Seven Degrees of Freedom Inertial Sensor
Data Sheet
ADIS16489
Rev. B
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice.
No license is granted by implication or otherwise under any patent or patent rights of Analog
Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©20172020 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Triaxial, digital gyroscope, ±450°/sec dynamic range
±0.018° axis-to-axis misalignment error
5.3°/hr in-run bias stability
0.25°/√hr angular random walk
0.045°/sec nonlinearity
Triaxial, digital accelerometer, ±18 g dynamic range
Barometer, 300 mbar to 1100 mbar
Triaxial, delta angle and delta velocity outputs
Factory calibrated sensitivity, bias, and axial alignment
Calibration temperature range: −40°C to +85°C
SPI compatible
Programmable operation and control
Automatic and manual bias correction controls
4 FIR filter banks, 120 configurable taps
Digital I/O: data ready alarm indicator, external clock
Alarms for condition monitoring
Power-down/sleep mode for power management
Optional input sync clock: up to 2.4 kHz
On demand self test of inertial sensors
On demand flash memory test (checksum)
Single-supply operation: 3.0 V to 3.6 V
2000 g shock survivability
Parylene coating (moisture barrier for internal circuitry)
Operating temperature range: −40°C to +105°C
APPLICATIONS
Platform stabilization and control
Navigation
Personnel tracking
Instrumentation
Robotics
GENERAL DESCRIPTION
The ADIS16489 is a complete inertial system that includes a
triaxis gyroscope, a triaxis accelerometer, and a barometer. Each
inertial sensor in the ADIS16489 combines industry leading
iMEMS® technology with signal conditioning that optimizes
dynamic performance. The factory calibration characterizes
each sensor for sensitivity, bias, alignment, and linear acceleration
(gyroscope bias). As a result, each sensor has its own dynamic
compensation formulas that provide accurate sensor
measurements.
The ADIS16489 provides a simple, cost effective method for
integrating accurate, multiaxis inertial sensing into industrial
systems, especially when compared with the complexity and
investment associated with discrete designs. All necessary motion
testing and calibration are part of the production process at
the factory, greatly reducing system integration time. Tight
orthogonal alignment simplifies inertial frame alignment in
navigation systems. The serial peripheral interface (SPI) and
register structure provide a simple interface for data collection and
configuration control. Parylene coating of all internal circuitry
(except the barometer) provides a protective barrier against
moisture exposure.
The ADIS16489 uses the same footprint and connector system as
the ADIS16375, ADIS16480, ADIS16485, and ADIS16488A, which
greatly simplifies the upgrade process. The ADIS16489 is packaged
in a module that is approximately 44 mm × 47 mm × 14 mm
and includes a standard connector interface.
FUNCTIONAL BLOCK DIAGRAM
CONTROLLER
CLOCK
TRIAXIAL
GYROSCOPE
TRIAXIAL
ACCELEROMETER
POWER
MANAGEMENT
CS
SCLK
DIN
DOUT
GND
VDD
TEMP
VDD
DIO1 DIO2 DIO3 DIO4
VDDRTC
RST
SPI
PRESSURE
SELF T EST I/O ALARMS
OUTPUT
DATA
REGISTERS
USER
CONTROL
REGISTERS
CALIBRATION
AND
FILTERS
ADIS16489
15596-001
Figure 1.
ADIS16489 Data Sheet
Rev. B | Page 2 of 40
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ...................................................................................... 1
General Description ......................................................................... 1
Functional block Diagram............................................................... 1
Revision History ............................................................................... 3
Specifications .................................................................................... 4
Timing Specifications .................................................................. 6
Absolute Maximum Ratings ........................................................... 8
Thermal Resistance ...................................................................... 8
ESD Caution.................................................................................. 8
Pin Configuration and Function Descriptions ............................ 9
Typical Performance Characteristics ........................................... 10
Theory of Operation ...................................................................... 11
Introduction ................................................................................ 11
Register Structure ....................................................................... 11
SPI Communication .................................................................. 12
Device Configuration ................................................................ 12
Reading Sensor Data .................................................................. 12
User Register Memory Map .......................................................... 13
User Register Defintions ............................................................... 16
Page 0 (PAGE_ID) ..................................................................... 16
Sample Sequence Counter (SEQ_CNT) ................................. 16
Status/Error Flag Indicators (SYS_E_FLAG) ......................... 16
Self Test Error Flags (DIAG_STS) ........................................... 16
Alarm Error Flags (ALM_STS) ................................................ 17
Internal Temperature (TEMP_OUT) ..................................... 17
Gyroscope Data .......................................................................... 17
Acceleration Data ....................................................................... 18
Barometer Data ........................................................................... 19
Delta Angles ................................................................................ 20
Delta Velocity ............................................................................. 21
Real-Time Clock ......................................................................... 22
Page 2 (PAGE_ID) ..................................................................... 23
Calibration ................................................................................... 23
Barometers .................................................................................. 26
Scratch Registers (USER_SCR_x) ............................................ 26
Flash Memory Endurance Counter (FLSHCNT_LOW,
FLSHCNT_HIGH) .................................................................... 27
Page 3 (PAGE_ID) ..................................................................... 27
Global Commands (GLOB_CMD) ......................................... 27
Auxiliary I/O Line Configuration (FNCTIO_CTRL) ........... 28
General-Purpose I/O Control (GPIO_CTRL) ....................... 29
Miscellaneous Configuration (CONFIG) ............................... 29
Decimation Filter (DEC_RATE) ............................................. 30
Continuous Bias Estimation (NULL_CNFG) ........................ 30
Power Management (SLP_CNT) ............................................. 31
FIR Filter Control (FILTR_BNK_0, FILTR_BNK_1) ............... 31
Alarm Configuration (ALM_CNFG_0, ALM_CNFG_1,
ALM_CFG_2) ............................................................................. 31
X-Axis Gyroscope Alarm (XG_ALM_MAGN) ..................... 33
Y-Axis Gyroscope Alarm (YG_ALM_MAGN) ..................... 33
Z-Axis Gyroscope Alarm (ZG_ALM_MAGN) ..................... 33
X-Axis Accelerometer Alarm (XA_ALM_MAGN) .............. 33
Y-Axis Accelerometer Alarm (YA_ALM_MAGN) .............. 33
Z-Axis Accelerometer Alarm (ZA_ALM_MAGN) .................. 34
Barometer Alarm (BR_ALM_MAGN) ................................... 34
Firmware Revision (FIRM_REV) ............................................ 34
Firmware Revision Day and Month (FIRM_DM) ................ 34
Firmware Revision Year (FIRM_Y) ........................................ 34
Page 4 (PAGE_ID) ..................................................................... 34
Part Identification Numbers (PART_ID1, PART_ID2,
PART_ID3, PART_ID4) ........................................................... 35
FIR Filters .................................................................................... 35
Applications Information ............................................................. 38
Mounting Best Practices ........................................................... 38
Evaluation Tools ......................................................................... 39
Power Supply Considerations .................................................. 39
X-Ray Sensitivity ........................................................................ 39
Packaging and Ordering Information ......................................... 40
Outline Dimensions ................................................................... 40
Ordering Guide .......................................................................... 40
Data Sheet ADIS16489
Rev. B | Page 3 of 40
REVISION HISTORY
8/2020—Rev. A to Rev. B
Changed EVAL-ADIS to EVAL-ADIS2 .................... Throughout
Change to Nonlinearity Parameter, Table 1 .................................. 4
Changes to Table 6 ............................................................................ 9
Changes to Introduction Section .................................................. 11
Changes to Dual Memory Structure Section and Reading
Sensor Data Section ........................................................................ 12
Changes to Table 10 ........................................................................ 13
Changes to Table 12 Title, Table 13 Title, Table 14 Title, Table 16
Title, and Table 16 ........................................................................... 16
Changes to Table 18 ........................................................................ 17
Changes to Table 92 ........................................................................ 23
Changes to Table 144 and Table 146 ............................................ 27
Changes to Continuous Bias Estimation (NULL_CNFG) Section,
Table 161, and Figure 33 ................................................................ 30
Change to Solving for ΔX_ACCL_OUT, ΔZ_GYRO_OUT,
ΔY_GYRO_OUT, and ΔX_GYRO_OUT Section ..................... 32
Changes to FIR Filters Section ...................................................... 35
11/2018—Rev. 0 to Rev. A
Added Endnote 4, Table 1; Renumbered Sequentially ................ 4
Added X-Ray Sensitivity Section .................................................. 39
2/2017—Revision 0: Initial Version
ADIS16489 Data Sheet
Rev. B | Page 4 of 40
SPECIFICATIONS
TC = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = ±450°/sec ± 1 g, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
GYROSCOPES
Dynamic Range ±450 ±480 °/sec
Sensitivity x_GYRO_OUT and x_GYRO_LOW (32-bit) 3.052 × 10−7 °/sec/LSB
Repeatability1 −40°C ≤ TC ≤ +85°C ±1 %
Sensitivity Temperature Coefficient −40°C ≤ TC ≤ +85°C, 1 σ ±25 ppm/°C
Misalignment Error Axis to axis ±0.018 Degrees
Axis to frame (package) ±1.0 Degrees
Nonlinearity Best fit straight line, full scale (FS) = 450°/sec 0.01 % FS
Bias
Repeatability1, 2 −40°C ≤ TC ≤ +85°C, 1 σ ±0.2 °/sec
In-Run Bias Stability 1 σ 5.3 °/hr
Angular Random Walk 1 σ 0.25 °/√hr
Temperature Coefficient −40°C ≤ TC ≤ +85°C, 1 σ ±0.0025 °/sec/°C
Error over Temperature
−15°C ≤ T
C
≤ +65°C, 10°C range
°/sec
Linear Acceleration Effect Any axis, 1 σ (CONFIG[7] = 1) 0.009 °/sec/g
Any axis, 1 σ (CONFIG[7] = 0) 0.015 °/sec/g
Noise
Output Noise No filtering 0.16 °/sec rms
Rate Noise Density f = 10 Hz to 40 Hz, no filtering 0.0068 °/sec/√Hz rms
3 dB Bandwidth 330 Hz
Sensor Resonant Frequency 18 kHz
ACCELEROMETERS3 Each axis
Dynamic Range ±18 g
Sensitivity x_ACCL_OUT and x_ACCL_LOW (32-bit) 1.221 × 10−8 g/LSB
Repeatability1 −40°C ≤ TC ≤ +85°C ±0.5 %
Sensitivity Temperature Coefficient −40°C ≤ TC ≤ +85°C, 1 σ ±25 ppm/°C
Misalignment Axis to axis ±0.035 Degrees
Axis to frame (package) ±1.0 Degrees
Nonlinearity Best fit straight line, ±10 g 10 mg
Best fit straight line, ±18 g 90 mg
Bias
Repeatability1, 2, 4 −40°C ≤ TC ≤ +85°C, 1 σ ±16 mg
In-Run Bias Stability 1 σ 70 μg
Velocity Random Walk 1 σ 0.029 m/sec/√hr
Temperature Coefficient −40°C ≤ TC ≤ +85°C, 1 σ ±0.1 mg/°C
Noise
Output Noise No filtering 1.29 mg rms
Noise Density f = 10 Hz to 40 Hz, no filtering 0.063 mg/√Hz rms
3 dB Bandwidth 330 Hz
Sensor Resonant Frequency 5.5 kHz
BAROMETER
Pressure Range 300 1100 mbar
Extended 10 1200 mbar
Sensitivity BAROM_OUT and BAROM_LOW (32-bit) 6.1 × 10−7 mbar/LSB
Error with Supply
%/V
Total Error 4.5 mbar
Relative Error5 −40°C ≤ TC ≤ +85°C 2.5 mbar
Nonlinearity6 Best fit straight line, FS = 1100 mbar 0.1 % of FS
−40°C ≤ TC ≤ +85°C 0.2 % of FS
Linear g Sensitivity ±1 g, 1 σ 0.005 mbar/g
Noise 0.025 mbar rms
Data Sheet ADIS16489
Rev. B | Page 5 of 40
Parameter Test Conditions/Comments Min Typ Max Unit
TEMPERATURE SENSOR
Scale Factor Output = 0x0000 at 25°C (±5°C) 0.00565 °C/LSB
LOGIC INPUTS7
Input Voltage
High, VIH 2.0 V
Low, VIL 0.8 V
RST Pulse Width 1 µs
CS Wake-Up Pulse Width 20 µs
Input Current
Logic 1 (High), IIH VIH = 3.3 V 10 µA
Logic 0 (Low), I
IL
V
IL
= 0 V
All Pins Except RST 10 µA
RST Pin 0.33 mA
Input Capacitance, CIN 10 pF
DIGITAL OUTPUTS
Output Voltage
High, VOH ISOURCE = 0.5 mA 2.4 V
Low, VOL ISINK = 2.0 mA 0.4 V
FLASH MEMORY Endurance8 100,000 Cycles
Data Retention9 TJ = 85°C 20 Years
FUNCTIONAL TIMES10 Time until data is available
Power-On Start-Up Time 600 ms
Back-up 1370 1500 ms
Reset Recovery Time11 390 600 ms
Sleep Mode Recovery Time 730 1000 µs
Flash Memory
Update Time12 1.05 6.8 sec
Test Time 50 ms
On Demand Self Test Time Using internal clock (2460 Hz) 12 ms
CONVERSION RATE 2.46 kSPS
Initial Clock Accuracy 0.02 %
Temperature Coefficient 40 ppm/°C
Sync Input Clock13 0.7 2.4 kHz
POWER SUPPLY, VDD Operating voltage range, VDD = 3.3 V 3.0 3.6 V
Power Supply Current, IDD14 Normal mode, µ ± σ 186 mA
Sleep mode 12.2 mA
Power-down mode 37 µA
POWER SUPPLY, VDDRTC Operating voltage range 3.0 3.3 3.6 V
Real-Time Clock Supply Current Normal mode, VDDRTC = 3.3 V 13 µA
1 The repeatability specifications represent analytical projections based on the following drift contributions and conditions: temperature hysteresis (40°C to +85°C),
electronics drift (high temperature operating life test: 110°C, 500 hours), drift from temperature cycling (JESD22, Method A104-C, Method N, 500 cycles, −55°C to +85°C), rate
random walk (10-year projection), and broadband noise.
2 Bias repeatability describes a long-term behavior over a variety of conditions. Short-term repeatability relates to the in-run bias stability and noise density specifications.
3 All specifications associated with the accelerometers relate to the full-scale range of ±18 g.
4 X-ray exposure can degrade this performance metric.
5 The relative error assumes that the initial error, at 25°C, is corrected in the end application.
6 Specification assumes a full scale (FS) of 1000 mbar.
7 The digital I/O signals use a 3.3 V system.
8 Endurance is qualified as per JEDEC Standard 22, Method A117, measured at −40°C, +25°C, +85°C, and +125°C.
9 The data retention specification assumes a junction temperature (TJ) of 8C per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.
10 These times do not include thermal settling and internal filter response times, which may affect overall accuracy.
11 The RST line must be in a low state for at least 10 μs to ensure a proper reset initiation and recovery.
12 Monitoring the data ready signal (see Table 153 for FNCTIO_CTRL configuration) for the return of regular pulsing can help minimize system wait times.
13 The device functions at clock rates below 0.7 kHz but at reduced performance levels.
14 Supply current transients can reach 600 mA during initial startup or reset recovery.
ADIS16489 Data Sheet
Rev. B | Page 6 of 40
TIMING SPECIFICATIONS
TC = 25°C, VDD = 3.3 V, unless otherwise noted.
Table 2.
Parameter Description Min1 Typ Max1 Unit
fSCLK Serial clock 0.01 15 MHz
tSTALL2 Stall period between data 2 µs
tCLS Serial clock low period 31 ns
tCHS Serial clock high period 31 ns
tCS Chip select to clock edge 32 ns
tDAV DOUT valid after SCLK edge 10 ns
tDSU DIN setup time before SCLK rising edge 2 ns
tDHD DIN hold time after SCLK rising edge 2 ns
tDR, tDF DOUT rise/fall times, ≤100 pF loading 3 8 ns
tDSOE CS assertion to data out active 0 11 ns
tHD SCLK edge to data out invalid 0 ns
tSFS Last SCLK edge to CS deassertion 32 ns
tDSHI CS deassertion to data out high impedance 0 9 ns
Data ready pulse width 11 15 µs
t1 Input sync pulse width 5 µs
t2 Input sync to data invalid 560 570 µs
t3 Input sync period 417 µs
1 Guaranteed by design and characterization, but not tested in production.
2 See Table 3 for exceptions to the stall time rating.
Register Specific Stall Times
Table 3.
Parameter Description Min1 Typ Max Unit
STALL TIME
FNCTIO_CTRL Configure DIOx functions 15 μs
FILTR_BNK_0 Enable/select finite impulse response (FIR) filter banks 10 μs
FILTR_BNK_1 Enable/select FIR filter banks 10 μs
NULL_CNFG Configure autonull bias function 10 μs
GLOB_CMD[1] Self test 12000 μs
GLOB_CMD[2] Flash memory test 50000 μs
GLOB_CMD[3] Flash memory update 375000 ms
GLOB_CMD[6] Factory calibration restore 75000 sec
GLOB_CMD[7] Software reset 120000 ms
1 Monitoring the data ready signal (see Table 153 for FNCTIO_CTRL configuration) for the return of regular pulsing can help minimize system wait times.
Data Sheet ADIS16489
Rev. B | Page 7 of 40
Timing Diagrams
CS
SCLK
DOUT
DIN
1 2 3 4 5 6 15 16
R/W A5A6 A4 A3 A2 D2
MSB DB14
D1 LSB
DB13 DB12 DB10DB11 DB2 LSBDB1
tCS
tDSHI
tDR
tSFS
tDF
tDAV tHD
tCHS tCLS
tDSOE
tDHD
tDSU
15596-002
Figure 2. SPI Timing and Sequence
CS
SCLK
t
STALL
15596-003
Figure 3. Stall Time and Data Rate
t3
t2
t1
DIO4
(SYNC CLOCK)
DATA
READY
OUTPUT
REGISTERS DAT A VALID DATA VALID
15596-004
Figure 4. Input Clock Timing Diagram, FNCTIO_CTRL[7:4] = 0xFD
ADIS16489 Data Sheet
Rev. B | Page 8 of 40
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Rating
Shock Survivability
Any Axis, Unpowered 2000 g
Any Axis, Powered 2000 g
VDD to GND −0.3 V to +3.6 V
Digital Input Voltage to GND −0.3 V to VDD + 0.2 V
Digital Output Voltage to GND −0.3 V to VDD + 0.2 V
Operating Temperature Range −40°C to +105°C
Storage Temperature Range1 −65°C to +150°C
Barometric Pressure 2 bar
1 Extended exposure to temperatures that are lower than −55°C or higher
than +105°C can adversely affect the accuracy of the factory calibration.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the
operational section of this specification is not implied.
Operation beyond the maximum operating conditions for
extended periods may affect product reliability.
THERMAL RESISTANCE
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Careful attention to
PCB thermal design is required.
θJA is the natural convection junction to ambient thermal
resistance measured in a one cubic foot sealed enclosure.
θJC is the junction to case thermal resistance.
The ADIS16489 is a multichip module, which includes many
active components. The values in Table 5 identify the thermal
response of the hottest component inside of the ADIS16489
with respect to the overall power dissipation of the module.
This approach enables a simple method for predicting the
temperature of the hottest junction, based on either ambient or
case temperature.
For example, when the ambient temperature is 70°C, the
hottest junction inside of the ADIS16489 is 89.1°C.
TJ = θJA × VDD × IDD + 70°C
TJ = 22.8°C/W × 3.3 V × 0.254A + 70°C
TJ = 89.1°C
Table 5. Package Characteristics
Package Type θJA θJC Device Weight
ML-24-6
1
22.8°C/W
10.1°C/W
48 g
1 Thermal impedance simulated values come from a case when four M2 × 0.4 mm
machine screws (torque = 20 inch ounces) secure the ADIS16489 to the
printed circuit board.
ESD CAUTION
Data Sheet ADIS16489
Rev. B | Page 9 of 40
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
DIO3
SCLK
DIN
DIO1
DIO2
VDD
GND
GND
DNC
DNC
DNC
VDDRTC
DIO4
DOUT
CS
RST
VDD
VDD
GND
DNC
DNC
DNC
DNC
DNC
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
ADIS16489
TOP VIEW
(No t t o Scale)
NOTES
1. THIS REPRESENTATION DISPLAYS THE TOP VI EW PI NOUT
FO R THE MATING SO CKE T CONNECTOR.
2. T HE ACTUAL CONNECT OR PI NS ARE NOT VISI BLE F ROM
THE TOP VIEW.
3. M ATING CONNECT OR: SAM TEC CL M - 112- 02 OR EQUIVAL E NT.
4. DNC = DO NOT CONNE CT.
15596-005
Figure 5. Pin Configuration
PIN 1
PIN 23
PIN 1 PIN 2
15596-006
Figure 6. Axial Orientation (Top Side Facing Up)
Table 6. Pin Function Descriptions
Pin No. Mnemonic Type Description
1 DIO3 Input and output Configurable Digital Input and Output 3.
2 DIO4 Input and output Configurable Digital Input and Output 4.
3 SCLK Input SPI Serial Clock.
4 DOUT Output SPI Data Output. Clocks output on the SCLK falling edge.
5 DIN Input SPI Data Input. Clocks input on the SCLK rising edge.
6 CS Input SPI Chip Select.
7 DIO1 Input and output Configurable Digital Input and Output 1.
8 RST Input Reset.
9 DIO2 Input and output Configurable Digital Input and Output 2.
10, 11, 12 VDD Supply Power Supply.
13, 14, 15 GND Supply Power Ground.
16 to 22, 24 DNC Not applicable Do Not Connect. Do not connect to these pins.
23 VDDRTC Supply Real-Time Clock Power Supply. The VDDRTC power supply must be
connected, even if the RTC feature is not used.
ADIS16489 Data Sheet
Rev. B | Page 10 of 40
TYPICAL PERFORMANCE CHARACTERISTICS
100
1
10
0.01 0.1 110 100 1000 10000
ROOT ALLAN VARIANCE ( °/Hour)
INTEGRATION PERIOD (Seconds)
+1σ
–1σ
AVERAGE
15596-007
Figure 7. Gyroscope Allan Variance, TC = 25°C
0.001
0.00001
0.0001
0.01 0.1 110 100 1000 10000
ROOT ALLAN VARIANCE ( g)
INTEGRATION PERIOD (Seconds)
+1σ
–1σ
AVERAGE
15596-008
Figure 8. Accelerometer Allan Variance, TC = 25°C
0.3
–0.3
–0.2
–0.1
0
0.1
0.2
–50 –40 –30 –20 –10 010 20 30 40 50 60 70 80 90 100 110
BIAS ERROR (°/sec)
TEMPERATURE (°C)
+3σ
–3σ
AVERAGE
15596-209
Figure 9. Gyroscope Bias Error vs. Temperature
0.8
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0.6
–50 –40 –30 –20 –10 010 20 30 40 50 60 70 80 90 100 110
SENSITIVI T Y ERROR (% FS)
TEMPERATURE (°C)
+3σ
–3σ
AVERAGE
15596-210
Figure 10. Gyroscope Scale (Sensitivity) Error vs. Temperature
Data Sheet ADIS16489
Rev. B | Page 11 of 40
THEORY OF OPERATION
INTRODUCTION
The ADIS16489 is an autonomous sensor system that starts up
on its own when it has a valid power supply. After running
through its initialization process, the ADIS16489 begins
sampling, processing, and loading calibrated sensor data into
the output registers, which are accessible using the SPI port. The
SPI port typically connects to a compatible port on an embedded
processor (see Figure 11). The four SPI signals facilitate
synchronous, serial data communication. The factory default
configuration provides users with a data ready signal on the DIO2
pin to trigger data acquisition (see Figure 31).
SYSTEM
PROCESSOR
SPI MASTER SCLK
CS
DIN
DOUT
SCLK
SS
MOSI
MISO
+3.3V
IRQ DIO2
VDD
I/O LINES ARE COMPATIBLE WITH
3.3V LOGIC LEVELS
10
6
3
5
4
9
11 12 23
13 14 15
ADIS16489
15596-011
Figure 11. Electrical Connection Diagram
Table 7. Generic Master Processor Pin Names and Functions
Mnemonic Function
SS Slave select
SCLK Serial clock
MOSI Master output, slave input
MISO Master input, slave output
IRQ Interrupt request
Embedded processors typically use control registers to
configure their serial ports for communicating with SPI slave
devices such as the ADIS16489. Table 8 contains a list of settings
that describe the SPI protocol of the ADIS16489.
Table 8. Generic Master Processor SPI Settings
Processor Setting
Description
Master The ADIS16489 operates as slave
SCLK ≤ 15 MHz Maximum serial clock rate
SPI Mode 3 CPOL = 1 (polarity), CPHA = 1 (phase)
MSB First Mode Bit sequence
16-Bit Mode Shift register/data length
REGISTER STRUCTURE
The register structure and SPI port support a simple
connection between the ADIS16489 and an embedded
processor platform. The register structure contains both output
data and control registers. The output data registers include the
latest sensor data, a real-time clock, error flags, alarm flags, and
identification data. The control registers include sample rate,
filtering, input and output, alarms, calibration, and diagnostic
configuration options. All communication between the
ADIS16489 and an external processor involves either reading
or writing to one of the user registers.
TRIAXIS
GYROSCOPE
TEMP
SENSOR
TRIAXIS
ACCELEROMETER
DSPADC OUTPUT
REGISTERS
CONTROL
REGISTERS
CONTROLLER
SPI
15596-012
Figure 12. Basic Operation
The register structure uses a paged addressing scheme that
contains 13 pages with each page containing 64 register
locations. Each register is 16 bits wide and each byte has a
unique address within the memory map of that page. The SPI
port has access to one page at a time, using the bit sequence in
Figure 13. Select the page to activate for SPI access by writing its
code to the PAGE_ID register. Read the PAGE_ID register to
determine which page is currently active. Table 9 displays the
PAGE_ID register contents for each page, along with their basic
functions. The PAGE_ID register is located at Address 0x00 on
every page.
Table 9. User Register Page Assignments
Page PAGE_ID Function
0 0x00 Output data, clock, identification
1 0x01 Reserved
2 0x02 Calibration
3 0x03 Control: sample rate, filtering, input and output,
alarms
4 0x04 Serial number
5 0x05 FIR Filter Bank A, Coefficient 0 to Coefficient 59
6 0x06 FIR Filter Bank A, Coefficient 60 to Coefficient 119
7 0x07 FIR Filter Bank B, Coefficient 0 to Coefficient 59
8 0x08 FIR Filter Bank B, Coefficient 60 to Coefficient 119
9 0x09 FIR Filter Bank C, Coefficient 0 to Coefficient 59
10 0x0A FIR Filter Bank C, Coefficient 60 to Coefficient 119
11 0x0B FIR Filter Bank D, Coefficient 0 to Coefficient 59
12 0x0C FIR Filter Bank D, Coefficient 60 to Coefficient 119
ADIS16489 Data Sheet
Rev. B | Page 12 of 40
R/W R/W
A6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9D10
D11D12D13D14D15
CS
SCLK
DIN
DOUT
A6 A5
D13D14
D15
NOTES
1. DOUT BITS ARE P RODUCED O NLY W HE N THE PREV IOUS 16- BIT DIN SEQUENCE STARTS WITH R/W = 0.
2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE
FO R OTHE R DE V ICES.
15596-013
Figure 13. SPI Communication Bit Sequence
SPI COMMUNICATION
Each SPI command and response is 16 bits in length and uses
the digital coding from Figure 13.
DEVICE CONFIGURATION
Each register contains 16 bits (two bytes). Bits[7:0] contain the
low byte, and Bits[15:8] contain the high byte of each register. Each
byte has its own unique address in the user register map (see
Table 10). Update the contents of a register by writing to its low
byte first and its high byte second. There are three parts to
coding a SPI command (see Figure 13), which writes a new byte
of data to a register: the write bit (R/W = 1), the address of the
byte, [A6:A0], and the new data for that location, [DC7:DC0].
Figure 14 provides a coding example for writing 0xFEDC to the
XG_BIAS_LOW register (see Table 109), assuming the
PAGE_ID register already equals 0x0002.
SCLK
CS
DIN 0x90DC 0x91FE
15596-014
Figure 14. SPI Sequence for Writing 0xFEDC to XG_BIAS_LOW
Dual Memory Structure
The ADIS16489 uses a dual memory structure (see Figure 15) in
which the SRAM supports real-time operation and the flash
memory provides nonvolatile storage. During the start-up
process, the operating code, calibration coefficients, and user
register settings load from the flash memory into the SRAM to
support normal operation. The manual flash update command
(GLOB_CMD[3], see Table 151) provides a simple method for
saving user register values to the flash memory. Registers with the
flash backup feature are indicated by a yes in the flash backup
column of Table 10. This flash backup preserves these settings
for automatic recall during the next power-on or reset recovery
process.
NONVOLATILE
FLASH MEMORY
(NO SPI ACCESS)
MANUAL
FLASH
BACKUP
START-UP
RESET
VOLATILE
SRAM
SPI ACCESS
15596-015
Figure 15. SRAM and Flash Memory Diagram
READING SENSOR DATA
The 16-bit command code (see Figure 13) for a read request on
the SPI has three parts: the read bit (R/W = 0), either address of
the register, [A6:A0], and eight don’t care bits, [DC7:DC0]. A
read command produces the registers contents on the DOUT
pin, during the following 16-bit communication cycle. Figure 16
provides an example that includes two register reads in succes-
sion. This example starts with DIN = 0x1A00, to request the
contents of the Z_GYRO_OUT register, and follows with 0x1800,
to request the contents of the Z_GYRO_LOW register (assuming
the PROD_ID register already equals 0x0000). This is an
example of full duplex operation in which the ADIS16489
receives a new request while transmitting the data response
from the prior request (see Figure 16).
DIN
DOUT
0x1A00 0x1800 NEXT
ADDRESS
Z_GYRO_OUT Z_GYRO_LOW
15596-016
Figure 16. SPI Read Example
Figure 17 provides an example of the four SPI signals when
reading the PROD_ID register (see Table 93) in a repeating
pattern. This pattern is helpful when troubleshooting the SPI
interface as it provides a clear expectation for all signals because
the register contents involved never change.
SCLK
CS
DIN
DOUT
DOUT = 0100 0000 0110 1001 = 0x4069 = 16,489 (PROD_ID)
DIN = 0111 1110 0000 0000 = 0x7E 00
15596-017
Figure 17. SPI Read Example, Second 16-Bit Sequence
Data Sheet ADIS16489
Rev. B | Page 13 of 40
USER REGISTER MEMORY MAP
Table 10. User Register Memory Map (N/A Means Not Applicable)
Name R/W
Flash
Backup PAGE_ID Address Default Register Description
PAGE_ID R/W No 0x00 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x00 0x02 to 0x05 N/A Reserved
SEQ_CNT R No 0x00 0x06, 0x07 N/A Sample sequence counter
SYS_E_FLAG R No 0x00 0x08, 0x09 0x0000 Output, system error flags
DIAG_STS R No 0x00 0x0A, 0x0B 0x0000 Output, self test error flags
ALM_STS R No 0x00 0x0C, 0x0D 0x0000 Output, alarm error flags
TEMP_OUT R No 0x00 0x0E, 0x0F N/A Output, temperature
X_GYRO_LOW R No 0x00 0x10, 0x11 N/A Output, x-axis gyroscope, low word
X_GYRO_OUT R No 0x00 0x12, 0x13 N/A Output, x-axis gyroscope, high word
Y_GYRO_LOW R No 0x00 0x14, 0x15 N/A Output, y-axis gyroscope, low word
Y_GYRO_OUT R No 0x00 0x16, 0x17 N/A Output, y-axis gyroscope, high word
Z_GYRO_LOW R No 0x00 0x18, 0x19 N/A Output, z-axis gyroscope, low word
Z_GYRO_OUT R No 0x00 0x1A, 0x1B N/A Output, z-axis gyroscope, high word
X_ACCL_LOW R No 0x00 0x1C, 0x1D N/A Output, x-axis accelerometer, low word
X_ACCL_OUT R No 0x00 0x1E, 0x1F N/A Output, x-axis accelerometer, high word
Y_ACCL_LOW R No 0x00 0x20, 0x21 N/A Output, y-axis accelerometer, low word
Y_ACCL_OUT R No 0x00 0x22, 0x23 N/A Output, y-axis accelerometer, high word
Z_ACCL_LOW R No 0x00 0x24, 0x25 N/A Output, z-axis accelerometer, low word
Z_ACCL_OUT R No 0x00 0x26, 0x27 N/A Output, z-axis accelerometer, high word
Reserved N/A N/A 0x00 0x28 to 0x2D N/A Reserved
BAROM_LOW R No 0x00 0x2E, 0x2F N/A Output, barometer, low word
BAROM_OUT R No 0x00 0x30, 0x31 N/A Output, barometer, high word
Reserved N/A N/A 0x00 0x32 to 0x3F N/A Reserved
X_DELTANG_LOW R No 0x00 0x40, 0x41 N/A Output, x-axis delta angle, low word
X_DELTANG_OUT R No 0x00 0x42, 0x43 N/A Output, x-axis delta angle, high word
Y_DELTANG_LOW R No 0x00 0x44, 0x45 N/A Output, y-axis delta angle, low word
Y_DELTANG_OUT R No 0x00 0x46, 0x47 N/A Output, y-axis delta angle, high word
Z_DELTANG_LOW R No 0x00 0x48, 0x49 N/A Output, z-axis delta angle, low word
Z_DELTANG_OUT R No 0x00 0x4A, 0x4B N/A Output, z-axis delta angle, high word
X_DELTVEL_LOW R No 0x00 0x4C, 0x4D N/A Output, x-axis delta velocity, low word
X_DELTVEL_OUT R No 0x00 0x4E, 0x4F N/A Output, x-axis delta velocity, high word
Y_DELTVEL_LOW R No 0x00 0x50, 0x51 N/A Output, y-axis delta velocity, low word
Y_DELTVEL_OUT R No 0x00 0x52, 0x53 N/A Output, y-axis delta velocity, high word
Z_DELTVEL_LOW R No 0x00 0x54, 0x55 N/A Output, z-axis delta velocity, low word
Z_DELTVEL_OUT R No 0x00 0x56, 0x57 N/A Output, z-axis delta velocity, high word
Reserved N/A N/A 0x00 0x58 to 0x77 N/A Reserved
TIME_MS_OUT R/W No 0x00 0x78, 0x79 N/A Real-time clock: minutes/seconds
TIME_DH_OUT R/W No 0x00 0x7A, 0x7B N/A Real-time clock: day/hour
TIME_YM_OUT R/W No 0x00 0x7C, 0x7D N/A Real-time clock: year/month
PROD_ID R Yes 0x00 0x7E, 0x7F 0x4069 Output, product identification (16,489)
Reserved N/A N/A 0x01 0x00 to 0x7F N/A Reserved
PAGE_ID R/W No 0x02 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x02 0x02, 0x03 N/A Reserved
X_GYRO_SCALE R/W Yes 0x02 0x04, 0x05 0x0000 Calibration, scale, x-axis gyroscope
Y_GYRO_SCALE R/W Yes 0x02 0x06, 0x07 0x0000 Calibration, scale, y-axis gyroscope
Z_GYRO_SCALE R/W Yes 0x02 0x08, 0x09 0x0000 Calibration, scale, z-axis gyroscope
X_ACCL_SCALE R/W Yes 0x02 0x0A, 0x0B 0x0000 Calibration, scale, x-axis accelerometer
Y_ACCL_SCALE R/W Yes 0x02 0x0C, 0x0D 0x0000 Calibration, scale, y-axis accelerometer
Z_ACCL_SCALE R/W Yes 0x02 0x0E, 0x0F 0x0000 Calibration, scale, z-axis accelerometer
ADIS16489 Data Sheet
Rev. B | Page 14 of 40
Name R/W
Flash
Backup PAGE_ID Address Default Register Description
XG_BIAS_LOW R/W Yes 0x02 0x10, 0x11 0x0000 Calibration, offset, gyroscope, x-axis, low word
XG_BIAS_HIGH R/W Yes 0x02 0x12, 0x13 0x0000 Calibration, offset, gyroscope, x-axis, high word
YG_BIAS_LOW R/W Yes 0x02 0x14, 0x15 0x0000 Calibration, offset, gyroscope, y-axis, low word
YG_BIAS_HIGH R/W Yes 0x02 0x16, 0x17 0x0000 Calibration, offset, gyroscope, y-axis, high word
ZG_BIAS_LOW R/W Yes 0x02 0x18, 0x19 0x0000 Calibration, offset, gyroscope, z-axis, low word
ZG_BIAS_HIGH R/W Yes 0x02 0x1A, 0x1B 0x0000 Calibration, offset, gyroscope, z-axis, high word
XA_BIAS_LOW R/W Yes 0x02 0x1C, 0x1D 0x0000 Calibration, offset, accelerometer, x-axis, low word
XA_BIAS_HIGH R/W Yes 0x02 0x1E, 0x1F 0x0000 Calibration, offset, accelerometer, x-axis, high word
YA_BIAS_LOW R/W Yes 0x02 0x20, 0x21 0x0000 Calibration, offset, accelerometer, y-axis, low word
YA_BIAS_HIGH R/W Yes 0x02 0x22, 0x23 0x0000 Calibration, offset, accelerometer, y-axis, high word
ZA_BIAS_LOW R/W Yes 0x02 0x24, 0x25 0x0000 Calibration, offset, accelerometer, z-axis, low word
ZA_BIAS_HIGH R/W Yes 0x02 0x26, 0x27 0x0000 Calibration, offset, accelerometer, z-axis, high word
Reserved N/A N/A 0x02 0x28 to 0x73 0x0000 Reserved
BR_BIAS_LOW R/W Yes 0x02 0x40, 0x41 0x0000 Calibration, offset, barometer, low word
BR_BIAS_HIGH R/W Yes 0x02 0x42, 0x43 0x0000 Calibration, offset, barometer, high word
Reserved N/A N/A 0x02 0x28 to 0x73 0x0000 Reserved
USER_SCR_1 R/W Yes 0x02 0x74, 0x75 0x0000 User Scratch Register 1
USER_SCR_2 R/W Yes 0x02 0x76, 0x77 0x0000 User Scratch Register 2
USER_SCR_3 R/W Yes 0x02 0x78, 0x79 0x0000 User Scratch Register 3
USER_SCR_4 R/W Yes 0x02 0x7A, 0x7B 0x0000 User Scratch Register 4
FLSHCNT_LOW R Yes 0x02 0x7C, 0x7D N/A Diagnostic, flash memory count, low word
FLSHCNT_HIGH R Yes 0x02 0x7E, 0x7F N/A Diagnostic, flash memory count, high word
PAGE_ID R/W No 0x03 0x00, 0x01 0x0000 Page identifier
GLOB_CMD W No 0x03 0x02, 0x03 N/A Control, global commands
Reserved N/A N/A 0x03 0x04, 0x05 N/A Reserved
FNCTIO_CTRL R/W Yes 0x03 0x06, 0x07 0x000D Control, I/O pins, functional definitions
GPIO_CTRL R/W Yes 0x03 0x08, 0x09 0x00X01 Control, I/O pins, general purpose
CONFIG R/W Yes 0x03 0x0A, 0x0B 0x00C0 Control, clock, and miscellaneous correction
DEC_RATE R/W Yes 0x03 0x0C, 0x0D 0x0000 Control, output sample rate decimation
NULL_CNFG R/W Yes 0x03 0x0E, 0x0F 0x070A Control, automatic bias correction configuration
SLP_CNT W No 0x03 0x10, 0x11 N/A Control, power-down/sleep mode
Reserved N/A N/A 0x03 0x12 to 0x15 N/A Reserved
FILTR_BNK_0 R/W Yes 0x03 0x16, 0x17 0x0000 Filter selection
FILTR_BNK_1 R/W Yes 0x03 0x18, 0x19 0x0000 Filter selection
Reserved N/A N/A 0x03 0x1A to 0x1F N/A Reserved
ALM_CNFG_0 R/W Yes 0x03 0x20, 0x21 0x0000 Alarm configuration
ALM_CNFG_1 R/W Yes 0x03 0x22, 0x23 0x0000 Alarm configuration
ALM_CNFG_2 R/W Yes 0x03 0x24, 0x25 0x0000 Alarm configuration
Reserved N/A N/A 0x03 0x26, 0x27 N/A Reserved
XG_ALM_MAGN R/W Yes 0x03 0x28, 0x29 0x0000 Alarm configuration, x-axis gyroscope
YG_ALM_MAGN R/W Yes 0x03 0x2A, 0x2B 0x0000 Alarm configuration, y-axis gyroscope
ZG_ALM_MAGN R/W Yes 0x03 0x2C, 0x2D 0x0000 Alarm configuration, z-axis gyroscope
XA_ALM_MAGN R/W Yes 0x03 0x2E, 0x2F 0x0000 Alarm configuration, x-axis accelerometer
YA_ALM_MAGN R/W Yes 0x03 0x30, 0x31 0x0000 Alarm configuration, y-axis accelerometer
ZA_ALM_MAGN R/W Yes 0x03 0x32, 0x33 0x0000 Alarm configuration, z-axis accelerometer
Reserved N/A N/A 0x03 0x34 to 0x39 N/A Reserved
BR_ALM_MAGN
R/W
Yes
0x03
0x3A, 0x3B
0x0000
Alarm configuration, barometer
Reserved N/A N/A 0x03 0x3C to 0x77 N/A Reserved
FIRM_REV R Yes 0x03 0x78, 0x79 N/A Firmware revision
FIRM_DM R Yes 0x03 0x7A, 0x7B N/A Firmware programming date: day/month
FIRM_Y R Yes 0x03 0x7C, 0x7D N/A Firmware programming date: year
Reserved N/A N/A 0x03 0x7E, 0x7F N/A Reserved
Data Sheet ADIS16489
Rev. B | Page 15 of 40
Name R/W
Flash
Backup PAGE_ID Address Default Register Description
PAGE_ID R/W No 0x04 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x04 0x02 to 0x1F N/A Reserved
PART_ID1 R N/A 0x04 0x20, 0x21 N/A Part Identification 1
PART_ID2 R N/A 0x04 0x22, 0x23 N/A Part Identification 2
PART_ID3 R N/A 0x04 0x24, 0x25 N/A Part Identification 3
PART_ID4 R N/A 0x04 0x26, 0x27 N/A Part Identification 4
Reserved N/A N/A 0x04 0x28 to 0x7F N/A Reserved
PAGE_ID R/W No 0x05 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x05 0x02 to 0x07 N/A Reserved
FIR_COEF_Axxx R/W Yes 0x05 0x08 to 0x7F N/A FIR Filter Bank A: Coefficient 0 through Coefficient 59
PAGE_ID R/W No 0x06 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x06 0x02 to 0x07 N/A Reserved
FIR_COEF_Axxx R/W Yes 0x06 0x08 to 0x7F N/A FIR Filter Bank A: Coefficient 60 through Coefficient 119
PAGE_ID R/W No 0x07 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x07 0x02 to 0x07 N/A Reserved
FIR_COEF_Bxxx R/W Yes 0x07 0x08 to 0x7F N/A FIR Filter Bank B: Coefficient 0 through Coefficient 59
PAGE_ID R/W No 0x08 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x08 0x02 to 0x07 N/A Reserved
FIR_COEF_Bxxx R/W Yes 0x08 0x08 to 0x7F N/A FIR Filter Bank B: Coefficient 60 through Coefficient 119
PAGE_ID R/W No 0x09 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x09 0x02 to 0x07 N/A Reserved
FIR_COEF_Cxxx R/W Yes 0x09 0x08 to 0x7F N/A FIR Filter Bank C: Coefficient 0 through Coefficient 59
PAGE_ID R/W No 0x0A 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x0A 0x02 to 0x07 N/A Reserved
FIR_COEF_Cxxx R/W Yes 0x0A 0x08 to 0x7F N/A FIR Filter Bank C: Coefficient 60 through Coefficient 119
PAGE_ID R/W No 0x0B 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x0B 0x02 to 0x07 N/A Reserved
FIR_COEF_Dxxx R/W Yes 0x0B 0x08 to 0x7F N/A FIR Filter Bank D: Coefficient 0 through Coefficient 59
PAGE_ID R/W No 0x0C 0x00, 0x01 0x0000 Page identifier
Reserved N/A N/A 0x0C 0x02 to 0x07 N/A Reserved
FIR_COEF_Dxxx R/W Yes 0x0C 0x08 to 0x7F N/A FIR Filter Bank D: Coefficient 60 through Coefficient 119
1 The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting.
ADIS16489 Data Sheet
Rev. B | Page 16 of 40
USER REGISTER DEFINTIONS
PAGE 0 (PAGE_ID)
Table 11. PAGE_ID Register Definition
Page Addresses Default Access Flash Backup
0x00 0x00, 0x01 0x0000 R/W No
Table 12. PAGE_ID Bit Definitions
Bits Description
[15:0] Page number, binary numerical format
The contents in the PAGE_ID register (see Table 11 and Table 12)
contain the current page setting, and provide a control for selecting
another page for SPI access. For example, set DIN = 0x8002 to
select Page 2 for SPI-based user access. See Table 10 for the
page assignments associated with each user accessible register.
SAMPLE SEQUENCE COUNTER (SEQ_CNT)
When using the internal sampling clock, the barometer output
data registers (BAROM_LOW and BAROM_OUT, see Table 53
and Table 55) update at a rate of 51.25 SPS. When using the
external clock, the barometers update at a rate that is 1/48th of
the input clock frequency. Therefore, the update rates for the
barometer does not change with the DEC_RATE register settings.
SYS_E_FLAG[9] (see Table 16) offers a new data indicator bit
that indicates new, unread data is in the barometer output data
registers. The SEQ_CNT register provides a counter function to
help determine when there is new data in the barometer
registers. When SEQ_CNT = 0x0001, there is new data in the
barometer output registers. When beginning a continuous read
loop, read SEQ_CNT, then subtract this value from the maximum
value of the range (depends on DEC_RATE setting; see Table 14)
to predict the number of internal sample cycles until the next
sample update in the barometer output data registers.
Table 13. SEQ_CNT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x06, 0x07 Not applicable R No
Table 14. SEQ_CNT Bit Definitions
Bits Description
[15:7] Don’t care
[6:0] Binary counter: range = 1 to 48/(DEC_RATE + 1)
STATUS/ERROR FLAG INDICATORS (SYS_E_FLAG)
The SYS_E_FLAG register (see Table 15 and Table 16) provides
various error flags. Reading this register causes all of its bits to
return to 0, with the exception of Bit 7. If an error condition
persists, its flag (bit) automatically returns to an alarm value of 1.
Table 15. SYS_E_FLAG Register Definition
Page Addresses Default Access Flash Backup
0x00 0x08, 0x09 0x0000 R No
Table 16. SYS_E_FLAG Bit Definitions
Bits Description
15 Watch dog timer flag. A 1 indicates that the ADIS16489
automatically reset itself to clear an issue.
[14:13] Not used.
12 Gyroscope saturation. A 1 indicates that the rate of
rotation on one axis is equal to or greater than
±480°/sec (±1 % tolerance).
[11:10] Not used.
9 Barometer sample update. A 1 indicates that
BAROM_OUT (see Table 55) and BAROM_LOW (see
Table 53) registers contain new data.
8 Not used.
7 Processing overrun. A 1 indicates the occurrence of a
processing overrun. Initiate a reset to recover. Replace
the ADIS16489 if this error persists. One possible cause
of a processing overrun error is the VDDRTC pin not
being connected to a 3.3 V power supply.
6 Flash memory failure. A 1 indicates that the most
recent flash memory test (GLOB_CMD[2], see Table 151)
failed. Repeat test and replace the ADIS16489 if this
error persists.
5 Sensor failure. A 1 indicates the failure of at least one of
the self-test processes: continuous or on demand. Run
the ODST (GLOB_CMD, Bit 1, see Table 151) when the
unit is in not in motion. Replace the ADIS16489 if the
error persists.
4 Overrange. A 1 indicates that the digital magnitude of
at least one sensor has reached 99% of its maximum
value. Initiate a reset to recover and replace the
ADIS16489 if this error persists.
3 SPI communication error. A 1 indicates that the total
number of SCLK cycles is not equal to an integer multiple
of 16. Repeat the previous communication sequence to
recover. Persistence in this error may indicate a weakness
in the SPI service from the master processor.
[2:1] Not used.
0
Alarm status flag. A 1 indicates that one of the user-
programmable alarms is active. See the ALM_STS
register for an indication of which alarm is active.
SELF TEST ERROR FLAGS (DIAG_STS)
Table 17. DIAG_STS Register Definition
Page Addresses Default Access Flash Backup
0x00 0x0A, 0x0B 0x0000 R No
Data Sheet ADIS16489
Rev. B | Page 17 of 40
Table 18. DIAG_STS Bit Definitions
Bits Description
[15:12] Not used
11 Self test failure, barometer (1 = failure)
[10:6] Not used
5 ODST failure, z-axis accelerometer (1 = failure)
4 ODST failure, y-axis accelerometer (1 = failure)
3 ODST failure, x-axis accelerometer (1 = failure)
2 ODST failure, z-axis gyroscope (1 = failure)
1 ODST failure, y-axis gyroscope (1 = failure)
0 Self test failure, x-axis gyroscope (1 = failure)
SYS_E_FLAG[5] (see Table 16) contains the pass and fail result
(0 = pass) for on demand self test (ODST) operations, whereas
the DIAG_STS register (see Table 17 and Table 18) contains
pass and fail flags (0 = pass) for each inertial sensor. Reading
the DIAG_STS register causes all of its bits to restore to 0. The
bits in DIAG_STS return to 1 if the error conditions persists.
ALARM ERROR FLAGS (ALM_STS)
Table 19. ALM_STS Register Definition
Page Addresses Default Access Flash Backup
0x00 0x0C, 0x0D 0x0000 R No
Table 20. ALM_STS Bit Definitions
Bits
Description
[15:12] Not used
11 Barometer alarm flag (1 = alarm is active)
[10:6] Not used
5 Z-axis accelerometer alarm flag (1 = alarm is active)
4 Y-axis accelerometer alarm flag (1 = alarm is active)
3 X-axis accelerometer alarm flag (1 = alarm is active)
2 Z-axis gyroscope alarm flag (1 = alarm is active)
1 Y-axis gyroscope alarm flag (1 = alarm is active)
0 X-axis gyroscope alarm flag (1 = alarm is active)
The ALM_STS register (see Table 19 and Table 20) contains the
error flags for the alarm settings in the ALM_CNFG_0 (see
Table 170) and ALM_CNFG_1 (see Table 172) registers.
Reading the ALM_STS register causes all bits to restore to 0. If
the alarm condition is persistent, its bit restores to a 1 in the
next sample cycle.
INTERNAL TEMPERATURE (TEMP_OUT)
Table 21. TEMP_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x0E, 0x0F Not applicable R No
Table 22. TEMP_OUT Bit Definitions
Bits Description
[15:0] Temperature data; twos complement, 0.00565°C per LSB,
25°C = 0x0000
The TEMP_OUT register (see Table 21 and Table 22) provides
a coarse measurement of the temperature inside of the
ADIS16489. This data is most useful for monitoring relative
changes that influence the temperature inside of the ADIS16489.
Table 23. TEMP_OUT Data Format Examples
Temperature (°C) Decimal Hex Binary
+85
+10,619
0x297B
0010 1001 0111 1011
+25 + 0.0113 +2 0x0002 0000 0000 0000 0010
+25 + 0.00565 +1 0x0001 0000 0000 0000 0001
+25 0 0x0000 0000 0000 0000 0000
+25 − 0.00565 −1 0xFFFF 1111 1111 1111 1111
+25 − 0.0113 −2 0xFFFE 1111 1111 1111 1110
−40 −11,504 0xD310 1101 0011 0001 0000
GYROSCOPE DATA
The gyroscopes in the ADIS16489 measure the angular rate of
rotation around three orthogonal axes (x, y, and z). Figure 18
illustrates the orientation of each gyroscope axis, along with the
direction of rotation that produces a positive response in each
of their measurements.
PIN 1
PIN 23
ω
Y
Y-AXIS
ω
X
X-AXIS
Z-AXIS
ω
Z
15596-018
Figure 18. Gyroscope Axis and Polarity Assignments
Each gyroscope has two output data registers. Figure 19
illustrates how these two registers combine to support a 32-bit,
twos complement data format for the x-axis gyroscope measure-
ments. This format also applies to the y- and z-axes as well.
X-AXIS GYROSCOPE DATA
01515 0
X_GYRO_OUT X_GYRO_LOW
15596-019
Figure 19. Gyroscope Output Data Structure
X-Axis Gyroscope (X_GYRO_LOW, X_GYRO_OUT)
Table 24. X_GYRO_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x10, 0x11 Not applicable R No
Table 25. X_GYRO_LOW Bit Definitions
Bits Description
[15:0] X-axis gyroscope data; low word
Table 26. X_GYRO_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x12, 0x13 Not applicable R No
ADIS16489 Data Sheet
Rev. B | Page 18 of 40
Table 27. X_GYRO_OUT Bit Definitions
Bits Description
[15:0] X-axis gyroscope data; high word; twos complement,
±450°/sec range; 0°/sec = 0x0000, 1 LSB = 0.02°/sec
The X_GYRO_LOW (see Table 24 and Table 25) and X_GYRO_
OUT (see Table 26 and
Table 27) registers contain the gyroscope data for the x-axis.
Y-Axis Gyroscope (Y_GYRO_LOW, Y_GYRO_OUT)
Table 28. Y_GYRO_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x14, 0x15 Not applicable R No
Table 29. Y_GYRO_LOW Bit Definitions
Bits Description
[15:0] Y-axis gyroscope data; low word
Table 30. Y_GYRO_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x16, 0x17 Not applicable R No
Table 31. Y_GYRO_OUT Bit Definitions
Bits Description
[15:0] Y-axis gyroscope data; high word; twos complement,
±450°/sec range; 0°/sec = 0x0000, 1 LSB = 0.02°/sec
The Y_GYRO_LOW (see Table 28 and Table 29) and Y_GYRO_
OUT (see Table 30 and Table 31) registers contain the gyroscope
data for the y-axis.
Z-Axis Gyroscope (Z_GYRO_LOW, Z_GYRO_OUT)
Table 32. Z_GYRO_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x18, 0x19 Not applicable R No
Table 33. Z_GYRO_LOW Bit Definitions
Bits Description
[15:0] Z-axis gyroscope data; additional resolution bits
Table 34. Z_GYRO_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x1A, 0x1B Not applicable R No
Table 35. Z_GYRO_OUT Bit Definitions
Bits Description
[15:0] Z-axis gyroscope data; high word; twos complement,
±450°/sec range; 0°/sec = 0x0000, 1 LSB = 0.02°/sec
The Z_GYRO_LOW (see Table 32 and Table 33) and Z_GYRO_
OUT (see Table 34 and Table 35) registers contain the gyroscope
data for the z-axis.
Gyroscope Resolution
Table 36 and Table 37 offer various numerical examples that
demonstrate the format of the angular rate (gyroscopes) data in
both 16-bit and 32-bit formats.
Table 36. 16-Bit Gyroscope Data Format Examples
Rotation Rate
(°/sec) Decimal Hex Binary
+450 +22,500 0x57E4 0101 0111 1110 0100
+0.04 +2 0x0002 0000 0000 0000 0010
+0.02 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−0.02 −1 0xFFFF 1111 1111 1111 1111
−0.04 −2 0xFFFE 1111 1111 1111 1110
−450 −22,500 0xA81C 1010 1000 0001 1100
Table 37. 32-Bit Gyroscope Data Format Examples
Rotation Rate (°/sec) Decimal Hex
+450 +1,474,560,000 0x57E40000
+0.02/215 +2 0x00000002
+0.02/216 +1 0x00000001
0 0 0x00000
−0.02/216 −1 0xFFFFFFFF
−0.02/215 −2 0xFFFFFFFE
−450 −1,474,560,000 0x73600000
ACCELERATION DATA
The accelerometers in the ADIS16489 measure both dynamic
and static (response to gravity) acceleration along three
orthogonal axes (x, y, and z). Figure 20 illustrates the orientation
of each accelerometer axis, along with the direction of
acceleration that produces a positive response in each of their
measurements.
PIN 1
PIN 23
a
Y
Y-AXIS
X-AXIS
a
X
Z-AXIS
a
Z
15596-020
Figure 20. Accelerometer Axis and Polarity Assignments
Each accelerometer has two output data registers. Figure 21
illustrates how these two registers combine to support a 32-bit,
twos complement data format for the x-axis accelerometer
measurements. This format also applies to the y- and z-axes as well.
X-AXIS ACCELE ROMETER D ATA
01515 0
X_ACCL_OUT X_ACCL_LOW
15596-021
Figure 21. Accelerometer Output Data Structure
Data Sheet ADIS16489
Rev. B | Page 19 of 40
X-Axis Accelerometer (X_ACCL_LOW, X_ACCL_OUT)
Table 38. X_ACCL_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x1C, 0x1D Not applicable R No
Table 39. X_ACCL_LOW Bit Definitions
Bits Description
[15:0] X-axis accelerometer data; low word
Table 40. X_ACCL_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x1E, 0x1F Not applicable R No
Table 41. X_ACCL_OUT Definitions
Bits Description
[15:0] X-axis accelerometer data, high word; twos
complement, ±18 g range; 0 g = 0x0000, 1 LSB = 0.8 mg
The X_ACCL_LOW (see Table 38 and Table 39) and X_ACCL_
OUT (see Table 40 and Table 41) registers contain the
accelerometer data for the x-axis.
Y-Axis Accelerometer (Y_ACCL_LOW, Y_ACCL_OUT)
Table 42. Y_ACCL_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x20, 0x21 Not applicable R No
Table 43. Y_ACCL_LOW Bit Definitions
Bits Description
[15:0] Y-axis accelerometer data; low word
Table 44. Y_ACCL_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x22, 0x23 Not applicable R No
Table 45. Y_ACCL_OUT Bit Definitions
Bits Description
[15:0] Y-axis accelerometer data; twos complement,
±18 g range, 0 g = 0x0000, 1 LSB = 0.8 mg
The Y_ACCL_LOW (see Table 42 and Table 43) and
Y_ACCL_ OUT (see Table 44 and Table 45) registers contain the
accelerometer data for the x-axis.
Z-Axis Accelerometer (Z_ACCL_LOW, Z_ACCL_OUT)
Table 46. Z_ACCL_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x24, 0x25 Not applicable R No
Table 47. Z_ACCL_LOW Bit Definitions
Bits Description
[15:0] Z-axis accelerometer data; low word
Table 48. Z_ACCL_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x26, 0x27 Not applicable R No
Table 49. Z_ACCL_OUT Bit Definitions
Bits Description
[15:0] Z-axis accelerometer data, high word; twos
complement, ±18 g range; 0 g = 0x0000, 1 LSB = 0.8 mg
The Z_ACCL_LOW (see Table 46 and Table 47) and Z_ACCL_
OUT (see Table 48 and Table 49) registers contain the accelerome-
ter data for the z-axis.
Accelerometer Resolution
Table 50 and Table 51 offer various numerical examples that
demonstrate the format of the linear acceleration data in both
16-bit and 32-bit formats.
Table 50. 16-Bit Accelerometer Data Format Examples
Acceleration Decimal Hex Binary
+18 g +20,000 0x4E20 0100 1110 0010 0000
+1.6 mg +2 0x0002 0000 0000 0000 0010
+0.8 mg +1 0x0001 0000 0000 0000 0001
0 mg 0 0x0000 0000 0000 0000 0000
−0.8 mg −1 0xFFFF 1111 1111 1111 1111
−1.6 mg −2 0xFFFE 1111 1111 1111 1110
−18 g −20,000 0xB1E0 1011 0001 1110 0000
Table 51. 32-Bit Accelerometer Data Format Examples
Acceleration (g) Decimal Hex
+18 +1,310,720,000 0x4E200000
+0.0008/215 +2 0x00000002
+0.0008/216 +1 0x00000001
0 0 0x00000000
−0.0008/216 −1 0xFFFFFFFF
−0.0008/215 −2 0xFFFFFFFE
−18 −1,310,720,000 0xB1E00000
BAROMETER DATA
The barometer measures the atmospheric pressure. The
barometer has two output data registers: BAROM_LOW and
BAROM_OUT. Figure 22 illustrates how these two registers
combine to support 32-bit, twos complement data format for the
pressure measurements.
BAROM ETER D ATA
01515 0
BAROM_OUT BAROM_LOW
15596-100
Figure 22. Barometer Output Data Structure
Barometer (BAROM_LOW, BAROM_OUT)
Table 52. BAROM_LOW Register Definition
Page Addresses Default Access Flash Backup
0x00 0x2E, 0x2F Not applicable R No
Table 53. BAROM_LOW Bit Definitions
Bits Description
[15:0] Barometer data; low word
ADIS16489 Data Sheet
Rev. B | Page 20 of 40
Table 54. BAROM_OUT Register Definition
Page Addresses Default Access Flash Backup
0x00 0x30, 0x31 Not applicable R No
Table 55. BAROM_OUT Bit Definitions
Bits Description
[15:0] Barometer data; high word; twos complement, ±1.31
range; 0 bar = 0x0000, 1 LSB = 40μbar
The BAROM_LOW (see Table 52 and Table 53) and BAROM_
OUT (see Table 54 and Table 55) registers contain the barometer
data.
Barometer Resolution
Table 56 and Table 57 offer various numerical examples that
demonstrate the format of the pressure (barometer) data in
both 16-bit and 32-bit formats.
Table 56. 16-Bit Barometer Data Format Examples
Pressure Decimal Hex Binary
+1.31068 bar +32767 0x3FFF 0111 1111 1111 1111
+80 μbar +2 0x0002 0000 0000 0000 0010
+40 μbar +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−40 μbar −1 0xFFFF 1111 1111 1111 1111
−80 μbar −2 0xFFFE 1111 1111 1111 1110
−1.31072 −32768 0x4000 1000 0000 0000 0000
Table 57. 32-Bit Barometer Data Format Examples
Pressure Decimal Hex
+1.31068 bar +4,294,967,295 0x3FFFFFFF
+80 μbar ÷ 216 +2 0x00000002
+40 μbar ÷ 216 +1 0x00000001
0 0 0x00000000
−40 μbar ÷ 216 −1 0xFFFFFFFF
−80 μbar ÷ 216 −2 0xFFFFFFFE
−1.31072 −4,294,967,296 0x40000000
DELTA ANGLES
In addition to the angular rate of rotation (gyroscope) measure-
ments around each axis (x, y, and z), the ADIS16489 also provides
delta angle measurements that represent a computation of
angular displacement between each sample update.
PIN 1
PIN 23
ΔΘ
Y
Y-AXIS
ΔΘ
X
X-AXIS
Z-AXIS
ΔΘ
Z
15596-022
Figure 23. Delta Angle Axis and Polarity Assignments
The delta angle outputs represent an integration of the gyro-
scope measurements and use the following formula for all three
axes (x-axis displayed):
( )
, ,,
D
x nD x nD d x nD d
d
S
f
θ ωω
+ +−
=
∆=× +
1
1
0
1
2
where:
D is the decimation rate = DEC_RATE + 1 (see Table 159).
fS is the sample rate.
d is the incremental variable in the summation formula.
ωx is the x-axis rate of rotation (gyroscope).
n is the sample time, prior to the decimation filter.
When using the internal sample clock, fS is equal to 2460 SPS.
When using the external clock option, fS is equal to the frequency
of the external clock. The external clock frequency must be at least
700 Hz to prevent overflow in the delta angle data registers at
high rotation rates.
Each axis of the delta angle measurements has two output data
registers. Figure 24 illustrates how these two registers combine
to support a 32-bit, twos complement data format for the x-axis
delta angle measurements. This format also applies to the y-
and x-axes as well.
X-AXIS DELTAANGLE DATA
01515 0
X_DELTANG_OUT X_DELTANG_LOW
15596-023
Figure 24. Delta Angle Output Data Structure
X-Axis Delta Angle (X_DELTANG_LOW, X_DELTANG_OUT)
Table 58. X_DELTANG_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x40, 0x41 Not applicable R No
Table 59. X_DELTANG_LOW Bit Definitions
Bits Description
[15:0] X-axis delta angle data; low word
Table 60. X_DELTANG_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x42, 0x43 Not applicable R No
Table 61. X_DELTANG_OUT Bit Definitions
Bits Description
[15:0] X-axis delta angle data; twos complement, ±720° range,
0° = 0x0000, 1 LSB = 720°/215 = ~0.022°
The X_DELTANG_LOW (see Table 58 and Table 59) and
X_DELTANG_OUT (see Table 60 and Table 61) registers
contain the delta angle data for the x-axis.
Data Sheet ADIS16489
Rev. B | Page 21 of 40
Y-Axis Delta Angle (Y_DELTANG_LOW, Y_DELTANG_OUT)
Table 62. Y_DELTANG_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x44, 0x45 Not applicable R No
Table 63. Y_DELTANG_LOW Bit Definitions
Bits Description
[15:0] Y-axis delta angle data; low word
Table 64. Y_DELTANG_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x46, 0x47 Not applicable R No
Table 65. Y_DELTANG_OUT Bit Definitions
Bits Description
[15:0] Y-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022°
The Y_DELTANG_LOW (see Table 62 and Table 63) and
Y_DELTANG_OUT (see Table 64 and Table 65) registers
contain the delta angle data for the y-axis.
Z-Axis Delta Angle (Z_DELTANG_LOW, Z_DELTANG_OUT)
Table 66. Z_DELTANG_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x48, 0x49 Not applicable R No
Table 67. Z_DELTANG_LOW Bit Definitions
Bits Description
[15:0] Z-axis delta angle data; low word
Table 68. Z_DELTANG_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x4A, 0x4B Not applicable R No
Table 69. Z_DELTANG_OUT Bit Definitions
Bits Description
[15:0] Z-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022°
The Z_DELTANG_LOW (see Table 66 and Table 67) and
Z_DELTANG_OUT (see Table 68 and Table 69) registers
contain the delta angle data for the z-axis.
Delta Angle Resolution
Table 70 and Table 71 offers various numerical examples that
demonstrate the format of the delta-angle data in 16-bit and
32-bit formats.
Table 70. 16-Bit Delta Angle Data Format Examples
Delta Angle (°) Decimal Hex Binary
+720 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1110 1111
+720/214 +2 0x0002 0000 0000 0000 0010
+720/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−720/215 −1 0xFFFF 1111 1111 1111 1111
−720/214 −2 0xFFFE 1111 1111 1111 1110
−720 −32,768 0x8000 1000 0000 0000 0000
Table 71. 32-Bit Delta Angle Data Format Examples
Delta Angle (°) Decimal Hex
+720 × (231 − 1)/231 +2,147,483,647 0x7FFFFFFF
+720/230 +2 0x00000002
+720/231 +1 0x00000001
0 0 0x00000000
−720/231 −1 0xFFFFFFFF
−720/230 −2 0xFFFFFFFE
−720 −2,147,483,648 0x80000000
DELTA VELOCITY
In addition to the linear acceleration measurements along each
axis (x, y, and z), the ADIS16489 also provides delta velocity
measurements that represent a computation of linear velocity
change between each sample update.
PIN 1
PIN 23
ΔV
Y
Y-AXIS
X-AXIS
ΔV
X
Z-AXIS
ΔV
Z
15596-024
Figure 25. Delta Velocity Axis and Polarity Assignments
The delta velocity outputs represent an integration of the
acceleration measurements and use the following formula for
all
three axes (x-axis displayed):
( )
, ,,
D
x nD x nD d x nD d
d
S
V aa
f
+ +−
=
∆=× +
1
1
0
1
2
where:
D is the decimation rate = DEC_RATE + 1 (see Table 159).
fS is the sample rate.
d is the incremental variable in the summation formula.
ax is the x-axis acceleration (accelerometer).
n is the sample time, prior to the decimation filter.
When using the internal sample clock, fS is equal to 2460 SPS.
When using the external clock option, fS is equal to the
frequency of the external clock. The frequency external of the
clock must be at least 700 Hz to prevent overflow in the delta
velocity data registers at high acceleration levels.
Each axis of the delta velocity measurements has two output
data registers. Figure 26 illustrates how these two registers
combine to support 32-bit, twos complement data format, for
the x-axis delta velocity measurements. This format also applies
to the y- and z-axes as well.
X-AXIS DELTA VELOCITY DATA
01515 0
X_ DE LTVEL_OUT X_ DE LTVEL_LOW
15596-025
Figure 26. Delta Angle Output Data Structure
ADIS16489 Data Sheet
Rev. B | Page 22 of 40
X-Axis Delta Velocity (X_DELTVEL_LOW, X_DELTVEL_OUT)
Table 72. X_DELTVEL_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x4C, 0x4D Not applicable R No
Table 73. X_DELTVEL_LOW Bit Definitions
Bits Description
[15:0] X-axis delta angle data; low word
Table 74. X_DELTVEL_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x4E, 0x4F Not applicable R No
Table 75. X_DELTVEL_OUT Bit Definitions
Bits Description
[15:0] X-axis delta velocity data; twos complement,
±200 m/sec range, 0 m/sec = 0x0000; 1 LSB = 200 m/sec
÷ 215 = ~6.104 mm/sec
The X_DELTVEL_LOW (see Table 72 and Table 73) and
X_DELTVEL_OUT (see Table 74 and Table 75) registers
contain the delta velocity data for the x-axis.
Y-Axis Delta Velocity (Y_DELTVEL_LOW, Y_DELTVEL_OUT)
Table 76. Y_DELTVEL_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x50, 0x51 Not applicable R No
Table 77. Y_DELTVEL_LOW Bit Definitions
Bits Description
[15:0] Y-axis delta velocity data; low word
Table 78. Y_DELTVEL_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x52, 0x53 Not applicable R No
Table 79. Y_DELTVEL_OUT Bit Definitions
Bits Description
[15:0] Y-axis delta velocity data; twos complement, ±50 m/sec
range, 0 m/sec = 0x0000; 1 LSB = 50 m/sec ÷ 215 =
~1.526 mm/sec
The Y_DELTVEL_LOW (see Table 76 and Table 77) and
Y_DELTVEL_OUT (see Table 78 and Table 79) registers
contain the delta velocity data for the y-axis.
Z-Axis Delta Velocity (Z_DELTVEL_LOW, Z_DELTVEL_OUT)
Table 80. Z_DELTVEL_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x54, 0x55 Not applicable R No
Table 81. Z_DELTVEL_LOW Bit Definitions
Bits Description
[15:0] Z-axis delta angle data; low word
Table 82. Z_DELTANG_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x56, 0x57 Not applicable R No
Table 83. Z_DELTVEL_OUT Bit Definitions
Bits Description
[15:0] Z-axis delta velocity data; twos complement, ±200 m/sec
range, 0 m/sec = 0x0000; 1 LSB = 200 m/sec ÷ 215 = ~6.104
mm/sec
The Z_DELTVEL_LOW (see Table 80 and Table 81) and
Z_DELTVEL_OUT (see Table 82 and Table 83) registers
contain the delta velocity data for the z-axis.
Delta Velocity Resolution
Table 84 and Table 85 offer various numerical examples that
demonstrate the format of the delta velocity data in both 16-bit
and 32-bit formats.
Table 84. 16-Bit Delta Velocity Data Format Examples
Velocity (m/sec) Decimal Hex Binary
+200 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1110 1111
+200/214 +2 0x0002 0000 0000 0000 0010
+200/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−200/215 −1 0xFFFF 1111 1111 1111 1111
−200/214 −2 0xFFFE 1111 1111 1111 1110
−200 −32,768 0x8000 1000 0000 0000 0000
Table 85. 32-Bit Delta Velocity Data Format Examples
Velocity (m/sec) Decimal Hex
+200 × (231 − 1)/231 +2,147,483,647 0x7FFFFFFF
+200/230 +2 0x00000002
+200/231 +1 0x00000001
0 0 0x00000000
−200/231 −1 0xFFFFFFFF
−200/230 −2 0xFFFFFFFE
−200 −2,147,483,648 0x80000000
REAL-TIME CLOCK
The VDDRTC power supply pin (see Table 6, Pin 23) provides
a separate supply for the real-time clock (RTC) function. Connect-
ing the VDDTC pin to its own 3.3 V supply enables the RTC to
keep track of time, even when the main supply (VDD) is off.
Configure the RTC function by selecting one of two modes in
CONFIG[0] (see Table 157). The real-time clock data is available
in the TIME_MS_OUT register (see Table 87), TIME_DH_OUT
register (see Table 89), and TIME_YM_OUT register (see
Table 91). When using the elapsed timer mode, the time data
registers start at 0x0000 when the device starts up (or resets)
and begin keeping time in a manner that is similar to a stopwatch.
When using the clock/calendar mode, write the current time to the
real-time registers in the following sequence: seconds (TIME_
MS_OUT[5:0]), minutes (TIME_ MS_OUT[13:8]), hours
(TIME_DH_OUT[5:0]), day (TIME_DH_OUT[12:8]), month
(TIME_YM_OUT[3:0]), and year (TIME_YM_OUT[14:8]).
Data Sheet ADIS16489
Rev. B | Page 23 of 40
The updates to the timer become active only after a write to the
TIME_YM_OUT[14:8] byte is complete.
The real-time clock registers reflect the newly updated values
only after the next seconds tick of the clock that follows the write
to TIME_YM_OUT[14:8] (year). Writing to
TIME_YM_OUT[14:8] activates all timing values; therefore,
always write to this location last when updating the timer, even if
the year information does not require updating.
Write the current time to each time data register after setting
CONFIG[0] = 1 (DIN = 0x8003, DIN = 0x8AC1, DIN =
0x8B00). This sequence preserves the factory default for other
bits in the CONFIG register. After configuring the CONFIG
register, set GLOB_CMD[3] = 1 (DIN = 0x8003, DIN = 0x8204,
DIN = 0x8300) to back up these settings in flash, and use a separate
3.3 V source to supply power to the VDDRTC function. While
only VDDRTC needs to have power for time tracking, access to
the time data in the TIME_xx_OUT registers requires normal
operation (VDD = 3.3 V and full startup).
Real-Time Clock: Minutes/Seconds (TIME_MS_OUT)
Table 86. TIME_MS_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x78, 0x79 Not applicable R/W No
Table 87. TIME_MS_OUT Bit Definitions
Bits Description
[15:14] Not used
[13:8] Minutes, binary data, range = 0 to 59
[7:6] Not used
[5:0] Seconds, binary data, range = 0 to 59
Real-Time Clock: Days/Hours (TIME_DH_OUT)
Table 88. TIME_DH_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x7A, 0x7B Not applicable R/W No
Table 89. TIME_DH_OUT Bit Definitions
Bits Description
[15:13] Not used
[12:8] Day, binary data, range = 1 to 31
[7:6] Not used
[5:0] Hours, binary data, range = 0 to 23
Real-Time Clock: Years/Months (TIME_YM_OUT)
Table 90. TIME_YM_OUT Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x7C, 0x7D Not applicable R/W No
Table 91. TIME_YM_OUT Bit Definitions
Bits Description
[15] Not used
[14:8] Year, binary data, range = 0 to 99, relative to 2000 A.D.
[7:4] Not used
[3:0] Month, binary data, range = 1 to 12
Product Identification ( PROD_ID)
Table 92. PROD_ID Register Definitions
Page Addresses Default Access Flash Backup
0x00 0x7E, 0x7F 0x4069 R Yes
Table 93. PROD_ID Bit Definitions
Bits Description
[15:0] Product identification = 0x4069
The PROD_ID register (see Table 92 and Table 93) contains the
numerical portion of the part number (16489). See Figure 17 for
an example of how to use a looping read of this register to
validate the integrity of the communication.
PAGE 2 (PAGE_ID)
Table 94. PAGE_ID Register Definition
Page Addresses Default Access Flash Backup
0x02 0x00, 0x01 0x0000 R/W No
Table 95. PAGE_ID Bit Assignments
Bits Description
[15:0] Page number, binary numerical format
The contents in the PAGE_ID register (see Table 94 and Table 95)
contain the current page setting, and provide a control for selecting
another page for SPI access. For example, set DIN = 0x8002 to
select Page 2 for SPI-based user access. See Table 10 for the
page assignments associated with each user accessible register.
CALIBRATION
The signal chain of each inertial sensor (accelerometers, gyro-
scopes) includes application of unique correction formulas,
which come from extensive characterization of bias, sensitivity,
alignment, and response to linear acceleration (gyroscopes) over a
temperature range of −40°C to +85°C for every single ADIS16489.
These correction formulas are not accessible, but users do have
the opportunity to adjust bias and scale factor, for each sensor
individually, through user accessible registers. These correction
factors follow immediately after the factory derived correction
formulas in the signal chain, which processes at a rate of 2460
Hz when using the internal sample clock (see fS in Figure 33).
Calibration, Gyroscope Scale (X_GYRO_SCALE)
Table 96. X_GYRO_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x04, 0x05 0x0000 R/W Yes
Table 97. X_GYRO_SCALE Bit Definitions
Bits Description
[15:0] X-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
The X_GYRO_SCALE register (see Table 96 and Table 97)
provides users with the opportunity to adjust the scale factor
for the x-axis gyroscopes. See Figure 27 for an illustration of
how this scale factor influences the x-axis gyroscope data.
ADIS16489 Data Sheet
Rev. B | Page 24 of 40
X-AXIS
GYRO
FACTORY
CALIBRATION
AND
FILTERING X_GYRO_OUT X_GYRO_LOW
XG_BIAS_HIGH XG_BIAS_LOW
1 + X_G Y RO_SCAL E
15596-026
Figure 27. User Calibration Signal Path, Gyroscopes
Calibration, Gyroscope Scale (Y_GYRO_SCALE)
Table 98. Y_GYRO_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x06, 0x07 0x0000 R/W Yes
Table 99. Y_GYRO_SCALE Bit Definitions
Bits Description
[15:0] Y-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
The Y_GYRO_SCALE register (see Table 98 and Table 99)
allows users to adjust the scale factor for the y-axis gyroscopes.
This register influences the y-axis gyroscope measurements in
the same manner that X_GYRO_SCALE influences the x-axis
gyroscope measurements (see Figure 27).
Calibration, Gyroscope Scale (Z_GYRO_SCALE)
Table 100. Z_GYRO_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x08, 0x09 0x0000 R/W Yes
Table 101. Z_GYRO_SCALE Bit Definitions
Bits Description
[15:0] Z-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
The Z_GYRO_SCALE register (see Table 100 and Table 101)
allows users to adjust the scale factor for the z-axis gyroscopes.
This register influences the z-axis gyroscope measurements in the
same manner that X_GYRO_SCALE influences the x-axis
gyroscope measurements (see Figure 27).
Calibration, Accelerometer Scale (X_ACCL_SCALE)
Table 102. X_ACCL_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x0A, 0x0B 0x0000 R/W Yes
Table 103. X_ACCL_SCALE Bit Definitions
Bits Description
[15:0] X-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
The X_ACCL_SCALE register (see Table 102 and Table 103)
allows users to adjust the scale factor for the x-axis accelerometers.
See Figure 28 for an illustration of how this scale factor influences
the x-axis accelerometer data.
X-AXIS
ACCL
FACTORY
CALIBRATION
AND
FILTERING X_ACCL_OUT X_ACCL_LOW
XA_BIAS_HIGH XA_BIAS_LOW
1 + X_ACCL _S CALE
15596-027
Figure 28. User Calibration Signal Path, Accelerometers
Calibration, Accelerometer Scale (Y_ACCL_SCALE)
Table 104. Y_ACCL_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x0C, 0x0D 0x0000 R/W Yes
Table 105. Y_ACCL_SCALE Bit Definitions
Bits Description
[15:0] Y-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
The Y_ACCL_SCALE register (see Table 104 and Table 105)
allows users to adjust the scale factor for the y-axis accelerometers.
This register influences the y-axis accelerometer measurements
in the same manner that the X_ACCL_SCALE influences the
x-axis accelerometer measurements (see Figure 28).
Calibration, Accelerometer Scale (Z_ACCL_SCALE)
Table 106. Z_ACCL_SCALE Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x0E, 0x0F 0x0000 R/W Yes
Table 107. Z_ACCL_SCALE Bit Definitions
Bits Description
[15:0] Z-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
The Z_ACCL_SCALE register (see Table 106 and Table 107)
allows users to adjust the scale factor for the z-axis accelerometers.
This register influences the z-axis accelerometer measurements in
the same manner that the X_ACCL_SCALE influences the x-axis
accelerometer measurements (see Figure 28).
Calibration, Gyroscope Bias (XG_BIAS_LOW,
XG_BIAS_HIGH)
Table 108. XG_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x10, 0x11 0x0000 R/W Yes
Table 109. XG_BIAS_LOW Bit Definitions
Bits Description
[15:0] X-axis gyroscope offset correction, low word
Table 110. XG_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x12, 0x13 0x0000 R/W Yes
Table 111. XG_BIAS_HIGH Bit Definitions
Bits Description
[15:0] X-axis gyroscope offset correction, high word twos
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Data Sheet ADIS16489
Rev. B | Page 25 of 40
The XG_BIAS_LOW (see Table 108 and Table 109) and XG_
BIAS_HIGH (see Table 110 and Table 111) registers combine
to allow users to adjust the bias of the x-axis gyroscopes. Table 36
and Table 37 offer numerous examples of this data format, in
both 16-bit and 32-bit formats. See Figure 27 for an illustration
of how these two registers combine and influence the x-axis
gyroscope measurements.
Calibration, Gyroscope Bias (YG_BIAS_LOW,
YG_BIAS_HIGH)
Table 112. YG_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x14, 0x15 0x0000 R/W Yes
Table 113. YG_BIAS_LOW Bit Definitions
Bits Description
[15:0] Y-axis gyroscope offset correction, low word
Table 114. YG_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x16, 0x17 0x0000 R/W Yes
Table 115. YG_BIAS_HIGH Bit Definitions
Bits Description
[15:0] Y-axis gyroscope offset correction, high word; twos
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
The YG_BIAS_LOW (see Table 112 and Table 113) and YG_
BIAS_HIGH (see Table 114 and Table 115) registers combine
to allow users to adjust the bias of the y-axis gyroscopes. Table 36
and Table 37 offer numerous examples of this data format, in
both 16-bit and 32-bit formats. See Figure 27 for an illustration
of how these two registers combine and influence the y-axis
gyroscope measurements.
Calibration, Gyroscope Bias (ZG_BIAS_LOW,
ZG_BIAS_HIGH)
Table 116. ZG_BIAS_LOW Register Definitions
Page
Addresses
Default
Access
Flash Backup
0x02 0x18, 0x19 0x0000 R/W Yes
Table 117. ZG_BIAS_LOW Bit Definitions
Bits Description
[15:0] Z-axis gyroscope offset correction, low word
Table 118. ZG_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x1A, 0x1B 0x0000 R/W Yes
Table 119. ZG_BIAS_HIGH Bit Definitions
Bits Description
[15:0] Z-axis gyroscope offset correction, high word twos
complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
The ZG_BIAS_LOW (see Table 116 and Table 117) and ZG_
BIAS_HIGH (see Table 118 and Table 119) registers combine
to allow users to adjust the bias of the z-axis gyroscopes. Table 36
and Table 37 offer numerous examples of this data format, in
both 16-bit and 32-bit formats. See Figure 27 for an illustration
of how these two registers combine and influence the z-axis
gyroscope measurements.
Calibration, Accelerometer Bias (XA_BIAS_LOW,
XA_BIAS_HIGH)
Table 120. XA_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x1C, 0x1D 0x0000 R/W Yes
Table 121. XA_BIAS_LOW Bit Definitions
Bits Description
[15:0]
X-axis accelerometer offset correction, low word
Table 122. XA_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x1E, 0x1F 0x0000 R/W Yes
Table 123. XA_BIAS_HIGH Bit Definitions
Bits Description
[15:0] X-axis accelerometer offset correction, high word,
twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
The XA_BIAS_LOW (see Table 120 and Table 121) and XA_
BIAS_HIGH (see Table 122 and Table 123) registers combine
to allow users to adjust the bias of the x-axis accelerometers.
Table 50 and Table 51 offer numerous examples of data format,
in both 16-bit and 32-bit formats. See Figure 28 for an illustration
of how these two registers combine and influence the x-axis
accelerometer measurements.
Calibration, Accelerometer Bias (YA_BIAS_LOW,
YA_BIAS_HIGH)
Table 124. YA_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x20, 0x21 0x0000 R/W Yes
Table 125. YA_BIAS_LOW Bit Definitions
Bits Description
[15:0] Y-axis accelerometer offset correction, low word
Table 126. YA_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x22, 0x23 0x0000 R/W Yes
Table 127. YA_BIAS_HIGH Bit Definitions
Bits Description
[15:0] Y-axis accelerometer offset correction, high word,
twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
The YA_BIAS_LOW (see Table 124 and Table 125) and YA_
BIAS_HIGH (see Table 126 and Table 127) registers combine
to allow users to adjust the bias of the y-axis accelerometers.
Table 50 and Table 51 offer numerous examples of data format,
in both 16-bit and 32-bit formats. See Figure 28 for an illustration
ADIS16489 Data Sheet
Rev. B | Page 26 of 40
of how these two registers combine and influence the y-axis
accelerometer measurements.
Calibration, Accelerometer Bias (ZA_BIAS_LOW,
ZA_BIAS_HIGH)
Table 128. ZA_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x24, 0x25 0x0000 R/W Yes
Table 129. ZA_BIAS_LOW Bit Definitions
Bits Description
[15:0] Z-axis accelerometer offset correction, low word
Table 130. ZA_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x26, 0x27 0x0000 R/W Yes
Table 131. ZA_BIAS_HIGH Bit Definitions
Bits Description
[15:0] Z-axis accelerometer offset correction, high word,
twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
The ZA_BIAS_LOW (see Table 128 and Table 129) and ZA_
BIAS_HIGH (see Table 130 and Table 131) registers combine
to allow users to adjust the bias of the z-axis accelerometers.
Table 50 and Table 51 offer numerous examples of data format,
in both 16-bit and 32-bit formats. See Figure 28 for an illustration
of how these two registers combine and influence the z-axis
accelerometer measurements.
BAROMETERS
Calibration, Barometer Bias (BR_BIAS_LOW,
BR_BIAS_HIGH)
The BR_BIAS_LOW (see Table 132 and Table 133) and BR_
BIAS_HIGH (see Table 134 and Table 135) registers provide a
user configurable, bias correction function for the barometer
measurement. See Figure 29 for the location and influence that
this correction factor has in the barometer signal chain.
BAROMETER FACTORY
CALIBRATION
AND
FILTERING BAROM_OUT BAROM_LOW
BR_BIAS_HIGH BR_BIAS_LOW
15596-101
Figure 29. User Calibration Signal Path, Accelerometers
Table 132. BR_BIAS_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x40, 0x41 0x0000 R/W Yes
Table 133. BR_BIAS_LOW Bit Definitions
Bits Description
[15:0] Barometric pressure bias correction factor, low word
Table 134. BR_BIAS_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x42, 0x43 0x0000 R/W Yes
Table 135. BR_BIAS_HIGH Bit Definitions
Bits Description
[15:0] Barometric pressure bias correction factor, high word,
twos complement, ±1.3 bar measurement range,
0 bar = 0x0000, 1 LSB = 40 µbar
The digital format examples in Table 56 also apply to the BR_
BIAS_HIGH register and the digital format examples in Table 57
apply to the 32-bit number that comes from combining BR_
BIAS_LOW and BR_BIAS_HIGH.
SCRATCH REGISTERS (USER_SCR_x)
Table 136. USER_SCR_1 Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x74, 0x75 0x0000 R/W Yes
Table 137. USER_SCR_1 Bit Definitions
Bits Description
[15:0] User defined
Table 138. USER_SCR_2 Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x76, 0x77 0x0000 R/W Yes
Table 139. USER_SCR_2 Bit Definitions
Bits Description
[15:0] User defined
Table 140. USER_SCR_3 Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x78, 0x79 0x0000 R/W Yes
Table 141. USER_SCR_3 Bit Definitions
Bits Description
[15:0] User defined
Table 142. USER_SCR_4 Register Definitions
Page
Addresses
Default
Access
Flash Backup
0x02 0x7A, 0x7B 0x0000 R/W Yes
Table 143. USER_SCR_4 Bit Definitions
Bits Description
[15:0] User defined
The USER_SCR_1 (see Table 136 and Table 137), USER_
SCR_2 (see Table 138 and Table 139), USER_SCR_3 (see
Table 140 and Table 141), and USER_SCR_4 (see Table 142
and Table 143) registers provide four locations for users to
store information.
Data Sheet ADIS16489
Rev. B | Page 27 of 40
FLASH MEMORY ENDURANCE COUNTER
(FLSHCNT_LOW, FLSHCNT_HIGH)
Table 144. FLSHCNT_LOW Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x7C, 0x7D Not applicable R Yes
Table 145. FLSHCNT_LOW Bit Definitions
Bits Description
[15:0] Flash memory write counter, low word
Table 146. FLSHCNT_HIGH Register Definitions
Page Addresses Default Access Flash Backup
0x02 0x7E, 0x7F Not applicable R Yes
Table 147. FLSHCNT_HIGH Bit Definitions
Bits Description
[15:0] Flash memory write counter, high word
The FLSHCNT_LOW (see Table 144 and Table 145) and
FLSHCNT_HIGH (see Table 146 and Table 147) registers
combine to provide a 32-bit, binary counter that tracks the
number of flash memory write cycles. In addition to the
number of write cycles, the flash memory has a finite service
lifetime, which depends on the junction temperature. Figure 30
provides some guidance for estimating the retention life for the
flash memory at specific junction temperatures. The junction
temperature is approximately 7°C above the case temperature.
600
450
300
150
030 40
RET ENTION (Years)
JUNCTION T E M P E RATURE (°C)
55 70 85 100 125 135 150
15596-028
Figure 30. Flash Memory Retention
PAGE 3 (PAGE_ID)
Table 148. PAGE_ID Register Definition
Page Addresses Default Access Flash Backup
0x03 0x00, 0x01 0x0000 R/W No
Table 149. PAGE_ID Bit Assignments
Bits Description
[15:0] Page number, binary numerical format
The contents in the PAGE_ID register (see Table 148 and
Table 149) contain the current page setting, and provide a control
for selecting another page for SPI access. For example, set DIN =
0x8002 to select Page 2 for SPI-based user access. See Table 10
for the page assignments associated with each user accessible
register.
GLOBAL COMMANDS (GLOB_CMD)
Table 150. GLOB_CMD Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x02, 0x03 Not applicable W No
Table 151. GLOB_CMD Bit Definitions
Bits Description
[15:8] Not used
7 Software reset
6 Factory calibration restore
[5:4] Not used
3 Flash memory update
2 Flash memory test (checksum)
1 Self test
0 Bias correction update
The GLOB_CMD register (see Table 150 and Table 151) provides
trigger bits for several operations. Write a 1 to the appropriate bit
in GLOB_CMD to start a particular function.
Software Reset
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[7] = 1
(DIN = 0x8280, DIN = 0x8300) to initiate a reset in the operation
of the ADIS16489. This reset removes all data, initializes all
registers from their flash settings, and restarts data sampling
and processing. This function provides a firmware alternative
to providing a low pulse on the RST pin (see Table 6, Pin 8).
Factory Calibration Restore
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[6] = 1
(DIN = 0x8240, DIN = 0x8300) to initiate restoration of the factory
calibration. This restoration writes 0x0000 to the following
registers: X_GYRO_SCALE, Y_GYRO_SCALE,
Z_GYRO_SCALE, X_ACCL_SCALE, Y_ACCL_SCALE,
Z_ACCL_SCALE, XG_BIAS_LOW, XG_BIAS_HIGH,
YG_BIAS_LOW, YG_BIAS_HIGH, ZG_BIAS_LOW,
ZG_BIAS_ HIGH, XA_BIAS_LOW, XA_BIAS_HIGH,
YA_BIAS_LOW, YA_BIAS_HIGH, ZA_BIAS_LOW, and
ZA_BIAS_HIGH.
Flash Memory Update
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[3] = 1
(DIN = 0x8208, DIN = 0x8300) to initiate a manual flash update.
SYS_E_FLAG[6] (see Table 16) identifies success (0) or failure
(1) in completing this process.
Flash Memory Test
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[2] = 1
(DIN = 0x8204, DIN = 0x8300) to initiate a checksum test on the
flash memory bank. SYS_E_FLAG[6] = 0 (see Table 16)
indicates a passing condition, which means that the most recent
checksum value is the same as the checksum value, which came
from the configuration of the units at the factory.
ADIS16489 Data Sheet
Rev. B | Page 28 of 40
On Demand Self Test (ODST)
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[1] = 1
(DIN = 0x8202, then DIN = 0x8300) to run the ODST routine,
which executes the following steps:
1. Measure the output on each sensor.
2. Activate an internal force on the mechanical elements of
each sensor, which simulates the force associated with
actual inertial motion.
3. Measure the output response on each sensor.
4. Deactivate the internal force on each sensor.
5. Calculate the difference between the force on and normal
operating conditions (force off).
6. Compare the difference with internal pass/fail criteria.
7. Report the pass/fail results for each sensor in DIAG_STS
(see Table 18) and the overall pass/fail flag in
SYS_E_FLAG[5] (see Table 16).
When using an external clock, the self test execution times may
vary from the 12 ms listed in Table 1. Also, false positive results
are possible when the executing the ODST while the device is
in motion.
Bias Correction Update
Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD[0] = 1
(DIN = 0x8201, then DIN = 0x8300) to update the user offset
registers with the correction factors of the continuous bias
estimator (CBE). Ensure that the inertial platform is stable during
the entire average time for optimal bias estimates.
AUXILIARY I/O LINE CONFIGURATION
(FNCTIO_CTRL)
Table 152. FNCTIO_CTRL Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x06, 0x07 0x000D R/W Yes
Table 153. FNCTIO_CTRL Bit Definitions
Bits Description
[15:12] Not used
11 Alarm indicator: 1 = enabled, 0 = disabled
10 Alarm indicator polarity: 1 = positive, 0 = negative
[9:8] Alarm indicator line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
7 Sync clock input enable: 1 = enabled, 0 = disabled
6 Sync clock input polarity:
1 = rising edge, 0 = falling edge
[5:4] Sync clock input line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
3 Data ready enable: 1 = enabled, 0 = disabled
2 Data ready polarity: 1 = positive, 0 = negative
[1:0] Data ready line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
The FNCTIO_CTRL register (see Table 152 and Table 153)
provides configuration control for each input/output pin
(DIO1, DIO2, DIO3, and DIO4). Each DIOx pin supports only
one function at a time. In cases where a single pin has two
assignments, the enable bit for the lower priority function
automatically resets to zero (disabling the lower priority
function). The order of priority is as follows, from highest
priority to lowest priority: data ready, sync clock input, alarm
indicator, and general purpose. Changing the FNCTIO_
CTRL[5:4] bit settings requires an execution time of 75 ms,
whereas changing the settings of the remaining bits in the
FNCTIO_CTRL register only takes 3 ms. During this execution
time (75 ms or 3 ms), the operational state and the contents of
the register remain unchanged, but the SPI interface supports
normal communication (for accessing other registers).
Data Ready Indicator
The FNCTIO_CTRL[3:0] bits provide three configuration options
for the data ready function: on/off, polarity, and DIOx line. The
primary purpose this signal is to drive the interrupt control line
of an embedded processor, which can help synchronize data
collection and minimize latency. The factory default assigns
DIO2 as a positive polarity data ready signal, which means that
the data in the output registers is valid when the DIO2 line is
high (see Figure 31). This configuration works well when DIO2
drives an interrupt service pin that activates on a low to high
pulse.
DIO2 ACTIVE INACTIVE
15596-129
Figure 31. Data Ready, When FNCTIO_CTRL[3:0] = 1101 (default)
Use the following sequence to change this assignment to DIO1
with a negative polarity:
1. Turn to Page 3 (DIN = 0x8003).
2. Set FNCTIO_CTRL[3:0] = 1000 (DIN = 0x8608, then
DIN = 0x8700). The timing jitter on the pulse width of the
data ready signal is typically ±1.4 µs.
Input Sync/Clock Control
FNCTIO_CTRL[7:4] provide configuration options for using
one of the DIOx lines as an input synchronization signal for
sampling inertial sensor data. For example, use the following
sequence to establish DIO4 as a positive polarity input clock pin
and keep the factory default setting for the data ready function:
1. Turn to Page 3 (DIN = 0x8003).
2. Set FNCTIO_CTRL[7:0] = 0xFD (DIN = 0x86FD).
3. Set FNCTIO_CTRL[15:8] = 0x00 (DIN = 0x8700).
This command also disables the internal sampling clock.
Therefore, no data sampling occurs if no input clock signal is
present. The best performance is available when using an input
clock frequency of 2400 Hz.
Data Sheet ADIS16489
Rev. B | Page 29 of 40
Alarm Indicator
FNCTIO_CTRL[11:8] provide three configuration options for
using one of the DIOx lines as an alarm indicator: on/off,
polarity, and DIOx line. The primary purpose this signal is to
provide an output signal that activates when a bit in the SYS_
E_FLAG register = 1 (see Table 16). For example, use the
following sequence to establish DIO3 as a negative polarity alarm
indicator, while preserving the factory default setting for the data
ready function:
1. Turn to Page 3 (DIN = 0x8003)
2. Set FNCTIO_CTRL[7:0] = 0x0D (DIN = 0x860D).
3. Set FNCTIO_CTRL[15:8] = 0x0A (DIN = 0x870A).
GENERAL-PURPOSE I/O CONTROL (GPIO_CTRL)
Table 154. GPIO_CTRL Register Definitions1
Page Addresses Default Access Flash Backup
0x03 0x08, 0x09 0x00X0 R/W Yes
1 The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not
have a default setting.
Table 155. GPIO_CTRL Bit Definitions1
Bits Description
[15:8] Don’t care
7 General-Purpose I/O Line 4 (DIO4) data level
6 General-Purpose I/O Line 3 (DIO3) data level
5 General-Purpose I/O Line 2 (DIO2) data level
4 General-Purpose I/O Line 1 (DIO1) data level
3 General-Purpose I/O Line 4 (DIO4) direction control
(1 = output, 0 = input)
2 General-Purpose I/O Line 3 (DIO3) direction control
(1 = output, 0 = input)
1 General-Purpose I/O Line 2 (DIO2) direction control
(1 = output, 0 = input)
0 General-Purpose I/O Line 1 (DIO1) direction control
(1 = output, 0 = input)
1 The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not
have a default setting.
When FNCTIO_CTRL does not configure a DIOx pin, GPIO_
CTRL provides register controls for general-purpose use of the
pin. GPIO_CTRL[3:0] provide input/output assignment
controls for each line. When the DIOx lines are inputs, monitor
their level by reading GPIO_CTRL[7:4]. When the DIOx lines
are used as outputs, set their level by writing to GPIO_CTRL[7:4].
For example, use the following sequence to set DIO1 and DIO3
as high and low output lines, respectively, and set DIO2 and DIO4
as input lines. Turn to Page 3 (DIN = 0x8003) and set GPIO_
CTRL[7:0] = 0x15 (DIN = 0x8815, then DIN = 0x8900).
MISCELLANEOUS CONFIGURATION (CONFIG)
Table 156. CONFIG Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x0A, 0x0B 0x00C0 R/W Yes
Table 157. CONFIG Bit Definitions
Bits Description
[15:8] Not used
7 Linear g compensation for gyroscopes (1 = enabled)
6 Point of percussion alignment (1 = enabled)
[5:2] Not used
1 Real-time clock, daylight savings time (1: enabled, 0:
disabled)
0 Real-time clock control (1: relative/elapsed timer mode,
0: calendar mode)
The CONFIG register (see Table 156 and Table 157) provides
configuration options for the linear g compensation in the
gyroscopes (on/off), point of percussion alignment for the
accelerometers (on/off), and the real-time clock function.
Point of Percussion
CONFIG[6] offers a point of percussion alignment function that
maps the accelerometer sensors to the corner of the package
identified in Figure 32. To activate this feature, turn to Page 3
(DIN = 0x8003), then set CONFIG[6] = 1 (DIN = 0x8A40,
DIN = 0x8B00).
PIN 1
PIN 23
POINT OF PERCUSSION
ALI GNMENT REF E RE NCE P OINT.
SEE CONFIG[6].
15596-029
Figure 32. Point of Percussion Reference Point
Linear Acceleration on Effect on Gyroscope Bias
The ADIS16489 includes first-order compensation for the linear g
effect in the gyroscopes, which uses the following model:
+
×
=
ω
ω
ω
A
A
A
LGLGLG
LGLGLG
LGLGLG
ω
ω
ω
ZPC
YPC
XPC
Z
Y
X
333231
232221
131211
ZC
YC
XC
The linear g correction factors, LGXY, apply correction for linear
acceleration in all three directions to the data path of each
gyroscope (ωXPC, ωYPC, and ωZPC) at the rate of the data samples
(2460 SPS when using the internal clock). CONFIG[7] provides an
on/off control for this compensation. The factory default value for
this bit activates this compensation. To turn it off, turn to Page 3
(DIN = 0x8003) and set CONFIG[7] = 0 (DIN = 0x8A40, DIN =
0x8B00). This command sequence also preserves the default setting
for the point of percussion alignment function (on).
ADIS16489 Data Sheet
Rev. B | Page 30 of 40
DECIMATION FILTER (DEC_RATE)
Table 158. DEC_RATE Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x0C, 0x0D 0x0000 R/W Yes
Table 159. DEC_RATE Bit Definitions
Bits Description
[15:11] Don’t care
[10:0] Decimation rate, binary format, maximum = 2047, see
Figure 33 for the impact on sample rate
The DEC_RATE register (see Table 158 and Table 159)
provides user control for the final filter stage (see Figure 33),
which averages and decimates the accelerometers and
gyroscopes data, while also extending the time that the delta
angle and delta velocity track between each update. The output
sample rate is equal to 2460/(DEC_RATE + 1). When using the
external clock option (Bit 7 and Bits[5:4] of the FNCTIO_CTRL
register, see Figure 33), replace the 2460 number in this
relationship with the input clock frequency. For example, turn
to Page 3 (DIN = 0x8003), and set DEC_RATE = 0x18 (DIN =
0x8C18, then DIN = 0x8D00) to reduce the output sample rate to
98.4 SPS (2460 ÷ 25).
CONTINUOUS BIAS ESTIMATION (NULL_CNFG)
Table 160. NULL_CNFG Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x0E, 0x0F 0x070A R/W Yes
Table 161. NULL_CNFG Bit Definitions
Bits Description
[15:14] Not used.
13 Z-axis acceleration bias correction enable (1 = enabled).
12 Y-axis acceleration bias correction enable (1 = enabled).
11 X-axis acceleration bias correction enable (1 = enabled).
10 Z-axis gyroscope bias correction enable (1 = enabled).
9
Y-axis gyroscope bias correction enable (1 = enabled).
8 X-axis gyroscope bias correction enable (1 = enabled).
[7:4] Not used.
[3:0] Time base control (TBC), range is 0 to 13 (default = 10),
time base (tB) = 2TBC/fS, where fS is the IMU sample rate
before decimation and is 2460 SPS if the factory default
internal clock is used. The total average time
(tA) required for autonull = 64 × tB.
The NULL_CNFG register (see Table 160 and Table 161)
provides the configuration controls for the CBE, which associates
with the bias correction update command in GLOB_CMD[0]
(see Table 151). NULL_CNFG[3:0] establish the total average
time (tA) for the bias estimates and NULL_ CNFG[13:8] provide
on/off controls for each sensor. The factory default configuration
for NULL_CNFG enables the bias null command for the
gyroscopes, disables the bias null command for the accelerometers,
and sets the average time to ~26.64 sec. This calculation assumes
that the internal sample clock (fS = 2460 SPS) is used. If the user
is supplying an external clock by setting Bit 7 of the FNCTIO_
CRTL register to 1 (see Table 152 and Table 153), fS is the IMU
sample rate before decimation.
When a sensor bit in NULL_CNFG is active (equal to 1), setting
GLOB_CMD[0] = 1 (DIN sequence: 0x8003, 0x8201, 0x8300)
causes its bias correction register to automatically update with a
value that corrects for its present bias error (from the CBE). For
example, setting NULL_CNFG[8] equal to 1 causes an update
in the XG_BIAS_LOW (see Table 109) and XG_BIAS_HIGH
(see Table 111) registers.
MEMS
SENSOR 330Hz ÷4
fs
GYROSCOPE
2-POLE: 404Hz , 757Hz
ACCELEROMETER
1-POLE: 330Hz
AVERAGE
DECIMATION
FILTER
SELECTABLE
FIR FILTER BANK
FILTR_BNK_0
FILTR_BNK_1
AVERAGE/DECIMATION FILTER
D = DEC_RAT E , BITS[10: 0] + 1
1
4
4
÷D
1
D
D
FIR
FILTER
BANK
fs
INTERNAL
ADC
CLOCK
9.84kHz
DIOx
OPTIONAL INPUT CLOCK
FNCTIO_CTRL, BIT 7 = 1
fs
< 2400Hz
NOTES
1. WHEN FNCTIO_CTRL, BIT 7 = 1,
fs
IS THE EX TERNAL INPUT CLOCK, AND EACH CLOCK PUL S E ON THE DE S IGNATED DIOx LINE
4× AVERAGE/ DE CIMAT ION FILTER, WHICH PRO DUCE S A DATA RATE THAT I S E QUAL TO THE I NP UT CLOCK FREQUENCY.
2. WHEN FNCTIO_CTRL, BIT 7 = 0,
fs
IS THE I NTERNAL LY G E NE RATED 2. 46 kHz S AM P LE CLOCK.
(F NCTIO _CTRL, BITS[5: 4] ) S TARTS A 4- S AM P LE BURST , AT A S AM P LE RAT E OF 9.84 kHz. THESE FOUR S AM P LES FEED INTO THE
15596-030
Figure 33. Sampling and Frequency Response Signal Flow
Data Sheet ADIS16489
Rev. B | Page 31 of 40
POWER MANAGEMENT (SLP_CNT)
Table 162. SLP_CNT Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x10, 0x11 Not applicable W No
Table 163. SLP_CNT Bit Definitions
Bits Description
[15:10] Not used
9 Power-down mode
8 Normal sleep mode
[7:0] Programmable time bits; 1 sec/LSB; 0x00 = indefinite
The SLP_CNT register (see Table 162 and Table 163) provides
controls for both power-down mode and sleep modes. The
trade-off between power-down mode and sleep mode is idle
power and recovery time. Power-down mode offers the best
power consumption but requires the most time to recover. In
addition, all volatile settings are lost during power-down,
whereas sleep mode preserves these settings.
To initiate a sleep mode for a specific period of time, turn to
Page 3 (DIN = 0x8003), write the amount of sleep time to SLP_
CNT[7:0] and then set SLP_CNT[8] = 1 (DIN = 0x9101) to start
the sleep period. Sleep mode begins when the CS line goes high,
after setting SLP_CNT[8] = 1. See Table 164 for a command
sequence example to place the ADIS16489 into sleep mode for
100 sec.
Table 164. Command Sequence, Timed Sleep Mode Example
DIN Description
0x8003 Turn to Page 3
0x9064 SLP_CNT[7:0] = 0x64, 100 sec sleep time
0x9101 SLP_CNT[8] = 1, start sleep mode
To initiate an indefinite sleep mode, set SLP_CNT[7:0] = 0x00
(DIN = 0x9000), then set SLP_CNT[8] = 1 (DIN = 0x9101). To
initiate a power-down period of 100 sec, use the configuration
sequence in Table 164, with one exception: set SLP_CNT[9] = 1
(DIN = 0x9102) instead of setting SLP_CNT[8] = 1 (DIN =
0x9101). To initiate an indefinite power-down, set
SLP_CNT[7:0] = 0x00 first, and then set SLP_CNT[9] = 1 (DIN =
0x9102).
To wake the device from sleep or power-down mode, use one of
the following options to restore normal operation:
Assert CS from high to low.
Pulse RST low, then high again.
Cycle the power.
If the sleep mode and power-down mode bits are both set high,
the normal sleep mode bit (SLP_CNT[8]) takes precedence.
FIR FILTER CONTROL (FILTR_BNK_0, FILTR_BNK_1)
Table 165. FILTR_BNK_0 Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x16, 0x17 0x0000 R/W Yes
Table 166. FILTR_BNK_0 Bit Definitions
Bits Description
15 Don’t care
14 Y-axis accelerometer filter enable (1 = enabled)
[13:12] Y-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
11 X-axis accelerometer filter enable (1 = enabled)
[10:9] X-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
8 Z-axis gyroscope filter enable (1 = enabled)
[7:6] Z-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
5 Y-axis gyroscope filter enable (1 = enabled)
[4:3] Y-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
2 X-axis gyroscope filter enable (1 = enabled)
[1:0] X-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Table 167. FILTR_BNK_1 Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x18, 0x19 0x0000 R/W Yes
Table 168. FILTR_BNK_1 Bit Definitions
Bits Description
[15:3] Don’t care
2 Z-axis accelerometer filter enable (1 = enabled)
[1:0] Z-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
The FILTR_BNK_0 (see Table 165 and Table 166) and FILTR_
BNK_1 (see Table 167 and Table 168) registers provide the
configuration controls for the FIR filter bank in the signal chain
of each sensor (see Figure 33). These registers provide on/off
control for the FIR bank for each inertial sensor, along with the
FIR bank (A, B, C, D) that each sensor uses.
ALARM CONFIGURATION (ALM_CNFG_0,
ALM_CNFG_1, ALM_CFG_2)
The ALM_CNFG_0 (see Table 169 and Table 170), ALM_
CNFG_1 (see Table 171 and Table 172) and ALM_CNFG_2
(see Table 173 and Table 174) registers provide three
configuration control options for the alarm functions of each
inertial sensor and the barometer: on/off, polarity, and mode of
operation (static/dynamic).
Table 169. ALM_CNFG_0 Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x20, 0x21 0x0000 R/W Yes
ADIS16489 Data Sheet
Rev. B | Page 32 of 40
Solving for ΔX_ACCL_OUT, ΔZ_GYRO_OUT,
ΔY_GYRO_OUT, and ΔX_GYRO_OUT
Use Equation 1 to Equation 4 to solve for ΔX_ACCL_OUT,
ΔZ_GYRO_OUT, ΔY_GYRO_OUT, and ΔX_GYRO_OUT,
which the following bits provide user control for in the
ALM_CFG_0 register (see Table 170) in Bits[13:12], Bits[9:8],
Bits[5:4], and Bits[1:0].
( ) ( )
=
==
7
0
7
0
112
8
1
n
A
n
A
nXnXTΔX_ACCL_OU
(1)
where XA = X_ACCL_OUT.
() ( )
=
=
=
7
0
7
0
112
8
1
n
G
n
G
nZnZ
TΔZ_GYRO_OU
(2)
where ZG = Z_GYRO_OUT.
( ) ( )
=
==
7
0
7
0
112
8
1
n
G
n
G
n
YnYT
ΔY_GYRO_OU
(3)
where YG = Y_GYRO_OUT.
() ( )
=
=
=
7
0
7
0
112
8
1
n
G
n
G
nX
nXTΔX_GYRO_OU
(4)
where XG = X_GYRO_OUT.
Table 170. ALM_CNFG_0 Bit Definitions
Bits Description
15 X-axis accelerometer; 0: alarm is off, 1: alarm is on
14 Not used
[13:12] X-axis accelerometer polarity and mode settings; select
one of the four options for the condition that triggers
the alarm (ALM_STS[3] = 1, see Table 20)
00: X_ACCL_OUT < XA_ALM_MAGN
01: ΔX_ACCL_OUT < XA_ALM_MAGN (see Equation 1)
10: X_ACCL_OUT > XA_ALM_MAGN
11: ΔX_ACCL_OUT > XA_ALM_MAGN (see Equation 1)
11 Z-axis gyroscope; 0: alarm is off, 1: alarm is on
10 Not used
[9:8] Z-axis gyroscope polarity and mode settings; select
one of the four options for the condition that triggers
the alarm (ALM_STS[2] = 1, see Table 20)
00: Z_GYRO_OUT < ZG_ALM_MAGN
01: ΔZ_GYRO_OUT < ZG_ALM_MAGN (see Equation 2)
10: Z_GYRO_OUT > ZG_ALM_MAGN
11: ΔZ_GYRO_OUT > ZG_ALM_MAGN (see Equation 2)
7 Y-axis gyroscope; 0: alarm is off, 1: alarm is on
6 Not used
[5:4] Y-axis gyroscope polarity and mode settings. Select
one of the four options for the condition that triggers
the alarm (ALM_STS[1] = 1, see Table 20)
00: Y_GYRO_OUT < YG_ALM_MAGN
01: ΔY_GYRO_OUT < YG_ALM_MAGN (see Equation 3)
10: Y_GYRO_OUT > YG_ALM_MAGN
11: ΔY_GYRO_OUT > YG_ALM_MAGN (see Equation 3)
3 X-axis gyroscope; 0: alarm is off, 1: alarm is on
Bits Description
2 Not used
1:0 X-axis gyroscope polarity and mode settings; select
one of the four options for the condition that triggers
the alarm flag (ALM_STS[0] = 1, see Table 20)
00: X_GYRO_OUT < XG_ALM_MAGN
01: ΔX_GYRO_OUT < XG_ALM_MAGN (see Equation 4)
10: X_GYRO_OUT > XG_ALM_MAGN
11: ΔX_GYRO_OUT > XG_ALM_MAGN (see Equation 4)
Table 171. ALM_CNFG_1 Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x22, 0x23 0x0000 R/W Yes
Solving for ΔZ_ACCL_OUT and ΔY_ACCL_OUT
Use Equation 5 and Equation 6 to solve for ΔZ_ACCL_OUT
and ΔY_ACCL_OUT in Bits[5:4] and Bits[1:0] in Table 172.
() ( )
=
==
7
0
7
0
112
8
1
n
A
n
A
n
ZnZ
TΔZ_ACCL_OU
(5)
where ZA = Z_ACCL_OUT.
( ) ( )
=
=
=
7
0
7
0
112
8
1
n
A
n
A
nYnYTΔY_ACCL_OU
(6)
where YA = Y_ACCL_OUT.
Table 172. ALM_CNFG_1 Bit Definitions
Bits Description
[15:8] Not used
7 Z-axis accelerometer; 0: alarm is off, 1: alarm is on
6 Not used
[5:4] Z-axis accelerometer polarity and mode settings; select
one of the four options for the condition that triggers
the alarm (ALM_STS[5] = 1, see Table 20)
00: Z_ACCL_OUT < ZA_ALM_MAGN
01: ΔZ_ACCL_OUT < ZA_ALM_MAGN (see Equation 5)
10: Z_ACCL_OUT > ZA_ALM_MAGN
11: ΔZ_ACCL_OUT > ZA_ALM_MAGN (see Equation 5)
4 Z-axis accelerometer mode, 0: static, 1: dynamic
3 Y-axis accelerometer; 0: alarm is off, 1: alarm is on
2 Not used
[1:0] Y-axis accelerometer polarity and mode settings; select
one of the four options for the condition that triggers
the alarm (ALM_STS[4] = 1, see Table 20)
00: Y_ACCL_OUT < YA_ALM_MAGN
01: ΔY_ACCL_OUT < YA_ALM_MAGN (see Equation 6)
10: Y_ACCL_OUT > YA_ALM_MAGN
11: ΔY_ACCL_OUT > YA_ALM_MAGN (see Equation 6)
Table 173. ALM_CNFG_2 Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x24, 0x25 0x0000 R/W Yes
Data Sheet ADIS16489
Rev. B | Page 33 of 40
Table 174. ALM_CNFG_2
Bits Description
[15:8] Not used
7 Barometer alarm (1 = enabled)
6 Not used
5 Barometer alarm polarity (1 = greater than)
4 Barometer dynamic enable (1 = enabled)
[3:0]
Not used
X-AXIS GYROSCOPE ALARM (XG_ALM_MAGN)
Table 175. XG_ALM_MAGN Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x28, 0x29 0x0000 R/W Yes
Table 176. XG_ALM_MAGN Bit Definitions
Bits Description
[15:0] X-axis gyroscope alarm threshold settings,
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
The XG_ALM_MAGN register (see Table 175 and Table 176)
contains the alarm threshold for the x-axis gyroscope, when
ALM_CNFG_0[3] = 1 (see Table 170). This alarm is associated
with the alarm flag in ALM_STS[0] (see Table 20).
Alarm Example
Table 177 provides a list of commands that configure the x-axis
gyroscopes alarm to be active (ALM_STS[0] = 1) when the rate
of rotation around the x-axis exceeds 100°/sec. The value for
the XG_ALM_MAGN register is 0x1388, as follows:
100°/sec ÷ 0.02°/sec/LSB = 5000 LSB = 0x1388
Table 177. Configuration Commands, Alarm Example
DIN Description
0x8003 Turn to page 3
0xA888 XG_ALM_MAGN[7:0] = 0x88
0xA913 XG_ALM_MAGN[15:8] = 0x13
0xA00C ALM_CNFG_1[7:0] = 0x0C
0xA100 ALM_CNFG_1[15:8] = 0x00
Y-AXIS GYROSCOPE ALARM (YG_ALM_MAGN)
Table 178. YG_ALM_MAGN Register Definitions
Page
Addresses
Default
Access
Flash Backup
0x03 0x2A, 0x2B 0x0000 R/W Yes
Table 179. YG_ALM_MAGN Bit Definitions
Bits Description
[15:0] Y-axis gyroscope alarm threshold settings,
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
The YG_ALM_MAGN register (see Table 178 and Table 179)
contains the alarm threshold for the y-axis gyroscope, when
ALM_CNFG_0[7] = 1 (see Table 170). This alarm is associated
with the alarm flag in ALM_STS[1] (see Table 20).
Z-AXIS GYROSCOPE ALARM (ZG_ALM_MAGN)
Table 180. ZG_ALM_MAGN Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x2C, 0x2D 0x0000 R/W Yes
Table 181. ZG_ALM_MAGN Bit Definitions
Bits Description
[15:0] Z-axis gyroscope alarm threshold settings,
twos complement, /sec = 0x0000, 1 LSB = 0.02°/sec
The ZG_ALM_MAGN register (see Table 180 and Table 181)
contains the alarm threshold for the z-axis gyroscope, when
ALM_CNFG_0[11] = 1 (see Table 170). This alarm is
associated with the alarm flag in ALM_STS[2] (see Table 20).
X-AXIS ACCELEROMETER ALARM
(XA_ALM_MAGN)
Table 182. XA_ALM_MAGN Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x2E, 0x2F 0x0000 R/W Yes
Table 183. XA_ALM_MAGN Bit Definitions
Bits Description
[15:0] X-axis accelerometer alarm threshold settings,
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
The XA_ALM_MAGN register (see Table 182 and Table 183)
contains the alarm threshold for the x-axis accelerometer, when
ALM_CNFG_0[15] = 1 (see Table 170). This alarm is associated
with the alarm flag in ALM_STS[3] (see Table 20).
Y-AXIS ACCELEROMETER ALARM
(YA_ALM_MAGN)
Table 184. YA_ALM_MAGN Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x30, 0x31 0x0000 R/W Yes
Table 185. YA_ALM_MAGN Bit Definitions
Bits Description
[15:0] Y-axis accelerometer alarm threshold settings,
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
The YA_ALM_MAGN register (see Table 184 and Table 185)
contains the alarm threshold for the y-axis accelerometer, when
ALM_CNFG_1[3] = 1 (see Table 172). This alarm is associated
with the alarm flag in ALM_STS[4] (see Table 20).
ADIS16489 Data Sheet
Rev. B | Page 34 of 40
Z-AXIS ACCELEROMETER ALARM (ZA_ALM_MAGN)
Table 186. ZA_ALM_MAGN Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x32, 0x33 0x0000 R/W Yes
Table 187. ZA_ALM_MAGN Bit Definitions
Bits Description
[15:0] Z-axis accelerometer alarm threshold settings,
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
The ZA_ALM_MAGN register (see Table 186 and Table 187)
contains the alarm threshold for the z-axis accelerometer, when
ALM_ CNFG_1[7] = 1 (see Table 172). This alarm is associated
with the alarm flag in ALM_STS[5] (see Table 20).
BAROMETER ALARM (BR_ALM_MAGN)
Table 188. BR_ALM_MAGN Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x3A, 0x3B 0x0000 R/W Yes
Table 189. BR_ALM_MAGN Bit Definitions
Bits Description
[15:0] Barometer alarm threshold settings,
twos complement, 0 g = 0x0000, 1 LSB = 40 μbar
The BR_ALM_MAGN register (see Table 188 and Table 189)
contains the alarm threshold for barometer, when ALM_
CNFG_2[7] = 1 (see Table 174). This alarm is associated with
the alarm flag in ALM_STS[11] (see Table 20).
FIRMWARE REVISION (FIRM_REV)
Table 190. FIRM_REV Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x78, 0x79 Not applicable R Yes
Table 191. FIRM_REV Bit Definitions
Bits Description
[15:12] Firmware revision binary coded decimal (BCD) code,
tens digit, numerical format = 4-bit binary, range = 0 to 9
[11:8] Firmware revision BCD code, ones digit, numerical
format = 4-bit binary, range = 0 to 9
[7:4]
Firmware revision BCD code, tenths digit, numerical
format = 4-bit binary, range = 0 to 9
[3:0] Firmware revision BCD code, hundredths digit,
numerical format = 4-bit binary, range = 0 to 9
The FIRM_REV register (see Table 190 and Table 191)
provides the firmware revision for the internal firmware. This
register uses a BCD format, where each nibble represents a
digit. For example, if FIRM_REV = 0x1234, the firmware revision
is 12.34.
FIRMWARE REVISION DAY AND MONTH
(FIRM_DM)
Table 192. FIRM_DM Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x7A, 0x7B Not applicable R Yes
Table 193. FIRM_DM Bit Definitions
Bits Description
[15:12] Factory configuration month BCD code, tens digit,
numerical format = 4-bit binary, range = 0 to 2
[11:8] Factory configuration month BCD code, ones digit,
numerical format = 4-bit binary, range = 0 to 9
[7:4] Factory configuration day BCD code, tens digit,
numerical format = 4-bit binary, range = 0 to 3
[3:0] Factory configuration day BCD code, ones digit,
numerical format = 4-bit binary, range = 0 to 9
The FIRM_DM register (see Table 192 and Table 193) contains
the month and day of the factory configuration date. FIRM_
DM[15:12] and FIRM_DM[11:8] contain digits that represent
the month of the factory configuration in a BCD format. For
example, November is the 11th month in a year and is represented
by FIRM_DM[15:8] = 0x11. FIRM_DM[7:4] and FIRM_DM[3:0]
contain digits that represent the day of factory configuration in a
BCD format. For example, the 27th day of the month is represented
by FIRM_DM[7:0] = 0x27.
FIRMWARE REVISION YEAR (FIRM_Y)
Table 194. FIRM_Y Register Definitions
Page Addresses Default Access Flash Backup
0x03 0x7C, 0x7D Not applicable R Yes
Table 195. FIRM_Y Bit Definitions
Bits Description
[15:12] Factory configuration year BCD code, thousands digit,
numerical format = 4-bit binary, range = 0 to 9
[11:8] Factory configuration year BCD code, hundreds digit,
numerical format = 4-bit binary, range = 0 to 9
[7:4] Factory configuration year BCD code, tens digit,
numerical format = 4-bit binary, range = 0 to 3
[3:0] Factory configuration year BCD code, ones digit,
numerical format = 4-bit binary, range = 0 to 9
The FIRM_Y register (see Table 194 and Table 195) contains
the year of the factory configuration date. For example, the
year, 2013, is represented by FIRM_Y = 0x2013.
PAGE 4 (PAGE_ID)
Table 196. PAGE_ID Register Definition
Page Addresses Default Access Flash Backup
0x04 0x00, 0x01 0x0000 R/W No
Table 197. PAGE_ID Bit Assignments
Bits Description
[15:0] Page number, binary numerical format
Data Sheet ADIS16489
Rev. B | Page 35 of 40
The contents in the PAGE_ID register (see Table 196 and
Table 197) contain the current page setting, and provide a control
for selecting another page for SPI access. For example, set DIN =
0x8002 to select Page 2 for SPI-based user access. See Table 10
for the page assignments associated with each user accessible
register.
PART IDENTIFICATION NUMBERS (PART_ID1,
PART_ID2, PART_ID3, PART_ID4)
Table 198. PART_ID1 Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x20, 0x21 Not applicable R Not applicable
Table 199. PART_ID1 Bit Definitions
Bits Description
[15:0] Part Identification 1
Table 200. PART_ID2 Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x22, 0x23 Not applicable R Not applicable
Table 201. PART_ID2 Bit Definitions
Bits Description
[15:0] Part Identification 2
Table 202. PART_ID3 Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x24, 0x25 Not applicable R Not applicable
Table 203. PART_ID3 Bit Definitions
Bits Description
[15:0] Part Identification 3
Table 204. PART_ID4 Register Definitions
Page Addresses Default Access Flash Backup
0x04 0x26, 0x27 Not applicable R Not applicable
Table 205. PART_ID4 Bit Definitions
Bits Description
[15:0] Part Identification 4
FIR FILTERS
The ADIS16489 has four user configurable FIR filter banks.
The sample rate of the FIR filters is identical to the inertial
measurement unit (IMU) sample rate. Because decimation
occurs after the FIR filters, the FIR sample rate is independent
of the decimation rate and is not affected by the setting of the
DEC_RATE register. If the user selects the internally generated
sample clock (which is the default setting), the nominal IMU
sample rate (and FIR sample rate) is 2460 SPS. If the user is
supplying an external clock by setting Bit 7 of the FNCTIO_
CRTL register to 1 (see Table 152 and Table 153), the FIR
sample rate is the same as the ADIS16489 sample rate.
The user can individually configure and select one of the four
FIR filter banks for each individual inertial sensor using the
FILTR_ BNK_0 (see Table 166) and FILTR_BNK_1 (see
Table 168) registers (see Figure 33). Each FIR filter bank (A, B,
C, D) has 120 taps that consume two pages of memory. The
coefficient associated with each tap in each filter bank has its
own dedicated register that uses a 16-bit, twos complement
format. The FIR filter has unity-gain when the sum of all of the
coefficients is equal to 32,768. For filter designs that require
fewer than 120 taps, ensure that the non-zero taps are in the
lower-numbered coefficients and write 0x0000 to all unused
taps to eliminate the latency associated with that particular tap.
Page 5, Page 6 (PAGE_ID)
Table 206. PAGE_ID Register Definition
Page Addresses Default Access Flash Backup
0x05.
0x06,
0x00, 0x01 0x0000 R/W No
Table 207. PAGE_ID Bit Assignments
Bits Description
[15:0] Page number, binary numerical format
The contents in the PAGE_ID register (see Table 206 and
Table 207) contain the current page setting, and provide a control
for selecting another page for SPI access. For example, set DIN =
0x8002 to select Page 2 for SPI-based user access. See Table 10
for the page assignments associated with each user accessible
register.
FIR Filter Bank A (FIR_COEF_A000 to FIR_COEF_A119)
Table 208. FIR Filter Bank A Memory Map
Page PAGE_ID Addresses Register
5 0x05 0x00, 0x01 PAGE_ID
5 0x05 0x02 to 0x07 Not used
5 0x05 0x08, 0x09 FIR_COEF_A000
5 0x05 0x0A, 0x0B FIR_COEF_A001
5 0x05 0x0C to 0x7D FIR_COEF_A002 to
FIR_COEF_A058
5 0x05 0x7E, 0x7F FIR_COEF_A059
6 0x06 0x00, 0x01 PAGE_ID
6 0x06 0x02 to 0x07 Not used
6 0x06 0x08, 0x09 FIR_COEF_A060
6 0x06 0x0A, 0x0B FIR_COEF_A061
6 0x06 0x0C to 0x7D FIR_COEF_A062 to
FIR_COEF_A118
6 0x06 0x7E, 0x7F FIR_COEF_A119
Table 209 and Table 210 offer detailed register and bit definitions
for one of the FIR coefficient registers in Bank A, FIR_COEF_
A071. Table 211 provides a configuration example, which sets
this register to a decimal value of −169 (0xFF57).
Table 209. FIR_COEF_A071 Register Definitions
Page Addresses Default Access Flash Backup
0x06 0x1E, 0x1F Not applicable R/W Yes
Table 210. FIR_COEF_A071 Bit Definitions
Bits Description
[15:0] FIR Bank A, Coefficient 71, twos complement
ADIS16489 Data Sheet
Rev. B | Page 36 of 40
Table 211. Configuration Example, FIR Coefficient
DIN Description
0x8006 Turn to Page 6
0x9E57 FIR_COEF_A071[7:0] = 0x57
0x9FFF FIR_COEF_A071[15:8] = 0xFF
Page 7, Page 8 (PAGE_ID)
Table 212. PAGE_ID Register Definition
Page Addresses Default Access Flash Backup
0x07.
0x08,
0x00, 0x01 0x0000 R/W No
Table 213. PAGE_ID Bit Assignments
Bits Description
[15:0] Page number, binary numerical format
The contents in the PAGE_ID register (see Table 212 and
Table 213) contain the current page setting, and provide a control
for selecting another page for SPI access. For example, set DIN =
0x8002 to select Page 2 for SPI-based user access. See Table 10
for the page assignments associated with each user accessible
register.
FIR Filter Bank B (FIR_COEF_B000 to FIR_COEF_B119)
Table 214. Filter Bank B Memory Map
Page PAGE_ID Addresses Register
7 0x07 0x00, 0x01 PAGE_ID
7 0x07 0x02 to 0x07 Not used
7 0x07 0x08, 0x09 FIR_COEF_B000
7 0x07 0x0A, 0x0B FIR_COEF_B001
7 0x07 0x0C to 0x7D FIR_COEF_B002 to
FIR_COEF_B058
7 0x07 0x7E, 0x7F FIR_COEF_B059
8 0x08 0x00, 0x01 PAGE_ID
8 0x08 0x02 to 0x07 Not used
8 0x08 0x08, 0x09 FIR_COEF_B060
8 0x08 0x0A, 0x0B FIR_COEF_B061
8 0x08 0x0C to 0x7D
FIR_COEF_B062 to
FIR_COEF_B118
8 0x08 0x7E, 0x7F FIR_COEF_B119
Page 9, Page 10 (PAGE_ID)
Table 215. PAGE_ID Register Definition
Page Addresses Default Access Flash Backup
0x09.
0x0A,
0x00, 0x01 0x0000 R/W No
Table 216. PAGE_ID Bit Assignments
Bits Description
[15:0] Page number, binary numerical format
The contents in the PAGE_ID register (see Table 215 and
Table 216) contain the current page setting, and provide a control
for selecting another page for SPI access. For example, set DIN =
0x8002 to select Page 2 for SPI-based user access. See Table 10
for the page assignments associated with each user accessible
register.
FIR Filter Bank C (FIR_COEF_C000 to FIR_COEF_C119)
Table 217. Filter Bank C Memory Map
Page PAGE_ID Addresses Register
9 0x09 0x00, 0x01 PAGE_ID
9 0x09 0x02 to 0x07 Not used
9 0x09 0x08, 0x09 FIR_COEF_C000
9 0x09 0x0A, 0x0B FIR_COEF_C001
9 0x09 0x0C to 0x7D FIR_COEF_C002 to
FIR_COEF_C058
9 0x09 0x7E, 0x7F FIR_COEF_C059
10 0x0A 0x00, 0x01 PAGE_ID
10 0x0A 0x02 to 0x07 Not used
10 0x0A 0x08, 0x09 FIR_COEF_C060
10 0x0A 0x0A, 0x0B FIR_COEF_C061
10 0x0A 0x0C to 0x7D FIR_COEF_C062 to
FIR_COEF_C118
10 0x0A 0x7E, 0x7F FIR_COEF_C119
Page 11, Page 12 (PAGE_ID)
Table 218. PAGE_ID Register Definition
Page Addresses Default Access Flash Backup
0x0B,
0x0C,
0x00, 0x01 0x0000 R/W No
Table 219. PAGE_ID Bit Assignments
Bits Description
[15:0] Page number, binary numerical format
The contents in the PAGE_ID register (see Table 218 and
Table 219) contain the current page setting, and provide a control
for selecting another page for SPI access. For example, set DIN =
0x8002 to select Page 2 for SPI-based user access. See Table 10
for the page assignments associated with each user accessible
register.
FIR Filter Bank D (FIR_COEF_D000 to FIR_COEF_D119)
Table 220. Filter Bank D Memory Map
Page PAGE_ID Addresses Register
11 0x0B 0x00, 0x01 PAGE_ID
11 0x0B 0x02 to 0x07 Not used
11 0x0B 0x08, 0x09 FIR_COEF_D000
11 0x0B 0x0A, 0x0B FIR_COEF_D001
11 0x0B 0x0C to 0x7D
FIR_COEF_D002 to
FIR_COEF_D058
11 0x0B 0x7E, 0x7F FIR_COEF_D059
12 0x0C 0x00, 0x01 PAGE_ID
12 0x0C 0x02 to 0x07 Not used
12 0x0C 0x08, 0x09 FIR_COEF_D060
12 0x0C 0x0A, 0x0B FIR_COEF_D061
12 0x0C 0x0C to 0x7D FIR_COEF_D062 to
FIR_COEF_D118
12 0x0C 0x7E, 0x7F FIR_COEF_D119
Data Sheet ADIS16489
Rev. B | Page 37 of 40
Default Filter Performance
The FIR filter banks have factory programmed filter designs. They
are all low-pass filters that have unity dc gain. Table 221 provides a
summary of each filter design, and Figure 34 shows the frequency
response characteristics. The phase delay is equal to ½ of the total
number of taps.
Table 221. FIR Filter Descriptions, Default Configuration
FIR Filter Bank Taps −3 dB Frequency (Hz)
A 120 310
B 120 55
C
32
275
D 32 63
NO FIR
FILTERING
0
–10
–20
MAG NI TUDE (dB)
–30
–40
–50
–60
–70
–80
–90
–100 0200 400 600 800 1000 1200
FREQUENCY (Hz)
AD CB
15596-031
Figure 34. FIR Filter Frequency Response Curves
ADIS16489 Data Sheet
Rev. B | Page 38 of 40
APPLICATIONS INFORMATION
MOUNTING BEST PRACTICES
MO UNTING S CRE WS
M2 × 0. 4mm,
WAS HE RS (OPTIONAL)
M2,
ADIS16489
WAS HE RS (OPTIONAL)
M2,
NUTS
M2 × 0. 4mm,
MAT ING CO NNE CTOR
CLM-112-02
PCB
PASSTHROUGH HOLES
DIAMETER 2.85mm
SPACERS/WASHERS
SUGGESTED, 4×
15596-032
Figure 35. Mounting Example
For best performance, follow these simple rules when installing
the ADIS16489 into a system:
Eliminate opportunity for translational force (x- and y-axis
direction, per Figure 20) application on the electrical
connector.
Isolate the mounting force to the four corners on the
portion of the package surface that surrounds the
mounting holes.
Use uniform mounting forces on all four corners. The
suggested torque setting is 40 inch ounces (0.285 Nm).
These three rules help prevent irregular force profiles, which
can warp the package and introduce bias errors in the sensors.
Figure 35 provides an example that leverages washers to set the
package off the mounting surface and uses 2.85 mm passthrough
holes and backside washers/nuts for attachment. Figure 36 and
Figure 37 provide details for mounting hole and connector
alignment pin drill locations.
For more information on mounting the ADIS16489, see the
AN-1295 Application Note.
DEVICE
OUTLINE
19.800 BSC
39.600 BSC
42.600
21.300 BSC
5 BSC5 BSC
1.642 BSC
NOTES
1. ALL DIM E NS IONS IN mm UNIT S .
2. IN THIS CONFIGURATION, THE CONNECTOR ISFACING DOWN AND
ITS PINSARE NOT VISIBLE.
0.560 BSC
ALIGNMENT HOLES
PAS S THROUG H HOLE
FOR MOUNTING SCREWS
DIAMETER OF THE HOLE
MUST ACCOMODATE
DIMENSIONAL TOLERANCE
BETWEEN THE CONNECTOR
AND HOLES.
FOR MATING SOCKET
15596-033
Figure 36. Suggested PCB Layout Pattern, Connector Down
Data Sheet ADIS16489
Rev. B | Page 39 of 40
0.4334 [11.0]
0.0240 [ 0. 610]
0.019685
[0.5000]
(TYP)
0.054 [ 1. 37]
0.0394 [ 1. 00]
0.0394 [ 1. 00] 0.1800
[4.57]
NONPLATED
THRU HO LE 2×
0.022± DIA (TYP) 0.022 DIA THRU HO LE (T Y P )
NONPLATED T HRU HOLE
15596-034
Figure 37. Suggested Layout and Mechanical Design When Using Samtec
CLM-112-02-G-D-A for the Mating Connector
EVALUATION TOOLS
Breakout Board, ADIS16IMU1/PCBZ
The ADIS16IMU1/PCBZ (sold separately) provides a breakout
board function for the ADIS16489, which means that it provides
access to the ADIS16489 through larger connectors that support
standard 1 mm ribbon cabling. It also provides four mounting
holes for attachment of the ADIS16489 to the breakout board.
PC-Based Evaluation, EVAL-ADIS2
The EVAL-ADIS2 provides the system support PC-based
evaluation of the ADIS16489.
POWER SUPPLY CONSIDERATIONS
The VDD power supply must charge 24 µF of capacitance (inside
of the ADIS16489, across the VDD and GND pins) during its
initial ramp and settling process. When VDD reaches 2.85 V,
the ADIS16489 begins its internal start-up process, which gener-
ates additional transient current demand. See Figure 38 for a
typical current profile during the start-up process. The first
peak in Figure 38 relates to charging the 24 µF capacitor bank,
whereas the second peak (~360 ms after the first peak) relates
to the initialization process of the ADIS16489. See Figure 39 for
a close view of the current profile associated with the second
peak in Figure 38.
CH1 2.00V
CH4 100mA Ω
100ms/DIV
1
4
T
VDD
CURRENT
15596-035
Figure 38. Transient Current Demand, Startup
CH4 100mA Ω 1ms/DIV
4
T
CURRENT
15596-036
Figure 39. Transient Current Demand, Peak Demand
X-RAY SENSITIVITY
Exposure to high dose rate X-rays, such as those in production
systems that inspect solder joints in electronic assemblies, can
affect accelerometer bias errors. For optimal performance,
avoid exposing the ADIS16489A to this type of inspection.
ADIS16489 Data Sheet
Rev. B | Page 40 of 40
PACKAGING AND ORDERING INFORMATION
OUTLINE DIMENSIONS
12-07-2012-E
BOTTOM VIEW
FRONT VIEW
44.254
44.000
43.746
42.854
42.600
42.346
1.942
1.642
1.342
47.254
47.000
46.746
14.254
14.000
13.746
39.854
39.600
39.346 20.10
19.80
19.50
Ø 2. 40 BS C
(4 PLACES)
15.00
BSC
8.25
BSC
2.20 BSC
(8 PL ACES)
DETAIL A
PIN 1
DETAIL B
5.50
BSC
5.50
BSC
1.00 BSC
2.84 BSC
6.50 BSC
DETAIL A
DETAIL B
1.00 BSC
PITCH 0.30 SQ BSC
3.454
3.200
2.946
Figure 40. 24-Lead Module with Connector Interface [MODULE]
(ML-24-6)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
ADIS16489BMLZ-P −40°C to +105°C 24-Lead Module with Connector Interface [MODULE] ML-24-6
1 Z = RoHS Compliant Part.
©20172020 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D15596-8/20(B)