NXP Semiconductors
Data Sheet: Technical Data
Document Number: MPC5604BC
Rev. 14, 11/2017
NXP reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
MPC5604B/C
144 LQFP (20 x 20 x 1.4 mm)
100 LQFP (14 x 14 x 1.4 mm)
208 MAPBGA (17 x 17 x 1.7 mm)
64 LQFP (10 x 10 x 1.4 mm)
Features
Single issue, 32-bit CPU core complex (e200z0)
Compliant with the Power Architecture® embedded
category
Includes an instruction set enhancement allowing
variable length encoding (VLE) for code size footprint
reduction. With the optional encoding of mixed 16-bit
and 32-bit instructions, it is possible to achieve
significant code size footprint reduction.
Up to 512 KB on-chip code flash supported with the flash
controller and ECC
64 (4 × 16) KB on-chip data flash memory with EC C
Up to 48 KB on-chip SRAM with ECC
Memory protection unit (MPU ) wit h 8 region descri ptors
and 32-byte region granularity
Interrupt controller (INTC) with 148 interrupt vectors,
including 16 external interrupt sources and 18 external
interrupt/wakeup sources
Frequency modulated phase-locked lo op (FMPLL)
Crossbar switch architecture for concurrent access to
peripherals, flash memory, or RAM from multiple bus
masters
Boot assist module (BAM) supports internal flash
programming via a serial link (CAN or SCI)
T imer supports input/output channels providing a range of
16-bit input capture, outpu t co mpare, and pulse width
modulation functions (eMIOS-lite)
10-bit analog-to-digital converter (ADC)
3 serial peripheral interface (DSPI) modules
Up to 4 serial communication interface (LINFlex)
modules
Up to 6 enhanced full CAN (FlexCAN) modules with
configurable buffers
1 inter IC communication interface (I2C) module
Up to 123 configurable general pu rpose pins supporting
input and output operations (package dependent)
Real T ime Counter (RTC) with clock source from128 kHz
or 16 MHz internal RC oscillator supporting autonomous
wakeup with 1 ms resolution with max timeout of 2
seconds
Up to 6 periodic interrupt timers (PIT) with 32-bit counter
resolution
1 System Module Timer (STM)
Nexus development interface (NDI) per IEEE-ISTO
5001-2003 Class Two Plus standard
Device/board boundary Scan testing support ed with per
Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1)
On-chip voltage regulator (VREG) for regulation of
input supply for all internal levels
MPC5604B/C
Microcontroller Data Sheet
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors2
Table of Contents
1, Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1 Document overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .7
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2 Pad configuration during reset phases . . . . . . . . . . . . .11
2.3 Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.4 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.5 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.6 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.7 Nexus 2+ pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . .31
2.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
2.10 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .31
2.11 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
2.11.1 NVUSRO[PAD3V5V] field description . . . . . . . .32
2.11.2 NVUSRO[OSCILLATOR_MARGIN] field description
32
2.11.3 NVUSRO[WATCHDOG_EN] field description . .32
2.12 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .33
2.13 Recommended operating conditions . . . . . . . . . . . . . .34
2.14 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .36
2.14.1 Package thermal characteristics . . . . . . . . . . . .36
2.14.2 Power considerations. . . . . . . . . . . . . . . . . . . . .37
2.15 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . .37
2.15.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .37
2.15.2 I/O input DC characteristics. . . . . . . . . . . . . . . .38
2.15.3 I/O output DC characteristics. . . . . . . . . . . . . . .39
2.15.4 Output pin transition times. . . . . . . . . . . . . . . . .42
2.15.5 I/O pad current specification . . . . . . . . . . . . . . .42
2.16 RESET electrical characteristics. . . . . . . . . . . . . . . . . .48
2.17 Power management electrical characteristics. . . . . . . .51
2.17.1 Voltage regulator electrical characteristics . . . .51
2.17.2 Low voltage detector electrical characteristics .56
2.18 Power consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . .58
2.19 Flash memory electrical characteristics . . . . . . . . . . . .59
2.19.1 Program/Erase characteristics . . . . . . . . . . . . . 59
2.19.2 Flash power supply DC characteristics . . . . . . 60
2.19.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . 61
2.20 Electromagnetic compatibility (EMC) characteristics. . 61
2.20.1 Designing hardened software to avoid noise
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.20.2 Electromagnetic interference (EMI) . . . . . . . . . 62
2.20.3 Absolute maximum ratings (electrical sensitivity)62
2.21 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.22 Slow external crystal oscillator (32 kHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.23 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 68
2.24 Fast internal RC oscillator (16 MHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.25 Slow internal RC oscillator (128 kHz) electrical
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.26 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 72
2.26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.26.2 Input impedance and ADC accuracy . . . . . . . . 72
2.26.3 ADC electrical characteristics . . . . . . . . . . . . . 77
2.27 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.27.1 Current consumption . . . . . . . . . . . . . . . . . . . . 79
2.27.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 80
2.27.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . 86
2.27.4 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . 87
3 Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 88
3.1.1 64 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1.2 100 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.1.3 144 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.1.4 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . . 97
4 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Introduction
NXP Semiconductor s3
1 Introduction
1.1 Document overview
This document describes the features of the family and options available within the family members, and highlights im portant electrical and physical
characteristics of the device. To ensure a complete understandi ng of the device functionality, refer also to the device reference manual and errata sheet.
1.2 Description
The MPC5604B/C is a family of next generation microcontro llers built on the Power Architecture® embedded category.
The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family
of automotive-focused products designed to address the next wave of body electronics applicati ons within the vehicle. The advanced and cost-efficient host
processor core of this automotive controller family com plies with the Power Architecture embedded category and only implements the VLE (variable-length
encoding) APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power
consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating
systems and configuration code to assist with users implementations.
Table 1. MPC5604B/C device comparison1
Feature
Device
MPC56
02BxLH
MPC56
02BxLL
MPC56
02BxLQ
MPC56
02CxLH
MPC56
02CxLL
MPC56
03BxLH
MPC56
03BxLL
MPC56
03BxLQ
MPC56
03CxLH
MPC56
03CxLL
MPC56
04BxLH
MPC56
04BxLL
MPC56
04BxLQ
MPC56
04CxLH
MPC56
04CxLL
MPC5604
BxMG
CPU e200z0h
Execution
speed2
Static – up to 64 MHz
Code Flash 256 KB 384 KB 512 KB
Data Flash 64 KB (4 × 16 KB)
RAM 24KB 32KB 28KB 40KB 32KB 48 KB
MPU 8-entry
ADC (10-bit) 12 ch 28 ch 36 ch 8 ch 28 ch 12 ch 28 ch 36 ch 8 ch 28 ch 12 ch 28 ch 36 ch 8 ch 28 ch 36 ch
CTU Ye s
To t a l t i m e r
I/O3 eMIOS
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
12 ch,
16-bit
28 ch,
16-bit
56 ch,
16-bit
PWM + MC
+ IC/OC4
2 ch 5 ch 10 ch 2 ch 5 ch 2 ch 5 ch 10 ch 2 ch 5 ch 2 ch 5 ch 10 ch 2 ch 5 ch 10 ch
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Introduction
NXP Semiconductor s4
PWM +
IC/OC4
10 ch 20 ch 40 ch 10 ch 20 ch 10 ch 20 ch 40 ch 10 ch 20 ch 10 ch 20 ch 40 ch 10 ch 20 ch 40 ch
•IC/OC
4 3ch 6ch 3ch 3ch 6ch 3ch 3ch 6ch 3ch 6ch
SCI (LINFlex) 354
SPI (DSPI) 2 3 2 3 2 3 2 3 2 3 2 3
CAN
(FlexCAN)
2656 3
756 3
756
I2C 1
32 kHz
oscillator
Ye s
GPIO845 79 123 45 79 45 79 123 45 79 45 79 123 45 79 123
Debug JTAG Nexus2+
Package 64
LQFP
100
LQFP
144
LQFP
64
LQFP
100
LQFP
64
LQFP
100
LQFP
144
LQFP
64
LQFP
100
LQFP
64
LQFP
100
LQFP
144
LQFP
64
LQFP
100
LQFP
208
MAPBGA9
1Feature set dependent on selected peripheral multiplexing—table shows example implementation.
2Based on 125 °C ambient operating temperature.
3See the eMIOS section of the device reference manual for information on the channel configuration and functions.
4IC Input Capture; OC Output Compare; PWM Pulse Width Modulation; MC Modulus counter.
5SCI0, SCI1 and SCI2 are available. SCI3 is not available.
6CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.
7CAN0, CAN3 and either CAN1 or CAN4 are available. CAN2, CAN5 and CAN6 are not available
8I/O count based on multiplexing with peripherals.
9208 MAPBGA available only as development package for Nexus2+.
Table 1. MPC5604B/C device comparison1 (continued)
Feature
Device
MPC56
02BxLH
MPC56
02BxLL
MPC56
02BxLQ
MPC56
02CxLH
MPC56
02CxLL
MPC56
03BxLH
MPC56
03BxLL
MPC56
03BxLQ
MPC56
03CxLH
MPC56
03CxLL
MPC56
04BxLH
MPC56
04BxLL
MPC56
04BxLQ
MPC56
04CxLH
MPC56
04CxLL
MPC5604
BxMG
Introduction
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 5
1.3 Block diagram
Figure 1 shows a top-level block diag ram of the MPC5604B/C device series.
Figure 1. Block diagram
3 x
DSPI
FMPLL
Nexus 2+
Nexus
SRAM
SIUL
Reset control
48 KB
External
IMUX
GPIO and
JTAG
pad control
JTAG port
Nexus port e200z0h
Interrupt requests
64-bit 2 x 3 Crossbar Switch
6 x
FlexCAN
Peripheral bridge
interrupt
request
Interrupt
request
I/O
Clocks
Instructions
Data
Voltage
regulator
NMI
SWT PITSTM
NMI
SIUL
. . . . . . . . .
. . .
INTC
I2C
. . .
4 x
LINFlex
2 x
eMIOS
36 Ch.
ADC
MPU
CMU
SRAM Flash
Code Flash
512 KB
Data Flash
64 KB
MC_PCUMC_MEMC_CGMMC_RGM BAM
CTU
RTC SSCM
(Master)
(Master)
(Slave)
(Slave)
(Slave)
controller
controller
Legend:
ADC Analog-to-Digital Converter
BAM Boot Assist Module
FlexCAN Controller Area Network
CMU Clock Monitor Unit
CTU Cross Triggering Unit
DSPI Deserial Serial Peripheral Interface
eMIOS Enhanced Modular Input Output System
FMPLL Frequency-Modulated Phase-Locked Loop
I2C Inter-integrated Circuit Bus
IMUX Internal Multiplexer
INTC Interrupt Controller
JTAG JTAG controller
LINFlex Serial Communication Interface (LIN support)
ECSM Error Correction Status Module
MC_CGM Clock Generation Module
MC_ME Mode Entry Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
MPU Memory Protection Unit
Nexus Nexus Development Interface (NDI) Level
NMI Non-Maskable Interrupt
PIT Periodic Interrupt Timer
RTC Real-Time Clock
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM System Status Configuration Module
STM System Timer Module
SWT Software Watchdog Timer
WKPU Wakeup Unit
MPU
ECSM
from peripheral
registers
blocks
WKPU
Interrupt
request with
wakeup
functionality
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Introduction
NXP Semiconductors6
Table 2 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers.
Please note that the presence and number of blocks vary by device and package.
Table 2. MPC5604B/C series block summary
Block Function
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock monitor unit (CMU) Monitors clock source (internal and external) integrity
Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS
or from the PIT
Deserial serial peripheral interface
(DSPI)
Provides a synchronous serial interface for communication with external devices
Error Correction Status Module
(ECSM)
Provides a myriad of miscellaneous control functions for the device including
program-visible information about configuration and revision levels, a reset status
register, wakeup control for exiting sleep modes, and optional features such as
information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access
(eDMA)
Performs complex data transfers with minimal intervention from a host processor
via “n” programmable channels.
Enhanced modular input output
system (eMIOS)
Provides the functionality to generate or measure events
Flash memory Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network) Supports the standard CAN communications protocol
Frequency-modulated
phase-locked loop (FMPLL)
Generates high-speed system clocks and supports programmable frequency
modulation
Internal multiplexer (IMUX) SIU
subblock
Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of
data exchange between devices
Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests
JTAG controller Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages
efficiently with a minimum of CPU load
Clock generation module
(MC_CGM)
Provides logic and control required for the generation of system and peripheral
clocks
Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and mode
transition sequences in all functional states; also manages the power control unit,
reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device
from the power supply via a power switching device; device components are
grouped into sections called “power domains” which are controlled by the PCU
Reset generation module
(MC_RGM)
Centralizes reset sources and manages the device reset sequence of the device
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 7
2 Package pinouts and signal descriptions
2.1 Package pinouts
The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions,
please refer to the device reference manual.
Memory protection unit (MPU) Provides hardware access control for all memory references generated in a
device
Nexus development interface
(NDI)
Provides real-time development support capabilities in compliance with the
IEEE-ISTO 5001-2003 standard
Periodic interrupt timer (PIT) Produces periodic interrupts and triggers
Real-time counter (RTC) A free running counter used for time keeping applications, the RTC can be
configured to generate an interrupt at a predefined interval independent of the
mode of operation (run mode or low-power mode)
System integration unit (SIU) Provides control over all the electrical pad controls and up 32 ports with 16 bits
of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
Static random-access memory
(SRAM)
Provides storage for program code, constants, and variables
System status configuration
module (SSCM)
Provides system configuration and status data (such as memory size and status,
device mode and security status), device identification data, debug status port
enable and selection, and bus and peripheral abort enable/disable
System timer module (STM) Provides a set of output compare events to support AUTOSAR (Automotive Open
System Architecture) and operating system tasks
Software watchdog timer (SWT) Provides protection from runaway code
Wakeup unit (WKPU) The wakeup unit supports up to 18 external sources that can generate interrupts
or wakeup events, of which 1 can cause non-maskable interrupt requests or
wakeup events.
Crossbar (XBAR) switch Supports simultaneous connections between two master ports and three slave
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width.
Table 2. MPC5604B/C series block summary (continued)
Block Function
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors8
Figure 2. MPC560xB LQFP 64-pin configuration
Figure 3. MPC560xC LQFP 64-pin configuration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PB[3]
PC[9]
PA [ 2 ]
PA [ 1 ]
PA [ 0 ]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA[ 9 ]
PA[ 8 ]
PA[ 7 ]
PA[ 3 ]
PB[15]
PB[14]
PB[13]
PB[12]
PB[11]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA[15]
PA[14]
PA [ 4 ]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PB[4]
PB[2]
PC[8]
PC[4]
PC[5]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA [ 6 ]
PA [ 5 ]
PC[2]
PC[3]
64 LQFP
To p v i e w
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PB[3]
PC[9]
PA [ 2 ]
PA [ 1 ]
PA [ 0 ]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA[ 9 ]
PA[ 8 ]
PA[ 7 ]
PF[14]
PF[15]
PG[0]
PG[1]
PA[ 3 ]
PB[15]
PB[14]
PB[11]
PB[7]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA [ 1 5 ]
PA [ 1 4 ]
PA [ 4 ]
PA [ 1 3 ]
PA [ 1 2 ]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PB[4]
PB[2]
PC[8]
PC[4]
PC[5]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA [ 6 ]
PA [ 5 ]
PC[2]
PC[3]
64 LQFP
Top view
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 9
Figure 4. LQFP 100-pin configuration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PB[3]
PC[9]
PC[14]
PC[15]
PA [ 2 ]
PE[0]
PA [ 1 ]
PE[1]
PE[8]
PE[9]
PE[10]
PA [ 0 ]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PC[11]
PC[10]
PB[0]
PB[1]
PC[6]
PA[11]
PA[10]
PA [ 9 ]
PA [ 8 ]
PA [ 7 ]
VDD_HV
VSS_HV
PA [ 3 ]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PA [ 1 5 ]
PA [ 1 4 ]
PA [ 4 ]
PA [ 1 3 ]
PA [ 1 2 ]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA [ 6 ]
PA [ 5 ]
PC[2]
PC[3]
PE[12]
100 LQFP
Note:
Availability of port pin alternate functions depends on product selection.
Top view
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors10
Figure 5. LQFP 144-pin configuration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
PB[3]
PC[9]
PC[14]
PC[15]
PG[5]
PG[4]
PG[3]
PG[2]
PA [ 2 ]
PE[0]
PA [ 1 ]
PE[1]
PE[8]
PE[9]
PE[10]
PA [ 0 ]
PE[11]
VSS_HV
VDD_HV
VSS_HV
RESET
VSS_LV
VDD_LV
VDD_BV
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
PA[ 1 1 ]
PA[ 1 0 ]
PA[ 9 ]
PA[ 8 ]
PA[ 7 ]
PE[13]
PF[14]
PF[15]
VDD_HV
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[ 3 ]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[ 4 ]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV
VSS_HV
PC[1]
PH[10]
PA [ 6 ]
PA [ 5 ]
PC[2]
PC[3]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
144 LQFP
Note:
Availability of port pin alternate functions depends on product selection.
To p v i e w
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 11
2.2 Pad configuration during reset phases
All pads have a fixed configuration under reset.
During the power-up phase, all pads are forced to tristate.
After power-up phase, all pads are forced to tristate with the following exceptions:
PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.
PA[8] (ABS[0]) is pull-up.
RESET pad is driven low. This is pull-up only after PHASE2 reset completion.
JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.
Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
1 2 3 4 5 6 7 8 9 10111213141516
APC[8] PC[13] NC NC PH[8] PH[4] PC[5] PC[0] NC NC PC[2] NC PE[15] NC NC NC A
BPC[9] PB[2] NC PC[12] PE[6] PH[5] PC[4] PH[9] PH[10] NC PC[3] PG[11] PG[15] PG[14] PA[11] PA[10] B
CPC[14] VDD_HV PB[3] PE[7] PH[7] PE[5] PE[3] VSS_LV PC[1] NC PA[5] NC PE[14] PE[12] PA[9] PA[8] C
DNC NC PC[15] NC PH[6] PE[4] PE[2] VDD_LV VDD_HV NC PA[6] NC PG[10] PF[14] PE[13] PA[7] D
EPG[4] PG[5] PG[3] PG[2] PG[1] PG[0] PF[15] VDD_HV E
FPE[0] PA[2] PA[1] PE[1] PH[0] PH[1] PH[3] PH[2] F
GPE[9] PE[8] PE[10] PA[0] VSS_HV VSS_HV VSS_HV VSS_HV VDD_HV NC NC MSEO G
HVSS_HV PE[11] VDD_HV NC VSS_HV VSS_HV VSS_HV VSS_HV MDO3 MDO2 MDO0 MDO1 H
JRESET VSS_LV NC NC VSS_HV VSS_HV VSS_HV VSS_HV NC NC NC NC J
KEVTI NC VDD_BV VDD_LV VSS_HV VSS_HV VSS_HV VSS_HV NC PG[12] PA[3] PG[13] K
LPG[9] PG[8] NC EVTO PB[15] PD[15] PD[14] PB[14] L
MPG[7] PG[6] PC[10] PC[11] PB[13] PD[13] PD[12] PB[12] M
NPB[1] PF[9] PB[0] NC NC PA[4] VSS_LV EXTAL VDD_HV PF[0] PF[4] NC PB[11] PD[10] PD[9] PD[11] N
PPF[8] NC PC[7] NC NC PA[14] VDD_LV XTAL PB[10] PF[1] PF[5] PD[0] PD[3] VDD_HV
_ADC PB[6] PB[7] P
RPF[12] PC[6] PF[10] PF[11] VDD_HV PA[15] PA[13] NC OSC32K
_XTAL PF[3] PF[7] PD[2] PD[4] PD[7] VSS_HV
_ADC PB[5] R
TNC NC NC MCKO NC PF[13] PA[12] NC OSC32K
_EXTAL PF[2] PF[6] PD[1] PD[5] PD[6] PD[8] PB[4] T
1 2 3 4 5 6 7 8 9 10111213141516
Note: 208 MAPBGA available only as development package for Nexus 2+. NC = Not connected
Figure 6. 208 MAPBGA configuration
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors12
Main oscillator pads (EXTAL, XTAL) are tristate.
Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.
2.3 Voltage supply pins
Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply
pairs are used for 1.2 V regulator stabilization.
2.4 Pad types
In the device the following types of pads are available for system pins and functional port pins:
S = Slow1
M = Medium1 2
F = Fast1 2
Table 3. Voltage supply pin descriptions
Port pin Function
Pin number
64 LQFP1
1Pin numbers apply to both the MPC560xB and MPC560xC packages.
100 LQFP 144 LQFP 208
MAPBGA2
2208 MAPBGA available only as development package for Nexus2+
VDD_HV Digital supply voltage 7, 28, 56 15, 37, 70, 84 19, 51, 100,
123
C2, D9, E16,
G13, H3, N9,
R5
VSS_HV Digital ground 6, 8, 26, 55 14, 16, 35,
69, 83
18, 20, 49,
99, 122
G7, G8, G9,
G10, H1, H7,
H8, H9, H10,
J7, J8, J9,
J10, K7, K8,
K9, K10
VDD_LV 1.2V decoupling pins. Decoupling
capacitor must be connected between
these pins and the nearest VSS_LV pin.3
3A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable
voltage (see the recommended operating conditions in the device datasheet for details).
11, 23, 57 19, 32, 85 23, 46, 124 D8, K4, P7
VSS_LV 1.2V decoupling pins. Decoupling
capacitor must be connected between
these pins and the nearest VDD_LV pin.3
10, 24, 58 18, 33, 86 22, 47, 125 C8, J2, N7
VDD_BV Internal regulator supply voltage 12 20 24 K3
VSS_HV_ADC Reference ground and analog ground for
the ADC
33 51 73 R15
VDD_HV_ADC Reference voltage and analog supply for
the ADC
34 52 74 P14
1. See the I/O pad electrical characteristics in the device datasheet for details.
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see PCR.SRC
in section Pad Configuration Registers (PCR0–PCR122) in the device reference manual).
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 13
I = Input only with analog feature1
J = Input/Output (‘S’ pad) with analog feature
X = Oscillator
2.5 System pins
The system pins are listed in Table 4.
2.6 Functional ports
The functional port pins are listed in Table 5.
Table 4. System pin descriptions
System pin
Function
I/O direction
Pad type
RESET configuration
Pin number
64 LQFP1
1Pin numbers apply to both the MPC560xB and MPC560xC packages.
100 LQFP
144 LQFP
208 MAPBGA2
2208 MAPBGA available only as development package for Nexus2+
RESET Bidirectional reset with Schmitt-Trigger characteristics
and noise filter.
I/O M Input, weak
pull-up only
after PHASE2
91721J1
EXTAL Analog output of the oscillator amplifier circuit, when the
oscillator is not in bypass mode.
Analog input for the clock generator when the oscillator is
in bypass mode.3
3See the relevant section of the datasheet
I/O X Tristate 27 36 50 N8
XTAL Analog input of the oscillator amplifier circuit. Needs to be
grounded if oscillator is used in bypass mode.3
I X Tristate 25 34 48 P8
Table 5. Functional port pin descriptions
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
PA[0] PCR[0] AF0
AF1
AF2
AF3
GPIO[0]
E0UC[0]
CLKOUT
WKPU[19]4
SIUL
eMIOS_0
CGL
WKPU
I/O
I/O
O
I
M Tristate 5 5 12 16 G4
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors14
PA[1] PCR[1] AF0
AF1
AF2
AF3
GPIO[1]
E0UC[1]
NMI5
WKPU[2]4
SIUL
eMIOS_0
WKPU
WKPU
I/O
I/O
I
I
S Tristate 44711F3
PA[2] PCR[2] AF0
AF1
AF2
AF3
GPIO[2]
E0UC[2]
WKPU[3]4
SIUL
eMIOS_0
WKPU
I/O
I/O
I
S Tristate 3359F2
PA[3] PCR[3] AF0
AF1
AF2
AF3
GPIO[3]
E0UC[3]
EIRQ[0]
SIUL
eMIOS_0
SIUL
I/O
I/O
I
S Tristate 43396890K15
PA[4] PCR[4] AF0
AF1
AF2
AF3
GPIO[4]
E0UC[4]
WKPU[9]4
SIUL
eMIOS_0
WKPU
I/O
I/O
I
S Tristate 20202943N6
PA[5] PCR[5] AF0
AF1
AF2
AF3
GPIO[5]
E0UC[5]
SIUL
eMIOS_0
I/O
I/O
M Tristate 515179118C11
PA[6] PCR[6] AF0
AF1
AF2
AF3
GPIO[6]
E0UC[6]
EIRQ[1]
SIUL
eMIOS_0
SIUL
I/O
I/O
I
S Tristate 525280119D11
PA[7] PCR[7] AF0
AF1
AF2
AF3
GPIO[7]
E0UC[7]
LIN3TX
EIRQ[2]
SIUL
eMIOS_0
LINFlex_3
SIUL
I/O
I/O
O
I
S Tristate 444471104D16
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 15
PA[8] PCR[8] AF0
AF1
AF2
AF3
N/A6
GPIO[8]
E0UC[8]
EIRQ[3]
ABS[0]
LIN3RX
SIUL
eMIOS_0
SIUL
BAM
LINFlex_3
I/O
I/O
I
I
I
S Input, weak
pull-up
45 45 72 105 C16
PA[9] PCR[9] AF0
AF1
AF2
AF3
N/A6
GPIO[9]
E0UC[9]
FAB
SIUL
eMIOS_0
BAM
I/O
I/O
I
S Pull-down 46 46 73 106 C15
PA [ 1 0 ] P C R [ 1 0 ] A F 0
AF1
AF2
AF3
GPIO[10]
E0UC[10]
SDA
SIUL
eMIOS_0
I2C_0
I/O
I/O
I/O
S Tristate 474774107B16
PA [ 1 1 ] P C R [ 1 1 ] A F 0
AF1
AF2
AF3
GPIO[11]
E0UC[11]
SCL
SIUL
eMIOS_0
I2C_0
I/O
I/O
I/O
S Tristate 484875108B15
PA [ 1 2 ] P C R [ 1 2 ] A F 0
AF1
AF2
AF3
GPIO[12]
SIN_0
SIUL
DSPI0
I/O
I
S Tristate 22223145T7
PA [ 1 3 ] P C R [ 1 3 ] A F 0
AF1
AF2
AF3
GPIO[13]
SOUT_0
SIUL
DSPI_0
I/O
O
M Tristate 21213044R7
PA [ 1 4 ] P C R [ 1 4 ] A F 0
AF1
AF2
AF3
GPIO[14]
SCK_0
CS0_0
EIRQ[4]
SIUL
DSPI_0
DSPI_0
SIUL
I/O
I/O
I/O
I
M Tristate 19192842P6
PA [ 1 5 ] P C R [ 1 5 ] A F 0
AF1
AF2
AF3
GPIO[15]
CS0_0
SCK_0
WKPU[10]4
SIUL
DSPI_0
DSPI_0
WKPU
I/O
I/O
I/O
I
M Tristate 18182740R6
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors16
PB[0] PCR[16] AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
SIUL
FlexCAN_0
I/O
O
M Tristate 14142331N3
PB[1] PCR[17] AF0
AF1
AF2
AF3
GPIO[17]
WKPU[4]4
CAN0RX
SIUL
WKPU
FlexCAN_0
I/O
I
I
S Tristate 15152432N1
PB[2] PCR[18] AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SDA
SIUL
LINFlex_0
I2C_0
I/O
O
I/O
M Tristate 64 64 100 144 B2
PB[3] PCR[19] AF0
AF1
AF2
AF3
GPIO[19]
SCL
WKPU[11]4
LIN0RX
SIUL
I2C_0
WKPU
LINFlex_0
I/O
I/O
I
I
S Tristate 1111C3
PB[4] PCR[20] AF0
AF1
AF2
AF3
GPIO[20]
GPI[0]
SIUL
ADC
I
I
I Tristate 32325072T16
PB[5] PCR[21] AF0
AF1
AF2
AF3
GPIO[21]
GPI[1]
SIUL
ADC
I
I
I Tristate 35 53 75 R16
PB[6] PCR[22] AF0
AF1
AF2
AF3
GPIO[22]
GPI[2]
SIUL
ADC
I
I
I Tristate 36 54 76 P15
PB[7] PCR[23] AF0
AF1
AF2
AF3
GPIO[23]
GPI[3]
SIUL
ADC
I
I
I Tristate 37355577P16
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 17
PB[8] PCR[24] AF0
AF1
AF2
AF3
GPIO[24]
ANS[0]
OSC32K_XTAL7
SIUL
ADC
SXOSC
I
I
I/O
I Tristate 30303953R9
PB[9] PCR[25] AF0
AF1
AF2
AF3
GPIO[25]
ANS[1]
OSC32K_EXTAL7
SIUL
ADC
SXOSC
I
I
I/O
I Tristate 29293852T9
PB[10] PCR[26] AF0
AF1
AF2
AF3
GPIO[26]
ANS[2]
WKPU[8]4
SIUL
ADC
WKPU
I/O
I
I
J Tristate 31314054P9
PB[11]8PCR[27] AF0
AF1
AF2
AF3
GPIO[27]
E0UC[3]
CS0_0
ANS[3]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
I/O
I
J Tristate 38365981N13
PB[12] PCR[28] AF0
AF1
AF2
AF3
GPIO[28]
E0UC[4]
CS1_0
ANX[0]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 39 61 83 M16
PB[13] PCR[29] AF0
AF1
AF2
AF3
GPIO[29]
E0UC[5]
CS2_0
ANX[1]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 40 63 85 M13
PB[14] PCR[30] AF0
AF1
AF2
AF3
GPIO[30]
E0UC[6]
CS3_0
ANX[2]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 41376587L16
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors18
PB[15] PCR[31] AF0
AF1
AF2
AF3
GPIO[31]
E0UC[7]
CS4_0
ANX[3]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
I
J Tristate 42386789L13
PC[0]9PCR[32] AF0
AF1
AF2
AF3
GPIO[32]
TDI
SIUL
JTAGC
I/O
I
M Input, weak
pull-up
59 59 87 126 A8
PC[1]9PCR[33] AF0
AF1
AF2
AF3
GPIO[33]
TDO10
SIUL
JTAGC
I/O
O
M Tristate 545482121C9
PC[2] PCR[34] AF0
AF1
AF2
AF3
GPIO[34]
SCK_1
CAN4TX11
EIRQ[5]
SIUL
DSPI_1
FlexCAN_4
SIUL
I/O
I/O
O
I
M Tristate 505078117A11
PC[3] PCR[35] AF0
AF1
AF2
AF3
GPIO[35]
CS0_1
MA[0]
CAN1RX
CAN4RX11
EIRQ[6]
SIUL
DSPI_1
ADC
FlexCAN_1
FlexCAN_4
SIUL
I/O
I/O
O
I
I
I
S Tristate 494977116B11
PC[4] PCR[36] AF0
AF1
AF2
AF3
GPIO[36]
SIN_1
CAN3RX11
SIUL
DSPI_1
FlexCAN_3
I/O
I
I
M Tristate 626292131B7
PC[5] PCR[37] AF0
AF1
AF2
AF3
GPIO[37]
SOUT_1
CAN3TX11
EIRQ[7]
SIUL
DSPI1
FlexCAN_3
SIUL
I/O
O
O
I
M Tristate 616191130A7
PC[6] PCR[38] AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
SIUL
LINFlex_1
I/O
O
S Tristate 16162536R2
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 19
PC[7] PCR[39] AF0
AF1
AF2
AF3
GPIO[39]
LIN1RX
WKPU[12]4
SIUL
LINFlex_1
WKPU
I/O
I
I
S Tristate 17172637P3
PC[8] PCR[40] AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
SIUL
LINFlex_2
I/O
O
S Tristate 636399143A1
PC[9] PCR[41] AF0
AF1
AF2
AF3
GPIO[41]
LIN2RX
WKPU[13]4
SIUL
LINFlex_2
WKPU
I/O
I
I
S Tristate 2222B1
PC[10] PCR[42] AF0
AF1
AF2
AF3
GPIO[42]
CAN1TX
CAN4TX11
MA[1]
SIUL
FlexCAN_1
FlexCAN_4
ADC
I/O
O
O
O
M Tristate 13132228M3
PC[11] PCR[43] AF0
AF1
AF2
AF3
GPIO[43]
CAN1RX
CAN4RX11
WKPU[5]4
SIUL
FlexCAN_1
FlexCAN_4
WKPU
I/O
I
I
I
S Tristate 21 27 M4
PC[12] PCR[44] AF0
AF1
AF2
AF3
GPIO[44]
E0UC[12]
SIN_2
SIUL
eMIOS_0
DSPI_2
I/O
I/O
I
M Tristate 97 141 B4
PC[13] PCR[45] AF0
AF1
AF2
AF3
GPIO[45]
E0UC[13]
SOUT_2
SIUL
eMIOS_0
DSPI_2
I/O
I/O
O
S Tristate 98 142 A2
PC[14] PCR[46] AF0
AF1
AF2
AF3
GPIO[46]
E0UC[14]
SCK_2
EIRQ[8]
SIUL
eMIOS_0
DSPI_2
SIUL
I/O
I/O
I/O
I
S Tristate 3 3 C1
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors20
PC[15] PCR[47] AF0
AF1
AF2
AF3
GPIO[47]
E0UC[15]
CS0_2
SIUL
eMIOS_0
DSPI_2
I/O
I/O
I/O
M Tristate 4 4 D3
PD[0] PCR[48] AF0
AF1
AF2
AF3
GPIO[48]
GPI[4]
SIUL
ADC
I
I
ITristate4163P12
PD[1] PCR[49] AF0
AF1
AF2
AF3
GPIO[49]
GPI[5]
SIUL
ADC
I
I
ITristate4264T12
PD[2] PCR[50] AF0
AF1
AF2
AF3
GPIO[50]
GPI[6]
SIUL
ADC
I
I
ITristate4365R12
PD[3] PCR[51] AF0
AF1
AF2
AF3
GPIO[51]
GPI[7]
SIUL
ADC
I
I
ITristate4466P13
PD[4] PCR[52] AF0
AF1
AF2
AF3
GPIO[52]
GPI[8]
SIUL
ADC
I
I
ITristate4567R13
PD[5] PCR[53] AF0
AF1
AF2
AF3
GPIO[53]
GPI[9]
SIUL
ADC
I
I
ITristate4668T13
PD[6] PCR[54] AF0
AF1
AF2
AF3
GPIO[54]
GPI[10]
SIUL
ADC
I
I
ITristate4769T14
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 21
PD[7] PCR[55] AF0
AF1
AF2
AF3
GPIO[55]
GPI[11]
SIUL
ADC
I
I
ITristate4870R14
PD[8] PCR[56] AF0
AF1
AF2
AF3
GPIO[56]
GPI[12]
SIUL
ADC
I
I
ITristate4971T15
PD[9] PCR[57] AF0
AF1
AF2
AF3
GPIO[57]
GPI[13]
SIUL
ADC
I
I
ITristate5678N15
PD[10] PCR[58] AF0
AF1
AF2
AF3
GPIO[58]
GPI[14]
SIUL
ADC
I
I
ITristate5779N14
PD[11] PCR[59] AF0
AF1
AF2
AF3
GPIO[59]
GPI[15]
SIUL
ADC
I
I
ITristate5880N16
PD[12]8PCR[60] AF0
AF1
AF2
AF3
GPIO[60]
CS5_0
E0UC[24]
ANS[4]
SIUL
DSPI_0
eMIOS_0
ADC
I/O
O
I/O
I
JTristate6082M15
PD[13] PCR[61] AF0
AF1
AF2
AF3
GPIO[61]
CS0_1
E0UC[25]
ANS[5]
SIUL
DSPI_1
eMIOS_0
ADC
I/O
I/O
I/O
I
JTristate6284M14
PD[14] PCR[62] AF0
AF1
AF2
AF3
GPIO[62]
CS1_1
E0UC[26]
ANS[6]
SIUL
DSPI_1
eMIOS_0
ADC
I/O
O
I/O
I
J Tristate 64 86 L15
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors22
PD[15] PCR[63] AF0
AF1
AF2
AF3
GPIO[63]
CS2_1
E0UC[27]
ANS[7]
SIUL
DSPI_1
eMIOS_0
ADC
I/O
O
I/O
I
J Tristate 66 88 L14
PE[0] PCR[64] AF0
AF1
AF2
AF3
GPIO[64]
E0UC[16]
CAN5RX11
WKPU[6]4
SIUL
eMIOS_0
FlexCAN_5
WKPU
I/O
I/O
I
I
STristate610F1
PE[1] PCR[65] AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
CAN5TX11
SIUL
eMIOS_0
FlexCAN_5
I/O
I/O
O
MTristate812F4
PE[2] PCR[66] AF0
AF1
AF2
AF3
GPIO[66]
E0UC[18]
SIN_1
SIUL
eMIOS_0
DSPI_1
I/O
I/O
I
M Tristate 89 128 D7
PE[3] PCR[67] AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
SIUL
eMIOS_0
DSPI_1
I/O
I/O
O
M Tristate 90 129 C7
PE[4] PCR[68] AF0
AF1
AF2
AF3
GPIO[68]
E0UC[20]
SCK_1
EIRQ[9]
SIUL
eMIOS_0
DSPI_1
SIUL
I/O
I/O
I/O
I
M Tristate 93 132 D6
PE[5] PCR[69] AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
SIUL
eMIOS_0
DSPI_1
ADC
I/O
I/O
I/O
O
M Tristate 94 133 C6
PE[6] PCR[70] AF0
AF1
AF2
AF3
GPIO[70]
E0UC[22]
CS3_0
MA[1]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
O
M Tristate 95 139 B5
PE[7] PCR[71] AF0
AF1
AF2
AF3
GPIO[71]
E0UC[23]
CS2_0
MA[0]
SIUL
eMIOS_0
DSPI_0
ADC
I/O
I/O
O
O
M Tristate 96 140 C4
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 23
PE[8] PCR[72] AF0
AF1
AF2
AF3
GPIO[72]
CAN2TX12
E0UC[22]
CAN3TX11
SIUL
FlexCAN_2
eMIOS_0
FlexCAN_3
I/O
O
I/O
O
MTristate913G2
PE[9] PCR[73] AF0
AF1
AF2
AF3
GPIO[73]
E0UC[23]
WKPU[7]4
CAN2RX12
CAN3RX11
SIUL
eMIOS_0
WKPU
FlexCAN_2
FlexCAN_3
I/O
I/O
I
I
I
S Tristate 10 14 G1
PE[10] PCR[74] AF0
AF1
AF2
AF3
GPIO[74]
LIN3TX
CS3_1
EIRQ[10]
SIUL
LINFlex_3
DSPI_1
SIUL
I/O
O
O
I
S Tristate 11 15 G3
PE[11] PCR[75] AF0
AF1
AF2
AF3
GPIO[75]
CS4_1
LIN3RX
WKPU[14]4
SIUL
DSPI_1
LINFlex_3
WKPU
I/O
O
I
I
S Tristate 13 17 H2
PE[12] PCR[76] AF0
AF1
AF2
AF3
GPIO[76]
E1UC[19]13
SIN_2
EIRQ[11]
SIUL
eMIOS_1
DSPI_2
SIUL
I/O
I/O
I
I
S Tristate 76 109 C14
PE[13] PCR[77] AF0
AF1
AF2
AF3
GPIO[77]
SOUT2
E1UC[20]
SIUL
DSPI_2
eMIOS_1
I/O
O
I/O
S Tristate 103 D15
PE[14] PCR[78] AF0
AF1
AF2
AF3
GPIO[78]
SCK_2
E1UC[21]
EIRQ[12]
SIUL
DSPI_2
eMIOS_1
SIUL
I/O
I/O
I/O
I
S Tristate 112 C13
PE[15] PCR[79] AF0
AF1
AF2
AF3
GPIO[79]
CS0_2
E1UC[22]
SIUL
DSPI_2
eMIOS_1
I/O
I/O
I/O
M Tristate 113 A13
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors24
PF[0] PCR[80] AF0
AF1
AF2
AF3
GPIO[80]
E0UC[10]
CS3_1
ANS[8]
SIUL
eMIOS_0
DSPI_1
ADC
I/O
I/O
O
I
J Tristate 55 N10
PF[1] PCR[81] AF0
AF1
AF2
AF3
GPIO[81]
E0UC[11]
CS4_1
ANS[9]
SIUL
eMIOS_0
DSPI_1
I
I/O
I/O
O
I
J Tristate 56 P10
PF[2] PCR[82] AF0
AF1
AF2
AF3
GPIO[82]
E0UC[12]
CS0_2
ANS[10]
SIUL
eMIOS_0
DSPI_2
ADC
I/O
I/O
I/O
I
J Tristate 57 T10
PF[3] PCR[83] AF0
AF1
AF2
AF3
GPIO[83]
E0UC[13]
CS1_2
ANS[11]
SIUL
eMIOS_0
DSPI_2
ADC
I/O
I/O
O
I
J Tristate 58 R10
PF[4] PCR[84] AF0
AF1
AF2
AF3
GPIO[84]
E0UC[14]
CS2_2
ANS[12]
SIUL
eMIOS_0
DSPI_2
ADC
I/O
I/O
O
I
J Tristate 59 N11
PF[5] PCR[85] AF0
AF1
AF2
AF3
GPIO[85]
E0UC[22]
CS3_2
ANS[13]
SIUL
eMIOS_0
DSPI_2
ADC
I/O
I/O
O
I
J Tristate 60 P11
PF[6] PCR[86] AF0
AF1
AF2
AF3
GPIO[86]
E0UC[23]
ANS[14]
SIUL
eMIOS_0
ADC
I/O
I/O
I
J Tristate 61 T11
PF[7] PCR[87] AF0
AF1
AF2
AF3
GPIO[87]
ANS[15]
SIUL
ADC
I/O
I
J Tristate 62 R11
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 25
PF[8] PCR[88] AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX14
CS4_0
CAN2TX15
SIUL
FlexCAN_3
DSPI_0
FlexCAN_2
I/O
O
O
O
MTristate34P1
PF[9] PCR[89] AF0
AF1
AF2
AF3
GPIO[89]
CS5_0
CAN2RX15
CAN3RX14
SIUL
DSPI_0
FlexCAN_2
FlexCAN_3
I/O
O
I
I
STristate33N2
PF[10] PCR[90] AF0
AF1
AF2
AF3
GPIO[90]
SIUL
I/O
MTristate38R3
PF[11] PCR[91] AF0
AF1
AF2
AF3
GPIO[91]
WKPU[15]4
SIUL
WKPU
I/O
I
STristate39R4
PF[12] PCR[92] AF0
AF1
AF2
AF3
GPIO[92]
E1UC[25]
SIUL
eMIOS_1
I/O
I/O
MTristate35R1
PF[13] PCR[93] AF0
AF1
AF2
AF3
GPIO[93]
E1UC[26]
WKPU[16]4
SIUL
eMIOS_1
WKPU
I/O
I/O
I
STristate41T6
PF[14] PCR[94] AF0
AF1
AF2
AF3
GPIO[94]
CAN4TX11
E1UC[27]
CAN1TX
SIUL
FlexCAN_4
eMIOS_1
FlexCAN_4
I/O
O
I/O
O
M Tristate 43 102 D14
PF[15] PCR[95] AF0
AF1
AF2
AF3
GPIO[95]
CAN1RX
CAN4RX11
EIRQ[13]
SIUL
FlexCAN_1
FlexCAN_4
SIUL
I/O
I
I
I
S Tristate 42 101 E15
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors26
PG[0] PCR[96] AF0
AF1
AF2
AF3
GPIO[96]
CAN5TX11
E1UC[23]
SIUL
FlexCAN_5
eMIOS_1
I/O
O
I/O
M Tristate 41 98 E14
PG[1] PCR[97] AF0
AF1
AF2
AF3
GPIO[97]
E1UC[24]
CAN5RX11
EIRQ[14]
SIUL
eMIOS_1
FlexCAN_5
SIUL
I/O
I/O
I
I
S Tristate 40 97 E13
PG[2] PCR[98] AF0
AF1
AF2
AF3
GPIO[98]
E1UC[11]
SIUL
eMIOS_1
I/O
I/O
M Tristate 8 E4
PG[3] PCR[99] AF0
AF1
AF2
AF3
GPIO[99]
E1UC[12]
WKPU[17]4
SIUL
eMIOS_1
WKPU
I/O
I/O
I
S Tristate 7 E3
PG[4] PCR[100] AF0
AF1
AF2
AF3
GPIO[100]
E1UC[13]
SIUL
eMIOS_1
I/O
I/O
M Tristate 6 E1
PG[5] PCR[101] AF0
AF1
AF2
AF3
GPIO[101]
E1UC[14]
WKPU[18]4
SIUL
eMIOS_1
WKPU
I/O
I/O
I
S Tristate 5 E2
PG[6] PCR[102] AF0
AF1
AF2
AF3
GPIO[102]
E1UC[15]
SIUL
eMIOS_1
I/O
I/O
MTristate30M2
PG[7] PCR[103] AF0
AF1
AF2
AF3
GPIO[103]
E1UC[16]
SIUL
eMIOS_1
I/O
I/O
MTristate29M1
PG[8] PCR[104] AF0
AF1
AF2
AF3
GPIO[104]
E1UC[17]
CS0_2
EIRQ[15]
SIUL
eMIOS_1
DSPI_2
SIUL
I/O
I/O
I/O
I
S Tristate 26 L2
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 27
PG[9] PCR[105] AF0
AF1
AF2
AF3
GPIO[105]
E1UC[18]
SCK_2
SIUL
eMIOS_1
DSPI_2
I/O
I/O
I/O
S Tristate 25 L1
PG[10] PCR[106] AF0
AF1
AF2
AF3
GPIO[106]
E0UC[24]
SIUL
eMIOS_0
I/O
I/O
S Tristate 114 D13
PG[11] PCR[107] AF0
AF1
AF2
AF3
GPIO[107]
E0UC[25]
SIUL
eMIOS_0
I/O
I/O
M Tristate 115 B12
PG[12] PCR[108] AF0
AF1
AF2
AF3
GPIO[108]
E0UC[26]
SIUL
eMIOS_0
I/O
I/O
M Tristate 92 K14
PG[13] PCR[109] AF0
AF1
AF2
AF3
GPIO[109]
E0UC[27]
SIUL
eMIOS_0
I/O
I/O
M Tristate 91 K16
PG[14] PCR[110] AF0
AF1
AF2
AF3
GPIO[110]
E1UC[0]
SIUL
eMIOS_1
I/O
I/O
S Tristate 110 B14
PG[15] PCR[111] AF0
AF1
AF2
AF3
GPIO[111]
E1UC[1]
SIUL
eMIOS_1
I/O
I/O
M Tristate 111 B13
PH[0] PCR[112] AF0
AF1
AF2
AF3
GPIO[112]
E1UC[2]
SIN1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I
M Tristate 93 F13
PH[1] PCR[113] AF0
AF1
AF2
AF3
GPIO[113]
E1UC[3]
SOUT1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
O
M Tristate 94 F14
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors28
PH[2] PCR[114] AF0
AF1
AF2
AF3
GPIO[114]
E1UC[4]
SCK_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 95 F16
PH[3] PCR[115] AF0
AF1
AF2
AF3
GPIO[115]
E1UC[5]
CS0_1
SIUL
eMIOS_1
DSPI_1
I/O
I/O
I/O
M Tristate 96 F15
PH[4] PCR[116] AF0
AF1
AF2
AF3
GPIO[116]
E1UC[6]
SIUL
eMIOS_1
I/O
I/O
M Tristate 134 A6
PH[5] PCR[117] AF0
AF1
AF2
AF3
GPIO[117]
E1UC[7]
SIUL
eMIOS_1
I/O
I/O
S Tristate 135 B6
PH[6] PCR[118] AF0
AF1
AF2
AF3
GPIO[118]
E1UC[8]
MA[2]
SIUL
eMIOS_1
ADC
I/O
I/O
O
M Tristate 136 D5
PH[7] PCR[119] AF0
AF1
AF2
AF3
GPIO[119]
E1UC[9]
CS3_2
MA[1]
SIUL
eMIOS_1
DSPI_2
ADC
I/O
I/O
O
O
M Tristate 137 C5
PH[8] PCR[120] AF0
AF1
AF2
AF3
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
DSPI_2
ADC
I/O
I/O
O
O
M Tristate 138 A5
PH[9]9PCR[121] AF0
AF1
AF2
AF3
GPIO[121]
TCK
SIUL
JTAGC
I/O
I
S Input, weak
pull-up
60 60 88 127 B8
PH[10]9PCR[122] AF0
AF1
AF2
AF3
GPIO[122]
TMS
SIUL
JTAGC
I/O
I
S Input, weak
pull-up
53 53 81 120 B9
Table 5. Functional port pin descriptions (continued)
Port pin
PCR
Alternate function1
Function
Peripheral
I/O direction2
Pad type
RESET configuration
Pin number
MPC560xB 64 LQFP
MPC560xC 64 LQFP
100 LQFP
144 LQFP
208 MAPBGA3
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 29
2.7 Nexus 2+ pins
In the 208 MAPBGA package, eight additional debug pins are available (see Table 6).
1Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.
PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to select
the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the
values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is
reported as “—”.
2Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
3208 MAPBGA available only as development package for Nexus2+
4All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.
5NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
6“Not applicable” because these functions are available only while the device is booting. Refer to BAM chapter of the
reference manual for details.
7Value of PCR.IBE bit must be 0
8Be aware that this pad is used on the MPC5607B 100-pin and 144-pin to provide VDD_HV_ADC and
VSS_HV_ADC1. Therefore, you should be careful in ensuring compatibility between MPC5604B/C and
MPC5607B.
9Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.
10 The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in
STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad
is configured as an input. When no debugger is connected the TDO pad is floating causing additional current
consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of
47–100 kΩ should be added between the TDO pin and VDD_HV. Only in case the TDO pin is used as application
pin and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin
and GND instead.
11 Available only on MPC560xC versions, MPC5603B 64 LQFP, MPC5604B 64 LQFP and MPC5604B 208 MAPBGA
devices
12 Not available on MPC5602B devices
13 Not available in 100 LQFP package
14 Available only on MPC5604B 208 MAPBGA devices
15 Not available on MPC5603B 144-pin devices
Table 6. Nexus 2+ pin descriptions
Debug pin Function I/O
direction Pad type Function
after reset
Pin number
100
LQFP
144
LQFP
208 MAP
BGA
MCKO Message clock out O F T4
MDO0 Message data out 0 O M H15
MDO1 Message data out 1 O M H16
MDO2 Message data out 2 O M H14
MDO3 Message data out 3 O M H13
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors30
EVTI Event in I M Pull-up K1
EVTO Event out O M L4
MSEO Message start/end out O M G16
Table 6. Nexus 2+ pin descriptions (continued)
Debug pin Function I/O
direction Pad type Function
after reset
Pin number
100
LQFP
144
LQFP
208 MAP
BGA
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 31
2.8 Electrical characteristics
2.9 Introduction
This section contains electrical characteristics of the device as well as temperature and power
considerations.
This product contains devices to protect the inputs against damage due to high static voltages. However,
it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated
voltages.
T o enhance reliability , unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This
could be done by the internal pull-up and pull-down, which is provided by the product for most general
purpose pins.
The parameters listed in the following tables represen t the characteristics of the device and its demands on
the system.
In the tables where the device logic provides signals with their respective timing characteristics, the
symbol “CC” for Controller Characteristics is included in the Symbol column.
In the tables where the external system must provide signals with their respective timing charac teristics to
the device, the symbol “SR” for System Requirement is included in the Symbol column.
2.10 Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding, the classifications listed in Table 7 are used and the parameters are tagged
accordingly in the tables where appropriate.
NOTE
The classification is shown in the column labeled “C” in the parameter
tables where appropriate.
Table 7. Parameter classifications
Classification tag Tag description
P Those parameters are guaranteed during production testing on each individual device.
C Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical column
are within this category.
D Those parameters are derived mainly from simulations.
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors32
2.11 NVUSRO register
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device
configuration, namely electrical parameters such as high voltage supply and oscillator mar gin, as well as
digital functionality (watchdog enable/disable after reset).
For a detailed description of the NVUSRO register, please refer to the device reference manual.
2.11.1 NVUSRO[PAD3V5V] field description
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows how
NVUSRO[PAD3V5V] controls the device configuration.
2.11.2 NVUSRO[OSCILLATOR_MARGIN] field description
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.
Table 9 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.
2.11.3 NVUSRO[WATCHDOG_EN] field description
The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value.
Table 10 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.
Table 8. PAD3V5V field description
Value1
1Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
Table 9. OSCILLATOR_MARGIN field description
Value1
1Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
0 Low consumption configuration (4 MHz/8 MHz)
1 High margin configuration (4 MHz/16 MHz)
Table 10. WATCHDOG_EN field description
Value1
1Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.
Description
0 Disable after reset
1 Enable after reset
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 33
2.12 Absolute maximum ratings
NOTE
Stresses exceeding the recommended absolute maximum ratings may cause
permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other conditions above those
indicated in the operational sections of this specification are not implied.
Exposure to absolute maximum rating conditions for extended periods may
affect device reliability. During overload conditions (VIN >V
DD or
VIN <V
SS), the voltage on pins with respect to ground (VSS) must not
exceed the recommended values.
Table 11. Absolute maximum ratings
Symbol Parameter Conditions
Value
Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD SR Voltage on VDD_HV pins with respect to
ground (VSS)
0.3 6.0 V
VSS_LV SR Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground
(VSS)
—V
SS0.1 VSS+0.1 V
VDD_BV SR Voltage on VDD_BV pin (regulator
supply) with respect to ground (VSS)
0.3 6.0 V
Relative to VDD 0.3 VDD+0.3
VSS_ADC SR Voltage on VSS_HV_ADC (ADC
reference) pin with respect to ground
(VSS)
—V
SS0.1 VSS+0.1 V
VDD_ADC SR Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground (VSS)
0.3 6.0 V
Relative to VDD VDD 0.3 VDD+0.3
VIN SR Voltage on any GPIO pin with respect to
ground (VSS)
0.3 6.0 V
Relative to VDD —V
DD+0.3
IINJPAD SR Injected input current on any pin during
overload condition
10 10 mA
IINJSUM SR Absolute sum of all injected input
currents during overload condition
50 50
IAVGSEG SR Sum of all the static I/O current within a
supply segment
VDD = 5.0 V ± 10%, PAD3V5V = 0 70 mA
VDD = 3.3 V ± 10%, PAD3V5V = 1 64
ICORELV SR Low voltage static current sink through
VDD_BV
——150mA
TSTORAGE SR Storage temperature 55 150 °C
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors34
2.13 Recommended operating conditions
Table 12. Recommended operating conditions (3.3 V)
Symbol Parameter Conditions
Value
Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD1
1100 nF capacitance needs to be provided between each VDD/VSS pair
SR Voltage on VDD_HV pins with respect to ground
(VSS)
—3.03.6V
VSS_LV2
2330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
SR Voltage on VSS_LV (low voltage digital supply)
pins with respect to ground (VSS)
—V
SS0.1 VSS+0.1 V
VDD_BV3
3400 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
SR Voltage on VDD_BV pin (regulator supply) with
respect to ground (VSS)
—3.03.6V
Relative to VDD VDD0.1 VDD+0.1
VSS_ADC SR Voltage on VSS_HV_ADC (ADC reference) pin
with respect to ground (VSS)
—V
SS0.1 VSS+0.1 V
VDD_ADC4
4100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
SR Voltage on VDD_HV_ADC pin (ADC reference)
with respect to ground (VSS)
—3.0
5
5Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLV DH VL ,
device is reset.
3.6 V
Relative to VDD VDD0.1 VDD+0.1
VIN SR Voltage on any GPIO pin with respect to ground
(VSS)
—V
SS0.1 V
Relative to VDD —V
DD+0.1
IINJPAD SR Injected input current on any pin during overload
condition
55mA
IINJSUM SR Absolute sum of all injected input currents during
overload condition
50 50
TVDD SR VDD slope to ensure correct power up6
6Guaranteed by device validation.
—3.0
7
7Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
0.25[V/µs]
)
V/s
TA C-Grade Part SR Ambient temperature under bias fCPU 64 MHz 40 85 °C
TJ C-Grade Part SR Junction temperature under bias 40 110
TA V-Grade Part SR Ambient temperature under bias 40 105
TJ V-Grade Part SR Junction temperature under bias 40 130
TA M-Grade Part SR Ambient temperature under bias 40 125
TJ M-Grade Part SR Junction temperature under bias 40 150
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 35
Table 13. Recommended operating conditions (5.0 V)
Symbol Parameter Conditions
Value
Unit
Min Max
VSS SR Digital ground on VSS_HV pins 0 0 V
VDD1SR Voltage on VDD_HV pins with respect to
ground (VSS)
—4.55.5V
Voltage drop23.0 5.5
VSS_LV3SR Voltage on VSS_LV (low voltage digital
supply) pins with respect to ground (VSS)
—V
SS0.1 VSS+0.1 V
VDD_BV4SR Voltage on VDD_BV pin (regulator supply)
with respect to ground (VSS)
—4.55.5V
Voltage drop23.0 5.5
Relative to VDD VDD0.1 VDD+0.1
VSS_ADC SR Voltage on VSS_HV_ADC (ADC reference)
pin with respect to ground (VSS
—V
SS0.1 VSS+0.1 V
VDD_ADC5SR Voltage on VDD_HV_ADC pin (ADC
reference) with respect to ground (VSS)
—4.55.5V
Voltage drop23.0 5.5
Relative to VDD VDD0.1 VDD+0.1
VIN SR Voltage on any GPIO pin with respect to
ground (VSS)
—V
SS0.1 V
Relative to VDD —V
DD+0.1
IINJPAD SR Injected input current on any pin during
overload condition
55mA
IINJSUM SR Absolute sum of all injected input currents
during overload condition
50 50
TVDD SR VDD slope to ensure correct power up6—3.0
70.25 V/µs V/s
TA C-Grade Part SR Ambient temperature under bias fCPU 64 MHz 40 85 °C
TJ C-Grade Part SR Junction temperature under bias 40 110
TA V-Grade Part SR Ambient temperature under bias 40 105
TJ V-Grade Part SR Junction temperature under bias 40 130
TA M-Grade Part SR Ambient temperature under bias 40 125
TJ M-Grade Part SR Junction temperature under bias 40 150
1100 nF capacitance needs to be provided between each VDD/VSS pair.
2Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain
analog electrical characteristics will not be guaranteed to stay within the stated limits.
3330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.
4100 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed
depending on external regulator characteristics).
51 µF (electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
Another ceramic cap of 10 nF with low inductance package can be added.
6Guaranteed by device validation.
7Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors36
NOTE
RAM data retention is guaranteed with VDD_LV not below 1.08 V.
2.14 Thermal characteristics
2.14.1 Package thermal characteristics
Table 14. LQFP thermal characteristics1
Symbol C Parameter Conditions2Pin count Value Unit
RθJA CC D Thermal resistance,
junction-to-ambient natural
convection3
Single-layer board - 1s 64 60 °C/W
100 64
144 64
Four-layer board - 2s2p 64 42
100 51
144 49
RθJB CC D Thermal resistance,
junction-to-board4
Single-layer board - 1s 64 24 °C/W
100 36
144 37
Four-layer board - 2s2p 64 24
100 34
144 35
RθJC CC D Thermal resistance,
junction-to-case5
Single-layer board - 1s 64 11 °C/W
100 22
144 22
Four-layer board - 2s2p 64 11
100 22
144 22
ΨJB CC D Junction-to-board thermal
characterization parameter,
natural convection
Single-layer board - 1s 64 TBD °C/W
100 33
144 34
Four-layer board - 2s2p 64 TBD
100 34
144 35
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 37
2.14.2 Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1:
TJ = TA + (PD x RθJA)Eqn. 1
Where:
TA is the ambient temperature in °C.
RθJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD = PINT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power.
PI/O represents the power dissipation on input and output pins; user determined.
Most of the time for the applications, PI/O< PINT and may be neglected. On the other hand, PI/O may be
significant, if the device is configured to continuously drive external modules and/or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
PD = K / (TJ + 273 °C) Eqn. 2
Therefore, solving equations 1 and 2:
K = PD x (TA + 273 °C) + RθJA x PD2Eqn. 3
Where:
ΨJC CC D Junction-to-case thermal
characterization parameter,
natural convection
Single-layer board - 1s 64 TBD °C/W
100 9
144 10
Four-layer board - 2s2p 64 TBD
100 9
144 10
1Thermal characteristics are based on simulation.
2VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C
3Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test
board meets JEDEC specification for this package.
4Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package.
5Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface
layer.
Table 14. LQFP thermal characteristics1 (continued)
Symbol C Parameter Conditions2Pin count Value Unit
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors38
K is a constant for the particular part, which may be determined from Equation 3 by measuring
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be
obtained by solving equations 1 and 2 iteratively for any value of TA.
2.15 I/O pad electrical characteristics
2.15.1 I/O pad types
The device provides four main I/O pad types depending on the associated alternate functions:
Slow pads—These pads are the most common pads, providing a good compromise between
transition time and low electromagnetic emission.
Medium pads—These pads provide transition fast enough for the serial communication channels
with controlled current to reduce electromagnetic emission.
Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging
capability.
Input only pads—These pads are associated to ADC channels and the external 32 kHz crystal
oscillator (SXOSC) providing low input leakage.
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of
reducing AC performance.
2.15.2 I/O input DC characteristics
Table 15 provides input DC electrical characteristics as described in Figure 7.
Figure 7. I/O input DC electrical characteristics definition
VIL
VIN
VIH
PDIx = ‘1’
VDD
VHYS
(GPDI register of SIUL)
PDIx = ‘0’
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 39
2.15.3 I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Table 16 provides weak pull figures. Both pull-up and pull-down resistances are supported.
Table 17 provides output driver characteristics for I/O pads when in SLOW configuration.
Table 18 provides output driver characteristics for I/O pads when in MEDIUM configuration.
Table 19 provides output driver characteristics for I/O pads when in FAST configuration.
Table 15. I/O input DC electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
VIH SR P Input high level CMOS (Schmitt
Trigger)
—0.65V
DD —V
DD+0.4 V
VIL SR P Input low level CMOS (Schmitt
Trigger)
0.4 0.35VDD
VHYS CC C Input hysteresis CMOS (Schmitt
Trigger)
—0.1V
DD ——
ILKG CC D Digital input leakage No injection
on adjacent
pin
TA=40 °C 2 200 nA
DT
A= 25 °C 2 200
DT
A= 85 °C 5 300
DT
A= 105 °C 12 500
PT
A= 125 °C 70 1000
WFI2
2In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and
voltage.
SR P Wakeup input filtered pulse 40 ns
WNFI2SR P Wakeup input not filtered pulse 1000 ns
Table 16. I/O pull-up/pull-down DC electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Value
Unit
Min Typ Max
|IWPU| CC P Weak pull-up current
absolute value
VIN = VIL, VDD = 5.0 V ± 10% PAD3V5V = 0 10 150 µA
C PAD3V5V = 12
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
10 250
PV
IN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
|IWPD| CC P Weak pull-down current
absolute value
VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 0 10 150 µA
C PAD3V5V = 1 10 250
PV
IN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 150
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors40
Table 17. SLOW configuration output buffer electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
VOH CC P Output high level
SLOW configuration
Push Pull IOH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——V
CI
OH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
0.8VDD ——
CI
OH = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
VOL CC P Output low level
SLOW configuration
Push Pull IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD V
CI
OL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
0.1VDD
CI
OL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
Table 18. MEDIUM configuration output buffer electrical characteristics
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
VOH CC C Output high level
MEDIUM configuration
Push Pull IOH = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.8VDD ——V
PI
OH = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——
CI
OH = 1mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
0.8VDD ——
CI
OH = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
CI
OH = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.8VDD ——
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 41
VOL CC C Output low level
MEDIUM configuration
Push Pull IOL = 3.8 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.2VDD V
PI
OL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD
CI
OL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
0.1VDD
CI
OL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
CI
OL = 100 µA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
0.1VDD
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 19. FAST configuration output buffer electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
VOH CC P Output high level
FAST configuration
Push Pull IOH = 14mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.8VDD ——V
CI
OH = 7mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
2The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
0.8VDD ——
CI
OH = 11mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
VDD0.8
VOL CC P Output low level
FAST configuration
Push Pull IOL = 14mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD V
CI
OL = 7mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
0.1VDD
CI
OL = 11mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
Table 18. MEDIUM configuration output buffer electrical characteristics (continued)
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors42
2.15.4 Output pin transition times
2.15.5 I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a
VDD/VSS supply pair as described in Table 21.
Table 20. Output pin transition times
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
ttr CC D Output transition time output
pin2
SLOW configuration
2CL includes device and package capacitances (CPKG < 5 pF).
CL = 25 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 50 ns
TC
L = 50 pF 100
DC
L = 100 pF 125
DC
L = 25 pF VDD = 3.3 V ± 10%, PAD3V5V = 1 50
TC
L = 50 pF 100
DC
L = 100 pF 125
ttr CC D Output transition time output
pin2
MEDIUM configuration
CL = 25 pF VDD = 5.0 V ± 10%, PAD3V5V = 0
SIUL.PCRx.SRC = 1
10 ns
TC
L = 50 pF 20
DC
L = 100 pF 40
DC
L = 25 pF VDD = 3.3 V ± 10%, PAD3V5V = 1
SIUL.PCRx.SRC = 1
——12
TC
L = 50 pF 25
DC
L = 100 pF 40
ttr CC D Output transition time output
pin2
FAST configuration
CL = 25 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 4 ns
CL = 50 pF 6
CL = 100 pF 12
CL = 25 pF VDD = 3.3 V ± 10%, PAD3V5V = 1 4
CL = 50 pF 7
CL = 100 pF 12
Table 21. I/O supply segment
Package
Supply segment
123456
208 MAPBGA1Equivalent to 144 LQFP segment pad distribution MCKO MDOn/MSEO
144 LQFP pin20–pin49 pin51–pin99 pin100–pin122 pin 123–pin19
100 LQFP pin16–pin35 pin37–pin69 pin70–pin83 pin 84–pin15
64 LQFP pin8–pin26 pin28–pin55 pin56–pin7 ———
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 43
Table 22 provides I/O consumption figures.
In order to ensure device reliability , the average current of the I/O on a single segment should remain below
the IAVGSEG maximum value.
1208 MAPBGA available only as development package for Nexus2+
Table 22. I/O consumption
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
ISWTSLW,2 CC D Dynamic I/O current for
SLOW configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0
——20mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1
——16
ISWTMED2CC D Dynamic I/O current for
MEDIUM configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0
——29mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1
——17
ISWTFST2CC D Dynamic I/O current for
FAST configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0
——110mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1
——50
IRMSSLW CC D Root mean square I/O
current for SLOW
configuration
CL = 25 pF, 2 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0
——2.3mA
CL = 25 pF, 4 MHz 3.2
CL = 100 pF, 2 MHz 6.6
CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1
——1.6
CL = 25 pF, 4 MHz 2.3
CL = 100 pF, 2 MHz 4.7
IRMSMED CC D Root mean square I/O
current for MEDIUM
configuration
CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0
——6.6mA
CL = 25 pF, 40 MHz 13.4
CL = 100 pF, 13 MHz 18.3
CL = 25 pF, 13 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1
—— 5
CL = 25 pF, 40 MHz 8.5
CL = 100 pF, 13 MHz 11
IRMSFST CC D Root mean square I/O
current for FAST
configuration
CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0
——22mA
CL = 25 pF, 64 MHz 33
CL = 100 pF, 40 MHz 56
CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1
——14
CL = 25 pF, 64 MHz 20
CL = 100 pF, 40 MHz 35
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors44
Table 23 provides the weight of concurrent switching I/Os.
Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single
segment must not exceed 100% to ensure device functionality.
IAVGSEG SR D Sum of all the static I/O
current within a supply
segment
VDD = 5.0 V ± 10%, PAD3V5V = 0 70 mA
VDD = 3.3 V ± 10%, PAD3V5V = 1 65
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
2Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
Table 23. I/O weight1
Supply segment
Pad
144/100 LQFP 64 LQFP
Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
144
LQFP
100
LQFP
64
LQFP2SRC3=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
4 4 3 PB[3] 10% 12% 10% 12%
PC[9] 10% 12% 10% 12%
PC[14] 9% 11%
PC[15] 9% 13% 11% 12%
PG[5] 9% 11%
PG[4] 9% 12% 10% 11%
PG[3] 9% 10%
4 PG[2] 8% 12% 10% 10%
4 3 PA[2] 8% 9% 8% 9%
PE[0] 8% 9%
3 PA[1] 7% 9% 7% 9%
PE[1] 7% 10% 8% 9%
PE[8] 7% 9% 8% 8%
PE[9] 6% 7%
PE[10]6%7%—————
3 PA[0] 5% 8% 6% 7% 5% 8% 6% 7%
PE[11]5%6%—————
Table 22. I/O consumption (continued)
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 45
1 PG[9] 9% 10%
PG[8] 9% 11%
1 PC[11] 9% 11%
1 PC[10] 9% 13% 11% 12% 9% 13% 11% 12%
PG[7] 10% 14% 11% 12%
PG[6] 10% 14% 12% 12%
1 1 PB[0] 10% 14% 12% 12% 10% 14% 12% 12%
PB[1] 10% 12% 10% 12%
PF[9] 10% 12%
PF[8] 10% 15% 12% 13%
PF[12] 10% 15% 12% 13%
1 1 PC[6] 10% 12% 10% 12%
PC[7] 10% 12% 10% 12%
PF[10] 10% 14% 12% 12%
PF[11] 10% 11%
1 1 PA[15] 9% 12% 10% 11% 9% 12% 10% 11%
PF[13]8%10%—————
1 1 PA[14] 8% 11% 9% 10% 8% 11% 9% 10%
PA[4] 8% 9% 8% 9%
PA[13] 7% 10% 9% 9% 7% 10% 9% 9%
PA[12] 7% 8% 7% 8%
Table 23. I/O weight1 (continued)
Supply segment
Pad
144/100 LQFP 64 LQFP
Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
144
LQFP
100
LQFP
64
LQFP2SRC3=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors46
2 2 2 PB[9] 1% 1% 1% 1%
PB[8] 1% 1% 1% 1%
PB[10] 6% 7% 6% 7%
PF[0] 6% 7%
PF[1] 7% 8%
PF[2] 7% 8%
PF[3] 7% 9%
PF[4] 8% 9%
PF[5] 8% 10%
PF[6] 8% 10%
PF[7] 9% 10%
2 PD[0] 1% 1%
PD[1] 1% 1%
PD[2] 1% 1%
PD[3] 1% 1%
PD[4] 1% 1%
PD[5] 1% 1%
PD[6] 1% 1%
PD[7] 1% 1%
PD[8] 1% 1%
2 PB[4] 1% 1% 1% 1%
PB[5] 1% 1% 1% 2%
PB[6] 1% 1% 1% 2%
PB[7] 1% 1% 1% 2%
PD[9] 1% 1%
PD[10] 1% 1%
PD[11] 1% 1%
2 PB[11] 11% 13% 17% 21%
PD[12] 11% 13%
2 PB[12] 11% 13% 18% 21%
PD[13] 10% 12%
Table 23. I/O weight1 (continued)
Supply segment
Pad
144/100 LQFP 64 LQFP
Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
144
LQFP
100
LQFP
64
LQFP2SRC3=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 47
2 2 2 PB[13] 10% 12% 18% 21%
PD[14] 10% 12%
2 PB[14] 10% 12% 18% 21%
PD[15] 10% 11%
2 PB[15] 9% 11% 18% 21%
PA[3] 9% 11% 18% 21%
PG[13] 9% 13% 10% 11%
PG[12] 9% 12% 10% 11%
PH[0] 5% 8% 6% 7%
PH[1] 5% 7% 6% 6%
PH[2] 5% 6% 5% 6%
PH[3] 4% 6% 5% 5%
PG[1]4%4%—————
PG[0] 3% 4% 4% 4%
3PF[15]3%4%—————
—PF[14] 4% 5% 5% 5%
PE[13]4%5%—————
3 2 PA[7] 5% 6% 16% 19%
PA[8] 5% 6% 16% 19%
PA[9] 5% 6% 15% 18%
PA[10] 6% 7% 15% 18%
PA[11] 6% 8% 14% 17%
PE[12]7%8%—————
PG[14] 7% 8%
PG[15] 7% 10% 8% 9%
PE[14]7%8%—————
PE[15] 7% 9% 8% 8%
PG[10] 6% 8%
PG[11] 6% 9% 7% 8%
3 2 PC[3] 6% 7% 7% 9%
PC[2]6% 8%7%7%6%9%8%8%
Table 23. I/O weight1 (continued)
Supply segment
Pad
144/100 LQFP 64 LQFP
Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
144
LQFP
100
LQFP
64
LQFP2SRC3=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors48
2.16 RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
3 3 2 PA[5] 5% 7% 6% 6% 6% 8% 7% 7%
PA[6] 5% 6% 5% 6%
PH[10] 4% 6% 5% 5% 5% 7% 6% 6%
PC[1] 5% 5% 5% 5%
4 4 3 PC[0] 6% 9% 7% 8% 6% 9% 7% 8%
PH[9]7 7887788
PE[2] 7% 10% 9% 9%
PE[3] 8% 11% 9% 9%
3 PC[5] 8% 11% 9% 10% 8% 11% 9% 10%
PC[4] 8% 12% 10% 10% 8% 12% 10% 10%
PE[4] 8% 12% 10% 11%
PE[5] 9% 12% 10% 11%
PH[4] 9% 13% 11% 11%
PH[5] 9% 11%
PH[6] 9% 13% 11% 12%
PH[7] 9% 13% 11% 12%
PH[8] 10% 14% 11% 12%
4 PE[6] 10% 14% 12% 12%
PE[7] 10% 14% 12% 12%
PC[12] 10% 14% 12% 13%
PC[13] 10% 12%
3 PC[8] 10% 12% 10% 12%
PB[2] 10% 15% 12% 13% 10% 15% 12% 13%
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified
2Segments shown apply to MPC560xB devices only
3SRC: “Slew Rate Control” bit in SIU_PCR
Table 23. I/O weight1 (continued)
Supply segment
Pad
144/100 LQFP 64 LQFP
Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V
144
LQFP
100
LQFP
64
LQFP2SRC3=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1 SRC=0 SRC=1
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 49
Figure 8. Start-up reset requirements
Figure 9. Noise filtering on reset signal
Table 24. Reset electrical characteristics
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
VIH SR P Input High Level CMOS
(Schmitt Trigger)
0.65VDD —V
DD+0.4 V
VIL
VDD
device reset forced by RESET
VDDMIN
RESET
VIH
device start-up phase
VRESET
VIL
VIH
VDD
filtered by
hysteresis
filtered by
lowpass filter
WFRST
WNFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware reset
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors50
VIL SR P Input low Level CMOS
(Schmitt Trigger)
0.4 0.35VDD V
VHYS CC C Input hysteresis CMOS
(Schmitt Trigger)
—0.1V
DD ——V
VOL CC P Output low level Push Pull, IOL = 2mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD V
C Push Pull, IOL = 1mA,
VDD = 5.0 V ± 10%, PAD3V5V = 12
0.1VDD
C Push Pull, IOL = 1mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
ttr CC D Output transition time
output pin3
CL = 25pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
10 ns
CL = 50pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
——20
CL = 100pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0
——40
CL = 25pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
——12
CL = 50pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
——25
CL = 100pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1
——40
WFRST SR P RESET input filtered
pulse
——40ns
WNFRST SR P RESET input not filtered
pulse
1000 ns
|IWPU| CC P Weak pull-up current
absolute value
VDD = 3.3 V ± 10%, PAD3V5V = 1 10 150 µA
DV
DD = 5.0 V ± 10%, PAD3V5V = 0 10 150
PV
DD = 5.0 V ± 10%, PAD3V5V = 1210 250
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2This transient configuration does not occurs when device is used in the VDD = 3.3 V ± 10% range.
3CL includes device and package capacitance (CPKG <5pF).
Table 24. Reset electrical characteristics (continued)
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 51
2.17 Power management electrical characteristics
2.17.1 Voltage regulator electrical characteristics
The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from
the high voltage ballast supply VDD_BV. The regulator itself is supplied by the common I/O supply VDD.
The following supplies are involved:
HV—High voltage external power supply for voltage regulator module. This must be provided
externally through VDD_HV power pin.
BV—High voltage external power supply for internal ballast module. This must be provided
externally through VDD_BV power pin. Voltage values should be aligned with VDD.
LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated
by the internal voltage regulator but provided outside to connect stability capacitor. It is further
split into four main domains to ensure noise isolation between critical LV modules within the
device:
LV_COR—Low voltage supply for the core. It is also used to provide supply for FMPLL
through double bonding.
LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated ballast
and shorted to LV_COR through double bonding.
LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated ballast
and shorted to LV_COR through double bonding.
LV_PLL—Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors52
Figure 10. Voltage regulator capacitance connection
The internal voltage regulator requires external capacitance (CREGn) to be connected to the device in order
to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as
near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board
to less than 5 nH.
Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to
ensure stable voltage (see 2.13, Recommended operating conditions).
The internal voltage regulator requires a controlled slew rate of both VDD_HV and VDD_BV as described in
Figure 11.
CREG1 (LV_COR/LV_DFLA)
DEVICE
VSS_LV
VDD_BV
VDD_LV
CDEC1 (Ballast decoupling)
VSS_LV VDD_LV VDD_HV
VSS_LV VDD_LV
CREG2 (LV_COR/LV_CFLA)
CREG3 CDEC2
DEVICE
VDD_BV
I
VDD_LVn
VREF
VDD_HV
Voltage Regulator
VSS_HV
VSS_LVn
(supply/IO decoupling)(LV_COR/LV_PLL)
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 53
Figure 11. VDD_HV and VDD_BV maximum slope
When STANDBY mode is used, further constraints are applied to the both VDD_HV and VDD_BV in order
to guarantee correct regulator function during STANDBY exit. This is described on Figure 12.
STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY
capacitance on application board (capacitance and ESR typical values), but would actually depend on
exact characteristics of application external regulator.
Figure 12. VDD_HV and VDD_BV supply constraints during STANDBY mode exit
VDD_HV
td
dVDD
POWER UP POWER DOWN
VDD_HV(MAX)
FUNCTIONAL RANGE
VDD_HV(MIN)
VDD_HV
VDD_HV(MIN)
ΔVDD(STDBY)
VDD_HV
VDD_HV(MAX)
VDD_LV
ΔVDD(STDBY)
VDD_LV(NOMINAL)
0V
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors54
Table 25. Voltage regulator electrical characteristics
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
CREGn SR Internal voltage regulator external
capacitance
200 500 nF
RREG SR Stability capacitor equivalent serial
resistance
Range:
10 kHz to 20 MHz
——0.2Ω
CDEC1 SR Decoupling capacitance2 ballast VDD_BV/VSS_LV pair:
VDD_BV = 4.5 V to 5.5 V
10034704—nF
VDD_BV/VSS_LV pair:
VDD_BV = 3V to 3.6V
400
CDEC2 SR Decoupling capacitance regulator
supply
VDD/VSS pair 10 100 nF
SR Maximum slope on VDD 250 mV/µs
VDD(STDBY)|SR Maximum instant variation on VDD
during standby exit
——30mV
SR Maximum slope on VDD during
standby exit
——15mV/µs
VMREG CC TMain regulator output voltage Before exiting from
reset
1.32 V
PAfter trimming 1.16 1.28
IMREG SR Main regulator current provided to
VDD_LV domain
——150 mA
IMREGINT CC DMain regulator module current
consumption
IMREG = 200 mA 2mA
IMREG = 0 mA 1
VLPREG CC PLow power regulator output
voltage
After trimming 1.16 1.28 V
ILPREG SR Low power regulator current
provided to VDD_LV domain ——15 mA
ILPREGINT CC DLow power regulator module
current consumption
ILPREG = 15 mA;
TA = 55 °C
——
600 µA
ILPREG = 0 mA;
TA = 55 °C
5—
VULPREG CC PUltra low power regulator output
voltage
After trimming 1.16 1.28 V
td
dVDD
td
dVDD STDBY()
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 55
The VDD(STDBY)| and dVDD(STDBY)/dt system requirement can be used to define the component used
for the VDD supply generation. The following two examples describe how to calculate capacitance size:
Example 1. No regulator (worst case)
The VDD(STDBY)| parameter can be seen as the VDD voltage drop through the ESR resistance of the
regulator stability capacitor when the IDD_BV current required to load VDD_LV domain during the standby
exit. It is thus possible to define the maximum equivalent resistance ESRSTDBY(MAX) of the total
capacitance on the VDD supply:
ESRSTDBY(MAX) = VDD(STDBY)|/IDD_BV = (30 mV)/(300 mA) = 0.1Ω1
The dVDD(STDBY)/dt parameter can be seen as the VDD voltage drop at the capacitance pin (excluding
ESR drop) while providing the IDD_BV supply required to load VDD_LV domain during the standby exit. It
is thus possible to define the minimum equivalent capacitance CSTDBY(MIN) of the total capacitance on
the VDD supply:
CSTDBY(MIN) = IDD_BV/dVDD(STDBY)/dt = (300 mA)/(15 mV/µs) = 20 µF
This configuration is a worst case, with the assumption no regulator is available.
IULPREG SR Ultra low power regulator current
provided to VDD_LV domain
——5mA
IULPREGINT CC DUltra low power regulator module
current consumption
IULPREG = 5 mA;
TA = 55 °C
——100 µA
IULPREG = 0 mA;
TA = 55 °C
2—
IDD_BV CC DIn-rush average current on VDD_BV
during power-up5
——3006mA
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage.
A typical value is in the range of 470 nF.
3This value is acceptable to guarantee operation from 4.5 V to 5.5 V
4External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV
in operating range.
5In-rush average current is seen only for short time (maximum 20 µs) during power-up and on standby exit. It is
dependant on the sum of the CREGn capacitances.
6The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must
be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.
1. Based on typical time for standby exit sequence of 20 µs, ESR(MIN) can actually be considered at ~50 kHz.
Table 25. Voltage regulator electrical characteristics (continued)
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors56
Example 2. Simplified regulator
The regulator should be able to provide significant amount of the current during the standby exit process.
For example, in case of an ideal voltage regulator providing 200 mA current, it is possible to recalculate
the equivalent ESRSTDBY(MAX) and CSTDBY(MIN) as follows:
ESRSTDBY(MAX) = VDD(STDBY)|/(IDD_BV 200 mA) = (30 mV)/(100 mA) = 0.3 Ω
CSTDBY(MIN) = (IDD_BV 200 mA)/dVDD(STDBY)/dt = (300 mA 200 mA)/(15 mV/µs) = 6.7 µF
In case optimization is required, CSTDBY(MIN) and ESRSTDBY(MAX) should be calculated based on the
regulator characteristics as well as the board VDD plane characteristics.
2.17.2 Low voltage detector electrical characteristics
The device implements a Power-on Reset (POR) module to ensure correct power -up initialization, as well
as four low voltage detectors (LVDs) to monitor the VDD and the VDD_LV voltage while device is supplied:
POR monitors VDD during the power -up phase to ensure device is maintained in a safe reset state
(refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference
manual)
LVDHV3 monitors VDD to ensure device reset below minimum functional supply (refer to RGM
Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range (refer to RGM
Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event S tatus (RGM_DES)
Register flag F_LVD12_PD1 in device reference manual
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructiv e Event Status (RGM_DES)
Register flag F_LVD12_PD0 in device reference manual)
NOTE
When enabled, power domain No. 2 is monitored through LVDLVBKP.
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 57
Figure 13. Low voltage detector vs reset
NOTE
Figure 13 does not apply to LVDHV5 low voltage detector because
LVDHV5 is automatically disabled during reset and it must be enabled by
software again. Once the device is forced to reset by LVDHV5, the
LVDHV5 is disabled and reset is released as soo n as internal reset sequence
is completed regardless of LVDHV5H threshold.
Table 26. Low voltage detector electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
VPORUP SR P Supply for functional POR module 1.0 5.5 V
VPORH CC P Power-on reset threshold TA = 25 °C,
after trimming
1.5 2.6
T 1.5 2.6
VLVDH V3H CC T LVDHV3 low voltage detector high threshold 2.95
VLVDH V3 L CC P LVDHV3 low voltage detector low threshold 2.6 2.9
VLVDH V5H CC T LVDHV5 low voltage detector high threshold 4.5
VLVDH V5 L CC P LVDHV5 low voltage detector low threshold 3.8 4.4
VLVDLV COR L CC P LVDLVCOR low voltage detector low threshold 1.08 1.16
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold 1.08 1.16
VDD
VLVDHVxH
RESET
VLVDHVxL
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors58
2.18 Power consumption
Table 27 provides DC electrical characteristics for significant application modes. These values are
indicative values; actual consumption depends on the application.
Table 27. Power consumption on VDD_BV and VDD_HV
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
IDDMAX2
2IDDMAX is drawn only from the VDD_BV pin. Running consumption does not include I/Os toggling which is highly
dependent on the application. The given value is thought to be a worst case value with all peripherals running, and
code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly
reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal
prescaler, fetch from RAM most used functions, use low power mode when possible.
CC D RUN mode maximum
average current
——115140
3
3Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Ta bl e 2 5 .
mA
IDDRUN4
4IDDRUN is drawn only from the VDD_BV pin. RUN current measured with typical application with accesses on both flash
and RAM.
CC T RUN mode typical average
current5
fCPU = 8 MHz 7 mA
Tf
CPU = 16 MHz 18
Tf
CPU = 32 MHz 29
Pf
CPU = 48 MHz 40 100
Pf
CPU = 64 MHz 51 125
IDDHALT CC C HALT mode current6Slow internal RC oscillator
(128 kHz) running
TA=2C 8 15 mA
PT
A= 125 °C 14 25
IDDSTOP CC P STOP mode current7Slow internal RC oscillator
(128 kHz) running
TA=2C 180 700
8µA
DT
A=5C 500
DT
A=8C 1 6
8mA
DT
A= 105 °C 2 98
PT
A= 125 °C 4.5 128
IDDSTDBY2 CC P STANDBY2 mode current9Slow internal RC oscillator
(128 kHz) running
TA= 25 °C 30 100 µA
DT
A=5C 75
DT
A= 85 °C 180 700
DT
A= 105 °C 315 1000
PT
A= 125 °C 560 1700
IDDSTDBY1 CC T STANDBY1 mode
current10
Slow internal RC oscillator
(128 kHz) running
TA= 25 °C 20 60 µA
DT
A=5C 45
DT
A= 85 °C 100 350
DT
A= 105 °C 165 500
DT
A= 125 °C 280 900
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 59
2.19 Flash memory electrical characteristics
2.19.1 Program/Erase characteristics
Table 28 shows the program and erase characteristics.
5Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and
LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and
running at max frequency, periodic SW/WDG timer reset enabled.
6Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock.
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex:
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16
channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked
but no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog.
7Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off,
ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
8When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main
regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction
temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the
maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to
the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
9Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum
consumption, all possible modules switched off.
10 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules
switched off.
Table 28. Program and erase specifications
Symbol C Parameter
Value
Unit
Min Typ1
1Typical program and erase times assume nominal supply values and operation at 25 °C.
Initial
max2
2Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
Max3
3The maximum program and erase times occur after the specified number of program/erase cycles. These maximum
values are characterized but not guaranteed.
Tdwprogram CC C Double word (64 bits) program time4
4Actual hardware programming times. This does not include software overhead.
—2250500µs
T16Kpperase 16 KB block preprogram and erase time 300 500 5000 ms
T32Kpperase 32 KB block preprogram and erase time 400 600 5000 ms
T128Kpperase 128 KB block preprogram and erase time 800 1300 7500 ms
Tesus CC D Erase suspend latency 30 30 µs
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors60
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability
results. Some units will experience single bit corrections throughout the life of the product with no impact
to product reliability.
2.19.2 Flash power supply DC characteristics
Table 31 shows the power supply DC characteristics on external supply.
Table 29. Flash module life
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
P/E CC C Number of program/erase cycles
per block over the operating
temperature range (TJ)
16 KB blocks 100,000 cycles
32 KB blocks 10,000 100,000
128 KB blocks 1,000 100,000
Retention CC C Minimum data retention at 85 °C
average ambient temperature1
1Ambient temperature averaged over duration of application, not to exceed recommended product operating
temperature range.
Blocks with
0–1,000 P/E cycles
20 years
Blocks with
1,001–10,000 P/E cycles
10
Blocks with
10,001–100,000 P/E cycles
5—
Table 30. Flash read access timing
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Max Unit
fREAD CC P Maximum frequency for Flash reading 2 wait states 64 MHz
C 1 wait state 40
C 0 wait states 20
Table 31. Flash memory power supply DC electrical characteristics
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
IFREAD2CC D Sum of the current consumption on
VDD_HV and VDD_BV on read access
Code flash memory module read
fCPU = 64 MHz3
—1533mA
Data flash memory module read
fCPU = 64 MHz3
—1533
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 61
2.19.3 Start-up/Switch-off timings
2.20 Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
IFMOD2CC D Sum of the current consumption on
VDD_HV and VDD_BV on matrix
modification (program/erase)
Program/Erase ongoing while
reading code flash memory
registers fCPU =64 MHz
3
—1533mA
Program/Erase ongoing while
reading data flash memory
registers fCPU =64 MHz
3
—1533
IFLPW CC D Sum of the current consumption on
VDD_HV and VDD_BV
During code flash memory
low-power mode
——900µA
During data flash memory
low-power mode
——900
IFPWD CC D Sum of the current consumption on
VDD_HV and VDD_BV
During code flash memory
power-down mode
——150µA
During data flash memory
power-down mode
——150
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
2This value is only relative to the actual duration of the read cycle
3fCPU 64 MHz can be achieved only at up to 105 °C
Table 32. Start-up time/Switch-off time
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
TFLARSTEXIT CC T Delay for Flash module to exit reset mode Code Flash 125 µs
T Data Flash 125
TFLALPEXIT CC T Delay for Flash module to exit low-power
mode
Code Flash 0.5
T Data Flash 0.5
TFLAPDEXIT CC T Delay for Flash module to exit power-down
mode
Code Flash 30
T Data Flash 30
TFLALPENTRY CC T Delay for Flash module to enter low-power
mode
Code Flash 0.5
T Data Flash 0.5
TFLAPDENTRY CC T Delay for Flash module to enter power-down
mode
Code Flash 1.5
T Data Flash 1.5
Table 31. Flash memory power supply DC electrical characteristics
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors62
2.20.1 Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application
environment and simplified MCU software. It should be noted that good EMC performance is highly
dependent on the user application and the software in particular.
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in
relation with the EMC level requested for his application.
Software recommendations: The software flowchart must include the management of runaway
conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials: Most of the common failures (unexpected reset and program counter
corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins
for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When unexpected
behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.
2.20.2 Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission test conforms
to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.
2.20.3 Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed
in order to determine its performance in terms of electrical sensitiv ity.
Table 33. EMI radiated emission measurement1,2
1EMI testing and I/O port waveforms per IEC 61967-1, -2, -4
2For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your
local marketing representative.
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
SR Scan range 0.150 1000 MHz
fCPU SR Operating frequency 64 MHz
VDD_LV SR LV operating voltages 1.28 V
SEMI CC T Peak level VDD = 5V, T
A=2C,
LQFP144 package
Test conforming to IEC 61967-2,
fOSC = 8 MHz/fCPU = 64 MHz
No PLL frequency
modulation
18 dBµV
±2% PLL frequency
modulation
14 dBµV
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 63
2.20.3.1 Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse sepa rated by 1 second) are applied to the pins of
each sample according to each pin combination. The sample size depends on the number of supply pins in
the device (3 parts*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.
2.20.3.2 Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
2.21 Fast external crystal oscillator (4 to 16 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 14 describes a simple model of the internal
oscillator driver and provides an example of a connection for an oscillator or a resonator.
Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.
Table 34. ESD absolute maximum ratings1 2
1All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated
Circuits.
2A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification requirements. Complete DC parametric and functional testing shall be performed per applicable
device specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Symbol C Ratings Conditions Class Max value Unit
VESD(HBM) CC T Electrostatic discharge voltage
(Human Body Model)
TA = 25 °C
conforming to AEC-Q100-002
H1C 2000 V
VESD(MM) CC T Electrostatic discharge voltage
(Machine Model)
TA = 25 °C
conforming to AEC-Q100-003
M2 200
VESD(CDM) CC T Electrostatic discharge voltage
(Charged Device Model)
TA = 25 °C
conforming to AEC-Q100-011
C3A 500
750 (corners)
Table 35. Latch-up results
Symbol C Parameter Conditions Class
LU CC T Static latch-up class TA = 125 °C
conforming to JESD 78
II level A
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors64
Figure 14. Crystal oscillator and resonator connection scheme
Table 36. Crystal description
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR Ω
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(pF)1
1The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
Shunt
capacitance
between
xtalout
and xtalin
C02 (pF)
2The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,
package, etc.).
4 NX8045GB 300 2.68 591.0 21 2.93
8 NX5032GA 300 2.46 160.7 17 3.01
10 150 2.93 86.6 15 2.91
12 120 3.11 56.5 15 2.93
16 120 3.90 25.3 10 3.00
C2
C1
Crystal
XTAL
EXTAL
Resonator
XTAL
EXTAL
DEVICE
DEVICE
DEVICE
XTAL
EXTAL
I
R
VDD
2. A series resistor may be required, according to crystal oscillator supplier recommendations.
1. XTAL/EXTAL must not be directly used to drive external circuits
Notes:
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 65
Figure 15. Fast external crystal oscillator (4 to 16 MHz) timing diagram
VFXOSCOP
tFXOSCSU
VXTAL
VFXOSC
valid internal clock
90%
10%
1/fFXOSC
S_MTRANS bit (ME_GS register)
‘1’
‘0’
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors66
2.22 Slow external crystal oscillator (32 kHz) electrical characteristics
The device provides a low power oscillator/resonator driver.
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified
Value
Unit
Min Typ Max
fFXOSC SR Fast external crystal
oscillator frequency
4.0 16.0 MHz
gmFXOSC CC C Fast external crystal
oscillator transconductance
VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 0
2.2 8.2 mA/V
CC P VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 0
2.0 7.4
CC C VDD = 3.3 V ± 10%,
PAD3V5V = 1
OSCILLATOR_MARGIN = 1
2.7 9.7
CC C VDD = 5.0 V ± 10%,
PAD3V5V = 0
OSCILLATOR_MARGIN = 1
2.5 9.2
VFXOSC CC T Oscillation amplitude at
EXTAL
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0
1.3 V
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1
1.3
VFXOSCOP CC C Oscillation operating point 0.95 V
IFXOSC,2
2Stated values take into account only analog module consumption but not the digital contributor (clock tree and
enabled peripherals)
CC T Fast external crystal
oscillator consumption
——23mA
tFXOSCSU CC T Fast external crystal
oscillator start-up time
fOSC = 4 MHz,
OSCILLATOR_MARGIN = 0
—— 6ms
fOSC = 16 MHz,
OSCILLATOR_MARGIN = 1
——1.8
VIH SR P Input high level CMOS
(Schmitt Trigger)
Oscillator bypass mode 0.65VDD —V
DD+0.4 V
VIL SR P Input low level CMOS
(Schmitt Trigger)
Oscillator bypass mode 0.4 0.35VDD V
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 67
Figure 16. Crystal oscillator and resonator connection scheme
Figure 17. Equivalent circuit of a quartz crystal
Table 38. Crystal motional characteristics1
1Crystal used: Epson Toyocom MC306
Symbol Parameter Conditions
Value
Unit
Min Typ Max
LmMotional inductance 11.796 KH
CmMotional capacitance 2 fF
C1/C2 Load capacitance at OSC32K_XTAL and
OSC32K_EXTAL with respect to ground2
—1828pF
Rm3Motional resistance AC coupled @ C0 = 2.85 pF4——65kΩ
AC coupled @ C0 = 4.9 pF4——50
AC coupled @ C0 = 7.0 pF4——35
AC coupled @ C0 = 9.0 pF4——30
OSC32K_XTAL
OSC32K_EXTAL
DEVICE
C2
C1
Crystal
OSC32K_XTAL
OSC32K_EXTAL
Resonator
DEVICE
Note: OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.
C0
C2C1
C2
Rm
C1
Lm
Cm
Crystal
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors68
Figure 18. Slow external crystal oscillator (32 kHz) timing diagram
2.23 FMPLL electrical characteristics
The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system
clock from the main oscillator driver.
2This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to
ground. It includes all the parasitics due to board traces, crystal and package.
3Maximum ESR (Rm) of the crystal is 50 kΩ
4C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins
Table 39. Slow external crystal oscillator (32 kHz) electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified. Values are specified for no
neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins
should not toggle.
Value
Unit
Min Typ Max
fSXOSC SR Slow external crystal oscillator frequency 32 32.768 40 kHz
VSXOSC CC T Oscillation amplitude 2.1 V
ISXOSCBIAS CC T Oscillation bias current 2.5 µA
ISXOSC CC T Slow external crystal oscillator consumption 8 µA
TSXOSCSU CC T Slow external crystal oscillator start-up time 22
2Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.
s
OSCON bit (OSC_CTL register)
TSXOSCSU
1
VOSC32K_XTAL
VSXOSC
valid internal clock
90%
10%
1/fSXOSC
0
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 69
2.24 Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz fast internal RC oscillator . This is used as the default clock at the power-up
of the device.
Table 40. FMPLL electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Value
Unit
Min Typ Max
fPLLIN SR FMPLL reference clock2
2PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN.
—464MHz
ΔPLLIN SR FMPLL reference clock duty
cycle2
—4060%
fPLLOUT CC D FMPLL output clock frequency 16 64 MHz
fVCO3
3Frequency modulation is considered ±4%
CC P VCO frequency without
frequency modulation
256 512 MHz
C VCO frequency with frequency
modulation
245 533
fCPU SR System clock frequency 64 MHz
fFREE CC P Free-running frequency 20 150 MHz
tLOCK CC P FMPLL lock time Stable oscillator (fPLLIN = 16 MHz) 40 100 µs
ΔtSTJIT CC FMPLL short term jitter4
4Short term jitter is measured on the clock rising edge at cycle n and n+4.
fsys maximum –4 4 %
ΔtLTJIT CC FMPLL long term jitter fPLLIN = 16 MHz (resonator),
fPLLCLK @ 64 MHz, 4000 cycles
10 ns
IPLL CC C FMPLL consumption TA = 25 °C 4 mA
Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
fFIRC CC P Fast internal RC oscillator high
frequency
TA = 25 °C, trimmed 16 MHz
SR 12 20
IFIRCRUN2, CC T Fast internal RC oscillator high
frequency current in running mode
TA = 25 °C, trimmed 200 µA
IFIRCPWD CC D Fast internal RC oscillator high
frequency current in power down
mode
TA = 125 °C 10 µA
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors70
2.25 Slow internal RC oscillator (128 kHz) electrical characteristics
The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the
RTC module.
IFIRCSTOP CC T Fast internal RC oscillator high
frequency and system clock current
in stop mode
TA = 25 °C sysclk = off 500 µA
sysclk = 2 MHz 600
sysclk = 4 MHz 700
sysclk = 8 MHz 900
sysclk = 16 MHz 1250
tFIRCSU CC C Fast internal RC oscillator start-up
time
VDD = 5.0 V ± 10% 1.1 2.0 µs
ΔFIRCPRE CC T Fast internal RC oscillator precision
after software trimming of fFIRC
TA = 25 °C 1—+1%
ΔFIRCTRIM CC T Fast internal RC oscillator trimming
step
TA = 25 °C 1.6 %
ΔFIRCVAR CC P Fast internal RC oscillator variation
in over temperature and supply with
respect to fFIRC at TA= 25 °C in
high-frequency configuration
5—+5%
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is
ON.
Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
fSIRC CC P Slow internal RC oscillator low
frequency
TA = 25 °C, trimmed 128 kHz
SR 100 150
ISIRC2, CC C Slow internal RC oscillator low
frequency current
TA = 25 °C, trimmed 5 µA
tSIRCSU CC P Slow internal RC oscillator start-up
time
TA = 25 °C, VDD = 5.0 V ± 10% 8 12 µs
ΔSIRCPRE CC C Slow internal RC oscillator precision
after software trimming of fSIRC
TA = 25 °C 2—+2%
ΔSIRCTRIM CC C Slow internal RC oscillator trimming
step
——2.7
Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 71
ΔSIRCVAR CC C Slow internal RC oscillator variation
in temperature and supply with
respect to fSIRC at TA= 55 °C in high
frequency configuration
High frequency configuration 10 +10 %
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is
ON.
Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors72
2.26 ADC electrical characteristics
2.26.1 Introduction
The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.
Figure 19. ADC characteristic and error definitions
2.26.2 Input impedance and ADC accuracy
In the following analysis, the input circuit corresponding to the precise channels is considered.
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC
impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can
(2)
(1)
(3)
(4)
(5)
Offset error (EO)
Offset error (EO)
Gain error (EG)
1 LSB (ideal)
1023
1022
1021
1020
1019
1018
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
1 LSB ideal = VDD_ADC / 1024
Vin(A) (LSBideal)
code out
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 73
be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to
attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase,
when the analog signal source is a high-impedance source.
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple
RC filter). The RC filtering may be limited according to the value of source impedance of the transducer
or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking
into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input
impedance of the ADC itself.
In fact a current sink contributor is represented by the charge sharing effects with the sampling
capacitance: being CS and Cp2 substantially two switched capacitances, with a frequency equal to the
conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a
conversion rate of 1 MHz, with CS+Cp2 equal to 3 pF, a resistance of 330 kΩ is obtained (REQ = 1 /
(fc×(C
S+Cp2)), where fc represents the conversion rate at the considered channel). To minimize the error
induced by the voltage partitioning between this resistance (sampled voltage on CS+Cp2) and the sum of
RS + RF, the external circuit must be designed to respect the Equation 4:
Eqn. 4
Equation 4 generates a constraint for external network design, in particular on a resistive path.
Figure 20. Input equivalent circuit (precise channels)
VA
RSRF
+
REQ
---------------------1
2
---LSB<
RF
CF
RSRLRSW1
CP2 CS
VDD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
CP1
RAD
Channel
Selection
VA
RS: Source impedance
RF: Filter resistance
CF: Filter capacitance
RL: Current limiter resistance
RSW1: Channel selection switch impedance
RAD: Sampling switch impedance
CP: Pin capacitance (two contributions, CP1 and CP2)
CS: Sampling capacitance
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors74
Figure 21. Input equivalent circuit (extended channels)
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances
CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit in Figure 20):
A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).
Figure 22. Transient behavior during sampling phase
In particular two different transient periods can be distinguished:
R
F
C
F
R
S
R
L
R
SW1
C
P3
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
C
P1
R
AD
Channel
Selection
V
A
C
P2
Extended
R
SW2
Switch
RS: Source impedance
RF: Filter resistance
CF: Filter capacitance
RL: Current limiter resistance
RSW1: Channel selection switch impedance (two contributions, RSW1 and RSW2)
RAD: Sampling switch impedance
CP: Pin capacitance (two contributions, CP1, CP2 and CP3)
CS: Sampling capacitance
VA
VA1
VA2
t
ts
VCS Voltage transient on CS
ΔV < 0.5 LSB
12
τ1 < (RSW + RAD) CS << ts
τ
2
= R
L
(C
S
+ C
P1
+ C
P2
)
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 75
1. A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling
capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case
(since the time constant in reality would be faster) in which CP2 is reported in par allel to CP1 (call
CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is
Eqn. 5
Equation 5 can again be simplified considering only CS as an additional worst condition. In reality ,
the transient is faster, but the A/D converter circuitry has been designed to be robust also in the
very worst case: the sampling time ts is always much longer than the internal time constant:
Eqn. 6
The charge of C P1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1
on the capacitance according to Equation 7:
Eqn. 7
2. A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance)
through the resistance RL: again considering the worst case in which CP2 and CS were in parallel
to CP1 (since the time constant in reality would be faster), the time constant is:
Eqn. 8
In this case, the time constant depends on the external circuit: in particular imposing that the
transient is completed well before the end of sampling time ts, a constraints on RL sizing is
obtained:
Eqn. 9
Of course, RL shall be sized also according to the current limitation constraints, in combination
with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2
and CS, then the final voltage VA2 (at the end of the char ge transfer transient) will be much higher
than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at
VA1):
Eqn. 10
τ1RSW RAD
+()=CPCS
CPCS
+
---------------------
τ1RSW RAD
+()<CSts
«
VA1 CSCP1 CP2
++()VACP1 CP2
+()=
τ2RL
<CSCP1 CP2
++()
8.5 τ2
8.5 RLCSCP1 CP2
++()=ts
<
VA2 CSCP1 CP2 CF
+++()VACF
VA1
+C
P1 CP2
+C
S
+()=
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors76
The two transients above are not influenced by the voltage source that, due to the presence of the RFCF
filter , is not able to provide the extra charge to compensate the voltage drop on C S with respect to the ideal
source VA; the time constant RFCF of the filter is very high with respect to the sampling time (ts). The filter
is typically designed to act as anti-aliasing.
Figure 23. Spectral representation of input signal
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the
anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it
means that the constant time of the filter is greater than or at least equal to twice the conversion period (tc).
Again the conversion period tc is longer than the sampling time ts, which is just a portion of it, even when
fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in
conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the
sampling time ts, so the char ge level on CS cannot be modified by the analog signal source during the time
in which the sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy
error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive
Equation 11 between the ideal and real sampled voltage on CS:
Eqn. 11
From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept
a maximum error of half a count, a constraint is evident on CF value:
Eqn. 12
f0f
Analog source bandwidth (VA)
f0f
Sampled signal spectrum (fC = conversion rate)
fC
f
Anti-aliasing filter (fF = RC filter pole)
fF
2 f0<fC (Nyquist)
fF = f0 (anti-aliasing filtering condition)
tc<2 RFCF (conversion rate vs. filter pole)
Noise
VA2
VA
------------CP1 CP2
+C
F
+
CP1 CP2
+C
FCS
++
--------------------------------------------------------=
CF2048 CS
>
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 77
2.26.3 ADC electrical characteristics
Table 43. ADC input leakage current
Symbol C Parameter Conditions
Value
Unit
Min Typ Max
ILKG CC D Input leakage current TA=40 °C No current injection on adjacent pin 1 70 nA
DT
A= 25 °C 1 70
DT
A= 85 °C 3 100
DT
A= 105 °C 8 200
PT
A= 125 °C 45 400
Table 44. ADC conversion characteristics
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
VSS_ADC SR Voltage on
VSS_HV_ADC (ADC
reference) pin with
respect to ground
(VSS)2
0.1 0.1 V
VDD_ADC SR Voltage on
VDD_HV_ADC pin
(ADC reference) with
respect to ground
(VSS)
—V
DD0.1 VDD+0.1 V
VAINx SR Analog input voltage3—V
SS_ADC0.1 VDD_ADC+0.1 V
fADC SR ADC analog frequency 6 32 + 4% MHz
ΔADC_SYS SR ADC digital clock duty
cycle (ipg_clk)
ADCLKSEL = 1445 55 %
IADCPWD SR ADC0 consumption in
power down mode
——50µA
IADCRUN SR ADC0 consumption in
running mode
——4mA
tADC_PU SR ADC power up delay 1.5 µs
tsCC T Sampling time5fADC = 32 MHz, INPSAMP = 17 0.5 µs
fADC = 6 MHz, INPSAMP = 255 42
tcCC P Conversion time6fADC = 32 MHz, INPCMP = 2 0.625 µs
CSCC D ADC input sampling
capacitance
——3pF
CP1 CC D ADC input pin
capacitance 1
——3pF
CP2 CC D ADC input pin
capacitance 2
——1pF
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors78
CP3 CC D ADC input pin
capacitance 3
——1pF
RSW1 CC D Internal resistance of
analog source
——3kΩ
RSW2 CC D Internal resistance of
analog source
——2kΩ
RAD CC D Internal resistance of
analog source
——2kΩ
IINJ SR Input current Injection Current
injection on one
ADC input,
different from
the converted
one
VDD =
3.3 V ± 10%
5— 5mA
VDD =
5.0 V ± 10%
5— 5
| INL | CC T Absolute value for
integral non-linearity
No overload 0.5 1.5 LSB
| DNL | CC T Absolute differential
non-linearity
No overload 0.5 1.0 LSB
|E
O| CC T Absolute offset error 0.5 LSB
|E
G| CC T Absolute gain error 0.6 LSB
TUEp CC P Total unadjusted error7
for precise channels,
input only pins
Without current injection 20.6 2LSB
T With current injection 33
TUEx CC T Total unadjusted error7
for extended channel
Without current injection 31 3LSB
T With current injection 44
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2Analog and digital VSS must be common (to be tied together externally).
3VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0x3FF.
4Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured
by internal divider by 2.
5During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within ts. After the end of
the sampling time ts, changes of the analog input voltage have no effect on the conversion result. Values for the
sample clock ts depend on programming.
6This parameter does not include the sampling time ts, but only the time for determining the digital result and the time
to load the result’s register with the conversion result.
7Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
Table 44. ADC conversion characteristics (continued)
Symbol C Parameter Conditions1Value
Unit
Min Typ Max
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 79
2.27 On-chip peripherals
2.27.1 Current consumption
Table 45. On-chip peripherals current consumption1
1Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz
Symbol C Parameter Conditions Typical value2
2fperiph is an absolute value.
Unit
IDD_BV(CAN) CC T CAN (FlexCAN) supply
current on VDD_BV
Bitrate:
500 Kbyte/s
Total (static + dynamic)
consumption:
FlexCAN in loop-back
mode
XTAL@8MHz used as
CAN engine clock source
Message sending period is
580 µs
8 * fperiph + 85 µA
Bitrate:
125 Kbyte/s
8 * fperiph + 27
IDD_BV(eMIOS) CC T eMIOS supply current on
VDD_BV
Static consumption:
eMIOS channel OFF
Global prescaler enabled
29 * fperiph µA
Dynamic consumption:
It does not change varying the frequency
(0.003 mA)
3
IDD_BV(SCI) CC T SCI (LINFlex) supply
current on VDD_BV
Total (static + dynamic) consumption:
LIN mode
Baudrate: 20 Kbyte/s
5 * fperiph + 31 µA
IDD_BV(SPI) CC T SPI (DSPI) supply current
on VDD_BV
Ballast static consumption (only clocked) 1 µA
Ballast dynamic consumption (continuous
communication):
Baudrate: 2 Mbit/s
Transmission every 8 µs
Frame: 16 bits
16 * fperiph
IDD_BV(ADC) CC T ADC supply current on
VDD_BV
VDD = 5.5 V Ballast static consumption
(no conversion)
41 * fperiph µA
Ballast dynamic consumption
(continuous conversion)3
3During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e.,
(41 + 5) * fperiph.
5 * fperiph
IDD_HV_ADC(ADC) CC T ADC supply current on
VDD_HV_ADC
VDD = 5.5 V Analog static consumption
(no conversion)
2 * fperiph µA
Analog dynamic consumption
(continuous conversion)
75 * fperiph + 32
IDD_HV(FLASH) CC T Code Flash + Data Flash
supply current on VDD_HV
VDD = 5.5 V 8.21 mA
IDD_HV(PLL) CC T PLL supply current on
VDD_HV
VDD =5.5V 30 * f
periph µA
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors80
2.27.2 DSPI characteristics
Table 46. DSPI characteristics1
1Operating conditions: CL = 10 to 50 pF, SlewIN = 3.5 to 15 ns.
No. Symbol C Parameter
DSPI0/DSPI1 DSPI2
Unit
Min Typ Max Min Typ Max
1t
SCK SR D SCK cycle time Master mode
(MTFE = 0)
125 333 ns
DSlave mode
(MTFE = 0)
125 333
D Master mode
(MTFE = 1)
83 125
DSlave mode
(MTFE = 1)
83 125
—f
DSPI SR D DSPI digital controller frequency fCPU —— f
CPU MHz
ΔtCSC CC D Internal delay between pad
associated to SCK and pad
associated to CSn in
master mode for CSn10
Master mode 1302
2Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK
starts before CSn is asserted. DSPI2 has only SLOW SCK available.
—— 15
3ns
ΔtASC CC D Internal delay between pad
associated to SCK and pad
associated to CSn in
master mode for CSn11
Master mode 1303 1303ns
2t
CSCext4SR D CS to SCK delay Slave mode 32 32 ns
3t
ASCext5SR D After SCK delay Slave mode 1/fDSPI + 5 1/fDSPI + 5 ns
4t
SDC CC D SCK duty cycle Master mode tSCK/2 tSCK/2 ns
SR D Slave mode tSCK/2 tSCK/2
5t
ASR D Slave access time Slave mode 1/fDSPI + 70 1/fDSPI + 130 ns
6t
DI SR D Slave SOUT disable time Slave mode 7 7 ns
7t
PCSC SR D PCSx to PCSS time 0 0 ns
8t
PAS C SR D PCSS to PCSx time 0 0 ns
9t
SUI SR D Data setup time for inputs Master mode 43 145 ns
Slave mode 5 5
10 tHI SR D Data hold time for inputs Master mode 0 0 ns
Slave mode 26—— 2
6——
11 tSUO7CC D Data valid after SCK edge Master mode 32 50 ns
Slave mode 52 160
12 tHO7CC D Data hold time for outputs Master mode 0 0 ns
Slave mode 8 13
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 81
3Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is
deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.
4The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay
between internal CS and internal SCK must be higher than ΔtCSC to ensure positive tCSCext.
5The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between
internal CS and internal SCK must be higher than ΔtASC to ensure positive tASCext.
6This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.
7SCK and SOUT configured as MEDIUM pad
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors82
Figure 24. DSPI classic SPI timing – master, CPHA = 0
Figure 25. DSPI classic SPI timing – master, CPHA = 1
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output
4
9
12
1
11
10
4
SCK Output
(CPOL = 0)
(CPOL = 1)
3
2
Note: Numbers shown reference Ta b l e 4 6 .
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
9
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta b l e 4 6 .
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 83
Figure 26. DSPI classic SPI timing – slave, CPHA = 0
Figure 27. DSPI classic SPI timing – slave, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
12
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta b l e 4 6 .
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta b l e 4 6 .
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors84
Figure 28. DSPI modified transfer format timing – master, CPHA = 0
Figure 29. DSPI modified transfer format timing – master, CPHA = 1
PCSx
3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta b l e 4 6 .
PCSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta b le 4 6.
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 85
Figure 30. DSPI modified transfer format timing – slave, CPHA = 0
Figure 31. DSPI modified transfer format timing – slave, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
12
Note: Numbers shown reference Ta bl e 4 6 .
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Ta b l e 4 6 .
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package pinouts and signal descriptions
NXP Semiconductors86
Figure 32. DSPI PCS strobe (PCSS) timing
2.27.3 Nexus characteristics
Table 47. Nexus characteristics
No. Symbol C Parameter
Value
Unit
Min Typ Max
1t
TCYC CC D TCK cycle time 64 ns
2t
MCYC CC D MCKO cycle time 32 ns
3t
MDOV CC D MCKO low to MDO data valid 8 ns
4t
MSEOV CC D MCKO low to MSEO_b data valid 8 ns
5t
EVTOV CC D MCKO low to EVTO data valid 8 ns
10 tNTDIS CC D TDI data setup time 15 ns
tNTMSS CC D TMS data setup time 15 ns
11 tNTDIH CC D TDI data hold time 5 ns
tNTMSH CC D TMS data hold time 5 ns
12 tTDOV CC D TCK low to TDO data valid 35 ns
13 tTDOI CC D TCK low to TDO data invalid 6 ns
PCSx
78
PCSS
Note: Numbers shown reference Ta b l e 4 6 .
Package pinouts and signal descriptions
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 87
Figure 33. Nexus TDI, TMS, TDO timing
2.27.4 JTAG characteristics
Table 48. JTAG characteristics
No. Symbol C Parameter
Value
Unit
Min Typ Max
1t
JCYC CC D TCK cycle time 64 ns
2t
TDIS CC D TDI setup time 15 ns
3t
TDIH CC D TDI hold time 5 ns
4t
TMSS CC D TMS setup time 15 ns
5t
TMSH CC D TMS hold time 5 ns
6t
TDOV CC D TCK low to TDO valid 33 ns
7t
TDOI CC D TCK low to TDO invalid 6 ns
10
TCK
TMS, TDI
TDO
11
12
Note: Numbers shown reference Ta b l e 4 7 .
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package characteristics
NXP Semiconductors88
Figure 34. Timing diagram – JTAG boundary scan
3 Package characteristics
3.1 Package mechanical data
INPUT DATA VALID
OUTPUT DATA VALID
DATA INPUTS
DATA OUTPUTS
DATA OUTPUTS
TCK
Note: Numbers shown reference Ta b l e 4 8 .
3/5
2/4
7
6
Package characteristics
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 89
3.1.1 64 LQFP
Figure 35. 64 LQFP package mechanical drawing (1 of 3)
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package characteristics
NXP Semiconductors90
Figure 36. 64 LQFP package mechanical drawing (2 of 3)
Package characteristics
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 91
Figure 37. 64 LQFP package mechanical drawing (3 of 3)
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package characteristics
NXP Semiconductors92
3.1.2 100 LQFP
Figure 38. 100 LQFP package mechanical drawing (1 of 3)
Package characteristics
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 93
Figure 39. 100 LQFP package mechanical drawing (2 of 3)
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package characteristics
NXP Semiconductors94
Figure 40. 100 LQFP package mechanical drawing (3 of 3)
Package characteristics
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 95
3.1.3 144 LQFP
Figure 41. 144 LQFP package mechanical drawing (1 of 2)
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package characteristics
NXP Semiconductors96
Figure 42. 144 LQFP package mechanical drawing (2 of 2)
Package characteristics
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 97
3.1.4 208 MAPBGA
Figure 43. 208 MAPBGA package mechanical drawing (1 of 2)
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Package characteristics
NXP Semiconductors98
Figure 44. 208 MAPBGA package mechanical drawing (2 of 2)
Ordering information
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 99
4 Ordering information
Figure 45. Commercial product code structure
1208 MAPBGA available only as development package for Nexus2+
5 Document revision history
Table 49 summarizes revisions to this document.
Table 49. Revision history
Revision Date Description of Changes
1 04-Apr-2008 Initial release.
Qualification Status
PowerPC Core
Automotive Platform
Core Version
Flash Size (core dependent)
Product
Temperature spec.
MPC56 B MLL4
Example code: 04
Package Code
Frequency
Qualification Status
M = MC status
S = Auto qualified
P = PC status
Automotive Platform
56 = PPC in 90nm
Core Version
0 = e200z0
Flash Size (z0 core)
2 = 256 KB
3 = 384 KB
4 = 512 KB
Product
B = Body
C = Gateway
Fab and Mask Indicator
F = ATMC Fab
K = TSMC Fab
1 = Maskset Revision
R = Tape & Reel (blank if Tray)
R
Temperature spec.
C = 40 to 85 °C
V = 40 to 105 °C
M = 40 to 125 °C
Package Code
LH = 64 LQFP
LL = 100 LQFP
LQ = 144 LQFP
MG = 208 MAPBGA1
Frequency
4 = Up to 48 MHz
6 = Up to 64 MHz
Fab and Mask Indicator
F1
Note: Not all options are available on all devices.
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Document revision history
NXP Semiconductors100
2 06-Mar-2009 Made minor editing and formatting changes to improve readability
Harmonized oscillator naming throughout document
Features:
—Replaced 32 KB with 48 KB as max SRAM size
—Updated description of INTC
—Changed max number of GPIO pins from 121 to 123
Updated Section 1.2, Description
Updated Ta b l e 3
Added Section 2, Block diagram
Section 3, Package pinouts and signal descriptions: Removed signal descriptions (these
are found in the device reference manual)
Updated Figure 5:
—Replaced VPP with VSS_HV on pin 18
—Added MA[1] as AF3 for PC[10] (pin 28)
—Added MA[0] as AF2 for PC[3] (pin 116)
—Changed description for pin 120 to PH[10] / GPIO[122] / TMS
—Changed description for pin 127 to PH[9] / GPIO[121] / TCK
—Replaced NMI[0] with NMI on pin 11
Updated Figure 4:
—Replaced VPP with VSS_HV on pin 14
—Added MA[1] as AF3 for PC[10] (pin 22)
—Added MA[0] as AF2 for PC[3] (pin 77)
—Changed description for pin 81 to PH[10] / GPIO[122] / TMS
—Changed description for pin 88 to PH[9] / GPIO[121] / TCK
—Removed E1UC[19] from pin 76
—Replaced [11] with WKUP[11] for PB[3] (pin 1)
—Replaced NMI[0] with NMI on pin 7
Updated Figure 6:
—Changed description for ball B8 from TCK to PH[9]
—Changed description for ball B9 from TMS to PH[10]
—Updated descriptions for balls R9 and T9
Added 2.10, Parameter classification and tagged parameters in tables where appropriate
Added 2.11, NVUSRO register
Updated Ta b l e 1 1
2.13, Recommended operating conditions: Added note on RAM data retention to end of
section
Updated Ta b l e 1 2 and Ta b l e 1 3
Added 2.14.1, Package thermal characteristics
Updated 2.14.2, Power considerations
Updated Figure 7
Table 49. Revision history (continued)
Revision Date Description of Changes
Document revision history
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 101
2 (cont.) 06-Mar-2009 Updated Ta b l e 1 5 , Ta b l e 1 6 , Ta b l e 1 7 , Ta b l e 1 8 and Ta bl e 1 9
Added 2.15.4, Output pin transition times
Updated Ta b l e 2 2
Updated Figure 8
Updated Ta b l e 2 4
2.17.1, Voltage regulator electrical characteristics: Amended description of LV_PLL
Figure 10: Exchanged position of symbols CDEC1 and CDEC2
Updated Ta b l e 2 5
Added Figure 13
Updated Ta b l e 2 6 and Ta b l e 2 7
Updated 2.19, Flash memory electrical characteristics
Added 2.20, Electromagnetic compatibility (EMC) characteristics
Updated 2.21, Fast external crystal oscillator (4 to 16 MHz) electrical characteristics
Updated 2.22, Slow external crystal oscillator (32 kHz) electrical characteristics
Updated Ta b l e 4 0 , Ta b l e 4 1 and Ta b l e 4 2
Added 2.27, On-chip peripherals
Added Ta bl e 4 3
Updated Ta b l e 4 4
Updated Ta b l e 4 7
Added Appendix A, Abbreviations
4 06-Aug-2009 Updated Figure 6
Ta b l e 1 1
•V
DD_ADC: changed min value for “relative to VDD” condition
•V
IN: changed min value for “relative to VDD” condition
•I
CORELV: added new row
Ta b l e 1 3
•T
A C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part:
added new rows
Changed capacitance value in footnote
Ta b l e 2 0
MEDIUM configuration: added condition for PAD3V5V = 0
Updated Figure 10
Ta b l e 2 5
•C
DEC1: changed min value
•I
MREG: changed max value
•I
DD_BV: added max value footnote
Ta b l e 2 6
•V
LVD H V 3 H: changed max value
•V
LVD H V 3 L: added max value
•V
LVD H V 5 H: changed max value
•V
LVD H V 5 L: added max value
Updated Ta b l e 2 7
Ta b l e 2 9
Retention: deleted min value footnote for “Blocks with 100,000 P/E cycles“
Ta b l e 3 7
•I
FXOSC: added typ value
Ta b l e 3 9
•V
SXOSC: changed typ value
•T
SXOSCSU: added max value footnote
Ta b l e 4 0
ΔtLT J I T: added max value
Updated Figure 38
Table 49. Revision history (continued)
Revision Date Description of Changes
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Document revision history
NXP Semiconductors102
5 02-Nov-2009 In the “MPC5604B/C series block summary” table, added a new row.
In the “Absolute maximum ratings” table, changed max value of VDD_BV
, VDD_ADC, and
VIN.
In the “Recommended operating conditions (3.3 V)” table, deleted min value of TVDD.
In the “Reset electrical characteristics” table, changed footnotes 3 and 5.
In the “Voltage regulator electrical characteristics” table:
•C
REGn: changed max value.
•C
DEC1: split into 2 rows.
Updated voltage values in footnote 4
In the “Low voltage monitor electrical characteristics” table:
Updated column Conditions.
•V
LVD LV CO RL , VLVDLVBKPL: changed min/max value.
In the “Program and erase specifications” table, added initial max value of Tdwprogram.
In the “Flash module life” table, changed min value for blocks with 100K P/E cycles
In the “Flash power supply DC electrical characteristics” table:
•I
FREAD, IFMOD: added typ value.
Added footnote 1.
Added “NVUSRO[WATCHDOG_EN] field description” section.
Section 4.18: “ADC electrical characteristics” has been moved up in hierarchy (it was
Section 4.18.5).
In the “ADC conversion characteristics” table, changed initial max value of RAD.
In the “On-chip peripherals current consumption” table:
Removed min/max from the heading.
Changed unit of measurement and consequently rounded the values.
Table 49. Revision history (continued)
Revision Date Description of Changes
Document revision history
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 103
6 15-Mar-2010 In the “Introduction” section, relocated a note.
In the “MPC5604B/C device comparison” table, added footnote regarding SCI and CAN.
In the “Absolute maximum ratings” table, removed the min value of VIN relative to VDD.
In the “Recommended operating conditions (3.3 V)” table:
•T
A C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part:
added new rows.
•TV
DD: made single row.
In the “LQFP thermal characteristics” table, added more rows.
Removed “208 MAPBGA thermal characteristics” table.
In the “I/O consumption” table:
Removed IDYNSEG row.
Added “I/O weight” table.
In the “Voltage regulator electrical characteristics” table:
Updated the values.
Removed IVREGREF and IVREDLVD12.
Added a note about IDD_BC.
In the “Low voltage monitor electrical characteristics” table:
Updated VPORH values.
Updated VLV D LVC O RL value.
Entirely updated the “Low voltage power domain electrical characteristics” table.
In the “Program and erase specifications” table, inserted Teslat row.
Entirely updated the “Flash power supply DC electrical characteristics” table.
Entirely updated the “Start-up time/Switch-off time” table.
In the “Crystal oscillator and resonator connection scheme” figure, relocated a note.
In the “Slow external crystal oscillator (32 kHz) electrical characteristics” table:
Removed gmSXOSC row.
Inserted values of ISXOSCBIAS.
Entirely updated the “Fast internal RC oscillator (16 MHz) electrical characteristics” table.
In the “ADC conversion characteristics” table: updated the description of the conditions of
tADC_PU and tADC_S.
Entirely updated the “DSPI characteristics” table.
In the “Orderable part number summary” table, modified some orderable part number.
Updated the “Commercial product code structure” figure.
Removed the note about the condition from “Flash read access timing” table
Removed the notes that assert the values need to be confirmed before validation
Exchanged the order of “LQFP 100-pin configuration” and “LQFP 144-pin configuration”
Exchanged the order of “LQFP 100-pin package mechanical drawing” and “LQFP 144-pin
package mechanical drawing”
Table 49. Revision history (continued)
Revision Date Description of Changes
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Document revision history
NXP Semiconductors104
7 05-Jul-2010 Added 64 LQFP package information
Updated the “Features” section.
Figures “LQFP 100-pin configuration” and “LQFP 100-pin configuration”: removed
alternate function information
Added “Functional port pin descriptions” table
Added eDMA block in the “MPC5604B/C series block diagram” figure
Deleted the “NVUSRO[WATCHDOG_EN] field description” section
In the “Recommended operating conditions (3.3 V)” and “Recommended operating
conditions (5.0 V)” tables, deleted the conditions of TA C-Grade Part, TA V-Grade Part, TA M-Grade
Part
In the “LQFP thermal characteristics” table, rounded the values.
In the “RESET electrical characteristics” section, replaced “nRSTIN” with “RESET”.
In the “I/O input DC electrical characteristics” table:
•W
FI: inserted a footnote
•W
NFI: inserted a footnote
In the “Low voltage monitor electrical characteristics” table:
changed min value VLV DH V 3 L , from 2.7 to 2.6
Inserted max value of VLV DLV C OR L
In the “FMPLL electrical characteristics” table, rounded the values of fVCO.
In the “DSPI characteristics” table:
Added ΔtASC row
Update values of tA
In the “ADC conversion characteristics” table, added “IADCPWD” and “IADCRUN” rows
Removed “Orderable part number summary” table.
8 25-Nov-2010 Editorial changes and improvements.
In the “MPC5604B/C device comparison” table, changed the temperature value from 105
to 125 °C, in the footnote regarding “Execution speed”.
In the “Recommended operating conditions (3.3 V)” and “Recommended operating
conditions (5.0 V)” tables, restored the conditions of TA C-Grade Part, TA V-Grade Part, TA
M-Grade Part
In the “LQFP thermal characteristics” table, added values concerning 64 LQFP package.
In the “MEDIUM configuration output buffer electrical characteristics” table: fixed a typo in
last row of conditions column, there was IOH that now is IOL.
In the “Reset electrical characteristics” table, changed the parameter classification tag for
VOL and |IWPU|.
In the “Low voltage monitor electrical characteristics” table, changed the max value of
VLVD LV CO RL from 1.5V to 1.15V.
In the “Program and erase specifications” table, replaced “Teslat with “Tesus”.
In the “FMPLL electrical characteristics” table, changed the parameter classification tag
for fVCO.
Table 49. Revision history (continued)
Revision Date Description of Changes
Document revision history
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 105
9 16 June 2011 Formatting and minor editorial changes throughout
Harmonized oscillator nomenclature
Removed all instances of note “All 64 LQFP information is indicative and must be
confirmed during silicon validation.
Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C
MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration:
renamed pin 6 from VPP_TEST to VSS_HV
Removed “Pin Muxing” section; added sections “Pad configuration during reset phases”,
“Voltage supply pins”, “Pad types”, “System pins,” “Functional ports”, and “Nexus 2+
pins”
Section “NVUSRO register”: edited content to separate configuration into electrical
parameters and digital functionality; updated footnote describing default value of ‘1’ in
field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN]
Added section “NVUSRO[WATCHDOG_EN] field description”
Recommended operating conditions (3.3 V) and Recommended operating conditions
(5.0 V): updated conditions for ambient and junction temperature characteristics
I/O input DC electrical characteristics: updated ILKG characteristics
Section “I/O pad current specification”: removed content referencing the IDYNSEG
maximum value
I/O consumption: replaced instances of “Root medium square” with “Root mean square”
I/O weight: replaced instances of bit “SRE” with “SRC”; added pads PH[9] and PH[10];
added supply segments; removed weight values in 64-pin LQFP for pads that do not
exist in that package
Reset electrical characteristics: updated parameter classification for |IWPU|
Updated Voltage regulator electrical characteristics
Section “Low voltage detector electrical characteristics”: changed title (was “Voltage
monitor electrical characteristics”); added event status flag names found in RGM
chapter of device reference manual to POR module and LVD descriptions; replaced
instances of “Low voltage monitor” with “Low voltage detector”; updated values for
VLVDLVBKPL and VLVD LV C O RL ; replaced “LVD_DIGBKP” with “LVDLVBKP” in note
Updated section “Power consumption
Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter
classification for VFXOSCOP
Crystal oscillator and resonator connection scheme: added footnote about possibility of
adding a series resistor
Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1
FMPLL electrical characteristics: added short term jitter characteristics; inserted “—” in
empty min value cell of tlock row
Section “Input impedance and ADC accuracy”: changed “VA/VA2” to “VA2/VA” in
Equation 11
ADC input leakage current: updated ILKG characteristics
ADC conversion characteristics: updated symbols
On-chip peripherals current consumption: changed “supply current on “VDD_HV_ADC” to
“supply current on” VDD_HV” in IDD_HV(FLASH) row; updated IDD_HV(PLL) value—was
3*f
periph, is 30 * fperiph; updated footnotes
DSPI characteristics: added rows tPCSC and tPAS C
Added DSPI PCS strobe (PCSS) timing diagram
Table 49. Revision history (continued)
Revision Date Description of Changes
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Document revision history
NXP Semiconductors106
10 15 Oct 2012 Table 2 (Bolero 512K device comparison), added footnote for MPC5603BxLH and
MPC5604BxLH about FlexCAN availability.
Table 2 (MPC5604B/C series block summary), replaced “System watchdog timer” with
“Software watchdog timer” and specified AUTOSAR (Automotive Open System
Architecture)
Table 5 (Functional port pin descriptions):
replaced footnote “Available only on MPC560xC versions and MPC5604B 208
MAPBGA devices” with “Available only on MPC560xC versions, MPC5603B 64 LQFP,
MPC5604B 64 LQFP and MPC5604B 208 MAPBGA devices”,
replaced VDD with VDD_HV
Figure 10 (Voltage regulator capacitance connection), updated pin name appearance
Renamed Figure 11 (VDD_HV and VDD_BV maximum slope) (was “VDD and VDD_BV
maximum slope”)
Renamed Figure 12 (VDD_HV and VDD_BV supply constraints during STANDBY mode exit)
(was “VDD and VDD_BV supply constraints during STANDBY mode exit”)
Table 12 (Recommended operating conditions (3.3 V)), added minimum value of TVDD
and footnote about it.
Table 13 (Recommended operating conditions (5.0 V)), added minimum value of TVDD
and footnote about it.
Section 2.17.1, “Voltage regulator electrical characteristics:
replaced “slew rate of VDD/VDD_BV” with “slew rate of both VDD_HV and VDD_BV
replaced “When STANDBY mode is used, further constraints apply to the VDD/VDD_BV
in order to guarantee correct regulator functionality during STANDBY exit.” with “When
STANDBY mode is used, further constraints are applied to the both VDD_HV and
VDD_BV in order to guarantee correct regulator function during STANDBY exit.
Table 27 (Power consumption on VDD_BV and VDD_HV), updated footnotes of IDDMAX
and IDDRUN stating that both currents are drawn only from the VDD_BV pin.
Table 31 (Flash memory power supply DC electrical characteristics), in the parameter
column replaced VDD_BV and VDD_HV respectively with VDD_BV and VDD_HV.
Table 45 (On-chip peripherals current consumption), in the parameter column replaced
VDD_BV
, VDD_HV and VDD_HV_ADC respectively with VDD_BV, VDD_HV and
VDD_HV_ADC
Updated Section 2.26.2, “Input impedance and ADC accuracy
Table 46 (DSPI characteristics), modified symbol for tPCSC and tPASC
11 14 Nov 2012 In the cover feature list:
added “and ECC” at the end of “Up to 512 KB on-chip code flash supported with the
flash controller”
added “with ECC” at the end of “Up to 48 KB on-chip SRAM”
Table 12 (Recommended operating conditions (3.3 V)), removed minimum value of TVDD
and relative footnote.
Table 13 (Recommended operating conditions (5.0 V)), removed minimum value of TVDD
and relative footnote.
12 19 Mar 2014 Added “K=TSMC Fab” against the Fab and mask indicator in Figure 45 (Commercial
product code structure).
Table 49. Revision history (continued)
Revision Date Description of Changes
Document revision history
MPC5604B/C Microcontroller Data Sheet, Rev. 14
NXP Semiconductors 107
13 19 Jan 2015 In Table 1 (MPC5604B/C device comparison):
changed the MPC5604BxLH entry for CAN (FlexCAN) from 37 to 26.
updated tablenote 7.
In Table 13 (Recommended operating conditions (5.0 V)), updated tablenote 5 to: “1 µF
(electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between
VDD_ADC/VSS_ADC pair. Another ceramic cap of 10nF with low inductance package can be
added”.
In Section 2.17.2, “Low voltage detector electrical characteristics, added a note on
LVHVD5 detector.
In Section 4, “Ordering information, added a note: “Not all options are available on all
devices”.
14 30 oct 2017 In Table 1 (MPC5604B/C device comparison) for MPC56 04BxLH changed the CAN from
2 to 3.
In Table 12 (Recommended operating conditions (3.3 V)) added Min value for TVDD
In Table 13 (Recommended operating conditions (5.0 V)) added Min value for TVDD
Table 49. Revision history (continued)
Revision Date Description of Changes
MPC5604B/C Microcontroller Data Sheet, Rev. 14
Abbreviations
NXP Semiconductors108
Appendix A Abbreviations
Table A-1 lists abbreviations used but not defined elsewhere in this document.
Table A-1. Abbreviations
Abbreviation Meaning
CMOS Complementary metal–oxide–semiconductor
CPHA Clock phase
CPOL Clock polarity
CS Peripheral chip select
EVTO Event out
MCKO Message clock out
MDO Message data out
MSEO Message start/end out
MTFE Modified timing format enable
SCK Serial communications clock
SOUT Serial data out
TBD To be defined
TCK Test clock input
TDI Test data input
TDO Test data output
TMS Test mode select
Document Number: MPC5604BC
Rev. 14
11/2017
Information in this document is provided solely to ena ble system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP
reserves the right to make changes wi thout further notice to any products
herein.
NXP makes no warranty, representation, or guarantee regarding the suit-
ability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or u se of any product or circuit,
and specifically disclaims any and all liability, including without limita-
tion consequential or incidental damages. “Typical” parameters that may
be provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must bevalidated for each
customer application by customer's technical experts. NXP does not con-
vey any license under its patent rights nor the rights of others. NXP sells
products pursuant to standard terms and conditions of sale, which can
befound at the following address: nxp.com/SalesTermsandConditions.
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,
JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE
PLUS, MIF ARE FLEX, MANTIS, MIFARE ULTRALIGHT , MIFARE4MOBILE,
MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C.5, CodeTEST,
CodeWarrior, ColdFire, ColdFire+, C.Ware, the Energy Efficient Solutions logo,
Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,
QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC,
Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and
UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,
Jazelle, Keil, SecurCore, Thumb, TrustZone, and ÏV ision are registered trademarks
of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9,
Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON,
POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and
Java are registered trademarks of Oracle and/or its affiliates. The Power Architec-
ture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.
© 2017 NXP B.V.