APX4 WIRELESS SYSTEM-ON-MODULE
DATA SHEET
Tuesday, 23 July 2013
Version 1.01
Bluegiga Technologies Oy
Copyright © 2000-2013 Bluegiga Technologies
All rights reserved.
Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications
detailed here at any time without notice and does not make any commitment to update the information
contained here. Bluegiga’s products are not authorized for use as critical components in life support devices
or systems.
The WRAP, Bluegiga Access Server, Access Point and iWRAP are registered trademarks of Bluegiga
Technologies.
The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies.
All other trademarks listed herein are owned by their respective owners.
Bluegiga Technologies Oy
VERSION HISTORY
Version
Comment
0.1
First draft
0.2
Defined screws and attachment to motherboard
0.3.1
Some small fixes and additions
0.3
TBDs defined
0.4
Review
0.4.1
Small fix to part number clarification
0.4.2
Updated document name, product description and contact information
0.4.3
Added Bluetooth RF specifications
0.5
Clarified pins etc.
0.6
Fixed layout. Removed software version from part number.
0.7
Styles updated and fixed
Added notes about missing information
0.8
Added Mouser part number for the SO-DIMM receptacle
0.9
Chapter 6.5.1 removed
1.0
Added FCC/IC texts, removed battery related texts
1.01
Typos
Bluegiga Technologies Oy
TABLE OF CONTENTS
1 Ordering Information......................................................................................................................................7
1.1 Part number decoder .............................................................................................................................7
2 APx4 pin descriptions ....................................................................................................................................8
2.1 Receptacle ............................................................................................................................................8
2.2 Power contacts on the left side .............................................................................................................8
2.3 Debug UART on the right side ..............................................................................................................8
2.4 SO-DIMM connection pin descriptions ..................................................................................................9
3 Power subsystem ....................................................................................................................................... 22
3.1 PSWITCH_OUT pin 14 ...................................................................................................................... 23
3.2 RESETN ............................................................................................................................................. 23
4 Processor subsystem ................................................................................................................................. 24
4.1 Bootmodes ......................................................................................................................................... 24
5 Wireless interfaces ..................................................................................................................................... 25
5.1 Bluetooth ............................................................................................................................................ 25
5.1.1 Bluetooth GPIOs ........................................................................................................................... 25
5.1.2 Bluetooth Audio interface .............................................................................................................. 25
5.1.3 Bluetooth PCM slots and formats.................................................................................................. 26
5.1.4 Bluetooth I2S interface .................................................................................................................. 26
5.2 Wi-Fi ................................................................................................................................................... 27
6 Peripheral interfaces................................................................................................................................... 28
6.1 Ethernet .............................................................................................................................................. 28
6.2 USB .................................................................................................................................................... 29
6.3 I2C ...................................................................................................................................................... 29
6.4 PWM outputs ...................................................................................................................................... 30
6.5 SDIO / SPI / MMC .............................................................................................................................. 31
6.6 UARTs ................................................................................................................................................ 32
6.6.1 UART 0 .......................................................................................................................................... 32
6.6.2 UART 2 .......................................................................................................................................... 32
6.6.3 UART 3 .......................................................................................................................................... 32
6.6.4 UART 4 .......................................................................................................................................... 33
6.6.5 Debug UART ................................................................................................................................. 33
6.7 CAN .................................................................................................................................................... 34
6.8 Processor Audio ................................................................................................................................. 34
6.9 LCD .................................................................................................................................................... 35
6.10 LRADC0-6 (Touch interface) .............................................................................................................. 36
6.11 HSADC (High-Speed ADC) ................................................................................................................ 37
Bluegiga Technologies Oy
6.12 JTAG .................................................................................................................................................. 37
7 Electrical Characteristics ............................................................................................................................ 39
7.1 Absolute Maximum Ratings................................................................................................................ 39
7.2 Recommended Operating Conditions ................................................................................................ 39
7.3 Power Consumption ........................................................................................................................... 40
8 RF Characteristics ...................................................................................................................................... 41
9 Physical Dimensions .................................................................................................................................. 43
10 Attachment to motherboard ................................................................................................................ 44
11 Layout Guidelines ............................................................................................................................... 45
11.1 Internal antenna: Optimal module placement .................................................................................... 45
11.2 External antenna ................................................................................................................................ 45
11.3 Thermal Considerations ..................................................................................................................... 45
11.4 EMC Considerations for Motherboard ................................................................................................ 45
12 Certifications ....................................................................................................................................... 47
12.1 CE ....................................................................................................................................................... 47
12.2 FCC .................................................................................................................................................... 47
12.3 IC ........................................................................................................................................................ 48
12.4 IC ........................................................................................................................................................ 49
12.5 MIC, formerly TELEC ......................................................................................................................... 51
12.6 Qualified Antenna Types for APx4-E ................................................................................................. 51
13 Contact Information ............................................................................................................................ 52
Bluegiga Technologies Oy
DESCRIPTION
The Bluegiga APx4 is a small form factor, low
power system-on-module that includes the
latest wireless connectivity standards: 802.11
b/g/n and Bluetooth 4.0. APx4 is based on
Freescale's i.MX28 processor family and runs
an embedded Linux operating system based on
the Yocto ProjectTM. In addition to integrating
the 454MHz ARM9 processor, the wireless
connectivity technologies, Linux operating
system the APx4 also includes with several built
in applications, such as the 802.11
and Bluetooth 4.0 stacks, Continua
v.1.5 compliant IEEE manager and many more.
This combination provides an ideal platform for
designing multi-radio wireless gateways that
enables fast time-to-market and minimum R&D
risks.
The Bluegiga APx4 software can be easily
extended or tailored customizing the Linux
operating system with applications. The
motherboards for the APx4 can be easily
extended to include almost anything from 3G
modems to Ethernet and audio interfaces to
and touch screen displays.
The Bluegiga APx4 is an ideal product for
applications requiring wireless or wired
connectivity technologies and the processing
power of the ARM9 processor, such as health
and fitness gateways, building and home
automation gateways, M2M, point-of-sale and
industrial connectivity.
APPLICATIONS:
Health gateways
M2M connectivity
Fitness gateways
Home and building automation
Point-of-sale gateways
People and asset tracking
KEY FEATURES
APx4 is a computing platform:
454MHz ARM9 core (Freescale
i.MX28)
64MB RAM
128MB Flash
Real Time Clock
Linux operating system
SO-DIMM form factor
A connectivity platform:
Bluetooth 4.0 dual-mode radio
2.4GHz 802.11 b/g/n radio
Wi-Fi Access Point mode
10/100 Ethernet
USB 2.0 High Speed
With many extension options:
Up to 800 x 480, 24bit display
Resistive touch screen
MMC/SDIO
Multiple SPI, UART and I²C
I²S
PWM, GPIO and AIO
Linux operating system:
Based on the Yocto Project(TM)
Thousands of open source software
packets available
Qualifications:
Bluetooth
CE
FCC and IC
Figure 1: Physical outlook
Bluegiga Technologies Oy Page 7 of 52
1 Ordering Information
Product code
CPU and memories
Connectivity
Temperature
range
APX4-367CC-A
i.MX283
64MB DDR2
128MB Flash
Bluetooth + Wi-Fi
-10 50°C
1.1 Part number decoder
Note: Not all variants are available. Minimum order quantities and lead times may apply for special variants.
Please contact Bluegiga Technologies Oy for more information.
APX 4 3 6 7 C C A
Product category
APX
Product generation
4
Processor
3: i.MX283
Memory
6: 64MB
Flash
7: 128MB
Connectivity
C: Bluetooth and Wi-Fi
Temperature
C: Commercial
I: Industrial (contact sales@bluegiga.com)
Antenna
A: Internal antenna
E: External antenna
Bluegiga Technologies Oy Page 8 of 52
2 APx4 pin descriptions
The APX4 connector uses a standard DDR1 SO-DIMM connector with 2.5V keying.
Odd numbered pins are located on top layer
Even numbered pins are located on bottom layer
There is a ½ pitch (0.3mm) offset from top layer pins to bottom layer pins.
Note that most receptacles also have 0.3mm offset from odd pins to even pins.
2.1 Receptacle
Suitable receptacles are available from multiple vendors. For example TE Connectivity’s part number
1473005-1, Mouser part number: 571-1473005-1 and Digi-Key’s part number: A99605-ND.
PCB footprint and schematic symbol for the mentioned part number will be available for download
from Techforum in Mentor Graphics’ PADS format.
2.2 Power contacts on the left side
In addition to the 200 pins/finger contacts there are two pairs of plated through holes on the left side of the
module which can be used for powering the module stand-alone (not assembled on any motherboard). The
pitch between the holes is 2.54mm. Leave the holes unconnected if the module is assembled on a
motherboard.
Name
Function
GND
Ground
VIN
+5V input
GND
Ground
VBATTERY
Battery positive input/output
Table 1: Power supply pins
2.3 Debug UART on the right side
On the right side there are four plated through holes for PWM or debug port stand-alone (not assembled on
any motherboard). The vertical distance between the holes is 1.27mm:
Name
Function
3V3
3.3V output (for current limits, see Table 50)
PWM1/DUART TxD
Debug UART data transmit, logic level 3.3V
PWM0/DUART RxD
Debug UART data receive, logic level 3.3V
GND
Ground
Table 2: Debug UART pins
Bluegiga Technologies Oy Page 9 of 52
2.4 SO-DIMM connection pin descriptions
Note: Signals/nets marked with a star (*) are not present on standard version
Pin#
Default function
Net name
Note
1
5V input
VIN
2
5V input
VIN
3
5V input
VIN
4
5V input
VIN
5
Battery input/output
VBATTERY
6
Battery input/output
VBATTERY
7
Battery input/output
VBATTERY
8
Bootmode
BOOTMODE
9
3.3V output
3V3
Pins 9-10 may source up to
200mA combined.
10
3.3V output
3V3
Pins 9-10 may source up to
200mA combined.
11
3.3V output
3V3
Pins 9-10 may source up to
200mA combined.
12
3.3V output
3V3
Pins 9-10 may source up to
200mA combined.
13
RTC battery
VBACKUP
14
PS switch
PSWITCH_OUT
15
NC
NC
16
NC
NC
17
Reset in - Master reset
RESETN
18
Ground
GND
Table 3: Main power pins
Bluegiga Technologies Oy Page 10 of 52
Pin#
Default function
Net name
19
Ethernet TX -
ETN_TXN
20
GND
GND
21
Ethernet TX +
ETN_TXP
22
3.3V output
3V3
23
Ethernet RX -
ETN_RXN
24
Ethernet LED
ETN_LED1N*
25
Ethernet RX +
ETN_RXP
26
GND
GND
Table 4: Ethernet
* See 6.1 for detailed function.
Pin#
Default function
Net name
27
USB External VBUS enable
SPDIF*
28
NC
29
USB D-
USB1DM
30
NC
31
USB D+
USB1DP
32
Ground
GND
Table 5: USB Host
Bluegiga Technologies Oy Page 11 of 52
Pin#
Default function
Net name
33
USB OTG id
USB0_ID
34
NC
35
USB D-
USB0DM
36
NC
37
USB D+
USB0DP
38
NC
39
Ground
GND
Table 6: USB On-the-go
Pin#
Default function
Net name
40
I2C Data
I2C0_SDA
41
I2C Clock
I2C0_SCL
Table 7: I2C 0
Pin#
Default function
Net name
42
PWM (Backlight)
PWM4
43
Status led
PWM3
Table 8: Dedicated PWMs
Bluegiga Technologies Oy Page 12 of 52
Pin#
Default function
Net name
44
Slave select 1
SDIO_DAT1_OUT*
45
Slave select 2
SDIO_DAT2_OUT*
46
Command - Master out, slave in
SDIO_CMD_OUT*
47
Data 0, Master in, slave out
SDIO_DAT0_OUT*
48
Clock
SDIO_CLK_OUT*
49
Ready - Slave select 0
SDIO_DAT3_OUT*
50
Ground
GND
Table 9: SSP2 SDIO/MMC/SPI
Pin#
Default function
Net name
51
Card detect
SSP0_DETECT
52
Data 0
SSP0_DATA0
53
Data 1
SSP0_DATA1
54
Data 2
SSP0_DATA2
55
Data 3
SSP0_DATA3
56
Command
SSP0_CMD
57
Clock
SSP0_SCK
58
Ground
GND
Table 10: SSP0 SDIO/MMC/SPI
Pin#
Default function
Net name
59
UART transmit
AUART0_TX
60
UART receive
AUART0_RX
61
UART clear-to-send
AUART0_CTS
62
UART request-to-send
AUART0_RTS
Table 11: UART 0
Bluegiga Technologies Oy Page 13 of 52
Pin#
Default function
Net name
63
UART transmit
SSP2_MOSI
64
UART receive
SSP2_SCK
65
NC
66
NC
Table 12: UART 2
Pin#
Default function
Net name
67
UART transmit
SSP2_SS0
68
UART receive
SSP2_MISO
69
NC
70
NC
71
Ground
GND
Table 13: UART 3
Pin#
Default function
Net name
72
Bluetooth GPIO
BT_PIO7
73
Bluetooth GPIO
BT_PIO8
74
Bluetooth GPIO
BT_PIO9
75
Bluetooth GPIO
BT_PIO25
Table 14: Bluetooth GPIO
Bluegiga Technologies Oy Page 14 of 52
Pin#
Default function
Net name
76
CAN 0 transmit
GPMI_RDY2*
77
Ground
GND
78
CAN 1 transmit
GPMI_CE2N*
79
CAN 1 receive
GPMI_CE3*
80
Ground
GND
81
CAN 0 receive
GPMI_RDY3*
82
Ground
GND
Table 15: CAN
Pin#
Default function
Net name
83
MCLK
SAIF0_MCLK
84
Data line 1
SAIF1_SDATA0
85
Data line 0
SAIF0_SDATA0
86
Bit clock
SAIF0_BITCLK
87
Left/Right clock
SAIF0_LRCLK
88
GND
GND
Table 16: Primary audio / UART 4
Bluegiga Technologies Oy Page 15 of 52
Pin#
Default function
Net name
89
NC
90
NC
91
NC
92
NC
93
NC
94
Ground
GND
95
NC
96
NC
97
NC
98
NC
99
NC
100
NC
Table 17: Reserved group 1
Bluegiga Technologies Oy Page 16 of 52
Pin#
Default function
Net name
101
NC
102
Ground
GND
103
NC
104
NC
105
NC
106
NC
107
1.4V output*
1V4_CPU
108
1.8V output*
1V8
109
4.2V output*
4V2_CPU
110
NC
111
GND
112
NC
113
NC
114
NC
115
NC
116
Ground
GND
Table 18: Reserved group 2
*Important: Pins 107-109 are only meant for manufacturing test. Please leave unconnected. Do not pull any
current from these outputs. Doing so may create a black hole in the universe.
Bluegiga Technologies Oy Page 17 of 52
Pin#
Default function
Net name
117
Data 0
LCD_D0
118
Data 1
LCD_D1
119
Data 2
LCD_D2
120
Data 3
LCD_D3
121
Data 4
LCD_D4
122
Data 5
LCD_D5
123
Data 6
LCD_D6
124
Data 7
LCD_D7
125
Data 8
LCD_D8
126
Data 9
LCD_D9
127
Data 10
LCD_D10
128
Data 11
LCD_D11
129
Ground
GND
130
Data 12
LCD_D12
131
Data 13
LCD_D13
132
Data 14
LCD_D14
133
Data 15
LCD_D15
134
Data 16
LCD_D16
135
Data 17
LCD_D17
136
Data 18
LCD_D18
137
Data 19
LCD_D19
138
Data 20
LCD_D20
139
Data 21
LCD_D21
140
Data 22
LCD_D22
141
Data 23
LCD_D23
142
Ground
GND
Bluegiga Technologies Oy Page 18 of 52
Table 19 LCD data lines
Pin#
Default function
Net name
143
Horizontal Sync
LCD_WR_RWN
144
Vertical Sync
LCD_RD_E
145
LCD Enable
LCD_CS
146
Dot clock
LCD_RS
147
Ground
GND
Table 20: LCD control lines
Pin#
Function
Net name
148
Debug UART RX or I2C1_SDA
PWM0 (also connected to PTH pins on right
side)
149
Debug UART TX or I2C1_SCL
PWM1 (also connected to PTH pins on right
side)
150
LCD reset / GPIO
LCD_RESET
151
NC
Table 21: Debug UART / PWM / I2C1 / GPIO
Bluegiga Technologies Oy Page 19 of 52
Pin#
Function
Net name
152
NC
153
NC
154
NC
155
NC
156
NC
157
NC
158
NC
159
Ground
GND
160
Ground
GND
161
NC
162
NC
163
Ground
GND
164
Ground
GND
165
NC
166
NC
167
Ground
GND
168
Ground
GND
169
NC
170
WiFi Activity
WIFI_ACT
171
Ground
GND
Table 22: Reserved group 3
Bluegiga Technologies Oy Page 20 of 52
Pin#
Function
Net name
172
Wi-Fi Debug SPI - MISO
SPI_WIFI_MISO
173
Wi-Fi Debug SPI CLK
SPI_WIFI_CLK
174
Wi-Fi Debug SPI MOSI
SPI_WIFI_MOSI
175
Wi-Fi Debug SPI - CS
SPI_WIFI_CS
176
RTC interrupt
INT_EXT_RTC_N
177
Factory reset button / JTAG return clock
JTAG_RTCK
178
JTAG test clock
JTAG_TCK
179
JTAG test data in
JTAG_TDI
180
JTAG test data out
JTAG_TDO
181
JTAG test mode state
JTAG_TMS
182
JTAG test reset
JTAG_TRST
183
Ground
GND
184
JTAG enable boundary scan
DEBUG
Table 23: Misc
Pin#
Function
Net name
185
Touch controller XN
LRADC4
186
Touch controller XP
LRADC2
187
Touch controller YN
LRADC5
188
Touch controller YP
LRADC3
189
Touch controller WIPER
LRADC6
190
Generic ADC 0
LRADC0
191
Generic ADC 1
LRADC1
192
High speed ADC
HSADC0
193
Ground
GND
194
Ground
GND
Table 24: ADC
Bluegiga Technologies Oy Page 21 of 52
Pin #
Function
Net name
195
Bluetooth debug enable
BT_SPI_PCM1N
196
PCM in
BT_PCM1_IN
197
PCM out
BT_PCM1_OUT
198
PCM clock
BT_PCM1_CLK
199
PCM sync
BT_PCM1_SYNC
200
Ground
GND
Table 25: Bluetooth audio
Bluegiga Technologies Oy Page 22 of 52
3 Power subsystem
Pin#
Function
APx4 net name
Description
1-4
5V input
VIN
Main power input
5-7
Battery input/output
VBATTERY
A rechargeable battery can be
connected
9-12,
22
3.3V output
3V3
For maximum current draw, see Table
50
13
RTC battery
VBACKUP
RTC battery backup power
14
Power switch
PSWITCH_OUT
Power switch
17
Reset in - Master reset
RESETN
Active low master reset. Resets the
entire board.
Table 26: Power supply pins
The module is powered through the 5V input. It is recommended that all the pins (1-4) are connected together
on the application board.
The external battery connectable to VBATTERY is currently not supported.
VBACKUP is connected to the Real-Time clock battery and the VDD input of the Real Time Clock. This pin
can be used to power the real time clock in cases where the battery is not placed on the module.
Figure 2: VBACKUP and battery connection
VDD
Real Time Clock
3V3
Pin 13:VBACKUP
On-board
battery
Bluegiga Technologies Oy Page 23 of 52
3.1 PSWITCH_OUT pin 14
Note: In most cases the user can ignore the PSWITCH pin. Leave unconnected for normal operation.
The ÅSWITCH_OUT (pin 14) has three levels: low, mid and high. A 10kΩ pull-up to mid-level is applied on the
module to the PSWITCH line, causing the device to start booting immediately once power is applied. Boot-up
requires a mid-level voltage to be present for >100ms.
If the PSWITCH is pulled high for over 5 seconds, for example by connecting it to 3.3V, a special Freescale
USB recovery mode is entered. For further details about the power switch, refer to Freescale’s Reference
Manual, Section 11.4. This mode can also be entered using the BOOTMODE pin.
3.2 RESETN
Power-on reset is generated internally. If a reset from external pins is required use the RESETN pin. RESETN
is internally pulled up to 3.3V.
The RESETN pin must be kept low for at least 100ms and then released in order to guarantee a proper reset.
Figure 3: NRESET
100ms
NRESET
Bluegiga Technologies Oy Page 24 of 52
4 Processor subsystem
The processor belongs to the Freescale i.MX28-family and integrates an ARM9 core operating at 454MHz.
The standard APX4 variant uses the i.MX283 processor. The module also has 128MB of SLC NAND flash and
64MB of DDR2-400 memory. For more details regarding the features the processor offers, please see the
Freescale Reference Manual.
By default the module boots from the NAND flash into the U-Boot boot loader environment. From there the
boot loader loads a Linux kernel which boots into the Bluegiga Linux userspace.
4.1 Bootmodes
The module supports booting from multiple different media including NAND Flash, Secure Digital (SD) cards,
MMC cards, I2C EEPROM and USB (in a device mode). The selected boot media can be selected using the
LCD_DATA[0-3] signals or in the case of USB recovery boot, by tying the BOOTMODE pin to ground.
By default the module boots from internal NAND flash, meaning that LCD_DATA[3], LCD_DATA[1] and
LCD_DATA[0] have pull-downs on the module and LCD_DATA[2] has a pull-up.
Default boot mode in bold face. The module has pull-ups and pull-downs so that when
LCD_DATA[0]..LCD_DATA[3] are left unconnected the module boots from internal NAND. After boot the
LCD_DATA lines can be used fro any purpose.
LCD_DATA[3]
LCD_DATA[2]
LCD_DATA[1]
LCD_DATA[0]
Port
0
0
0
0
USB0 device mode boot
0
0
0
1
EEPROM connected to I2C0
0
0
1
0
SPI flash on SSP2 (non-Wi-Fi
version only)
0
0
1
1
SPI flash on SSP3 (not available on
standard versions)
0
1
0
0
Module’s internal NAND Flash
0
1
1
0
Wait for JTAG connection
1
0
0
0
SPI EEPROM on SSP3 (not
available on standard versions)
1
0
0
1
SD/MMC card on SSP0
1
0
1
0
SD/MMC on SSP1 (not available on
standard versions)
Table 27: Bootmodes
Bluegiga Technologies Oy Page 25 of 52
5 Wireless interfaces
The wireless connectivity on the module is implemented using two separate chips which share a 2.4GHz
antenna.
5.1 Bluetooth
The module is a fully qualified Bluetooth 4.0, Class 1, system, supporting both classical Bluetooth as well as
Bluetooth Smart (Bluetooth low energy) devices simultaneously.
5.1.1 Bluetooth GPIOs
Pin#
Function
Net name
72
Bluetooth GPIO 7
BT_PIO7
73
Bluetooth GPIO 8
BT_PIO8
74
Bluetooth GPIO 9
BT_PIO9
75
Bluetooth GPIO 25
BT_PIO25
Table 28: Bluetooth GPIO
These GPIOs are controlled by the Bluetooth baseband chip. The main processor can read and write them by
issuing special commands to the Bluetooth chip, making them suitable for use as status indicators, but not for
high speed signals. For the current status of software support, please refer to the software documentation.
Contact support if needed.
The pins are bidirectional pins with internal programmable strength pull-up or pull-down. By default they are
inputs with a weak pull-down.
5.1.2 Bluetooth Audio interface
Pin #
Net name
PCM function
I2S function
Debug interface
195
BT_SPI_PCM1N
Select Audio: GND
Select Audio: GND
Select Debug: +3.3V
196
BT_PCM1_IN
PCM in
Serial in (SD_IN)
MOSI
197
BT_PCM1_OUT
PCM out
Serial out (SD_OUT)
MISO
198
BT_PCM1_CLK
PCM clock
Serial clock (SCK)
Clock
199
BT_PCM1_SYNC
PCM sync
Write sync (WS)
Chip select (active low)
Table 29: Bluetooth audio and debug interface
The Bluetooth audio functionality can be configured to work in either I2S or PCM mode. In addition, the
Bluetooth chip’s debug interface is multiplexed with the audio pins.
The audio interface supports continuous transmission and reception of PCM audio data over Bluetooth.
Operation in either master or slave mode are supported and many different clock modes can be supported. A
maximum of 3 SCO audio links can be transmitted through the PCM interface at any one time.
Bluegiga Technologies Oy Page 26 of 52
5.1.3 Bluetooth PCM slots and formats
The module receives and transmits on any selection of the first 4 slots following each sync pulse. Slot
durations are either 8 or 16 clock cycles:
8 clock cycles for 8-bit sample formats.
16 clocks cycles for 8-bit, 13-bit or 16-bit sample formats.
The supported formats are:
13-bit linear, 16-bit linear and 8-bit μ-law or A-law sample formats.
A sample rate of 8ksamples/s.
Little or big endian bit order.
For 16-bit slots, the 3 or 8 unused bits in each slot are filled with sign extension, padded with zeros or
a programmable 3-bit audio attenuation compatible with some codecs.
There is also a compatibility mode that forces PCM_OUT to be 0. In master mode, this allows for compatibility
with some codecs which control power down by forcing PCM_SYNC to 0 while keeping PCM_CLK running.
5.1.4 Bluetooth I2S interface
The I2S mode supports left-justified and right-justified data. The interface shares the same pins as the PCM
interface, which means each audio bus is mutually exclusive in its usage.
The digital audio interface is configured using the PSKEY_DIGITAL_AUDIO_CONFIG in the Bluetooth PS
Key configuration.
The internal representation of audio samples within CSR8811 is 16-bit and data on SD_OUT is limited to 16-
bit per channel.
Symbol
Parameter
Minimum
Maximum
Unit
-
SCK frequency
-
6.2
MHz
-
SCK frequency
-
96
kHz
tch
SCK high time
80
-
ns
tcl
SCK low time
80
-
ns
tssu
WS valid to SCK high setup time
20
-
ns
tsh
SCK high to WS invalid hold time
2.5
-
ns
topd
SCK low to SD_OUT valid delay time
-
20
ns
tisu
SD_IN valid to SCK high setup time
20
-
ns
tih
SCK high to SD_IN invalid hold time
2.5
-
ns
Table 30: I2S Slave mode timing
Bluegiga Technologies Oy Page 27 of 52
Symbol
Parameter
Minimum
Maximum
Unit
-
SCK Frequency
-
6.2
MHz
-
WS Frequency
-
96
kHz
tspd
SCK low to WS valid delay time
-
39.27
ns
topd
SCK low to SD_OUT valid delay time
-
18.44
ns
tisu
SD_IN valid to SCK high setup time
18.44
-
ns
tih
SCK high to SD_IN invalid hold time
0
-
ns
Table 31: I2S Master mode timing
5.2 Wi-Fi
The on board Wi-Fi is designed for IEEE 802.11b/g/n in the 2.4GHz band. Hardware encryption support for
WEP40/64, WEP104/128, TKIP, CCMP (AES), BIP and CKIP provides functionality for WPA, WPA2, IEEE
802.11i, IEEE 802.11w and CCX advanced security mechanisms.
The following modulations are supported:
All mandatory IEEE 802.11b modulations: 1, 2, 5.5, 11Mbps
All IEEE 802.11g OFDM modulations: 6, 9, 12, 18, 24, 36, 48, 54Mbps
Single stream IEEE 802.11n HT modulations MCS0-7, 20MHz, 800 and 400ns guard interval: 6.5,
7.2, 13.0, 14.4, 19.5, 21.7, 26.0, 28.9, 39.0, 43.3, 52.0, 57.8, 58.5, 65.0, 72.2Mbps
STBC (Space Time Block Coding) reception for IEEE 802.11n HT modulations MCS0-7
The receiver features direct conversion architecture. Sufficient out-of-band blocking specification at the Low
Noise Amplifier (LNA) input allows the receiver to be used in close proximity to Global System for Mobile
Communications (GSM) and Wideband Code Division Multiple Access (W-CDMA) cellular phone transmitters
without being desensitized. High-order baseband filters ensure good performance against in-band
interference.
The transmitter features a direct conversion IQ transceiver. Digital baseband transmit circuitry provides the
required spectral shaping and on-chip trims are used to reduce IQ modulator distortion. Transmitter gain can
be controlled on a per-packet basis, allowing the optimization of the transmit power as a function of
modulation scheme. The modulator supports digital predistortion to reduce non-linarites in the power amplifier.
The module supports automatic PA thermal drift compensation by measuring the transmit power through an
internal power coupler.
Bluegiga Technologies Oy Page 28 of 52
6 Peripheral interfaces
The module allows for several kinds of different interfaces to peripherals to be used.
6.1 Ethernet
Pin#
Function
Net name
19
Ethernet TX -
ETN_TXN
20
GND
GND
21
Ethernet TX +
ETN_TXP
22
3.3V output
3V3
23
Ethernet RX -
ETN_RXN
24
Ethernet LED
ETN_LED1N
25
Ethernet RX +
ETN_RXP
26
GND
GND
Table 32: Ethernet pins
The Ethernet I/O lines are connected on the module to a standard 10Base-T/100Base-TX physical layer
transceiver (PHY). A connector board will only need to have the magnetics as well as an RJ45 jack in order to
have fully functioning Ethernet. Multiple vendors also supply RJ45 jacks with integrated magnetics under
brand names such as MagJack and PulseJack which further simplify design. A reference schematic for such a
design is available in the APx4 reference design.
When routing the Ethernet signals, care should be taken to route the differential signals together, meaning
that for example ETN_TXN and ETN_TXP should be kept close together. The traces must also be kept short
in order to avoid EMC issues.
The Ethernet LED pin (ETN_LED1N) indicates link and activity and has a maximum output drive current of 8
mA. The ETN_LED is high when no Link is present (typically connected so that a physical LED is off), low
when a Link is present (physical LED on) and toggled on activity (physical LED is blinking).
Make sure that the driving capability of 8mA is not exceeded.
Pin state
LED
Meaning
HIGH
Off
No Link
LOW
On
Link
Toggle
Blinking
Activity
Table 33: ETN_LED1N pin
Figure 4 Typical external LED connection
Bluegiga Technologies Oy Page 29 of 52
6.2 USB
Pin#
Function
Net name
27
USB OTG Host External VBUS enable
SPDIF*
29
USB Host D-
USB1_DM
31
USB Host D+
USB1_DP
33
USB OTG ID
USB0_ID
35
USB OTG D-
USB0_DM
37
USB OTG D+
USB0_DP
Table 34: USB pins
The module has two USB high-speed controllers, one which supports USB Host mode only and another which
support USB On-the-Go (OTG). The USB On-the-Go controller is capable of operating as a USB Host or a
USB Device and support the OTG role negotiation via the USB OTG-ID signal. For the current software
support, please see the software documentation.
The USB D+ and D- signals can be directly connected to a USB connector, however when using a connector,
protection against electrostatic discharge (ESD) should be taken into account.
Because USB high-speed is a very high frequency digital signal (480Mbps), care must be taken to route the
D+ and D- signals as close together as possible and to have a ground plane follow them. The traces must
also be kept as short as possible.
The USB Host External VBUS enable signal is not present in the standard model, and has a fixed pull-up.
For more details refer to the i.MX28 Applications Processor Reference Manual (MCIMX28RM) chapters 31
and 32.
6.3 I2C
Pin#
I2C function
Alternate Functions
Net name
40
I2C 0 Data
I2C0_SDA
41
I2C 0 Clock
I2C0_SCL
148
I2C 1 Data
PWM0, Debug UART TX
PWM0/I2C1_SDA
149
I2C 1 Clock
PWM1, Debug UART RX
PWM1/I2C1_SCL
Table 35: I2C interface
The Inter Integrated Circuit bus (I2C) is a standard two-wire interface used for communication between
peripherals and the host. The interface supports both standard speed (up to 100kbps) and as fast speed
(400kbps) I2C connection to multiple devices with the processor acting in either master or slave mode.
Bluegiga Technologies Oy Page 30 of 52
The primary I2C interface (I2C 0, pins 40 and 41) is also connected to the module’s Real Time Clock (RTC)
chip and thus some additional restrictions for the communication apply. The processor is always the master.
The standard 2K pull-ups are located on APx4. Do not place additional pull-ups on I2C 0.
One I2C slave address (1010001X) on I2C 0 is reserved for the Real Time Clock PCF8563T on the APx4:
Read: 0xA3 (10100011)
Write: 0xA2 (10100010)
The secondary I2C (I2C 1) is available on pins 148 and 149 and can be used freely in either master or slave
mode. By default it is configured to provide the Debug UART. I2C 1 does not have built-in pull-ups.
For more details about I2C, please refer to the i.MX28 Applications Processor Reference Manual, chapter 27.
6.4 PWM outputs
Pin#
Default function
PWM function
Additional function
Net name
42
LCD Backlight (PWM4)
PWM4
PWM4
43
Status led (PWM3)
PWM3
PWM3
148
Debug UART TX
PWM0
I2C 1 bus data
PWM0/I2C1_SDA
149
Debug UART RX
PWM1
I2C 1 bus clock
PWM1/I2C1_SCL
83
MCLK
PWM3
UART4 CTS
SAIF0_MCLK
84
Data line 1
PWM7
SAIF1_SDATA0
85
Data line 0
PWM6
UART 4 TX
SAIF0_SDATA0
86
Bit clock
PWM5
UART4 RX
SAIF0_BITCLK
87
Left/Right clock
PWM4
UART4 RTS
SAIF0_LRCLK
Table 36: PWM outputs
The module has up to seven Pulse Width Modulator outputs available. Independent output control of each
phase allows 0, 1 or high-impedance to be independently selected for the active and inactive phases.
Two dedicated PWM outputs are at pins 42 and 43, and are typically used for the LCD’s backlight and as a
status led, respectively. The same PWM outputs are available also on pins 83 and 87.
The Debug UART on pins 148 and 149 can be disabled and used for two independent PWM outputs instead.
For more details about PWM, please refer to the i.MX28 Applications Processor Reference Manual, chapter
28.
Bluegiga Technologies Oy Page 31 of 52
6.5 SDIO / SPI / MMC
Pin#
SDIO/SD/MMC
SPI mode
Net name
51
Card detect
SSP0_DETECT
52
Data 0
MISO
SSP0_DATA0
53
Data 1
SSP0_DATA1
54
Data 2
SSP0_DATA2
55
Data 3
Slave Select
SSP0_DATA3
56
Command
MOSI
SSP0_CMD
57
Clock
Clock
SSP0_SCK
58
Ground
GND
Table 37: SDIO/SPI/MMC
The Synchronous Serial Port subsystem provides support for MMC cards, SD cards, SDIO devices, SPI
master and slave communication and eMMC 4.4 devices. In a standard configuration 1-bit and 4-bit modes for
MMC/SD/SDIO/eMMC is available. On versions without Wi-Fi support the 8-bit mode can also be configured.
For use with removable cards, a hardware card detect pin is provided.
For further information, please refer to the i.MX28 Applications Processor Reference Manual, chapter 17.
Bluegiga Technologies Oy Page 32 of 52
6.6 UARTs
The module can be configured to support up to five UARTs simultaneously, two with hardware flow control,
two without hardware flow control and one for debugging.
The UART interfaces offer similar functionality to the industry-standard 16C550 UART device, and the regular
UARTs support baud rates of up to 3.25Mbits/s.
For further information about UARTs 0, 2, 3 and 4, please refer to the i.MX28 Applications Processor
Reference Manual, chapter 30. Debug UART is covered in chapter 24.
6.6.1 UART 0
Pin#
UART 0
Debug UART
UART 4
Direction
Net name
59
Transmit
Request-to-send
Output from module
AUART0_TX
60
Receive
Clear-to-Send
Input to module
AUART0_RX
61
Clear-to-send
Receive
Receive
Input to module
AUART0_CTS
62
Request-to-send
Transmit
Transmit
Output from module
AUART0_RTS
Table 38: UART0
The first UART section (pins 59-62) is by default configured to provide UART 0 with hardware flow control.
The hardware supports selecting the function of each pin separately. For example pins 59 and 60 could be
configured for UART 0 and 61 and 62 for UART 4.
6.6.2 UART 2
Pin#
UART 2 function
Alternative function
Net name
63
TX - Transmit
SAIF 0 SDATA 2
SSP3_MOSI
64
RX - Receive
SAIF 0 SDATA 1
SSP2_SCK
Table 39: UART 2
The pins 63 and 64 provide UART 2 functions. UART 2 does not have hardware flow control available. They
can alternatively be configured as additional processor audio data lines.
6.6.3 UART 3
Pin#
UART 3 function
Alternative function
Net name
67
TX - Transmit
SAIF 1 SDATA 2
SSP2_SS0
68
RX - Receive
SAIF 1 SDATA 1
SSP2_MISO
Table 40: UART 3
The pins 67 and 68 provide UART 3 functions. UART 3 does not have hardware flow control available. They
can alternatively be configured as additional processor audio data lines.
Bluegiga Technologies Oy Page 33 of 52
6.6.4 UART 4
Pin#
UART 4
Other functions
Net name
61
Receive
DUART RX, AUART 0 CTS
AUART0_CTS
62
Transmit
DUART TX, AUART 0 RTS
AUART0_RTS
83
Clear-to-send
SAIF0_MCLK, PWM 3
SAIF0_MCLK
85
Transmit
SAIF0_SDATA0, PWM 6
SAIF0_SDATA0
86
Receive
SAIF0_BITCLK, PWM 5
SAIF0_BITCLK
87
Request-to-send
SAIF0_LRCLK, PWM 4
SAIF0_LRCLK
Table 41: UART 4
The fourth UART is not available by default, but can be configured to be available from two different locations.
Using UART 4 disables either CPU Audio or UART 0’s hardware flow-control lines.
If hardware flow control is required, then the CPU Audio pins (83-87) can be configured to provide the UART 4
functionality instead of CPU Audio. Using UART 4 with hardware flow control at the same time as CPU Audio
is not possible.
If hardware flow control is not required for UART 4 or for UART 0, then the hardware flow control lines of
UART 0 can be configured to provide UART 4 RX/TX instead.
6.6.5 Debug UART
Pin#
Debug UART
Alternative functions
UART I/O direction
Net name
148
Receive
I2C1 SDA, PWM0
Input to module
PWM0
149
Transmit
I2C1 SCL, PWM1
Output from module
PWM1
59
Request-to-send
UART 0 TX
Output from module
AUART0_TX
60
Clear-to-Send
UART 0 RX
Input to module
AUART0_RX
61
Receive
UART 0 CTS, UART 4 RX
Input to module
AUART0_CTS
62
Transmit
UART 0 RTS, UART 4 TX
Output from module
AUART0_RTS
Table 42: DEBUG UART
By default the Debug UART is provided on pins 148 and 149 without using hardware flow control. This will
prevent the use of the second I2C port. Alternatively the Debug UART can be configured to be available from
the pins of UART 0 as seen in the table above.
The main difference between the Debug UART and the Application UARTs is that there is no DMA for the
Debug UART and the maximum baud rate is 115.2Kb/s. It unsuitable for any high throughput use-cases and
consumes more processor resources than the other UART interfaces, making it best suited for debugging. In
Bluegiga Technologies Oy Page 34 of 52
theory the Debug UART can be used for other UART applications instead of debugging, but it is primarily
intended for simple console access to the processor.
For further information, please refer to the i.MX28 Applications Processor Reference Manual, chapter 30.
6.7 CAN
Pin#
Function
Net name
76
CAN 0 transmit
GPMI_RDY2*
78
CAN 1 transmit
GPMI_CE2*
79
CAN 1 receive
GPMI_CE3*
81
CAN 0 receive
GPMI_RDY3*
Table 43: CAN
The standard model does not include CAN support and pins 76, 78, 79 and 81 are not to be connected as
they cannot be used.
On the model with CAN support, the pins can be used as described in the i.MX28 Applications Processor
Reference Manual, chapter 25.
6.8 Processor Audio
Pin#
Audio function
SAIF 0
SAIF 1
Alternate functions
Net name
83
Master clock
MCLK
AUART4 CTS
SAIF0_MCLK
84
Data line
SDATA1
SDATA0
PWM 7
SAIF1_SDATA0
85
Data line
SDATA0
AUART4 TX, PWM 6
SAIF0_SDATA0
86
Bit clock
BITCLK
AUART4 RX, PWM 5
SAIF0_BITCLK
87
Left/Right clock
LRCLK
AUART4 RTS, PWM 4
SAIF0_LRCLK
63
Data line
SDATA2
UART 2 TX
SSP2_MOSI
64
Data line
SDATA1
UART 2 RX
SSP2_SCK
67
Data line
DATA2
UART 3 TX
SSP2_SS0
68
Data line
DATA1
UART 3 RX
SSP2_MISO
Table 44: AUDIO
The serial audio interface provides a serial interface to the industry’s most common analog codecs. On the
processor side, there are two serial audio interface subsystems, SAIF0 and SAIF1. These two can be used
together to provide full-duplex stereo audio transfers, where SAIF0 is used as an output and for managing the
clocks while SAIF1 is used as a slave to SAIF0 and for audio input.
Bluegiga Technologies Oy Page 35 of 52
Each data line carries two channels of audio data, meaning that if SDATA0, SDATA1 and SDATA2 are all
used, bi-directional 6 channel audio is possible. Please note that when the pins for UART 2 and UART 3 are
used as audio data lines, they cannot be used as UARTs.
Each function can be configured separately, so in case for example only one channel stereo is required, only
the data line on pin 84 or 85 need to be used, allowing for the rest of the data lines to be used for other
purposes.
For example if bi-directional audio is not required, the data input line on pin 84 can alternatively be configured
as a second SAIF0 data line (SAIF0_SDATA1), meaning it is possible to have 4-channel audio input or output
without sacrificing UART 2 or UART 3.
The module has been tested with the Freescale SGTL5000 audio codec which is used in the reference
design.
If the optional master clock is not used, it can be configured to operate as a GPIO.
For more information about the serial audio interfaces, please refer to refer to the i.MX28 Applications
Processor Reference Manual, chapter 35.
6.9 LCD
Pin#
Default function
Net name
143
Horizontal Sync
LCD_WR_RWN
144
Vertical Sync
LCD_RD_E
145
LCD Enable
LCD_CS
146
Dot clock
LCD_RS
147
Ground
GND
117-141
Data lines, see Table 19
LCD_D0-LCD_D23
Table 45: LCD signals
The LCDIF provides display data for external LCD panels from simple text-only displays to WVGA, 16/18/24
bpp color TFT panels. The LCDIF supports all of these different interfaces by providing fully programmable
functionality and sharing register space, FIFOs, and ALU resources at the same time. The LCDIF supports
RGB (DOTCLK) modes as well as system mode including both VSYNC and WSYNC modes.
Features:
Display resolution up to 800x480.
AXI-based bus master mode for LCD writes and DMA operating modes for LCD reads requiring
minimal CPU overhead.
8/16/18/24 bit per pixel.
Programmable timing and parameters for system, MPU, VSYNC and DOTCLK LCD interfaces to
support a wide variety of displays.
ITU-R BT.656 mode including progressive-to-interlace feature and RGB to YCbCr 4:2:2 color space
conversion to support 525/60 and 625/50 operation.
Ability to drive 24-bit RGB/DOTCK displays up to WVGA at 60 Hz. High robustness guaranteed by
512-pixel FIFO with under-run recovery.
Bluegiga Technologies Oy Page 36 of 52
Support for full 24-bit system mode (8080/6080/VSYNC/WSYNC).
ITU-R/BT.656 compliant D1 digital video output mode with on-the-fly RGB to YCbCr color-space-
conversion.
Support for a wide variety of input and output formats that allows for conversion between input and
output (for example, RGB565 input to RGB888 output).
For more information refer to the i.MX28 Applications Processor Reference Manual, chapter 33.
6.10 LRADC0-6 (Touch interface)
Function
Resolution
12 bits
Maximum sampling rate
428kHz
DC input voltage
0-1.85V
Expected plate resistance
2000-50000 ohm
Table 46: LRADC
LRADC 0 - 6 measure the voltage on the seven application-dependent LRADC pins. The auxiliary channels
can be used for a variety of uses, including a resistor-divider-based wired remote control, external
temperature sensing, touch-screen, button and so on.
Pin#
4-wire touch
5-wire touch
Other
Net name
185
X-
UR
Generic ADC 4
LRADC4
186
X+
UL
Generic ADC 2
LRADC2
187
Y-
LR
Generic ADC 5
LRADC5
188
Y+
LL
Generic ADC 3
LRADC3
189
WIPER
Generic ADC 6
LRADC6
190
Generic ADC 0
LRADC0
191
Generic ADC 1
LRADC1
Table 47: LRADC
For pull-up or pull-down switch control on LRADC2~5 pins, please refer to HW_LRADC_CTRL0 register.
LRADC 0 can be used for button and external temperature sensing, they cannot be enabled at same time in
hardware configuration. LRADC 1 can be used for button as well as LRADC 0. For an example of how LRADC
can be used for connecting multiple buttons, please see Freescale’s reference design for the i.MX28
processor.
For more information refer to the i.MX28 Applications Processor Reference Manual.
Bluegiga Technologies Oy Page 37 of 52
6.11 HSADC (High-Speed ADC)
Function
Value
Input sampling capacitance (Cs)
1.0pF typical
Resolution
12 bits
Maximum sampling rate
2MHz
DC input voltage
0.5 VDDA-0.5
Power-up time
1 sample cycles
Table 48: HSADC
The processor contains a high speed, high resolution analog to digital converter which can be used when the
lower resolution ADCs do not provide enough sampling speed or resolution.
For more information refer to refer to the i.MX28 Applications Processor Reference Manual.
6.12 JTAG
Pin#
Function
Net name
Note
118
Mode
LCD_D1
LCD_D1=HIGH: CPU is ready, waiting for JTAG
connection
177
JTAG return clock (Factory
reset)
JTAG_RTCK*
During normal operation, this pin is reserved for use
as a factory reset button by the software.
178
JTAG test clock
JTAG_TCK
179
JTAG test data in
JTAG_TDI
180
JTAG test data out
JTAG_TDO
181
JTAG test mode select
JTAG_TMS
182
JTAG test reset
JTAG_TRST
183
Ground
GND
184
JTAG enable boundary scan
DEBUG**
DEBUG=0: JTAG interface works for boundary scan.
DEBUG=1: JTAG interface works for ARM
debugging.
Table 49: JTAG pins
* Most JTAG adapters do not use the Return Test Clock in which case it can be used for other purposes. E.g.
on the APX4 reference design this pin is used for Factory Reset button.
** DEBUG pin is pulled down inside CPU. Leave unconnected for ordinary boundary scan.
Bluegiga Technologies Oy Page 38 of 52
In case ARM debugging is needed the board must be powered on in JTAG mode (Wait JTAG connection mode),
i. e. LCD_D1 (pin 118) must be high.
Bluegiga Technologies Oy Page 39 of 52
7 Electrical Characteristics
7.1 Absolute Maximum Ratings
Parameter
Min
Max
Unit
Vin
-0.3
7.0
V
Voltage on ordinary I/O
-0.3
3.63
V
3V3 current drain*
200
mA
Permissible ambient temperature
(Commercial version)
0
70
°C
Permissible ambient temperature
(Industrial version)
-40
85
°C
Storage temperature
-40
85
°C
Table 50: Absolute Maximum ratings
*Pins 9, 10, 11, 12 are 3.3V outputs intended for 3.3V low power devices.
Stresses beyond those listed in Table 50 may cause permanent damage to the device.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Table 50 gives stress ratings onlyfunctional operation of the device is not implied beyond the
conditions indicated in Table 51.
7.2 Recommended Operating Conditions
Parameter
Min
Max
Unit
Vin
4.75
5.25
V
Voltage on ordinary I/O
3.1
3.4
V
Board temperature (Industrial version)
-40
85
°C
Ambient temperature with high Wi-Fi use
(Industrial version)
-40
60
°C
Table 51: Recommended Operating Conditions
Bluegiga Technologies Oy Page 40 of 52
7.3 Power Consumption
Condition
Min
Typ
Max
Unit
During Boot
1.0
1.2
1.3
W
Idle
(Linux booted, but no active processes)
0.8
0.9
1.0
W
Wi-Fi transmitting
1.7
1.8
1.9
W
Table 52: Power consumption (no power saving enabled)
Bluegiga Technologies Oy Page 41 of 52
8 RF Characteristics
min
max
Channels
1
13
(1-11 when used in USA)
Frequency
2412
2472 (2462)
MHz
Table 53: Supported frequencies for Wi-Fi transceiver
min
max
Channels
0
78
Frequency
2402
2480
MHz
Table 54: Supported frequencies for Bluetooth transceiver
Standard
Supported bit rates
802.11b
1, 2, 5.5, 11Mbps
802.11g
6, 9, 12, 18, 24, 36, 48, 54Mbps
802.11n, HT, 20MHz, 800ns
6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps
802.11n, HT, 20MHz, 400ns
7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps
Table 55: Supported modulations for Wi-Fi transceiver
min
max
Accuracy
-20
+20
ppm
For all environmental conditions
Table 56: Carrier frequency accuracy for both WiFi and Bluetooth
Bluegiga Technologies Oy Page 42 of 52
802.11b
Typ
802.11g
Typ
802.11n short GI
Typ
802.11n long GI
Typ
1 Mbps
-97 dBm
6 Mbps
-92 dBm
6.5 Mbps
-91 dBm
7.2 Mbps
-92 dBm
2 Mbps
-95 dBm
9 Mbps
-91 dBm
13 Mbps
-87 dBm
14.4 Mbps
-90 dBm
5.5 Mbps
-93 dBm
12 Mbps
-89 dBm
19.5 Mbps
-85 dBm
21.7 Mbps
-87 dBm
11 Mbps
-89 dBm
18 Mbps
-87 dBm
26 Mbps
-82 dBm
28.9 Mbps
-84 dBm
24 Mbps
-84 dBm
39 Mbps
-78 dBm
43.3 Mbps
-80 dBm
36 Mbps
-80 dBm
52 Mbps
-74 dBm
57.8 Mbps
-75 dBm
48 Mbps
-75 dBm
58.5 Mbps
-71 dBm
65 Mbps
-72 dBm
54 Mbps
-73 dBm
65 Mbps
-68 dBm
72.2 Mbps
-69 dBm
Table 57: Wi-Fi receiver sensitivity (at external antenna connector)
Modulation type
Typ
DH1
-89
dBm
DH3
-89
dBm
DH5
-89
dBm
2-DH1
-92
dBm
2-DH3
-92
dBm
2-DH5
-92
dBm
3-DH1
-86
dBm
3-DH3
-85
dBm
3-DH5
-85
dBm
Table 58: Bluetooth receiver sensitivity (at external antenna connector)
Modulation type
Min
Typ
Max
Wi-Fi
+14
+15
+15.6
dBm
Bluetooth/Bluetooth LE
+5.5
+8.1
+9
dBm
Table 59: Transmitter output power at maximum setting
Bluegiga Technologies Oy Page 43 of 52
9 Physical Dimensions
Figure 5: Physical dimensions
Bluegiga Technologies Oy Page 44 of 52
10 Attachment to motherboard
In order to ease assembly of the APx4 module, it has slightly oval attachment holes. The size of the hole is
~2.2x3.0mm. This makes it possible to attach a screw and nut to the motherboard before inserting the
module.
Parameter
Size
Note
Diameter
M2
Length
<= 10mm, 8mm recommenced
Length excluding head
Head diameter
<= 3.8mm
Material
Steel or similar
*Do not use plastic material
Table 60: Screw size
Parameter
Size
Note
Size
M2
Material
Steel or similar
*Do not use plastic material
Table 61: Nut size
*Use metal screws and nuts that connect to ground, as that improves the function of the APx4
integrated antenna. Nylon/plastic screws/nuts may be used only if the motherboard’s locking clips are
grounded. Metal screws and nuts will also improve the heat conductivity compared to nylon/plastic.
For automatic assembly Phillips, Pozi or Torx head is recommended.
A suitable screw is Bossard’s PN 1151495 with following features:
BN 380 - ISO 7048
Cross recessed cheese head screw
Phillips H
ISO 7048
SN 213307
Bluegiga Technologies Oy Page 45 of 52
11 Layout Guidelines
Layout is very important for proper antenna operation when using the integrated antenna.
11.1 Internal antenna: Optimal module placement
Key points to remember are
APx4 should be placed so that the antenna faces away from large GND planes.
Typically the best placement is along one of the motherboard edges.
Antenna facing out from board
Antenna preferably in corner or placed outside the motherboard edge
Important: The motherboard’s locking clips must be attached to GND.
Optionally attach APx4 to the motherboard with metal screws and nuts as described in this document
Either:
o Create a board cutout under the entire antenna part
or
o Place the module so that the antenna is outside the board edge
We recommend issuing the motherboard design to Bluegiga for review in good time before ordering
the PCBs. Please allow for several days for such a review.
Figure 6: Example placement w/motherboard cut-out
Figure 7: Example placement, antenna outside motherboard
Important: The motherboard’s locking clips must be attached to GND.
11.2 External antenna
In case external antenna is used the RF output can be taken directly from the U.FL connector of the module.
In this case internal antenna placement can be ignored. See chapter 12.6 for approved antennas.
11.3 Thermal Considerations
APx4 will heat up to some extent during use, especially due to Wi-Fi power consumption during high-
throughput transmissions. APx4 can be attached to the motherboard with metal bolts to allow some heat
transfer to the application board ground plane.
11.4 EMC Considerations for Motherboard
Unwanted electromagnetic radiation may arise from a combination of APx4 and a motherboard if not carefully
designed.
Bluegiga Technologies Oy Page 46 of 52
The number of layers required depends on the application. The simplest application with no high
speed signals connected, 2 layers might be enough, but with a high number of the APx4 signals in
use with high clock speeds, 6 layers is recommended, with solid power and ground planes.
Place the peripherals (connectors etc.) as close as possible to APX4. One example is USB and
Ethernet. Make the lines as short as possible.
USB lines: Use 45 ohms single-line (90 ohms differential) impedance. Route the lines as differential
pairs
Ethernet lines: Use 50 ohms single-line (100 ohms differential) impedance. Route the lines as
differential pairs.
Make sure that Ethernet Tx and Rx lines are well separated in order to minimize cross talk. If there is
excessive cross talk the PHY may receive its own packets.
Be careful with clocks, e.g. SAIF0_MCLK. Do not route them longer than absolutely necessary. Place
the destination components as close as possible to the APx4. If clock traces are routed e.g. across
the board they easily cause radiation which may exceed allowed limits.
The power supply should be designed for 5V and at least 500mA continuous current.
We recommend issuing the motherboard design to Bluegiga for review in good time before ordering
the PCBs. Please allow for several days for such a review.
Bluegiga Technologies Oy Page 47 of 52
12 Certifications
APx4 is compliant to the following specifications:
12.1 CE
TBD
12.2 FCC
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause undesired
operation.
FCC RF Radiation Exposure Statement:
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End
users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter
must not be co-located or operating in conjunction with any other antenna or transmitter. This transmitter is
considered as mobile device and should not be used closer than 20 cm from a human body. To allow portable
use in a known host class 2 permissive change is required. Please contact support@bluegiga.com for detailed
information.
OEM Responsibilities to comply with FCC Regulations
The APx4 Module has been certified for integration into products only by OEM integrators under the following
conditions:
The antenna(s) must be installed such that a minimum separation distance of 25mm is maintained
between the radiator (antenna) and all persons at all times.
The transmitter module must not be co-located or operating in conjunction with any other antenna or
transmitter.
As long as the two conditions above are met, further transmitter testing will not be required. However, the
OEM integrator is still responsible for testing their end-product for any additional compliance requirements
required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).
IMPORTANT NOTE: In the event that these conditions cannot be met (for certain configurations or co-location
with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be
used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the
end product (including the transmitter) and obtaining a separate FCC authorization.
End Product Labeling
The APx4 Module is labeled with its own FCC ID. If the FCC ID is not visible when the module is installed
inside another device, then the outside of the device into which the module is installed must also display a
label referring to the enclosed module. In that case, the final end product must be labeled in a visible area
with the following:
Contains Transmitter Module FCC ID: QOQAPX4
or
Contains FCC ID: QOQAPX4”
Bluegiga Technologies Oy Page 48 of 52
The OEM of the APx4 Module must only use the approved antenna(s) described in Table 62 External Antenna
Parameters, which have been certified with this module.
The OEM integrator has to be aware not to provide information to the end user regarding how to install or
remove this RF module or change RF related parameters in the user manual of the end product.
12.3 IC
This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the
following two conditions: (1) this device may not cause interference, and (2) this device must accept any
interference, including interference that may cause undesired operation of the device.
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and
maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio
interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically
radiated power (e.i.r.p.) is not more than that necessary for successful communication.
If detachable antennas are used:
This radio transmitter (identify the device by certification number, or model number if Category II) has been
approved by Industry Canada to operate with the antenna types listed below with the maximum permissible
gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list,
having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this
device. See Table 62 External Antenna Parameters for the approved antennas.
OEM Responsibilities to comply with Industry Canada Regulations
The APx4 Module has been certified for integration into products only by OEM integrators under the following
conditions:
The antenna(s) must be installed such that a minimum separation distance of 20cm is maintained
between the radiator (antenna) and all persons at all times.
The transmitter module must not be co-located or operating in conjunction with any other antenna or
transmitter.
As long as the two conditions above are met, further transmitter testing will not be required. However, the
OEM integrator is still responsible for testing their end-product for any additional compliance requirements
required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).
IMPORTANT NOTE: In the event that these conditions cannot be met (for certain configurations or co-location
with another transmitter), then the Industry Canada authorization is no longer considered valid and the IC
Certification Number cannot be used on the final product. In these circumstances, the OEM integrator will be
responsible for re-evaluating the end product (including the transmitter) and obtaining a separate Industry
Canada authorization.
End Product Labeling
The APx4 Module is labeled with its own IC Certification Number. If the IC Certification Number are not visible
when the module is installed inside another device, then the outside of the device into which the module is
installed must also display a label referring to the enclosed module. In that case, the final end product must
be labeled in a visible area with the following:
Contains Transmitter Module IC: 5123A-BGTAPX4
or
Contains IC: 5123A-BGTAPX4
Bluegiga Technologies Oy Page 49 of 52
The OEM of the APx4 Module must only use the approved antenna(s) described in Table 62 External Antenna
Parameters, which have been certified with this module.
The OEM integrator has to be aware not to provide information to the end user regarding how to install or
remove this RF module or change RF related parameters in the user manual of the end product.
To comply with Industry Canada RF radiation exposure limits for general population, the antenna(s)
used for this transmitter must be installed such that a minimum separation distance of 20cm is
maintained between the radiator (antenna) and all persons at all times and must not be co-located or
operating in conjunction with any other antenna or transmitter.
12.4 IC
Déclaration de conformité IC :
Ce matériel respecte les standards RSS exempt de licence d’Industrie Canada. Son utilisation est soumise
aux deux conditions suivantes :
(1) l’appareil ne doit causer aucune interférence, et
(2) l’appareil doit accepter toute interférence, quelle qu’elle soit, y compris les interférences
susceptibles d’entraîner un fonctionnement non requis de l’appareil.
Selon la réglementation d’Industrie Canada, ce radio-transmetteur ne peut utiliser qu’un seul type d’antenne
et ne doit pas dépasser la limite de gain autorisée par Industrie Canada pour les transmetteurs. Afin de
réduire les interférences potentielles avec d’autres utilisateurs, le type d’antenne et son gain devront être
définis de telle façon que la puissance isotrope rayonnante équivalente (EIRP) soit juste suffisante pour
permettre une bonne communication.
Lors de l’utilisation d’antennes amovibles :
Ce radio-transmetteur (identifié par un numéro certifié ou un numéro de modèle dans le cas de la catégorie II)
a été approuvé par Industrie Canada pour fonctionner avec les antennes référencées ci-dessous dans la
limite de gain acceptable et l’impédance requise pour chaque type d’antenne cité. Les antennes non
référencées possédant un gain supérieur au gain maximum autorisé pour le type d’antenne auquel elles
appartiennent sont strictement interdites d’utilisation avec ce matériel. Veuillez vous référer au Table 62
External Antenna Parameters, concernant les antennes approuvées pour les APx4.
Les responsabilités de l’intégrateur afin de satisfaire aux réglementations d’Industrie Canada :
Les modules APx4 ont été certifiés pour entrer dans la fabrication de produits exclusivement réalisés par des
intégrateurs dans les conditions suivantes :
Bluegiga Technologies Oy Page 50 of 52
L’antenne (ou les antennes) doit être installée de façon à maintenir à tout instant une distance
minimum de 20cm entre la source de radiation (l’antenne) et toute personne physique.
Le module transmetteur ne doit pas être installé ou utilisé en concomitance avec une autre antenne
ou un autre transmetteur.
Tant que ces deux conditions sont réunies, il n’est pas nécessaire de procéder à des tests supplémentaires
sur le transmetteur. Cependant, l’intégrateur est responsable des tests effectués sur le produit final afin de se
mettre en conformité avec d’éventuelles exigences complémentaires lorsque le module est installé (exemple :
émissions provenant d’appareils numériques, exigences vis-à-vis de périphériques informatiques, etc.) ;
IMPORTANT : Dans le cas ces conditions ne peuvent être satisfaites (pour certaines configurations ou
installation avec un autre transmetteur), les autorisations fournies par Industrie Canada ne sont plus valables
et les numéros d’identification de certification d’Industrie Canada ne peuvent servir pour le produit final. Dans
ces circonstances, il incombera à l’intégrateur de faire réévaluer le produit final (comprenant le transmetteur)
et d’obtenir une autorisation séparée d’Industrie Canada.
Etiquetage du produit final
Chaque module APx4 possède son propre numéro de certification IC. Si le numéro de certification IC ne sont
pas visibles lorsqu’un module est installé à l’intérieur d’un autre appareil, alors l’appareil en question devra lui
aussi présenter une étiquette faisant référence au module inclus. Dans ce cas, le produit final doit comporter
une étiquette placée de façon visible affichant les mentions suivantes :
« Contient un module transmetteur certifié IC 5123A-BGTAPX4 »
ou
« Inclut la certification IC 5123A-BGTAPX4 »
L’intégrateur du module APx4 ne doit utiliser que les antennes répertoriées dans le tableau 25 certifiées pour
ce module.
L’intégrateur est tenu de ne fournir aucune information à l’utilisateur final autorisant ce dernier à installer ou
retirer le module RF, ou bien changer les paramètres RF du module, dans le manuel d’utilisation du produit
final.
Afin de se conformer aux limites de radiation imposées par Industry Canada, l’antenne (ou les
antennes) utilisée pour ce transmetteur doit être installée de telle sorte à maintenir une distance
minimum de 20cm à tout instant entre la source de radiation (l’antenne) et les personnes physiques.
En outre, cette antenne ne devra en aucun cas être installée ou utilisée en concomitance avec une
autre antenne ou un autre transmetteur.
Bluegiga Technologies Oy Page 51 of 52
12.5 MIC, formerly TELEC
TBD
12.6 Qualified Antenna Types for APx4-E
This device has been designed to operate with a standard 2.14 dBi dipole antenna. Any antenna of a different
type or with a gain higher than 2.14 dBi is strictly prohibited for use with this device. Using an antenna of a
different type or gain more than 2.14 dBi will require additional testing for FCC, CE and IC. Please contact
support@bluegiga.com for more information. The required antenna impedance is 50 ohms.
Qualified Antenna Types for APX4-E
Antenna Type
Maximum Gain
Dipole
2.14 dBi
Table 62 External Antenna Parameters
To reduce potential radio interference to other users, the antenna type and its gain should be chosen so that
the equivalent isotropic radiated power (e.i.r.p.) is not more than that permitted for successful communication.
Bluegiga Technologies Oy Page 52 of 52
13 Contact Information
Inquiries/ Support: www.bluegiga.com
Head office, Finland
Phone: +358-9-4355 060
Fax: +358-9-4355 0660
Bluegiga Technologies Oy
Sinikalliontie 5A, 5th floor
02630 Espoo, FINLAND
USA office
Phone: +1 770 291 2181
Fax: +1 770 291 2183
Bluegiga Technologies, Inc.
3235 Satellite Boulevard, Building 400, Suite 300,
Duluth, GA, 30096, USA
Hong Kong office
Phone: +852 3972 2186
Bluegiga Technologies Ltd.
Unit 10-18,
32/F, Tower 1, Millennium City 1,
388 Kwun Tong Road,
Kwun Tong,
Kowloon,
Hong Kong
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Bluegiga Technologies:
APX4-367CC-A-5.0