© Copyright 2018 WIZnet Co., Ltd. All rights reserved.
W7500x Data Sheet
Version 1.0.8
http://www.wiznet.co.kr
W7500x Data Sheet Version1.0.6 2 / 40
Table of Contents
Table of Contents .......................................................................................... 2
List of table ................................................................................................. 4
List of figures ............................................................................................... 5
1 Introduction ............................................................................................. 6
2 Description ............................................................................................... 7
3 Functional overview ................................................................................... 9
3.1 ARM® -Cortex® -M0 core with embedded Flash and SRAM ............................. 9
3.2 Memories ...................................................................................... 9
3.3 Boot modes .................................................................................... 9
3.4 System configuration controller (SYSCFG) ............................................. 10
3.5 Power management ........................................................................ 10
3.5.1 Power supply schemes ............................................................. 10
3.5.2 Low-power modes .................................................................. 10
3.6 Clocks and startup ......................................................................... 11
3.6.1 External Oscillator Clock .......................................................... 12
3.6.2 RC oscillator clock .................................................................. 12
3.6.3 PLL .................................................................................... 12
3.6.4 Generated clock .................................................................... 12
3.7 Interrupts and events ..................................................................... 13
3.7.1 Nested vectored interrupt controller (NVIC) .................................. 13
3.7.2 Event controller .................................................................... 13
3.8 Tcp/ip offload engine (TOE) .............................................................. 13
3.9 General-purpose inputs/outputs (GPIOs) .............................................. 14
3.10 Pad controller (PADCON) .................................................................. 14
3.11 Alternative function controller (AFC) .................................................. 16
3.12 External interrupt (EXTI) ................................................................. 18
3.13 Direct memory access controller (DMA) ................................................ 19
3.14 Analog to digital converter (ADC) ....................................................... 19
3.15 Timers and watchdogs ..................................................................... 20
3.15.1 System tick timer ................................................................... 20
3.15.2 Pulse-Width Modulation (PWM) .................................................. 20
3.15.3 Dual timers .......................................................................... 20
3.15.4 Watchdog timer ..................................................................... 21
3.16 Real-time clock (RTC) ..................................................................... 21
3.16.1 RTC clock ............................................................................ 21
3.16.2 RTC interrupt ........................................................................ 21
3.17 Universal asynchronous receiver/transmitter (UART) ............................... 22
W7500x Data Sheet Version1.0.6 3 / 40
3.18 Synchronous Serial Port (SSP) ............................................................ 22
3.19 Random number generator (RNG) ....................................................... 23
4 Pinout and descriptions .............................................................................. 24
4.1 Pin layout .................................................................................... 24
4.2 Pin descriptions ............................................................................. 25
4.2.1 W7500 Pin Description ............................................................. 25
4.2.2 W7500P Pin Description ........................................................... 28
5 Electrical characteristics ............................................................................ 31
5.1 Absolute maximum ratings ............................................................... 31
5.2 Voltage Characteristics .................................................................... 31
5.3 Current Characteristics ................................................................... 31
5.4 Thermal Characteristics .................................................................. 32
5.5 Operating conditions ...................................................................... 32
5.5.1 General Operating Conditions .................................................... 32
5.6 Supply Current Characteristics .......................................................... 33
5.7 I/O PAD Characteristics ................................................................... 34
5.8 Electrical Sensitivity Characteristics ................................................... 34
5.9 Reset & PLL Characteristics .............................................................. 35
5.10 ADC Characteristics ........................................................................ 36
5.11 SSP Interface Characteristics ............................................................ 38
6 Package Information .................................................................................. 39
6.1 Package dimension information ......................................................... 39
Document History Information ......................................................................... 40
W7500x Data Sheet Version1.0.6 4 / 40
List of table
Table 1. W7500/W7500P family device features and peripheral counts .................. 7
Table 2 operation of mode selection ............................................................ 9
Table 3 W7500x sleep mode summary ........................................................ 10
Table 4 functional description table .......................................................... 16
Table 5 Summary of the DMA requests for each channel .................................. 19
Table 6. Pin Type Notation ...................................................................... 25
Ta ble 7 W7500 Pin Description ................................................................. 25
Table 8. W7500P Pin Description ............................................................... 28
Table 9 Voltage characteristics ................................................................. 31
Table 10 Current characteristics ............................................................... 31
Table 11 Thermal Charateristics ............................................................... 32
Table 12 General operating conditions ....................................................... 32
Table 13 Normal operation supply current ................................................... 33
Table 14 Sleep mode supply current .......................................................... 33
Table 15 Deep sleep mode supply current ................................................... 33
Table 16 DC specification of PAD ............................................................... 34
Table 17 Flash memory Reliability Characteristics .......................................... 34
Table 18 Electrostatic discharge (ESD) ........................................................ 34
Table 19 Static latch-up ......................................................................... 34
Table 20 PLL electrical characteristics........................................................ 35
Table 21 ADC electrical characteristics ....................................................... 36
Table 22 SSP characteristics .................................................................... 38
W7500x Data Sheet Version1.0.6 5 / 40
List of figures
Figure 1. W7500x System Architecture ......................................................... 8
Figure 2. CRG block diagram ................................................................... 11
Figure 3 Typical application with an 8 MHz crystal ......................................... 12
Figure 4. function schematic of digital I/O pad ............................................. 14
Figure 5. function schematic of digital/analog mux IO pad .............................. 14
Figure 6. External Interrupt diagram .......................................................... 18
Figure 7 W7500 pin layout ...................................................................... 24
Figure 8 W7500P pin layout ..................................................................... 24
Figure 9 Power Down operation Timing Sequence for PLL ................................ 35
Figure 10. ADC transform function ............................................................ 37
Figure 11. SSP Timing for SPI Frame format, with SPH =1 ................................. 38
Figure 12. Package Dimension Information .................................................. 39
W7500x Data Sheet Version1.0.6 6 / 40
1 Introduction
This datasheet provides the ordering information and mechanical device characteristics of the
W7500/W7500P microcontrollers.
This document should be read in conjunction with the W7500x reference manual (RM). The
reference manual is available from the WIZnet website www.wizwiki.net.
For information on the ARM® Cortex® -M0 core, please refer to the Cortex® -M0 Technical
Reference Manual, available from the www.arm.com website.
W7500x Data Sheet Version1.0.6 7 / 40
2 Description
The W7500x microcontrollers incorporate the high-performance ARM® Cortex® -M0 32-bit RISC
core operating at a 48 MHz frequency, high-speed embedded memories (128 Kbytes of Flash
memory and 16Kbytes of SRAM), and TCP/IP offload engine, an extensive range of enhanced
peripherals and I/Os. All devices offer standard communication interfaces (two SPIs and three
UARTs), one 12-bit ADC, 4 general-purpose timers and eight advanced control PWM timer.
The W7500x microcontrollers operate in the 0 to +70 °C temperature range from a 2.7 to 3.6V
power supply. A comprehensive set of power-saving modes allows the design of low-power
applications.
The W7500x microcontrollers include devices in two different packages from include PHY and
non-include PHY.
These features make the W7500x microcontrollers suitable for a wide range of IoT applications
such as application control and user interfaces.
Table 1. W7500/W7500P family device features and peripheral counts
Peripherals
W7500
W7500P
Flash memory in Kbytes
128
SRAM in Kbytes
16
Timers
RTC
1
Watch Dog
1
Dual Timer
2
PWM
up to 8
Comm
UART
up to 3
SPI
up to 2
TCP/IP Socket
8
Internal PHY
No
Yes
GPIOs
53
34
12-bit ADC
up to 8
RNG
1
DMA channel
6
CPU frequency
48MHz
Operating voltage
2.7 to 3.6V
Operating temperatures
Ambient temp : -40 to 85
Junction temp : -30 to 105
Ambient temp : 0 to 70
Junction temp : 0 to 105
Package
LQFP64
W7500x Data Sheet Version1.0.6 8 / 40
Figure 1. W7500x System Architecture
W7500x Data Sheet Version1.0.6 9 / 40
3 Functional overview
3.1 ARM® -Cortex® -M0 core with embedded Flash and SRAM
The ARM® Cortex® -M0 processor is the latest generation of ARM processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM® Cortex® -M0 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The W7500x family has an embedded ARM core and is therefore compatible with all
ARM tools and software.
Figure 1 shows the general block diagram of the W7500x family.
3.2 Memories
Program memory, data memory, registers and I/O ports are organized within the same linear
4-Gbyte address space.
The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word
is considered the word’s least significant byte and the highest numbered byte the most
significant.
3.3 Boot modes
W7500x has three different boot modes that can be selected through the BOOT pin as shown
in Table 2.
Table 2 operation of mode selection
Mode
Aliasing
APP
User code execute in Main Flash memory.
ISP
In this mode,W7500x can support ISP function in order to control
flash using serial interface.
W7500x Data Sheet Version1.0.6 10 / 40
3.4 System configuration controller (SYSCFG)
Main purposes of the system configuration controller are the following
The ability to enable an automatic reset if the system locks up
Information about the cause of the last reset
3.5 Power management
3.5.1 Power supply schemes
W7500x embeds a voltage regulator in order to supply the internal 1.5V digital power domain.
Require a 2.7V ~ 3.6V operating supply voltage (VDD). ADC ref voltage is same as VDD
3.5.2 Low-power modes
W7500x is in RUN mode after a system or power reset. There are two low power modes to save
power when the CPU does not need to be kept running. These modes are useful for instances
like when the CPU is waiting for an external interrupt. Please note that there is no power-off
mode for W7500x.
The device features two low-power modes:
Sleep mode
Deep Sleep mode
Additionally, the power consumption can be reducing by following method:
User can slow down the system clocks
User can gate the clocks to the peripherals when they are unused.
Sleep mode / Deep sleep mode
W7500x has two kinds of sleep modes. One is Sleep mode and the other is Deep sleep mode.
Two of them are almost the same except the clock gated peripherals kinds. Table 3 shows the
Sleep mode summary.
Table 3 W7500x sleep mode summary
Mode
Entry
Wakeup
Effect on clocks
Sleep mode
DEEPSLEEP = 0
Enable WFI
Any interrupt
CPU clock OFF
APB Bus Clock ON
AHB Bus clock ON
Memory clocks ON
DEEPSLEEP = 0
Enable WFE
Wakeup event
Deep Sleep mode
DEEPSLEEP = 1
Enable WFI
Any interrupt
CPU clock OFF
APB Bus Clock OFF
AHB Bus clock OFF
Memory clocks OFF
DEEPSLEEP = 1
Enable WFE
Wakeup event
W7500x Data Sheet Version1.0.6 11 / 40
3.6 Clocks and startup
Two clock sources can be used to drive the system clock.
External oscillator clock (8MHz ~ 24MHz) (OCLK)
Internal 8MHz RC oscillator clock (RCLK)
One additional clock source
32.768KHz low speed external crystal which derives the real time clock.
There is a PLL
One PLL is integrated
Input clock range is from 8MHz to 24MHz
Frequency can be generated by M/N/OD registers. (refer register description)
Bypass option enabled
There are many generated clocks for independent operating with system clock
System clock (FCLK)
ADC clock (ADCCLK)
SSP0, SSP1 clock (SSPCLK)
UART0, UART1 clock (UARTCLK)
Two Timer clocks (TIMCLK0, TIMCLK1)
8ea PWM clocks (PWMCLK0 - PWMCLK7)
Real time clock (RTCCLK)
WDOG clock (WDOGCLK)
Random number generator clock (RNGCLK)
RNGCLK have only one source (pll output) and no prescaler
Some of the generated clocks turn off automatically when CPU enters sleep mode.
ADCCLK, RNGCLK
Generate two Hardware TCPIP Clocks (MII_RXC, MII_TXC) are from external PADs.
Hardware TCPIP Clocks can be gated by register control.
All clocks generated from CRG can be monitored.
Figure 2. CRG block diagram
W7500x Data Sheet Version1.0.6 12 / 40
3.6.1 External Oscillator Clock
The External oscillator clock (OCLK) can be supplied with a 8 to 24 MHz crystal/ceramic
resonator oscillator. In the Typical application, Figure 3, 𝑅𝐹 must be inserted in External
oscillator clock circuit. In W7500x, there is no supported 𝑅𝐹 for External oscillator clock (see
Figure 3).
For 𝐶𝐿𝑜𝑎𝑑1 and 𝐶𝐿𝑜𝑎𝑑2, it is recommended to use external ceramic capacitors in the 5 pF to
25 pF range(typ.) and are usually the same size, designed for application, and selected to
match the requirements of the crystal or resonator (see Figure 3).
Refer to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
1
𝑅𝐸𝑋𝑇 value depends on the crystal characteristics
Figure 3 Typical application with an 8 MHz crystal
3.6.2 RC oscillator clock
RC oscillator clock (RCLK) signal is generated from an internal 8MHz RC oscillator.
RC oscillator has the advantage of providing a clock source at low cost (no external
components). However the RC oscillator is less accurate than the external crystal or ceramic
resonator.
Accuracy : 1% at TA= 25oC (User don’t need to calibration)
3.6.3 PLL
The internal PLL can be used to multiply the External Oscillator Clock (OCLK) or RC Oscillator
Clock (RCLK). PLL input can be selected by register.
PLL output clock can be generated by following the equations below.
FOUT = FIN x M / N x 1 / OD
Where:
M = M[5] x 25 + M[4] x 24 + M[3] x 23 + M[2] x 22 + M[1] x 2 + M[0] x 1
N = N[5] x 25 + N[4] x 24 + N[3] x 23 + N[2] x 22 + N[1] x 2 + N[0] x 1
OD = 2 (2 x OD[1]) x 2 (1 x OD[0])
3.6.4 Generated clock
Each generated clock source can be selected among 3 clock source as independent by each
clock source select register.
PLL output clock (MCLK)
Internal 8MHz RC oscillator clock (RCLK)
External oscillator clock (8MHz ~ 24MHz) (OCLK)
1
𝑅𝐸𝑋𝑇 value depends on the crystal characteristics
W7500x Data Sheet Version1.0.6 13 / 40
Each generated clock has own prescaler which can be selected individually by each
prescale value register.
FCLK, ADCCLK, SSPCLK, UARTCLK : 1/1, 1/2, 1/4, 1/8
TIMCLK0, TIMCLK1, PWMCLK0 PWMCLK7, RTCCLK, WDOGCLK : 1/1, 1/2, 1/4, 1/8,
1/16, 1/32, 1/64, 1/128
3.7 Interrupts and events
3.7.1 Nested vectored interrupt controller (NVIC)
The W7500x family embeds a nested vectored interrupt controller able to handle up to 32
maskable interrupt channels (not including the 16 interrupt lines of Cortex® -M0) and 4 priority
levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.7.2 Event controller
The W7500x family is able to handle internal events in order to wake up the core(WFE).
The wakeup event can be generated by
When after DMA process finished (DMA_DONE)
3.8 Tcp/ip offload engine (TOE)
The TCP/IP Core Offload Engine (TOE) is a Hardwired TCP/IP embedded Ethernet controller
that provides easier Internet connection to embedded systems. TOE enables users to have
Internet connectivity in their applications by using the TCP/IP stack.
WIZnet’s Hardwired TCP/IP is the market-proven technology that supports TCP, UDP, IPv4, ICMP,
ARP, IGMP, and PPPoE protocols. TOE embeds the 32Kbyte internal memory buffer for the
Ethernet packet processing. Using TOE allows users to implement the Ethernet application by
adding the simple socket program. Its faster and easier than using any other Embedded
Ethernet solutions. 8 independent hardware sockets can be used simultaneously.
TOE also provides WOL (Wake on LAN) to reduce power consumption of the system.
Supports Hardwired TCP/IP Protocols : TCP, UDP, ICMP, IPv4, ARP, IGMP, PPPoE
Supports 8 independent sockets simultaneously
Supports Power down mode
Supports Wake on LAN over UDP
Internal 32Kbytes Memory for TX/RX Buffers
Not supports IP Fragmentation
W7500x Data Sheet Version1.0.6 14 / 40
3.9 General-purpose inputs/outputs (GPIOs)
The GPIO(General-Purpose I/O Port) is composed of three physical GPIO blocks, each
corresponding to an individual GPIO port(PORT A, PORT B and PORT C). The GPIO supports up
to 34 programmable input/output pins, depending on the peripherals being used.
The GPIO peripheral consists the following features.
GPIO_DATAOUT can SET/CLEAR by the SET register and CLEAR register. (1 for set and
0 for clear)
Mask registers allow treating sets of port bits as a group leaving other bits unchanged.
Up to 34 GPIOs depending on configuration
Programmable control for GPIO interrupts
Interrupt generation masking
Edge-triggered on rising, falling, or both
Refer to ‘Reference Manual’ for more details about each register.
3.10 Pad controller (PADCON)
Pads of W7500x are controllable. User can control pad’s characteristic.
W7500x has digital I/O pads and digital/analog mux I/O pads
Controllable characteristics of pads are pull-up, pull-down, driving strength, input enable, and
CMOS/Schmitt trigger input buffer
Each pad can be controlled individually by register.
Figure 4 shows the function schematic of digital I/O pad of W7500x.
Figure 4. function schematic of digital I/O pad
Figure 5 shows the function schematic of digital/analog mux IO pad of W7500x
Figure 5. function schematic of digital/analog mux IO pad
W7500x Data Sheet Version1.0.6 15 / 40
Initials of Pad diagram is same as below.
P - PAD
A Digital Output
YA Analog Input (connect to ADC input)
Y Digital Input
IE Input buffer enable
CS CMOS/Schmitt trigger input buffer select
PU Pull-up enable
PD Pull-down enable
OD Open Drain
DS Driving strength select
User can set pad condition with IE, CS, PU/PD, OD, DS by register.
And pads are can be controlled individually.
Condition
A
Y
P
Input buffer enable
(IE = 1)
Output mode
OUT
OUT
OUT
Input mode
No use
IN
IN
Input buffer disable
(IE = 0)
Output mode
OUT
Low (0)
OUT
Input mode
No use
IN
IN
Condition
Rise/Fall Time (nSec)
Propagation Delay (nSec)
Driving
Strength
Capacitan
ce loading
Min
Max
Min
Max
Low
(DS = 1)
25pF
4
18
7
27
100pF
11
53
11
44
High
(DS = 0)
25pF
1
8
4
16
100pF
4
23
7
24
W7500x Data Sheet Version1.0.6 16 / 40
3.11 Alternative function controller (AFC)
Each functional PADs have several functions.
Users can select a function in Alternate Function Controller block.
Each functional pad has 2 ~ 4 functions.
Pads can be selected by each registers individually.
Each pad can be used as an external interrupt source.
Table 4 shows the function table of each functional pad.
Table 4 functional description table
Pins
Pin name
Alternate function
W7500
W7500P
default
2nd
3rd
4th
29
27
PA_00
GPIOA_0
GPIOA_0
PWM6/CAP6
30
28
PA_01
GPIOA_1
GPIOA_1
PWM7/CAP7
31
29
PA_02
GPIOA_2
GPIOA_2
CLKOUT
49
30
PA_03
SWCLK
GPIOA_3
PWM0/CAP0
50
31
PA_04
SWDIO
GPIOA_4
PWM1/CAP1
33
19
PA_05
SSEL0
GPIOA_5
SCL1
PWM2/CAP2
34
20
PA_06
SCLK0
GPIOA_6
SDA1
PWM3/CAP3
35
21
PA_07
MISO0
GPIOA_7
U_CTS1
PWM4/CAP4
36
22
PA_08
MOSI0
GPIOA_8
U_RTS1
PWM5/CAP5
37
23
PA_09
SCL0
GPIOA_9
U_TXD1
PWM6/CAP6
38
24
PA_10
SDA0
GPIOA_10
U_RXD1
PWM7/CAP7
40
41
PA_11
U_CTS0
GPIOA_11
SSEL1
41
42
PA_12
U_RTS0
GPIOA_12
SCLK1
42
43
PA_13
U_TXD0
GPIOA_13
MISO1
43
44
PA_14
U_RXD0
GPIOA_14
MOSI1
44
-
PA_15
GPIOA_15
GPIOA_15
45
45
PB_00
SSEL1
GPIOB_0
U_CTS0
46
46
PB_01
SCLK1
GPIOB_1
U_RTS0
47
47
PB_02
MISO1
GPIOB_2
U_TXD0
48
48
PB_03
MOSI1
GPIOB_3
U_RXD0
24
-
PB_04
TXEN
GPIOB_4
25
-
PB_05
COL
GPIOB_5
16
15
PB_06
RXD31) /DUP2)
GPIOB_61)
17
-
PB_07
RXCLK
GPIOB_7
W7500x Data Sheet Version1.0.6 17 / 40
18
-
PB_08
DUP
GPIOB_8
19
-
PB_09
TXCLK
GPIOB_9
20
-
PB_10
TXD0
GPIOB_10
21
-
PB_11
TXD1
GPIOB_11
22
-
PB_12
TXD2
GPIOB_12
23
-
PB_13
TXD3
GPIOB_13
26
-
PB_14
GPIOB_14
GPIOB_14
27
-
PB_15
GPIOB_15
GPIOB_15
53
53
PC_00
U_CTS1
GPIOC_0
PWM0/CAP0
54
54
PC_01
U_RTS1
GPIOC_1
PWM1/CAP11)
55
55
PC_02
U_TXD1
GPIOC_2
PWM2/CAP2
56
56
PC_03
U_RXD1
GPIOC_3
PWM3/CAP31)
57
57
PC_04
SCL1
GPIOC_4
PWM4/CAP4
58
58
PC_05
SDA1
GPIOC_5
PWM5/CAP5
51
11
PC_06
GPIOC_6
GPIOC_6
U_TXD2
52
-
PC_07
GPIOC_7
GPIOC_7
U_RXD2
1
1
PC_08
PWM0/CAP0
GPIOC_8
SCL0
AIN7
2
2
PC_09
PWM1/CAP1
GPIOC_9
SDA0
AIN6
3
3
PC_10
U_TXD2
GPIOC_10
PWM2/CAP2
AIN5
4
4
PC_11
U_RXD2
GPIOC_11
PWM3/CAP3
AIN4
5
5
PC_12
AIN3
GPIOC_12
SSEL0
AIN3
6
6
PC_13
AIN2
GPIOC_13
SCLK0
AIN2
7
7
PC_14
AIN1
GPIOC_14
MISO0
AIN1
8
8
PC_15
AIN0
GPIOC_15
MOSI0
AIN0
11
-
PD_00
CRS
GPIOD_0
12
-
PD_01
RXDV
GPIOD_1
13
-
PD_02
RXD0
GPIOD_2
14
-
PD_03
RXD1
GPIOD_3
15
-
PD_04
RXD2
GPIOD_4
1) Only W7500
2) Only W7500P
W7500x Data Sheet Version1.0.6 18 / 40
3.12 External interrupt (EXTI)
Each functional pads are connected to the external interrupt(EXTINT) source.
All functional pads can be used as an external interrupt source regardless of any set
of pad function.
External Interrupt controller has the following functions and can be controlled by
registers.
Interrupt mask (enable or disable, default : disable)
Interrupt polarity (rising or falling, default : rising)
All pads are connected to the control register individually. (External interrupt mask register
and External Interrupt polarity register)
External interrupt working as following expression:
Each pad interrupt = Interrupt mask & (Interrupt polarity ^ Pad input)
EXTINT = any Each pad interrupt
Figure 6 shows the External Interrupt diagram.
PA_00_Polarity
PA_00_mask
PA_00
EXTINT
. . .
. . .
PA_14_Polarity
PA_14_mask
PA_14
PB_00_Polarity
PB_00_mask
PB_00
. . .
. . .
PB_03_Polarity
PB_03_mask
PB_03
PC_00_Polarity
PC_00_mask
PC_00
. . .
. . .
PC_06_Polarity
PC_06_mask
PC_06
PC_08_Polarity
PC_08_mask
PC_08
. . .
. . .
PC_15_Polarity
PC_15_mask
PC_15
Figure 6. External Interrupt diagram
W7500x Data Sheet Version1.0.6 19 / 40
3.13 Direct memory access controller (DMA)
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.
The DMA controller has up to 6 channels in total, each dedicated to managing memory access
requests from one or more peripherals. It has an arbiter for handling the priority between DMA
requests. For more details, refer to “PrimeCell® μDMA Controller (PL230)” from the Technical
Reference Manual
6 channels
Each channel is connected to dedicated hardware DMA requests and software trigger is
also supported on each channel.
Priorities between requests from the DMA channels are software programmable (2 levels
consisting of high, default)
Memory-to-memory transfer (software request only)
TCP/IP-to-memory transfer (software request only)
SPI/UART-to-memory transfer (hardware request and software request)
Access to Flash, SRAM, APB and AHB peripherals as source and destination
DMA request mapping
The hardware requests from the peripherals (UART0, UART1, SSP0, SSP1) are simply connected
to the DMA. Refer to Table 5 which lists the DMA requests for each channel.
Table 5 Summary of the DMA requests for each channel
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Hardware
Request
SSP0_TX
SSP0_RX
SSP1_TX
SSP1_RX
UART0_TX
UART0_RX
UART1_TX
UART1_RX
NONE
NONE
Software
Request(1)
Support
Support
Support
Support
Support
Support
Software request is the only way to use DMA for memory-to-memory or TCP/IP-to-memory.
3.14 Analog to digital converter (ADC)
ADC is a 12bit analog-to-digital converter. It has up to 9 multiplexed channels allowing it to
measure signals from 8 externals and 1 internal source.
ADC of various channels can be performed in single mode. The result of the ADC is stored in
12 bit register.
12bit configuration resolution
Conversion time : Max 10MHz (Sampling time can be programmable)
8 channel for external analog inputs
1 channel for internal LDO(1.5v) voltage
Start of conversion can be initiated by software.
Convert selected inputs once per trigger.
Interrupt generation at the end of conversion.
W7500x Data Sheet Version1.0.6 20 / 40
3.15 Timers and watchdogs
3.15.1 System tick timer
System tick timer(SysTick) is part of the ARM Cortex-M0 core
Simple 24bit timer.
Clocked internally by the system clock or the system clock/2.
The SysTick timer is an integral part of Cortex-M0. The SysTick timer is intended to generated
a fixed 10 millisecond interrupt for use by an operating system or other system management
software.
Since the SysTick timer is a part of the Cortex-M0, it facilitates porting of software by
providing a standard timer that is available on Cortex-M0 based devices.
The SysTick timer can be used for :
An RTOS tick timer which fires at a programmable rate (for example 100 Hz) and
invokes a SysTick routine.
A high-speed alarm timer using the core clock.
A simple counter. Software can use this to measure time to completion and time used.
An internal clock source control based on missing/meeting durations. The COUNTFLAG
bit-field in the control and status register can be used to determine if an action
completed within a set duration, as part of a dynamic clock management control loop.
3.15.2 Pulse-Width Modulation (PWM)
The PWM consists a 8-channel 32-bit Timer/Counter driven by a programmable prescaler. The
function of the PWM is based on the basic Timer. Each timer and counter runs independently.
The PWM can be used to control the width of the pulse, formally the pulse duration, to
generate output waveform or to count the counter triggered by external input.
Counter or Timer operation can use the peripheral clock, external clock source, or one
of the capture inputs as the clock source.
Eight independent 32-bit Timer/Counter driven by a programmable 6 bits prescaler
runs as the PWM or standard timer if the PWM mode is not enabled.
Eight PWM output waveforms.
Each of Timer/Counter can have different or same clock source.
Counter or timer operation.
Eight capture registers that can take the timer value when an external input signal. A
capture event can generate an interrupt signal optionally.
32-bit match register and limit register.
3.15.3 Dual timers
The dual timer consists two programmable 32-bit or 16-bit Free-running counters(FRCs) that
can generate interrupts when they reach 0. There are two dual timers and 4 FRCs. One dual
timers has one interrupt handler, resulting in two interrupts of timers. Also one dual timer has
one clock but two clock enable signals. Users can select one repetition modes one-shot or
wrapping mode, and wrapping mode consists free-running and periodic mode. Two FRCs are
one set so two FRCs has one clock, reset, and interrupt but each FRC has an individual clock
enable.
One dual timer has two Free-Running Counters(FRCs).
One dual timer has one interrupt handler and one clock.
W7500x Data Sheet Version1.0.6 21 / 40
One dual timer has two clock enable signals.
There are 2 dual timers.
A 32-bit or a 16-bit down counter.
One of the following repetition modes: one-shot and wrapping mode.
One of the following wrapping modes: Free-running and periodic mode.
There is a prescaler that can divide down the clock rate by 1, 16, or 256.
3.15.4 Watchdog timer
The watchdog is based on a 32-bit down-counter that is initialized from the Reload Register,
WDTLoad. The watchdog generates a regular interrupt depending on a programmed value. The
counter decreases by one on each positive clock edge of watchdog clock.
The watchdog monitors the interrupt and asserts a reset request signal when the counter
reaches 0 and the counter is stopped. On the next enabled watchdog clock edge, the counter
is reloaded from the WDTLoad Register and the countdown sequence continues. The watchdog
reasserts the reset signal if the interrupt is not cleared by the time the counter next reaches
0.
The watchdog applies a reset to a system in the event of a software failure to provide a way
to recover from software crashes. Users can enable or disable the watchdog unit as required.
32-bit down counter.
Internally resets chip if not periodically reloaded.
The watchdog timer has lock register to prevent rogue software from disabling the
watchdog timer functionality.
The watchdog timer clock(WDTCLK) and system clock(PCLK) are synchronous.
3.16 Real-time clock (RTC)
The real-timer clock (RTC) is an independent BCD timer/counter. The RTC provides a timer-
of-day clock/calendar with programmable alarm interrupt.
Calendar with year, month, day, weekday, hours, minutes, and seconds
Programmable alarm with interrupt function
3.16.1 RTC clock
RTC Clock (RTCCLK) can be selected among several clocks (32768Hz oscillator, MCLK, RCLK,
OCLK). Please refer to the Clock Reset Generator chapter for configuring the clock.
If the 32768Hz oscillator clock is used, the divider generates 1 Hz clock internally.
If the DIVRST (Bit[1] of RTC Control Register ) value is high, the RTC Divider is cleared. If the
DIVRST value is low, the divider operates.
3.16.2 RTC interrupt
RTC has two kinds of interrupt source, Counter Interrupt and Alarm Interrupt.
Interrupts are enabled in the NVIC using the appropriate Interrupt Set Enable register.
There are following Counter Interrupts: Second, Minute, Hour, Day (Day of Week), Date (Day
of Month) and Year.
Each bit of RTCINTM (Interrupt Mask Register) can disable or enable interrupt for each Counter
Interrupt.
Alarm Interrupt can be generated when the Alarm matches with Counter.
W7500x Data Sheet Version1.0.6 22 / 40
3.17 Universal asynchronous receiver/transmitter (UART)
The device embeds three universal asynchronous receivers/transmitters (UART0, UART1,
UART2) which communicate at speeds of up to 3 Mbit/s.
The UART supports synchronous one-way communication, half-duplex single wire
communication, and UART0,1 supports multiprocessor communications(CTS/RTS) but UART2
unsupported multiprocessor communications UART2 is called the SUART(Simple UART).
Serial-to-parallel conversion on data received from a peripheral device
Parallel-to-serial conversion on data transmitted to the peripheral device
Data size of 5,6,7 and 8 its
One or two stop bits
Even, odd, stick, or no-parity bit generation and detection
Support of hardware flow control
Programmable FIFO disabling for 1-byte depth.
Programmable use of UART or IrDA SIR input/output
False start bit detection
UART bidirectional communication requires a minimum of two pins: RX, TX
The frame are comprised of:
An Idle Line prior to transmission or reception
A start bit
A data word (8 or 9 bits) least significant bit first
1, 1.5, 2 Stop bits indicating that the frame is complete
The USART interface uses a baud rate generator
A status register (UART1_RISR)
data registers (UART1DR)
A baud rate register (UART1_IBRD,UART1_FBRD)
3.18 Synchronous Serial Port (SSP)
The SSP block is an IP provided by ARM (PL022 “PrimeCell® Synchronous Serial Port”).
Additional details about its functional blocks may be found in “ARM PrimeCell® Synchronous
Serial Port (PL022) Technical Reference Manual”.
The SSP is a master or slave interface that enables synchronous serial communication
with slave or master peripherals having one of the following:
A MOTOROLA SPI-compatible interface
A TEXAS INSTRUMENTS synchronous serial interface
A National Semiconductor MICROWIRE® interface.
The SPI interface operates as a master or slave interface. It supports bit rates up to
20 MHz in master mode and up to 4 MHz in slave mode.
Parallel-to-serial conversion on data written to an internal 16-bit wide, 8-
location deep transmit FIFO
Serial-to-parallel conversion on received data, buffering it in a 16-bit wide, 8-location
deep receive FIFO
Programmable data frame size from 4 to 16 bits
Programmable clock bit rate and prescaler. The input clock may be divided by a factor
of 2 to 254 in steps of two to provide the serial output clock
Programmable clock phase and polarity.
W7500x Data Sheet Version1.0.6 23 / 40
3.19 Random number generator (RNG)
RNG is a 32bit random number generator. RNG generates power on random number when
power on reset. RNG can run/stop by software. RNG seed value and polynomial of RNG can be
modified by software.
32bit pseudo random number generator
Formula of pseudo random number generator (polynomial) can be modified.
Seed value of random generator can be modified.
Support power on reset random value.
Random value can be obtains by control start/stop by software.
W7500x Data Sheet Version1.0.6 24 / 40
4 Pinout and descriptions
4.1 Pin layout
Figure 7 W7500 pin layout
Figure 8 W7500P pin layout
W7500x Data Sheet Version1.0.6 25 / 40
4.2 Pin descriptions
4.2.1 W7500 Pin Description
Table 6. Pin Type Notation
Type
Description
I
Input
O
Output
IO
Input/Output
A
Analog
PWR
Power
GND
Ground
Table 7 W7500 Pin Description
PIN No
Symbol
Type
Function
Main
Function
2nd
Function
3rd
Function
4th
Function
1
PC_08
AIO
PWM0/CAP0
GPIO3_8
SCL0
AIN7
2
PC_09
AIO
PWM1/CAP1
GPIO3_9
SDA0
AIN6
3
PC_10
AIO
U_TXD2
GPIO3_10
PWM2/CAP2
AIN5
4
PC_11
AIO
U_RXD2
GPIO3_11
PWM3/CAP3
AIN4
5
PC_12
AIO
AIN3
GPIO3_12
SSEL0
AIN3
6
PC_13
AIO
AIN2
GPIO3_13
SCLK0
AIN2
7
PC_14
AIO
AIN1
GPIO3_14
MISO0
AIN1
8
PC_15
AIO
AIN0
GPIO3_15
MOSI0
AIN0
9
GND
GND
GND
10
VDD
PWR
VDD
11
PD_00
IO
CRS/TXD3
GPIO4_0
12
PD_01
IO
RXDV/TXD2
GPIO4_1
13
PD_02
IO
RXD0/TXD1
GPIO4_2
14
PD_03
IO
RXD1/TXD0
GPIO4_3
15
PD_04
IO
RXD2/TXCLK
GPIO4_4
16
PB_06
IO
RXD3/DUP
GPIO2_6
17
PB_07
IO
RXCLK/RXCLK
GPIO2_7
18
PB_08
IO
DUP/RXD3
GPIO2_8
19
PB_09
IO
TXCLK/RXD2
GPIO2_9
W7500x Data Sheet Version1.0.6 26 / 40
PIN No
Symbol
Type
Function
Main
Function
2nd
Function
3rd
Function
4th
Function
20
PB_10
IO
TXD0/RXD1
GPIO2_10
21
PB_11
IO
TXD1/RXD0
GPIO2_11
22
PB_12
IO
TXD2/RXDV
GPIO2_12
23
PB_13
IO
TXD3/CRS
GPIO2_13
24
PB_04
IO
TXEN
GPIO2_04
25
PB_05
IO
COL
GPIO2_05
26
PB_14
IO
MDIO/MDC
GPIO2_14
27
PB_15
IO
MDC/MDIO
GPIO2_15
28
RSTn
I
RSTn
29
PA_00
IO
GPIO1_0
GPIO1_0
PWM6/CAP6
30
PA_01
IO
GPIO1_1
GPIO1_1
PWM7/CAP7
31
PA_02
IO
GPIO1_2
GPIO1_2
CLKOUT
32
TEST
IO
TEST
33
PA_05
IO
SSEL0
GPIO1_5
SCL1
PWM2/CAP2
34
PA_06
IO
SCLK0
GPIO1_6
SDA1
PWM3/CAP3
35
PA_07
IO
MISO0
GPIO1_7
U_CTS1
PWM4/CAP4
36
PA_08
IO
MOSI0
GPIO1_8
U_RTS1
PWM5/CAP5
37
PA_09
IO
SCL0
GPIO1_9
U_TXD1
PWM6/CAP6
38
PA_10
IO
SDA0
GPIO1_10
U_RXD1
PWM7/CAP7
39
BOOT
IO
BOOT
40
PA_11
IO
U_CTS0
GPIO1_11
SSEL1
41
PA_12
IO
U_RTS0
GPIO1_12
SCLK1
42
PA_13
IO
U_TXD0
GPIO1_13
MISO11
43
PA_14
IO
U_RXD0
GPIO1_14
MOSI1
44
PA_15
IO
GPIO1_15
GPIO1_15
45
PB_00
IO
SSEL1
GPIO2_0
U_CTS0
46
PB_01
IO
SCLK1
GPIO2_1
U_RTS0
47
PB_02
IO
MISO1
GPIO2_2
U_TXD0
W7500x Data Sheet Version1.0.6 27 / 40
PIN No
Symbol
Type
Function
Main
Function
2nd
Function
3rd
Function
4th
Function
48
PB_03
IO
MOSI1
GPIO2_3
U_RXD0
49
PA_03
IO
SWCLK
GPIO1_3
PWM0/CAP0
50
PA_04
IO
SWDIO
GPIO1_4
PWM1/CAP1
51
PC_06
IO
GPIO3_6
GPIO3_6
U_TXD2
52
PC_07
IO
GPIO3_7
GPIO3_7
U_RXD2
53
PC_00
IO
U_CTS1
GPIO3_0
PWM0/CAP0
54
PC_01
IO
U_RTS1
GPIO3_1
PWM1/CAP1
55
PC_02
IO
U_TXD1
GPIO3_2
PWM2/CAP2
56
PC_03
IO
U_RXD1
GPIO3_3
PWM3/CAP3
57
PC_04
IO
SCL1
GPIO3_4
PWM4/CAP4
58
PC_05
IO
SDA1
GPIO3_5
PWM5/CAP5
59
GND
GND
GND
60
NC
NC
NC
61
VDD
PWR
VDD
62
GND
GND
GND
63
XTAL_IN
I
Xtal in
64
XTAL_OUT
O
Xtal out
W7500x Data Sheet Version1.0.6 28 / 40
4.2.2 W7500P Pin Description
Table 8. W7500P Pin Description
PIN No
Symbol
Type
Function
Main
Function
2nd
Function
3rd
Function
4th
Function
PHY
1
PC_08
AIO
PWM0/CAP0
GPIO3_8
SCL0
AIN7
2
PC_09
AIO
PWM1/CAP1
GPIO3_9
SDA0
AIN6
3
PC_10
AIO
U_TXD2
GPIO3_10
PWM2/CAP2
AIN5
4
PC_11
AIO
U_RXD2
GPIO3_11
PWM3/CAP3
AIN4
5
PC_12
AIO
AIN3
GPIO3_12
SSEL0
AIN3
6
PC_13
AIO
AIN2
GPIO3_13
SCLK0
AIN2
7
PC_14
AIO
AIN1
GPIO3_14
MISO0
AIN1
8
PC_15
AIO
AIN0
GPIO3_15
MOSI0
AIN0
9
VSS
GND
VSS
10
VDD
PWR
VDD
11
PC_06
IO
GPIO3_6
GPIO3_6
U_TXD2
12
TEST
IO
TEST
13
REGIN
PWR
REGIN
14
LED_0
IO
LED_0
LED_0
15
PB_06/DUP
IO
DUP
DUP
16
VSS
IO
VSS
17
LED_3
IO
LED_3
LED_3
18
VDD
PWR
VDD_IO
19
PA_05
IO
SSEL0
GPIO1_5
SCL1
PWM2/CAP2
20
PA_06
IO
SCLK0
GPIO1_6
SDA1
21
PA_07
IO
MISO0
GPIO1_7
U_CTS1
PWM4/CAP4
22
PA_08
IO
MOSI0
GPIO1_8
U_RTS1
PWM5/CAP5
23
PA_09
IO
SCL0
GPIO1_9
U_TXD1
PWM6/CAP6
24
PA_10
IO
SDA0
GPIO1_10
U_RXD1
PWM7/CAP7
25
VSS
IO
VSS_IO
26
RSTN
I
RSTN
W7500x Data Sheet Version1.0.6 29 / 40
PIN No
Symbol
Type
Function
Main
Function
2nd
Function
3rd
Function
4th
Function
PHY
27
PA_00
IO
GPIO1_0
GPIO1_0
PWM6/CAP6
28
PA_01
IO
GPIO1_1
GPIO1_1
PWM7/CAP7
29
PA_02
IO
GPIO1_2
GPIO1_2
CLKOUT
30
PA_03
IO
GPIO1_3
GPIO1_3
PWM0/CAP0
31
PA_04
IO
GPIO1_4
GPIO1_4
32
ISET
I
ISET
ISET
33
AGND
GND
AGND
34
MDI_RN
IO
MDI_RN
MDI_RN
35
MDI_RP
IO
MDI_RP
MDI_RP
36
REGOUT
PWR
REGOUT
37
MDI_TN
IO
MDI_TN
MDI_TN
38
MDI_TP
IO
MDI_TP
MDI_TP
39
AGND
GND
AGND
40
AVDD
PWR
AVDD
41
PA_11
IO
U_CTS0
GPIO1_11
SSEL1
42
PA_12
IO
U_RTS0
GPIO1_12
SCLK1
43
PA_13
IO
U_TXD0
GPIO1_13
MISO1
44
PA_14
IO
U_RXD0
GPIO1_14
MOSI1
45
PB_00
IO
SSEL1
GPIO2_0
U_CTS0
46
PB_01
IO
SCLK1
GPIO2_1
U_RTS0
47
PB_02
IO
MISO1
GPIO2_2
U_TXD0
48
PB_03
IO
MOSI1
GPIO2_3
U_RXD0
49
VSS
PWR
VSS_IO
50
XPHY_IN
I
25MHz xtal
in
51
XPHY_OUT
O
25MHz xtal
out
52
BOOT
IO
BOOT
53
PC_00
IO
U_CTS1
GPIO3_0
PWM0/CAP0
54
PC_01
IO
U_RTS1
GPIO3_1
W7500x Data Sheet Version1.0.6 30 / 40
PIN No
Symbol
Type
Function
Main
Function
2nd
Function
3rd
Function
4th
Function
PHY
55
PC_02
IO
U_TXD1
GPIO3_2
PWM2/CAP2
56
PC_03
IO
U_RXD1
GPIO3_3
57
PC_04
IO
SCL1
GPIO3_4
PWM4/CAP4
58
PC_05
IO
SDA1
GPIO3_5
PWM5/CAP5
59
XTAL32_IN
I
32768Hz
xtal in
60
XTAL32_OUT
O
32768Hz
xtal out
61
VDD
PWR
VDD
62
VSS
GND
VSS
63
XTAL_IN
I
Xtal in
64
XTAL_OUT
O
Xtal out
W7500x Data Sheet Version1.0.6 31 / 40
5 Electrical characteristics
5.1 Absolute maximum ratings
These are stress ratings only and functional operation of the device at these conditions is not
implied. Exposure to maximum rating conditions for extended periods may affect device
reliability.
5.2 Voltage Characteristics
Table 9 shows the voltage characteristics of W7500x.
Table 9 Voltage characteristics
Symbol
Ratings
Min
Max
Unit
VDD-VSS
Main supply voltage (VDD)
-0.3
3.6
V
VIN
Input voltage on IO pins
VSS 0.3
3.6
V
SVDDH
I/O Power on slope
5V/Sec
1V/uSec
-
VDD
Variations between difference VDD power
pins
50
mV
VSS
Variations between different ground pins
50
mV
5.3 Current Characteristics
Table 10 shows the current characteristics of W7500x.
Table 10 Current characteristics
Symbol
Ratings
Max
Unit
IVDD_SUM
Total current into sum of all VDD power lines (source)
100
mA
IVDD
Maximum current into each ADD power pin (source)
90
mA
IIO_PAD
Total output current sunk by sum of all IOs and control
pins
75
mA
IINJ_PAD
Single pin input injected current
±10
mA
IINJ_SUM
Sum of all input injected current
±50
mA
W7500x Data Sheet Version1.0.6 32 / 40
5.4 Thermal Characteristics
Table 11 shows the thermal characteristics of W7500x.
Table 11 Thermal Charateristics
Symbol
Ratings
Min
Max
Unit
TStorge
Storage temperature range
-55
150
TJunc
Maximum junction
temperature under bias
W7500
-40
150
W7500P
0
125
TA
Ambient Operating
Temperature
W7500
-40
85
W7500P
0
70
5.5 Operating conditions
5.5.1 General Operating Conditions
Table 12 shows the general operating conditions of W7500x.
Table 12 General operating conditions
Symbol
Parameter
Conditions
Min
Max
Unit
fFCLK
Internal CPU clock frequency
0
48
MHz
VDD
Standard operating voltage
2.7
3.6
V
VIO
Input voltage on PIN
VSS-0.3
3.6
V
W7500x Data Sheet Version1.0.6 33 / 40
5.6 Supply Current Characteristics
Normal operation
Table 13 shows the Normal operation supply current.
Table 13 Normal operation supply current
Symbol
Parameter
Conditions1
Condition2
Typ
Unit
IDD_NOR
Supply
current
Active mode; code
While(1) {}
Executed from flash
memory
System clock =
10MHz
6.14
(52.14) (1)
(22.14) (2)
mA
System clock =
20MHz
8.82
(54.82) (1)
(24.82) (2)
mA
System clock =
40MHz
14.09
(60.09) (1)
(30.09) (2)
mA
(1) When PHY Normal mode, W7500P Internal PHY power consumption is 46mA MAX.
(2) When PHY Power down mode, W7500P Internal PHY power consumption is 16mA MAX.
Sleep mode
Table 14 shows the Normal operation supply current.
Table 14 Sleep mode supply current
Symbol
Parameter
Conditions1
Condition2
Typ
Unit
IDD_SLP
Supply
current
After enter sleep mode
All peripheral clocks ON
(same as system clock)
System clock =
10MHz
3.51
(49.51) (1)
(19.51) (2)
mA
System clock =
20MHz
5.65
(51.65) (1)
(21.65) (2)
mA
System clock =
40MHz
9.61
(55.61) (1)
(25.61) (2)
mA
(3) When PHY Normal mode, W7500P Internal PHY power consumption is 46mA MAX.
(4) When PHY Power down mode, W7500P Internal PHY power consumption is 16mA MAX.
Deep sleep mode
Table 15 shows the deep sleep mode operation supply current.
Table 15 Deep sleep mode supply current
Symbol
Parameter
Conditions1
Condition2
Typ
Unit
IDD_DSLP
Supply
current
After enter deep sleep mode
All peripheral clocks OFF
-
2.49
(48.49) (1)
(18.49) (2)
mA
(5) When PHY Normal mode, W7500P Internal PHY power consumption is 46mA MAX.
(6) When PHY Power down mode, W7500P Internal PHY power consumption is 16mA MAX.
W7500x Data Sheet Version1.0.6 34 / 40
5.7 I/O PAD Characteristics
DC Specification
Table 16 shows the DC specification of W7500x I/O PAD.
Table 16 DC specification of PAD
Symbol
Parameter
Conditions
Min
Max
Unit
VIH
I/O Input high voltage
2.145
V
VIL
I/O Input low voltage
1.155
V
VHYS
Schmitt trigger
hysteresis
0.33
V
IIH
I/O Input high current
1
uA
IIL
I/O Input low current
-1
uA
VOH
I/O Output high voltage
High driving strength Iload =
6mA
Low driving strength Iload =
3mA
2.5
V
VOL
I/O Output low voltage
High driving strength Iload =
6mA
Low driving strength Iload =
3mA
0.5
V
Rpup
Rpdn
Pull-up
/Pull-down resistor
20
100
KOhm
Flash memory
Table 17 shows the flash memory reliability characteristics of W7500x
Table 17 Flash memory Reliability Characteristics
Symbol
Parameter
Min
Unit
NEND
Sector Endurance
10,000
Cycles
TDR
Data Retention
10
Years
5.8 Electrical Sensitivity Characteristics
Electostatic discharge (ESD)
Table 18 shows the ESD information of W7500x
Table 18 Electrostatic discharge (ESD)
Symbol
Parameter
Test Method
Min
Max
Unit
VESD(HBM)
Electostatic discharge (Human body model)
AEC-Q100-002
±2000
-
V
VESD(CDM)
Electostatic discharge (Charge device model)
AEC-Q100-011
±500
-
V
Static latch-up
Table 19 shows the Static latch-up information of W7500x
Table 19 Static latch-up
Symbol
Parameter
Test Method
Min
Max
Unit
ILAT
Latch up current at 125 ambient
temperature
AEC-Q100-004
±100
-
V
W7500x Data Sheet Version1.0.6 35 / 40
5.9 Reset & PLL Characteristics
PLL Electrical characteristics
Table 20 shows the PLL characteristics of W7500x
Table 20 PLL electrical characteristics
Symbol
Parameter
Min
Max
Unit
td
RSTn to PD delay time
5
-
us
trst
Reset pulse width
2
-
us
tlock
Lock time
-
0.2
ms
Notice:
PLL_PDR[0] is LSB of PLL_PDR. please refer from Reference Manual.
lock signal is internal signal.
1, td is the RSTn to PLL_PDR[0] delay time, which need larger than 5us.
2, trst is the reset pulse width, which need larger than 2us.
3, tlock is the lock time, which is less than 0.2ms.
4, When PLL_PDR[0] changes from “1” to “0”, the lock signal stays in “1” until a reset
pulse comes. But the PLL is in unlocked state during this period.
Figure 9 Power Down operation Timing Sequence for PLL
W7500x Data Sheet Version1.0.6 36 / 40
5.10 ADC Characteristics
ADC Electrical characteristics
Table 21 shows the ADC electrical characteristics of W7500x
Table 21 ADC electrical characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
IN[15:0]
Analog input channel
VSS
-
VREFP
V
VREFP
Reference voltage of REFP
VDD
V
RES
Resolution
12
Bits
Offset error
-3.0
±1.5
3.0
LSB
INL
Integral non-linearity error
-2.0
±1.0
2.0
LSB
DNL
Differential non-linearity
error
-1.0
±0.8
1.5
LSB
Fclk
Clock frequency
16
MHz
SPS
Sampling rate
30
500
1000
K
TS
Sampling time
4/Fclk
TC
Conversion time
12
1/Fclk
SNDR
Signal-noise plus distortion
ratio
At 10KHz
64
dB
THD
Total harmonic distortion
At 10Khz
-65
dB
SFDR
Spurious-free dynamic
range
At 10KHz
64
dB
ADC Transform function description
Figure 10. ADC transform function shows the ADC transform function of W7500x.
W7500x Data Sheet Version1.0.6 37 / 40
4095LSB4093. 5LSB
ADC input
4094. 5LSB0.5LSB 2.5LSB
1.5LSB
000 000 000 000
000 000 000 001
000 000 000 010
111 111 111 101
111 111 111 110
111 111 111 111
ADC output
Figure 10. ADC transform function
W7500x Data Sheet Version1.0.6 38 / 40
5.11 SSP Interface Characteristics
The maximum SSP speed is 20 Mbit/s in master mode or 4 Mbit/s in slave mode. In slave mode,
the maximum SSP clock rate must be 1/12 of the SSP PCLK clock rate.
Table 22 shows the SSP characteristics of W7500x.
Table 22 SSP characteristics
Symbol
Parameter
Min
Nom
Max
Unit
tclk_per
SSPCLK cycle time
2
65024
System clocks
tclk_high
SSPCLK high time
-
0.5
t clk_per
tclk_low
SSPCLK low time
-
0.5
t clk_per
tclkrf
SSPCLK rise/fall time
-
6
10
tDMd
Data from master valid delay time
0
-
1
System clocks
tDMs
Data from master setup time
1
-
-
System clocks
tDMh
Data from master hold time
2
-
-
System clocks
tDSs
Data from slave setup time
1
-
-
System clocks
tDSh
Data from slave hold time
2
-
-
System clocks
Figure 11. SSP Timing for SPI Frame format, with SPH =1
W7500x Data Sheet Version1.0.6 39 / 40
6 Package Information
6.1 Package dimension information
Figure 12 shows the package dimension information.
Figure 12. Package Dimension Information
W7500x Data Sheet Version1.0.6 40 / 40
Document History Information
Version
Date
Descriptions
Ver. 1.0.0
18SEP2017
Initial Release
Ver. 1.0.1
26OCT2017
Fixed value Driving Strength condition in PADCON.
Ver. 1.0.2
09NOV2017
Fixed Typo I/O Pad Characteristics VOL description (high -> low)
Ver. 1.0.3
30NOV2017
Fixed figure 8. (W7500P Pin out)
Ver. 1.0.4
18DEC2017
Add Reset & PLL characteristics.
Ver. 1.0.5
30JAN2018
1. Fixed figure 8 (W7500P Pin layout) / Added subhead (4.2.1
W7500, 4.2.2 W7500P) / Fixed table 8(modified Symbol name)
2. Modified SRAM description (2. Description)
Ver. 1.0.6
05FEB2018
Add info about W7500P power consumption.(Current Characteristics)
Ver. 1.0.7
27JUL2018
Fixed figure 2. CRG Diagram (Input Information of WDOGCLK, TIMCLK0,
TIMCLK1).
Ver. 1.0.8
17OCT2018
Fixed Power Supply description (271V ~ 5.5V -> 2.7V ~ 3.6V)
Copyright Notice
Copyright 2017 WIZnet Co., Ltd. All Rights Reserved.
Technical Support: https://forum.wizwiki.io/
Sales & Distribution: sales@wiznet.io
For more information, visit our website at http://www.wiznet.io/