin is sensitive to noise; therefore, connect the VIN pin to the (+) terminal of the input
capacitor and distance the PVIN from the CSH connection as far as possible.
15. Connect the (-) terminal of the output capacitor as close to the (-) terminal of the input capacitor .
A back-to-back placing of bypass capacitors, as shown in Figure 55, is recommended for best
results.
16. Keep the switching node (VSW) away from the SFB pin and all sensitive signal nodes,
minimizing capacitive coupling effects. If the SFB trace must cross the VSW node, cross it at a
right angle.
17. Try not to route analog or digital lines in close proximity to the power supply especially the VSW
node. If this can’t be avoi ded, shield these lines with a power pla ne placed between the VSW
node and the signal lines.
Figure 55: PCB Board Schematic
LP1
LP2
I Cin
LP1
I Cout
LP2
R4
470k
PG
R1
43k
Q2
IRF7832
C2
0.22uF
C9
47uF/6.3V
C6
0.1uF
V
OUT
U1
88PH8101
CSH 15
VIN 16
EN
1
PSET
2
PWM/SDI
7
VSET
3
ILIM
4
SFB
5
TG 13
PG
8PGND 9
BG 10
VCC 11
GND
6
VBS 12
VSW 14
C3
10uF/25V
R2
100K
C4
10uF/25V
V
IN
C1
4.7uF
5V/5A
L1
4.2uH
Q1
IRF7821
12V
R3
0 Ohm
C5
NOB
C10
47uF/6.3V C11
47uF/6.3V C12
47uF/6.3V
Applications Information
PC Board Layout Considerations and Guid el ines
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 47
6.1.1 PC Board Layout Example
Actual board size = 1450 mil x 1330 mil
Total copper layers = 4
All the components are on the top layer
Figure 56: Top Silk-Screen, Top Traces, Vias, and Copper (Not to Scale)
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 48 Document Classification: Proprietary February 4, 2009, 2.00
Figure 57: GND_Layer2 Vias, and Copper (Not to Scale)
Applications Information
PC Board Layout Considerations and Guid el ines
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 49
Figure 58: GND_Layer3 Vias, and Copper (Not to Scale)
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 50 Document Classification: Proprietary February 4, 2009, 2.00
Figure 59: Bottom Silk Screen, Bottom Traces, Vias, and Copper (Not to Scale)
Applications Information
PC Board Layout Considerations and Guid el ines
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 51
6.1.2 Bill of Materials
Table 12: B OM
Item Qty Ref Manufacturer Manufacturer
Part No. Description
1 1 U1 Marvell
Semiconductor 88PH8101 High Voltage Switching Regulator Controller
2 1 C1 Murata GRM21BR71C475K CAP CER 4.7μF 16V 10% X7R 0805
3 1 C2 Murata GRM188R61A224K
A01D CAP CER 0.22μF 10V 10% X5R 0603
4 1 C3 Murata GRM32DR61E106K
A12L CAP CER 10μF 25V 10% X5R 1210
5 1 C4 Murata GRM32DR61E106K
A12L CAP CER 10μF 25V 10% X5R 1210
6 0 C5 -- NOB NOT ON BOARD
7 1 C6 TDK Corporation C1608X7R1E104K CAP CER 0.1μF 25V X7R 10% 0603
8 1 C9 TDK Corporation C3216X5R0J476M CAP CER 47μF 6.3V X5R 20% 1206
9 1 C10 TDK Corporation C3216X5R0J476M CAP CER 47μF 6.3V X5R 20% 1206
10 1 C11 TDK Corporation C3216X5R0J476M CAP CER 47μF 6.3V X5R 20% 1206
11 1 C12 TDK Corporation C3216X5R0J476M CAP CER 47μF 6.3V X5R 20% 1206
12 1 L1 Sumida CDEP145NP-4R2M
C-170 CDEP145 Series, 4.2μH, 12.3A @
20°C, 7.4 m, H = 6 mm, L = 14.9 mm, W = 14.9
mm
13 1 Q1 IRF IRF7821TRPBF N-Channel MOSFETs SO-8 30V 13.6A @ 25°C
14 1 Q2 IRF IRF7832PBFCT N-Channel MOSFETs SO-8 30V 20A
15 1 R1 Yageo
Corporation RC0603JR-0743KL RES 43K1/10W 5% 0603 SMD
16 1 R2 Panasonic - ECG ERJ-3GEYJ104V RES 10 0K 1/10 W 5% 0603 SMD
17 1 R3 Yageo America RC0603JR-070RL RES 0.0 1/10W 5% 0603 SMD
18 1 R4 Yageo
Corporation RC0603JR-07470KL RES 470K 1/10W 5% 0603 SMD
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 52 Document Classification: Proprietary February 4, 2009, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Mechanical Drawings
Mechanical Drawing
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 53
7Mechanical Drawings
7.1 Mechanical Drawing
Figure 60: 16-Pin TSSOP Mechanical Drawing
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 54 Document Classification: Proprietary February 4, 2009, 2.00
7.2 Mechanical Dimensions
Table 13: 16-Pin TSSOP Dimensions
SYMBOLS DIMENSIONS IN MILLIMETERS DIMENSIONS IN INCHES
MIN NOM MAX MIN NOM MAX
A 1.05 1.10 1.20 0.041 0.043 0.047
A1 0.05 0.10 0.15 0.002 0.004 0.006
A2 1.00 1.05 0.039 0.041
b 0.20 0.25 0.28 0.008 0.010 0.011
C 0.127 0.005
D 4.90 5.00 5.10 0.193 0.200 0.200
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.170 0.173 0.177
e 0.65 0.026
L 0.50 0.60 0.70 0.020 0.024 0.028
y 0.076 0.003
α0°4°8°0°4°8°
Notes:
1. CONTROLLING DIMENSION: mm
2. DIMENSION “D” DOES NOT INCLUDE MOLD FLASH, TIE BAR BURRS AND GATE BURRS.
MODE FLASH, TIE BAR BURRS AND GATE BURRS SHALL NOT EXCEED 0.006” [0.15mm] PER
END DIMENSION “E1” DOES NOT INCLUDE INTERLEAD FLASH INTERLEAD FLASH SHALL
NOT EXCEED 0.010” [0.25mm] PER SIDE.
3. REFERENCE DOCUMENT: JEDEC SPEC MO-153
Mechanical Drawings
Typical Pad Layout Dimensions
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 55
7.3 Typical Pad Layout Dimensions
7.3.1 Recommended Solder Pad Layout
Figure 61: TSSOP-16 Land Pattern (mm)
6.60
1.05 0.45
4.50
0.65
1
5.00
Notes:
1. TOP VIEW
2. DRAWING NOT TO SCALE
3. CONTROLLING DIMENSION: mm
4. OVERSIZE SOLDER MASK BY 4 MILS OVER PAD SIZE (2 MIL ANNULAR RING)
5. TOLERANCE ±0.05mm
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 56 Document Classification: Proprietary February 4, 2009, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Part Order Numbering / Package Marking
Part Order Numbering Scheme
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 57
8Part Order Numbering / Package Marking
8.1 Part Order Numbering Scheme
Figure 62 shows the part order numbering scheme. Refer to a Marvell® Field Application Engineer
(FAE) or sales representative for further information when ordering parts.
Figure 62: Sample Part Number
8.2 Part Ordering Options
The standard ordering part numbers for the respective solutions are as follows:
Part Number
Custom Code Custom Code
Custom Code
Temperature Code
1xx UBB C000 T123
88PH8101
Package Code Environmental
(optional )
1 – RoHS 6/6 Package
2 – Green Package
Custom Code
Table 14: Part Ordering Options
Package Type Part Order (booking) Number
16-pin TSSOP 88PH8101xx-UBB1C000
16-pin TSSOP 88PH8101xx-UBB1C000-T (Tape and Reel)
88PH8101
Datasheet
Doc. No. MV-S103978-01 Rev. – Copyright © 2009 Marvell
Page 58 Document Classification: Proprietary February 4, 2009, 2.00
8.3 Package Marking
Figure 63 shows a sample package marking and pin 1 location.
Figure 63: Package Marking and Pin 1 Location
MRVL
H101
YWWG
Marvell company abbreviation
Abbreviated part number
XXXX = 4 character abbreviated part
Date code and assembly house code
Y = last digit of year
WW = work week
G = assembly house code
Pin 1 location
Note: The above example is not drawn to scal e. Location of markings are approximate.
Copyright © 2009 Marvell Doc. No. MV-S103978 -01 Rev. –
February 4, 2009, 2.00 Document Classification: Proprietary Page 59
ARevision History
Table 15: Revisio n History
Document Type Document Revision
Release Rev.
Updated to new template, Removed all “88PH8201” instances, Removed “Confidential”, Updated Typ. Dwg. (Fig. 1),
Updated Electrical Chars. Output Voltage Specs., Updated Logic Programmability Voltage Output Specs. (Table 3),
Replaced PC Board Schematic, Replaced and added silk screens (Fig. 30 - Fig. 34), Updated Bill of Materials.
Marvell. Moving Forward Faster
Marvell Semiconductor, Inc.
5488 Marvell Lane
Santa Clara, CA 95054, USA
Tel: 1.408.222.2500
Fax: 1.408.752.9028
www.marvell.com
Back Cover