www.lansdale.comPage 1 of 9 Issue A
ML12002
Analog Mixer
Legacy Device: Motorola MC12002
The ML12002 is a double balanced analog mixer, includ-
ing an input amplifier feeding the mixer carrier port and a
temperature compensated bias regulator. The input circuits
for both the amplifier and mixer are differential amplifier
circuits. The on-chip regulator provides all of the required
biasing.
This circuit is designed for use as a balanced mixer in
high-frequency wide-band circuits. Other typical applica-
tions include suppressed carrier and amplitude modulation,
synchronous AM detection, FM detection, phase detection,
and frequency doubling, at frequencies up to UHF.
There are two package offerings:
Plastic Dual Inline 14 Lead, P Dip.
Plastic Surface Mount 14 Lead SOIC.
Operating Temperature Range: TA= –30° to +85°C
P DIP 14 = CP
PLASTIC PACKAGE
CASE 646
14
1
SOG 14 = -5P
SOG
CASE 751A
CROSS REFERENCE/ORDERING INFORMATION
MOTOROLA
P DIP 14 MC12002P ML12002CP
SOG 14 MC12002D ML12002-5P
LANSDALEPACKAGE
Note: Lansdale lead free (Pb) product, as it
becomes available, will be identified by a part
number prefix change from ML to MLE.
(Top View)
PIN CONNECTIONS
1
2
3
4
5
6
78
9
10
11
12
13
14 VCC
Resistor Load
Data Output
Data Output
Regulator
Bypass
Mixer Signal
Input
Mixer Signal
Input
Regulator
Bypass
Local Oscillator
Input
Local Oscillator
Input
Alternate Signal
Input
Null Adjust
Null Adjust
VEE
Figure 1. Logic Diagram
2
3
8
9
Local
Oscillator
Inputs
Signal
Inputs
Amplifier
VBVR
Bias
Regulator
Carrier
Port
Mixer
Signal
Port
VRVB
12
11 Output
LANSDALE Semiconductor, Inc.
ML12002
www.lansdale.comPage 2 of 9 Issue A
TEST VOLTAGE VALUES
Volts
VIHmax VILmin VCC
ELECTRICAL CHARACTERISTICS +2.9 +2.0 +5.0
Test Limits
VOLTAGE APPLIED TO PINS
LISTED BELOW
Pin
Under –30°C +25°C +85°C
Characteristic Symbol
Under
Test Min Max Min Max Min Max Unit VIHmax VILmin VCC Gnd
Power Supply Drain ICC 14 16 mAdc 11,12,14 5,6,7
Input Current IinH 2
3
8
9
0.75
0.75
0.75
0.75
mAdc
mAdc
mAdc
mAdc
2
3
8
9
11,12,14
11,12,14
11,12,14
11,12,14
5,6,7
5,6,7
5,6,7
5,6,7
IinL 2
3
8
9
– 0.7
– 0.7
– 0.7
– 0.7
mAdc
mAdc
mAdc
mAdc
2
3
8
9
11,12,14
11,12,14
11,12,14
11,12,14
5,6,7
5,6,7
5,6,7
5,6,7
Output Current IO111
12
0.7
0.7
1.3
1.3
mAdc
mAdc
11,12,14
11,12,14
7
7
IO211
12
2.1
2.1
3.9
3.9
mAdc
mAdc
11,12,14
11,12,14
5,6,7
5,6,7
Iout11
11
12
12
4.2
4.2
4.2
4.2
7.8
7.8
7.8
7.8
mAdc
mAdc
mAdc
mAdc
2,9
3,8
2,8
3,9
11,12,14
11,12,14
11,12,14
11,12,14
5,6,7
5,6,7
5,6,7
5,6,7
Differential Current IO1
IO2
11,12
11,12
–100
–200
+100
+200
–100
–200
+100
+200
–100
–200
+100
+200
µAdc
µAdc
11,12,14
11,12,14
7
5,6,7
Bias Voltage VBias 1
4
5
6
10
2.33
390
275
275
1.26
2.53
590
415
415
1.46
2.32
400
285
285
1.185
2.52
600
425
425
1.385
2.3
410
295
295
1.105
2.5
610
435
435
1.305
Vdc
mVdc
mVdc
mVdc
Vdc
11,12,14
11,12,14
11,12,14
11,12,14
11,12,14
5,6,7
5,6,7
7
7
5,6,7
Pulse
In
Pulse
Out –3.0 V Gnd VEE
AC Gain (See Figure 1) AV11 5.0 V/V 2 11 9 14 7
(Frequency =
100 MHz) *Note
11 0.28 V/V 8 11 3 14 7
NOTE: *Note: AC Gain is a function of collector load impedance.
LANSDALE Semiconductor, Inc.
ML12002
www.lansdale.comPage 3 of 9 Issue A
LANSDALE Semiconductor, Inc.
ML12002
www.lansdale.comPage 4 of 9 Issue A
All Input and output
cables to the scope are
equal lengths of 50-ohm
coaxial cable.
Notes:
Test 1 Adjust potentiometer for carrier null at fc = 100 kHz.
Test 2 Connect pins 5 and 6 to Gnd.
Sampling Volt meter
Hewlett Packard
3406A or Equiv.
Tektronix
454 and 568
Oscilloscopes
Hewlett Packard
651A and 3300B
100 kHz to 100 MHz
@ 30 mVpp
Signal A
Input (Pin 2)
Output (Pin12)
Output (Pin 11)
Signal B Input (Pin 8)
Output (Pin 12)
Output (Pin 11)
Figure 4. Carrier Feedthrough Test Circuits
12
11
Outputs
Null
AdjustVCC
6 14571 10
VEE
Reg.
Bypass
Local Oscillator
Inputs
2
3
8
9
Mixer
Inputs
1.0
µ
f
1.0
µ
f
1.0
µ
f
0.1
µ
f
0.1
µ
f50
+5.0 V
0.1
µ
f
133 133
LANSDALE Semiconductor, Inc.
ML12002
www.lansdale.comPage 5 of 9 Issue A
1.0 K100.010.01.00.1
–50
fc, CARRIER FREQUENCY (MHz)
+40
+30
+20
+10
0
–10
–20
–30
–40
–60
fc, CARRIER FREQUENCY (MHz)
1.0 K100.010.0
+40
+30
+20
+10
0
–10
–20
–30
–40
–50
–60
0.1 1.0
fc, CARRIER FREQUENCY (MHz)
10.0 100.01.0
100.010.01.00.1
0.0
1.0
2.0
3.0
4.0
0.1
fc, CARRIER FREQUENCY (MHz)
5.0
4.0
3.0
2.0
0.0
5.0
1.0
)]smr[Vm( EGATLOV TUPTUO REIRRAC , V TFC
)]s
mr
[
V
m( E
G
ATL
O
V TUP
TU
O R
E
IRRAC ,
V T
F
C
)
Bd
(
NO
I
S
S
ER
P
PUS
R
E
IR
RAC
)Bd( NOISSERPPUS REIRRA
C
– 5.0 V
All input and output
cables to the scope are
equal lengths of 50-ohm
coaxial cable.
X 50
Atten. 50
50
50
50
11
12
Outputs
VEE VCC
Null
Adjust
Reg.
Bypass
Mixer
Inputs
Local Oscillator
Inputs
1.0
µ
f
+
– 5.0 V
50
14657101
Hewlett
Packard
TEE 11536A
Hewlett Packard 3406A
Sampling Voltmeter
Hewlett Packard
651A 10 kHz
@ 150 mV R.M.S.
Hewlett Packard
651A and 3300B
100 kHz to 400 MHz
@ 30 mV RMS.
9
1.0
µ
f
0.1
µ
f
50
2
3
0.1
µ
f
1.0
µ
f
8
1.0
µ
f
Notes:
Test 1 Adjust potentiometer for carrier null @ fc = 100 kHz
Test 2 Connect pins 5 and 6 to –5.0 volts
Test 3 Adjust potentiometer for carrier null @ 25°C
Figure 5. Carrier Feedthrough versus Frequency
(Test 1)
Figure 6. Carrier Feedthrough versus Frequency
(Test 2)
Figure 7. Carrier Suppression Test Circuit
Figure 8. Carrier Suppression versus Frequency
(Test 1)
Figure 9. Carrier Suppression versus Frequency
(Test 2)
LANSDALE Semiconductor, Inc.
ML12002
www.lansdale.comPage 6 of 9 Issue A
Notes:
Test 1 Pins 5 and 6 left open
Test 2 Pins 5 and 6 are tied to –5.0 volts
TA, AMBIENT TEMPERATURE (
°
C)
+125+100+75+50+250–25–55
–60
–50
–40
–30
–20
–10
fc = 10 MHz @ 30 mvrms
fs = 10 KHz @ 150 mvrms
)B
d(
N
OISSE
RPPU
S
REIR
RA
C
Local Oscillator
Inputs
3
2
1.0
µ
f
1.0
µ
f
1.0
µ
f
Mixer
Inputs
Reg.
Bypass
1.0
µ
f
8
9
0.1
µ
f
101
VEE
0.1
µ
f
–5.0 V
0.1
µ
f
7
IOO = I11 – I12
14
VCC
56
Outputs
12
I12
µ
A
I11
11
µ
A
Null
Adjust
I
I
TEST 1
TA, AMBIENT TEMPERATURE (
°
C)
+125+100+75+50+250–25–55
–100
–50
0.0
+50
+100
TEST 2
)A
( TNERRUC
T
ES
F
FO TU
P
TU
O
,
IOO
µ
1
6
21
26
16
31
1000800600
f, FREQUENCY (MHZ)
400200
50
100
150
200
250
300
350
400
11
)smh
O(
ECN
ATS
I
SER R L
C
R
Zin
R(OHMS)
)
F
p(
E
C
NATICA
P
AC ,C
TYPICAL INPUT IMPEDANCE
vs
FREQUENCY
R
– LOCAL OSCILLATOR –
AND SIGNAL INPUTS
C
Figure 10. Carrier Suppression versus Temperature
Figure 11a. Output Offset Current (I
00) versus Temperature
Figure 12. Output Offset Current versus Temperature Figure 13. Typical Input Impedance versus Frequency
(No Circuit)
LANSDALE Semiconductor, Inc.
ML12002
www.lansdale.comPage 7 of 9 Issue A
RF out
RF input
AGC
MOD
input
+V
V2
5V
R3
10k 40%
C8
.1uF
P3
P2
P1
C7
1uF
C6
1nF
C5
1nF
C4
1nF
C3
1nF
C2
1nF
C1
1nF
+V
V1
5V
ML12002
byp P1
LOin P2
LOin P3
altin P4
null P5
null P6
gnd P7 sigin
P8
sigin
P9
byp
P10
rfout
P11
rfout
P12
load
P13
vcc
P14
U1
R4
1k
R2
50 R1
50
Figure 11b. Application Circuite Using ML12002 as a AM Modulator
LANSDALE Semiconductor, Inc.
ML12002
www.lansdale.comPage 8 of 9 Issue A
P DIP 14 = CP
PLASTIC PACKAGE
(ML12002CP)
CASE 646–06
ISSUE M
17
14 8
B
A
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.715 0.770 18.16 18.80
B0.240 0.260 6.10 6.60
C0.145 0.185 3.69 4.69
D0.015 0.021 0.38 0.53
F0.040 0.070 1.02 1.78
G0.100 BSC 2.54 BSC
H0.052 0.095 1.32 2.41
J0.008 0.015 0.20 0.38
K0.115 0.135 2.92 3.43
L
M––– 10 ––– 10
N0.015 0.039 0.38 1.01
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
F
HG D
K
C
SEATING
PLANE
N
–T–
14 PL
M
0.13 (0.005)
L
M
J
0.290 0.310 7.37 7.87
OUTLINE DIMENSIONS
LANSDALE Semiconductor, Inc.
ML12002
www.lansdale.comPage 9 of 9 Issue A
SOG 14 = -5P
(ML12002-5P)
CASE 751A-03
-A-
-B- P 7 PL
G
C
K
SEAT-
ING
PLANE
MJ
R X 45
17
814
T
F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION
4. MAXIMUM HOLD PROTRUSION 0.15 (0.006) PER
SIDE
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION
DIM
INCHES MILLIMETERS
MIN MAX MIN MAX
A 8.55 8.75 0.337 0.334
B 3.80 4.00 0.150 0.157
C 1.35 1.75 0.054 0.068
D 0.35 0.49 0.014 0.019
F 0.40 1.25 0.016
G 1.27 BSC 0.050 BSC
0.049
J 0.19 0.25 0.008 0.009
K 0.10 0.25 0.004 0.009
P 5.80 6.20 0.228 0.244
R 0.25 0.50 0.010 0.019
M
0.25 (0.010) B
M
0.25 (0.010) B A
MSS
M
OUTLINE DIMENSIONS
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliabili-
ty, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the customer’s
technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.