10-FZ06NIA075SA-P926F33
preliminary datasheet
flowNPC0 600V/75A
Ɣ Neutral-point-Clamped inverter
Ɣ Clip-In PCB mounting
Ɣ Low Inductance Layout
Ɣ UPS and Solar
Ɣ 10-FZ06NIA075SA-P926F33
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Buck IGBT
T
=80
°
C
64
600Collector-emitter break down voltage V
CES
Features flow0 housing
Target Applications Schematic
Types
Maximum Ratings
Condition
V
T
h
=80 C
64
T
c
=80°C 80
T
h
=80°C 111
T
c
=80°C 168
t
SC
T
j
150°C 6μs
V
CC
V
GE
=15V 360 V
T
j
150°C
V
CE
<=V
CES
Buck FWD
T
h
=80°C 56
T
c
=80°C 76
T
h
=80°C 70
T
c
=80°C 107
T
j
=T
j
max
T
j
=T
j
max
t
p
limited by T
j
max
T
j
=T
j
max
T
j
=25°C
Maximum Junction Temperature
±20
W
A
175 °C
Pulsed collector current
DC collector current
I
Cpulse
I
C
600 V
W
I
FRM
T
j
max
Repetitive peak forward current
P
tot
Power dissipation per Diode
V
°C
A
t
p
limited by T
j
max
A
I
F
V
RRM
Maximum Junction Temperature
Power dissipation per IGBT
V
GE
T
j
max
P
tot
Short circuit ratings
DC forward current
Peak Repetitive Reverse Voltage
Gate-emitter peak voltage
Turn off safe operating area
A
T
c
=100°C 150
175
T
j
=T
j
max
225
150 A
copyright E\Vincotech 1 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Maximum Ratings
Condition
Boost IGBT
T
h
=80°C 64
T
c
=80°C 80
T
h
=80°C 111
T
c
=80°C 168
t
SC
T
j
150°C 6μs
V
CC
V
GE
=15V 360 V
T
j
150°C
V
CE
<=V
CES
Buck and Boost Inverse FWD
T
h
=80°C 54
T
c
=80°C 77
175
T
c
=25°CV
RRM
DC forward current
I
FRM
150
t
p
limited by T
j
max
600
V
A
V
°C
W
A
Gate-emitter peak voltage
Maximum Junction Temperature
Short circuit ratings
Peak Repetitive Reverse Voltage
Repetitive peak forward current
Power dissipation per IGBT
Pulsed collector current
DC collector current
Collector-emitter break down voltage
V
A
A
V
GE
I
F
T
j
=T
j
max
T
j
max
P
tot
T
j
=T
j
max
t
p
limited by T
j
max
T
j
=T
j
maxI
C
V
CES
I
Cpuls
Turn off safe operating area 150 A
600
225
±20
T
h
=80°C 70
T
c
=80°C 107
Thermal Properties
Insulation Properties
V
is
t=2s DC voltage 4000 V
min 12,7 mm
min 12,7 mm
Maximum Junction Temperature T
j
max
P
tot
T
j
=T
j
max
Power dissipation per Diode W
°C
p
j
Storage temperature T
stg
°C
-40…+(Tjmax - 25) °C
Clearance
Insulation voltage
Creepage distance
T
op
Operation temperature under switching condition
-40…+125
175
copyright E\Vincotech 2 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Parameter Symbol Unit
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] o r
IF [A ] o r
ID [A] TjMin Typ Max
T
j
=25°C 5 5,8 6,5
T
j
=125°C
T
j
=25°C 1,58
T
j
=125°C 1,83
T
j
=25°C 30
T
j
=125°C
T
j
=25°C 700
T
j
=125°C
T
j
=25°C 144
T
j
=125°C 145
T
j
=25°C 17
T
j
=125°C 21
T
j
=25°C 207
T
j
=125°C 228
T
j
=25°C 104
T
j
=125°C 124
T
j
=25°C 1,48
T
j
=125°C 1,88
T
j
=25°C 2,04
T
j
=125°C 2,58
Thermal resistance chip to heatsink per chip R
thJH
Thermal grease
thickness50um
Ȝ = 1 W/mK
0,86 K/W
T
j
=25°C 1,2 1,46 2,2
T
j
=125°C 1,40
350
480
Tj=25°C
75
75
V
75
Tj=25°C±15
±15
0
C
ies
Rgoff=8 ȍ
V
CE
=V
GE
f=1MHz
Rgon=8 ȍ
I
GES
t
f
E
on
E
off
t
d(on)
t
r
t
d(off)
Q
Gate
V
F
C
oss
C
rss
Input capacitance
Output capacitance
Turn-off energy loss per pulse
Collector-emitter saturation voltage
Rise time
Collector-emitter cut-off current incl. Diode
Gate-emitter leakage current
Characteristic Values
ValueConditions
137Reverse transfer capacitance
Diode forward voltage
Gate charge
Buck FWD
0
Turn-on energy loss per pulse
V
GE(th)
V
CE(sat)
I
CES
R
gint
Integrated Gate resistor
Buck IGBT
Gate emitter threshold voltage
15
0,0012
600
0
25
20
Fall time
Turn-off delay time
Turn-on delay time
75
4620
μA
mWs
pF
nC
V
ȍ
V
470
nA
none
ns
288
T
j
=25°C 70
T
j
=125°C 81
T
j
=25°C 134
T
j
=125°C 265
T
j
=25°C 3,22
T
j
=125°C 6,01
di
(
rec
)
max T
j
=25°C 5313
/d
T
j
=125°C 3017
T
j
=25°C 0,64
T
j
=125°C 1,33
Thermal resistance chip to heatsink per chip R
thJH
Thermal grease
thickness50um
Ȝ = 1 W/mK
1,35 K/W
75350±15
Q
rr
t
rr
ErecReverse recovered energy
Peak rate of fall of recovery current
I
RRM
μC
mWs
A/μs
Reverse recovered charge
Peak reverse recovery current
Reverse recovery time
Rgon=8 ȍ
A
ns
copyright E\Vincotech 3Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Parameter Symbol Unit
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] o r
IF [A ] o r
ID [A] TjMin Typ Max
Characteristic Values
ValueConditions
T
j
=25°C 5 5,8 6,5
T
j
=125°C
T
j
=25°C 1 1,58 2,1
T
j
=125°C 1,83
T
j
=25°C 30
T
j
=125°C
T
j
=25°C 700
T
j
=125°C
T
j
=25°C 142
T
j
=125°C 143
T
j
=25°C 21
T
j
=125°C 24
T
j
=25°C 206
T
j
=125°C 227
T
j
=25°C 90
T
j
=125°C 112
T
j
=25°C 1,30
T
j
=125°C 1,68
T
j
=25°C 2,15
T
j
=125°C 2,75
Thermal resistance chip to heatsink per chip R
thJH
Thermal grease
thickness50um
Ȝ = 1 W/mK
0,86 K/W
T
j
=25°C 1,2 1,46 2,2
pF
V
nC
137
Tj=25°C
Gate charge
Input capacitance
Output capacitance
C
rss
C
oss
C
ies
E
off
Turn-on energy loss per pulse
Boost IGBT
Gate-emitter leakage current
Gate emitter threshold voltage
E
on
Fall time
Turn-off delay time
Collector-emitter saturation voltage
Collector-emitter cut-off incl diode
Turn-on delay time
480
Reverse transfer capacitance
Diode forward voltage
V
F
Q
Gate
Buck and Boost Inverse FWD
Rise time
Integrated Gate resistor
Turn-off energy loss per pulse
0
±15
t
d(off)
t
f
t
r
t
d(on)
R
gint
I
GES
I
CES
V
GE(th)
V
CE(sat)
ns
mWs
0
ȍ
600
350
75 Tj=25°C
V
CE
=V
GE
f=1MHz
Rgon=8 ȍ
Rgoff=8 ȍ
V
V
±15
15
0μA
nA
75
75
0,0012
20
75
25 288
4620
470
none
Tj=125°C 1,40
Thermal resistance chip to heatsink per chip R
thJH
Thermal grease
thickness50um
Ȝ = 1 W/mK
1,35 K/W
T=25°C
T=25°C 4000
A
K
Vincotech NTC Reference
B-value B
(25/100)
Tol. ±3%
KT=25°CB-value B
(25/50)
Tol. ±3%
R
V
%
ȍ22000T=25°C
3,5
-5
Diode
forward
voltage
V
F
mW/K
5
Power dissipation P mW210
Rated resistance
Power dissipation constant
Deviation of R100 ǻR/R R100=1486 ȍ
75
Thermistor
T=25°C
T=25°C
T=100°C
copyright E\Vincotech 4Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 1 IGBT Figure 2 IGBT
Ty pi cal output characteristics
IC = f(VCE) IC = f(VCE)
At At
tp= 350 ȝstp= 350 ȝs
Tj= 25 °C Tj = 125 °C
VGE from 7 V to 17 V in steps of 1 V VGE from 7 V to 17 V in steps of 1 V
Figure 3 IGBT Figure 4 FWD
Ty pical transfer characteristics Typi cal diode forward current as
IC = f(VGE) a function of forward v ol tage
Buck
Ty pi cal output characteristics
0
50
100
150
200
250
012345
IC(A)
VCE (V)
0
50
100
150
200
250
012345
IC (A)
VCE (V)
IF = f(VF)
At At
tp= 350 ȝstp= 350 ȝs
VCE = 10 V
0
15
30
45
60
75
0246810
IC(A)
VGE (V)
Tj = 25C
Tj= Tjmax-25C
0
50
100
150
200
250
0 0,5 1 1,5 2 2,5 3
IF(A)
VF (V)
Tj = 25C
Tj = Tjmax-25C
copyrightE\ Vincotech 5 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 5 IGBT Figure 6 IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function o f g ate r esistor
E = f(IC)E = f(RG)
With an inductive load at With an inductive load at
Tj = 25/125 °C Tj = 25/125 °C
VCE =350 V VCE =350 V
VGE =±15 V VGE =±15 V
Rgon =8ȍIC =75 A
Rgoff = 8ȍ
Figure 7 FWD Figure 8 FWD
Typical reverse recovery energy loss Typical reverse recovery energy loss
Buck
Eon High T
Eoff High T
Eon Low T
Eoff Low T
0
1
2
3
4
5
0 25 50 75 100 125 150
E (mWs)
IC(A)
Eoff High T
Eon High T
Eon Low T
Eoff Low T
0
1
2
3
4
5
6
0 8 16 24 32 40
E (mWs)
RG(W)
as a function of collector current as a function of gate resistor
Erec = f(Ic)E
rec = f(RG)
With an inductive load at With an inductive load at
Tj = 25/125 °C Tj = 25/125 °C
VCE =350 V VCE =350 V
VGE =±15 V VGE =±15 V
Rgon =8ȍIC =75 A
Erec High T
Erec Low T
0,0
0,5
1,0
1,5
2,0
2,5
0 25 50 75 100 125 150
E (mWs)
IC(A)
Erec High T
Erec Low T
0,0
0,4
0,8
1,2
1,6
2,0
0 8 16 24 32 40
E (mWs)
RG(W)
copyright E\Vincotech 6 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 9 IGBT Figure 10 IGBT
Ty pi cal switching times as a Ty pical switching times as a
function of collector current function of gate resistor
t = f(IC)t = f(RG)
With an inductive load at With an inductive load at
Tj = 125 °C Tj = 125 °C
VCE =350 V VCE =350 V
VGE =±15 V VGE =±15 V
Rgon =8ȍIC =75 A
Rgoff = 8ȍ
Figure 11 FWD Figure 12 FWD
Ty pi cal reverse recov ery time as a Ty pical reverse recovery time as a
Buck
tdoff
tf
tdon
tr
0,00
0,01
0,10
1,00
0 25 50 75 100 125 150
t (ms)
IC(A)
tdoff
tf
tdon
tr
0,00
0,01
0,10
1,00
0 8 16 24 32 40
t (ms)
RG(W)
function of collector current function of IGBT turn on gate resistor
trr = f(Ic) trr = f(Rgon)
At At
Tj= 25/125 °C Tj = 25/125 °C
VCE =350 V VR=350 V
VGE =±15 V IF=75 A
Rgon =8ȍVGE =±15 V
trr High T
trr Low T
0,00
0,08
0,16
0,24
0,32
0,40
0 8 16 24 32 40
t rr(ms)
Rgon(W)
trr High T
trr Low T
0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0 25 50 75 100 125 150
t rr(ms)
IC(A)
copyright E\Vincotech 7 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 13 FWD Figure 14 FWD
Ty pi cal reverse recovery charge as a Typ ical reverse recovery charge as a
function of collector current function of IGBT turn on gate resistor
Qrr = f(IC)Q
rr = f(Rgon)
At
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =350 V VR=350 V
VGE =±15 V IF=75 A
Rgon =8ȍVGE =±15 V
Figure 15 FWD Figure 16 FWD
Ty pi cal reverse recovery current as a Typ ical reverse recovery current as a
Buck
Qrr High T
Qrr Low T
0
1
2
3
4
5
6
7
0 8 16 24 32 40
Qrr (mC)
Rgon(Ω)
Qrr High T
Qrr Low T
0
2
4
6
8
10
0 25 50 75 100 125 150
Qrr (mC)
IC(A)
function of collector current function of IGBT turn on gate resistor
IRRM = f(IC)I
RRM = f(Rgon)
At At
Tj= 25/125 °C Tj = 25/125 °C
VCE =350 V VR=350 V
VGE =±15 V IF=75 A
Rgon =8ȍVGE =±15 V
IRRM High T
IRRM Low T
0
30
60
90
120
150
180
0 8 16 24 32 40
IrrM (A)
Rgon(W)
IRRM High T
IRRM Low T
0
20
40
60
80
100
0 25 50 75 100 125 150
IrrM (A)
IC(A)
copyright E\Vincotech 8 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 17 FWD Figure 18 FWD
Typical rate of fall of forward Typical rate of fall of forward
and reverse recovery current as a and reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Ic) dI0/dt,dIrec/dt = f(Rgon)
At At
Tj= 25/125 °C Tj = 25/125 °C
VCE =350 V VR=350 V
VGE =±15 V IF=75 A
Rgon =8ȍVGE =±15 V
Figure 19 IGBT Figure 20 FWD
IGBT tr an sient thermal imp ed a n ce FWD transient therma l impedance
Buck
0
3000
6000
9000
12000
15000
0 8 16 24 32 40
direc / dt (A/ms)
Rgon(W)
dIrec/dt
dI0/dt
0
1500
3000
4500
6000
7500
9000
0 25 50 75 100 125 150
direc / dt (A/ms)
IC(A)
dIrec/dt
dI0/dt
as a function of pulse width as a function of pulse width
ZthJH = f(tp)Z
thJH = f(tp)
At At
D = tp / T D = tp/ T
R
thJH
=0,86 K/W RthJH =1,35 K/W
IGBT thermal model values FWD thermal model values
R (C/W) Tau (s) R (C/W) Tau (s)
0,03 8,8E+00 0,04 9,0E+00
0,14 1,3E+00 0,20 1,2E+00
0,43 1,4E-01 0,54 1,4E-01
0,17 3,3E-02 0,39 3,3E-02
0,05 4,4E-03 0,11 4,8E-03
0,04 3,3E-04 0,08 3,4E-04
ZthJH (K/W)
tp(s)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
102
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
ZthJH (K/W)
tp(s)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
102
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
copyright E\Vincotech 9 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 21 IGBT Figure 22 IGBT
Power dissipation as a Collector current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
C = f(Th)
At At
Tj=175 °C Tj = 175 °C
VGE =15 V
Figure 23 FWD Figure 24 FWD
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
F = f(Th)
Buck
0
30
60
90
120
150
180
210
0 50 100 150 200
Ptot (W)
Th (oC)
0
20
40
60
80
100
0 50 100 150 200
IC (A)
Th (oC)
150 100
At At
Tj = 175 °C Tj = 175 °C
0
30
60
90
120
0 50 100 150 200
Ptot (W)
Th (oC)
0
20
40
60
80
0 50 100 150 200
IF (A)
Th (oC)
copyright E\Vincotech 10 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 25 IGBT Figure 26 IGBT
Turn on safe operating area as a function Gate vo l tage vs Gate charge
of collector-emi tter voltage
IC = f(VCE)V
GE = f(Qg)
At At
Tj=T
jmax ºC IC = 75 A
Buck & Boos t
IC (A)
VCE(V)
103
100
10-1
101
102
101102
100103
0
2
4
6
8
10
12
14
16
0 50 100 150 200 250 300 350 400 450 500
VGE (V)
Qg(nC)
120
V
480
V
copyright E\Vincotech 11 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 1 IGBT Figure 2 IGBT
Ty pi cal output characteristics Typ i cal output characteristics
IC = f(VCE) IC = f(VCE)
At At
tp= 250 ȝstp= 250 ȝs
Tj= 25 °C Tj = 125 °C
VGE from 7 V to 17 V in steps of 1 V VGE from 7 V to 17 V in steps of 1 V
Figure 3 IGBT
Ty pi cal transfer characteristics
IC = f(VGE)
Boost
0
50
100
150
200
250
012345
IC(A)
VCE (V)
75
0
50
100
150
200
250
012345
IC(A)
VCE (V)
At
tp = 250 ȝs
VCE = 10 V
0
15
30
45
60
0246810
IC(A)
VGE (V)
Tj = 25C
Tj= Tjmax-25C
copyright E\Vincotech 12 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 4 IGBT Figure 5 IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function o f g ate r esistor
E = f(IC)E = f(RG)
With an inductive load at With an inductive load at
Tj = 25/125 °C Tj = 25/125 °C
VCE =350 V VCE =350 V
VGE =±15 V VGE =±15 V
Rgon =8ȍIC = 75 A
Rgoff = 8ȍ
Figure 6 IGBT Figure 7 IGBT
Typical reverse recovery energy loss Typical reverse recovery energy loss
as a function of collector current as a function o f g ate r esistor
Boost
Eoff High T
Eon High T
Eon Low T
Eoff Low T
0
1
2
3
4
5
0255
0 75 100 125 150
E (mWs)
IC(A)
Eoff High T
Eon High T
Eon Low T
Eoff Low T
0
1
2
3
4
5
6
0 8 16 24 32 40
E (mWs)
RG(
Ω
ΩΩ
Ω
)
Erec = f(Ic)E
rec = f(RG)
With an inductive load at With an inductive load at
Tj = 25/125 °C Tj = 25/125 °C
VCE =350 V VCE =350 V
VGE =±15 V VGE =±15 V
Rgon =8ȍIC = 75 A
Erec High T
Erec Low T
0,0
0,5
1,0
1,5
2,0
2,5
0 25 50 75 100 125 150
E (mWs)
IC(A)
Erec High T
Erec Low T
0,0
0,5
1,0
1,5
2,0
2,5
0 8 16 24 32 40
E (mWs)
RG(
Ω
ΩΩ
Ω
)
copyrightE\ Vincotech 13 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 8 IGBT Figure 9 IGBT
Ty pi cal switching times as a Ty pical switching times as a
function of collector current function of gate resistor
t = f(IC)t = f(RG)
With an inductive load at With an inductive load at
Tj = 125 °C Tj = 125 °C
VCE =350 V VCE =350 V
VGE =±15 V VGE =±15 V
Rgon =8ȍIC = 75 A
Rgoff = 8ȍ
Figure 10 FWD Figure 11 FWD
Ty pi cal reverse recov ery time as a Ty pical reverse recovery time as a
function of collector current function of IGBT turn on gate resistor
Boost
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 25 50 75 100 125 150
t (μs)
IC(A)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 8 16 24 32 40
t (μs)
RG(
Ω
ΩΩ
Ω
)
trr = f(Ic) trr = f(Rgon)
At At
Tj= 25/125 °C Tj = 25/125 °C
VCE =350 V VR=350 V
VGE =±15 V IF=75 A
Rgon =8ȍVGE =±15 V
trr High T
trr Low T
0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0 8 16 24 32 40
t rr(ms)
Rgon(W)
trr High T
trr Low T
0,00
0,05
0,10
0,15
0,20
0,25
0,30
0 25 50 75 100 125 150
t rr(ms)
IC(A)
copyright E\Vincotech 14 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 12 FWD Figure 13 FWD
Ty pi cal reverse recovery charge as a Typ ical reverse recovery charge as a
function of collector current function of IGBT turn on gate resistor
Qrr = f(IC)Q
rr = f(Rgon)
At
At At
Tj = 25/125 °C Tj = 25/125 °C
VCE =350 V VR=350 V
VGE =±15 V IF=75 A
Rgon =8ȍVGE =±15 V
Figure 14 FWD Figure 15 FWD
Ty pi cal reverse recovery current as a Typ ical reverse recovery current as a
Boost
Qrr High T
Qrr Low T
0
2
4
6
8
0 8 16 24 32 40
Qrr (mC)
Rgon(Ω)
Qrr High T
Qrr Low T
0
2
4
6
8
10
0 25 50 75 100 125 150
Qrr (mC)
IC(A)
function of collector current function of IGBT turn on gate resistor
IRRM = f(IC)I
RRM = f(Rgon)
At At
Tj= 25/125 °C Tj = 25/125 °C
VCE =350 V VR=350 V
VGE =±15 V IF=75 A
Rgon =8ȍVGE =±15 V
IRRM High T
IRRM Low T
0
20
40
60
80
100
120
0 8 16 24 32 40
IrrM (A)
Rgon(W)
IRRM High T
IRRM Low T
0
20
40
60
80
100
0 25 50 75 100 125 150
IrrM (A)
IC(A)
copyright E\Vincotech 15 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 16 FWD Figure 17 FWD
Typical rate of fall of forward Typical rate of fall of forward
and reverse recovery current as a and reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Ic) dI0/dt,dIrec/dt = f(Rgon)
At At
Tj= 25/125 °C Tj = 25/125 °C
VCE =350 V VR=350 V
VGE =±15 V IF=75 A
Rgon =8ȍVGE =±15 V
Figure 18 IGBT
Boost
0
2000
4000
6000
8000
10000
0 8 16 24 32 40
direc / dt (A/ms)
Rgon(W)
dIrec/dt
dI0/dt
0
1000
2000
3000
4000
5000
6000
0 25 50 75 100 125 150
direc / dt (A/ms)
IC(A)
dIrec/dt
dI0/dt
IGBT transi ent thermal impedance
as a function of pulse width
ZthJH = f(tp)
At
D = tp / T
RthJH =0,86 K/W
R (C/W) Tau (s)
0,03 8,8E+00
0,14 1,3E+00
0,43 1,4E-01
0,17 3,3E-02
0,05 4,4E-03
0,04 3,3E-04
ZthJH (K/W)
tp(s)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
102
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
copyright E\Vincotech 16 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 19 IGBT Figure 20 IGBT
Power dissipation as a Collector current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
C = f(Th)
At At
Tj=175 ºC Tj = 175 ºC
VGE =15 V
Boost
0
30
60
90
120
150
180
210
0 50 100 150 200
Ptot (W)
Th(oC)
0
20
40
60
80
100
0 50 100 150 200
IC (A)
Th(oC)
copyright E\Vincotech 17 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 1 Buck and Boost Inverse Diode Figure 2 Buck and Boost Inverse Diode
Typical diode forward current as Diode transient thermal impedance
a function of forward v oltage as a function of pulse width
IF = f(VF) ZthJH = f(tp)
At At
tp= 350 ȝs D = tp / T
RthJH =1,35 K/W
Figure 3 Buck and Boost Inverse Diode Figure 4 Buck and Boost Inverse Diode
Power dissi pati on as a Forward current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
F = f(Th)
Buck a nd Boost Inverse Diode
0
50
100
150
200
250
0 0,5 1 1,5 2 2,5 3
IF(A)
VF(V)
Tj = 25C
Tj = Tjmax-25C
ZthJC (K/W)
tp(s)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
102
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
150 100
At At
Tj = 175 ºC Tj = 175 ºC
0
30
60
90
120
0 50 100 150 200
Ptot (W)
Th(oC)
0
20
40
60
80
0 50 100 150 200
IF (A)
Th(oC)
copyright E\Vincotech 18 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 1 Thermistor Figure 2 Thermistor
Ty pical NTC characteristic Ty p ical NTC resistance values
as a function of temperature
RT = f(T)
Thermistor
0
4000
8000
12000
16000
20000
24000
25 50 75 100 125
R/ȍ
T (°C)
NTC-typical temperature characteristic
[]
Ω= ¸
¸
¹
·
¨
¨
©
§
¸
¸
¹
·
¨
¨
©
§
25
100/25 11
25
)( TT
B
eRTR
copyright E\Vincotech 19 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Tj125 °C
Rgon 8 ȍ
Rgoff 8 ȍ
Figure 1 Output inverter IGBT Figure 2 Output inverter IGBT
Turn-off Switching Wav eforms & definiti on of tdof
f
, tEof
f
Turn-on Switching Waveforms & definition of tdon, tEon
(tEof
f
= integ r ating time for E of
f
)(t
Eon = integrating time for Eon)
VGE (0%) = -15 VVGE (0%) = -15 V
VGE (100%) = 15 V VGE (100%) = 15 V
VC(100%) = 700 V VC (100%) = 700 V
IC (100%) = 75 A IC(100%) = 75 A
tdoff = 0,23 ȝstdon = 0,15 ȝs
tEoff =0,47 ȝstEon =0,34 ȝs
Figure 3 Output inverter IGBT Figure 4 Output inverter IGBT
Switching Def i nit i ons BUCK IGBT
General conditions
=
=
=
IC 1%
VCE 90%
VGE 90%
-20
0
20
40
60
80
100
120
140
-0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5
%
time (us)
t
do
f
f
tEoff
VCE
IC
VGE IC10%
VGE10%
tdon
VCE3%
-50
0
50
100
150
200
250
2,8 2,9 3 3,1 3,2 3,3 3,4 3,5
%
time(us)
IC
VCE
tEon
VGE
Turn-off Switching Wav eforms & definiti on of tfTurn-on Switching Waveforms & definition of t
r
VC (100%) = 700 V VC (100%) = 700 V
IC (100%) = 75 A IC(100%) = 75 A
tf=0,12 ȝstr =0,02 ȝs
fitted
IC 10%
IC 90%
IC 60%
IC 40%
-20
0
20
40
60
80
100
120
140
0,05 0,1 0,15 0,2 0,25 0,3 0,35
%
time (us)
VCE
IC
tf
IC 10%
IC 90%
-50
0
50
100
150
200
250
3,05 3,1 3,15 3,2 3,25 3,3
%
time(us)
tr
VCE
Ic
copyright E\Vincotech 20 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 5 Output inverter IGBT Figure 6 Output inverter IGBT
Turn-off Switching Wav eforms & definiti on of tEof
f
Turn-on Switching Waveforms & definition of tEon
Poff (100%) = 52,15 kW Pon (100%) = 52,15 kW
Eoff (100%) = 2,58 mJ Eon (100%) = 1,88 mJ
tEoff =0,47 ȝstEon =0,34 ȝs
Figure 7 Output inverter FWD Figure 8 Output inverter IGBT
Gate vo l tage vs Gate charge (measured) Turn -off Switchin g Waveforms & definition of tr
r
Switching Def i nit i ons BUCK IGBT
IC1%
VGE90%
-20
0
20
40
60
80
100
120
-0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5
%
time (us)
Pof
f
Eoff
tEoff
VCE3%
VGE 10%
-20
0
20
40
60
80
100
120
140
2,9 3 3,1 3,2 3,3 3,4
%
time(us)
Pon
Eon
tEon
20
E
(V)
120
%
Id
VGEoff = -15 V Vd (100%) = 700 V
VGEon = 15 V Id(100%) = 75 A
VC(100%) = 700 V IRRM (100%) = -81 A
IC (100%) = 75 A trr = 0,27 ȝs
Qg = 808,15 nC
-20
-15
-10
-5
0
5
10
15
-200 0 200 400 600 800 1000
VG
E
Qg (nC)
IRRM 10%
IRRM 90%
IRRM 100%
trr
-120
-80
-40
0
40
80
3 3,1 3,2 3,3 3,4 3,5 3,6
%
time(us)
Vdfitted
copyright E\Vincotech 21 Revision: 1
10-FZ06NIA075SA-P926F33
preliminary datasheet
Figure 9 Output inverter FWD Figure 10 Output inverter FWD
Turn-on Switching Waveforms & definition of tQr
r
Turn-on Switching Waveforms & definition of tErec
(tQrr = integr ating time for Qr
r
)(t
Erec= integrating time for Erec)
Id (100%) = 75 A Prec (100%) = 52,15 kW
Qrr (100%) = 6,01 ȝCErec (100%) = 1,33 mJ
tQrr =0,54 ȝstErec = 0,54 ȝs
Figure 11 Figure 12
BUCK stage switch ing measurement circuit BOOST stage switching measurement circuit
Measurement circuits
Switching Def i nit i ons BUCK IGBT
tQrr
-150
-100
-50
0
50
100
150
2,9 3,1 3,3 3,5 3,7 3,9
%
time(us)
IdQ
rr
-20
0
20
40
60
80
100
120
2,9 3,1 3,3 3,5 3,7 3,9
%
time(us)
Prec
Erec
tErec
copyright E\Vincotech 22 Revision: 1
10-FZ06NIA 075SA-P926F33
preliminary datasheet
Version Ordering Code in DataMatrix as in packaging barcode as
Standard in flow0 12mm housing 10-FZ06NIA075SA-P926F33 P926F33 P926F33
Outline
Ordering Code & Marking
Orderi ng Code and Marking - Outline - Pinout
Pinout
copyright E\Vincotech 23 Revision: 1
10-FZ06NIA 075SA-P926F33
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Formative or In Design
First Production
Full Production
DISCLAIMER
LIFE SUPPORT POLICY
As used herein:
Final
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Target
Product StatusDatash eet Status Definition
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
Preliminary
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
copyright E\Vincotech 24 Revision: 1