10-FZ06NIA075SA-P926F33 preliminary datasheet flowNPC0 600V/75A Features flow0 housing Neutral-point-Clamped inverter Clip-In PCB mounting Low Inductance Layout Target Applications Schematic UPS and Solar Types 10-FZ06NIA075SA-P926F33 Maximum Ratings Tj=25C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 64 80 A 225 A 111 168 W 20 V 6 360 s V 175 C 150 A 600 V Buck IGBT Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax =80C Th=80 Tc=80C tp limited by Tjmax Tj=Tjmax Th=80C Tc=80C Tj150C VGE=15V Tjmax Tj150C Turn off safe operating area VCE<=VCES Buck FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25C Tj=Tjmax Th=80C Tc=80C 56 76 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100C 150 A Power dissipation per Diode Ptot Tj=Tjmax Th=80C Tc=80C 70 107 W 175 C Maximum Junction Temperature copyright E\Vincotech Tjmax 1 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Maximum Ratings Tj=25C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 64 80 A 225 A 111 168 W 20 V 6 360 s V 175 C Tj150C VCE<=VCES 150 A VRRM Tc=25C 600 V IF Tj=Tjmax 54 77 A 150 A 70 107 W Tjmax 175 C Storage temperature Tstg -40...+125 C Operation temperature under switching condition Top -40...+(Tjmax - 25) C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Boost IGBT Collector-emitter break down voltage DC collector current VCES IC Th=80C Tc=80C Tj=Tjmax Pulsed collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80C Tc=80C Tj150C VGE=15V Tjmax Turn off safe operating area Buck and Boost Inverse FWD Peak Repetitive Reverse Voltage DC forward current Th=80C Tc=80C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80C Tc=80C Thermal Properties Insulation Properties Insulation voltage copyright E\Vincotech Vis t=2s DC voltage 2 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 Buck IGBT VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0,0012 75 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 1,58 1,83 700 Rgoff=8 Rgon=8 15 350 75 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C V V 30 none tr td(off) Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C A nA 144 145 17 21 207 228 104 124 1,48 1,88 2,04 2,58 ns mWs 4620 f=1MHz 0 Tj=25C 25 288 pF 137 15 480 75 Tj=25C Thermal grease thickness50um = 1 W/mK 470 nC 0,86 K/W Buck FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip copyright E\Vincotech VF 75 IRRM trr Qrr Rgon=8 15 350 di(rec)max /dt Erec RthJH Thermal grease thickness50um = 1 W/mK 75 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 1,2 1,46 1,40 70 81 134 265 3,22 6,01 5313 3017 0,64 1,33 1,35 3 2,2 V A ns C A/s mWs K/W Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,58 1,83 2,1 Boost IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time VCE=VGE 0,0012 75 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 30 700 Rgoff=8 Rgon=8 15 350 75 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C V V A nA none td(on) td(off) Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 142 143 21 24 206 227 90 112 1,30 1,68 2,15 2,75 ns mWs 4620 f=1MHz 0 Tj=25C 25 pF 288 137 480 15 75 Tj=25C Thermal grease thickness50um = 1 W/mK 470 nC 0,86 K/W Buck and Boost Inverse FWD Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 75 Tj=25C Tj=125C 1,2 Thermal grease thickness50um = 1 W/mK 1,46 1,40 2,2 V 1,35 K/W 22000 Thermistor Rated resistance R Deviation of R100 R/R Power dissipation P T=25C T=100C R100=1486 Power dissipation constant 210 mW 3,5 mW/K Tol. 3% T=25C B-value B(25/100) Tol. 3% T=25C T=25C 4 % T=25C B(25/50) copyright E\Vincotech 5 T=25C B-value Vincotech NTC Reference -5 K 4000 K A Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Buck IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 250 IC (A) 250 200 200 150 150 100 100 50 50 0 0 0 1 At tp = Tj = VGE from 2 3 4 VCE (V) 5 0 At tp = Tj = VGE from 350 s 25 C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 350 s 125 C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 250 IF (A) IC (A) 75 5 VCE (V) 60 200 45 150 30 100 15 50 Tj = Tjmax-25C Tj = Tjmax-25C Tj = 25C Tj = 25C 0 0 0 At tp = VCE = 2 350 10 copyrightE\ Vincotech 4 6 8 VGE (V) 10 0 At tp = s V 5 0,5 350 1 1,5 2 2,5 VF (V) 3 s Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Buck IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 6 Eon High T E (mWs) E (mWs) 5 Eoff High T 5 Eon Low T 4 Eon High T 4 Eoff Low T 3 Eon Low T Eoff High T 3 Eoff Low T 2 2 1 1 0 0 0 25 50 75 100 125 0 150 IC(A) 8 16 24 32 40 RG(W) With an inductive load at Tj = C 25/125 VCE = 350 V VGE = 15 V Rgon = 8 Rgoff = 8 With an inductive load at Tj = C 25/125 VCE = 350 V VGE = 15 V IC = 75 A FWD Figure 7 Typical reverse recovery energy loss FWD Figure 8 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) as a function of gate resistor Erec = f(RG) 2,0 E (mWs) E (mWs) 2,5 2,0 1,6 Erec High T 1,5 1,2 Erec High T 1,0 0,8 Erec Low T Erec Low T 0,5 0,4 0,0 0 25 50 75 100 125 0,0 150 0 IC(A) With an inductive load at Tj = 25/125 C VCE = 350 V VGE = 15 V Rgon = 8 copyright E\Vincotech 8 16 24 32 RG(W) 40 With an inductive load at Tj = 25/125 C VCE = 350 V VGE = 15 V IC = 75 A 6 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Buck IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdoff tdon tdon 0,10 tf 0,10 tf tr tr 0,01 0,01 0,00 0,00 0 25 50 75 100 125 150 0 8 16 24 32 IC(A) With an inductive load at Tj = 125 C VCE = 350 V VGE = 15 V Rgon = 8 Rgoff = 8 40 RG(W) With an inductive load at Tj = 125 C VCE = 350 V VGE = 15 V IC = 75 A FWD Figure 11 Typical reverse recovery time as a FWD Figure 12 Typical reverse recovery time as a function of collector current trr = f(Ic) function of IGBT turn on gate resistor trr = f(Rgon) 0,40 t rr(ms) t rr(ms) 0,35 0,30 trr High T trr High T 0,32 trr Low T 0,25 0,24 0,20 trr Low T 0,15 0,16 0,10 0,08 0,05 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 25 25/125 350 15 8 copyright E\Vincotech 50 75 100 125 IC(A) 0 150 At Tj = VR = IF = VGE = C V V 7 8 25/125 350 75 15 16 24 32 Rgon(W) 40 C V A V Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Buck FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr (mC) Qrr (mC) 7 Qrr High T 6 Qrr High T 8 5 6 4 Qrr Low T Qrr Low T 3 4 2 2 1 0 0 0 At At Tj = VCE = VGE = Rgon = 25 25/125 350 15 8 50 75 100 125 IC(A) 0 150 16 24 32 40 Rgon() At Tj = VR = IF = VGE = C V V FWD Figure 15 Typical reverse recovery current as a 8 25/125 350 75 15 C V A V FWD Figure 16 Typical reverse recovery current as a function of collector current IRRM = f(IC) function of IGBT turn on gate resistor IRRM = f(Rgon) 180 IrrM (A) 100 IrrM (A) IRRM High T 150 80 IRRM Low T 120 60 90 40 60 IRRM High T 20 30 0 IRRM Low T 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 350 15 8 copyright E\Vincotech 50 75 100 125 IC(A) 150 0 At Tj = VR = IF = VGE = C V V 8 8 25/125 350 75 15 16 24 32 Rgon(W) 40 C V A V Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Buck FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 9000 15000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIrec/dt dI0/dt 7500 dIrec/dt dI0/dt 12000 6000 9000 4500 6000 3000 3000 1500 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 350 15 8 50 75 100 125 IC(A) 150 0 16 24 32 40 Rgon(W) At Tj = VR = IF = VGE = C V V IGBT Figure 19 IGBT transient thermal impedance 8 25/125 350 75 15 C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 tp (s) 1021 10-5 At D= RthJH = tp / T 0,86 K/W 10-4 10-3 R (C/W) 0,03 0,14 0,43 0,17 0,05 0,04 R (C/W) 0,04 0,20 0,54 0,39 0,11 0,08 9 100 tp (s) 1021 K/W FWD thermal model values copyright E\Vincotech 10-1 tp / T 1,35 IGBT thermal model values Tau (s) 8,8E+00 1,3E+00 1,4E-01 3,3E-02 4,4E-03 3,3E-04 10-2 Tau (s) 9,0E+00 1,2E+00 1,4E-01 3,3E-02 4,8E-03 3,4E-04 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 210 180 80 150 60 120 90 40 60 20 30 0 0 0 At Tj = 50 175 100 150 Th (oC) 0 200 At Tj = VGE = C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 Th (oC) C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 150 200 120 80 90 60 60 40 30 20 0 0 0 At Tj = 50 175 copyright E\Vincotech 100 150 Th (oC) 200 0 At Tj = C 10 50 175 100 150 Th (oC) 200 C Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Buck & Boost IGBT Figure 25 Turn on safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 16 IC (A) VGE (V) 103 14 102 120V 12 480V 10 101 8 100 6 4 10-1 2 0 0 100 At Tj = 101 Tjmax copyright E\Vincotech 102 VCE(V) 50 100 150 103 200 250 300 350 400 450 500 Qg (nC) At IC = C 11 75 A Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 250 IC (A) IC (A) 250 200 200 150 150 100 100 50 50 0 0 0 1 At tp = Tj = VGE from 2 3 4 VCE (V) 5 0 At tp = Tj = VGE from 250 s 25 C 7 V to 17 V in steps of 1 V 1 2 3 4 VCE (V) 5 250 s 125 C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) IC (A) 75 60 45 30 15 Tj = 25C Tj = Tjmax-25C 0 0 2 4 6 8 10 VGE (V) At tp = VCE = 250 10 copyright E\Vincotech s V 12 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Boost IGBT Figure 4 Typical switching energy losses as a function of collector current E = f(IC) E (mWs) 5 E (mWs) IGBT Figure 5 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 6 Eon High T 5 4 Eon Low T Eon High T 4 Eoff Low T 3 Eoff High T Eon Low T 3 Eoff Low T 2 2 1 1 0 0 0 25 50 75 100 125 0 150 8 16 24 32 IC(A) With an inductive load at Tj = 25/125 C VCE = 350 V VGE = 15 V Rgon = 8 Rgoff = 8 RG( ) 40 With an inductive load at Tj = 25/125 C VCE = 350 V VGE = 15 V IC = 75 A IGBT Figure 6 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 7 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,5 E (mWs) E (mWs) 2,5 Erec High T 2,0 2,0 1,5 1,5 Erec Low T Erec High T 1,0 1,0 0,5 0,5 0,0 Erec Low T 0,0 0 25 50 75 100 125 IC (A) 150 0 With an inductive load at Tj = 25/125 C VCE = 350 V VGE = 15 V Rgon = 8 copyrightE\ Vincotech 8 16 24 32 RG ( ) 40 With an inductive load at Tj = 25/125 C VCE = 350 V VGE = 15 V IC = 75 A 13 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Boost IGBT Figure 8 Typical switching times as a function of collector current t = f(IC) IGBT Figure 9 Typical switching times as a function of gate resistor t = f(RG) 1 t (s) t (s) 1 tdoff tdon tdoff tf 0,1 tf tdon 0,1 tr tr 0,01 0,01 0,001 0 25 50 75 100 125 0,001 150 0 IC(A) With an inductive load at Tj = 125 C VCE = 350 V VGE = 15 V Rgon = 8 Rgoff = 8 8 16 24 32 RG( ) 40 With an inductive load at Tj = 125 C VCE = 350 V VGE = 15 V IC = 75 A FWD Figure 10 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 11 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,35 t rr(ms) 0,30 trr High T trr High T 0,30 0,25 0,25 0,20 0,20 0,15 trr Low T trr Low T 0,15 0,10 0,10 0,05 0,05 0,00 0,00 0 25 50 75 100 125 150 0 8 16 IC(A) At Tj = VCE = VGE = Rgon = 25/125 350 15 8 copyright E\Vincotech 24 32 40 Rgon(W) At Tj = VR = IF = VGE = C V V 14 25/125 350 75 15 C V A V Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Boost FWD Figure 12 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 13 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr (mC) Qrr (mC) 8 Qrr High T 8 6 Qrr High T 6 Qrr Low T 4 Qrr Low T 4 2 2 0 0 0 At At Tj = VCE = VGE = Rgon = 25 50 75 100 125 0 150 8 16 24 32 IC(A) 25/125 350 15 8 At Tj = VR = IF = VGE = C V V FWD Figure 14 Typical reverse recovery current as a 40 Rgon() 25/125 350 75 15 C V A V FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) function of IGBT turn on gate resistor IRRM = f(Rgon) 120 IrrM (A) IrrM (A) 100 IRRM High T 100 80 IRRM Low T 80 60 60 40 40 20 IRRM High T IRRM Low T 20 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/125 350 15 8 copyright E\Vincotech 50 75 100 125 IC(A) 0 150 8 16 24 32 40 Rgon(W) At Tj = VR = IF = VGE = C V V 15 25/125 350 75 15 C V A V Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Boost FWD Figure 16 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) 6000 direc / dt (A/ms) FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt dI0/dt 5000 10000 dIrec/dt dI0/dt 8000 4000 6000 3000 4000 2000 2000 1000 0 0 0 25 50 75 100 125 150 0 IC(A) At Tj = VCE = VGE = Rgon = 25/125 350 15 8 At Tj = VR = IF = VGE = C V V 8 25/125 350 75 15 16 24 32 Rgon(W) 40 C V A V IGBT Figure 18 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 10-4 At D= RthJH = tp / T 0,86 R (C/W) 0,03 0,14 0,43 0,17 0,05 0,04 Tau (s) 8,8E+00 1,3E+00 1,4E-01 3,3E-02 4,4E-03 3,3E-04 copyright E\Vincotech 10-3 10-2 10-1 100 tp (s) 1021 K/W 16 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Boost IGBT Figure 19 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 20 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 210 180 80 150 60 120 90 40 60 20 30 0 0 0 At Tj = 50 175 copyright E\Vincotech 100 150 Th(oC) 0 200 At Tj = VGE = C 17 50 175 15 100 150 Th(oC) 200 C V Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Buck and Boost Inverse Diode Buck and Boost Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Buck and Boost Inverse Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 250 200 100 150 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 100 10-1 50 Tj = Tjmax-25C Tj = 25C 0 0 0,5 1 1,5 2 2,5 10-2 3 10-5 VF (V) At tp = 350 10-4 At D= RthJH = s Buck and Boost Inverse Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 tp / T 1,35 10-2 100 tp (s) 1021 K/W Buck and Boost Inverse Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 Ptot (W) IF (A) 150 10-1 120 80 90 60 60 40 30 20 0 0 0 At Tj = 50 175 copyright E\Vincotech 100 150 Th (oC) 200 0 At Tj = C 18 50 175 100 150 Th (oC) 200 C Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values ** B25/100 1 - 1 T T 25 (c) (c) NTC-typical temperature characteristic R(T ) = R25 e R/ 24000 [] 20000 16000 12000 8000 4000 0 25 copyright E\Vincotech 50 75 100 T (C) 125 19 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Switching Definitions BUCK IGBT General conditions = 125 C Tj = 8 Rgon Rgoff = 8 Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 140 % % 120 tdoff 200 VCE IC 100 VGE 90% VCE 90% 150 80 IC 60 IC 1% tEoff 40 VCE 100 VGE tdon 50 20 VGE VGE10% 0 0 VCE3% IC10% tEon -20 -0,2 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 -15 15 700 75 0,23 0,47 0,2 0,3 -50 0,4 0,5 time (us) 2,8 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A s s Output inverter IGBT Figure 3 3,1 -15 15 700 75 0,15 0,34 3,2 3,3 3,4 3,5 time(us) V V V A s s Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 140 % 250 % 120 100 2,9 fitted VCE 200 IC Ic IC 90% 150 80 IC 60% 60 100 VCE IC 90% tr IC 40% 40 50 20 IC 10% 0 -20 0,05 IC 10% 0 tf 0,1 VC (100%) = IC (100%) = tf = copyright E\Vincotech 0,15 0,2 700 75 0,12 V A s 0,25 0,3 time (us) -50 3,05 0,35 VC (100%) = IC (100%) = tr = 20 3,1 3,15 700 75 0,02 3,2 3,25 time(us) 3,3 V A s Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Switching Definitions BUCK IGBT Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 140 % 120 IC 1% % Pon 120 100 Eoff Poff Eon 100 80 80 60 60 40 40 20 20 VGE90% VGE 10% 0 tEoff -20 -0,2 tEon -20 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 52,15 2,58 0,47 0,2 0,3 2,9 0,4 0,5 time (us) 3 3,1 3,2 3,3 3,4 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ s Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) VGEE (V) VCE3% 0 52,15 1,88 0,34 kW mJ s Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 Id % 15 80 trr 10 40 5 0 fitted Vd 0 IRRM 10% -5 -40 -10 -80 -15 -20 -200 IRRM 90% IRRM 100% -120 0 200 400 600 800 1000 3 3,1 3,2 3,3 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright E\Vincotech -15 15 700 75 808,15 3,4 3,5 3,6 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 700 75 -81 0,27 V A A s Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Switching Definitions BUCK IGBT Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Qrr Id 100 80 tQrr 50 Erec 100 tErec 60 0 40 -50 20 -100 Prec 0 -150 -20 2,9 3,1 3,3 3,5 3,7 3,9 2,9 time(us) Id (100%) = Qrr (100%) = tQrr = 75 6,01 0,54 Prec (100%) = Erec (100%) = tErec = A C s 3,1 3,3 52,15 1,33 0,54 3,5 3,7 time(us) 3,9 kW mJ s Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright E\Vincotech Figure 12 BOOST stage switching measurement circuit 22 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as Standard in flow0 12mm housing 10-FZ06NIA075SA-P926F33 P926F33 P926F33 Outline Pinout copyright E\Vincotech 23 Revision: 1 10-FZ06NIA075SA-P926F33 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright E\Vincotech 24 Revision: 1