INDEX

Order Code	Description	Manufacturer	Page Number
789-719	CLC408AJE: High Speed Low Power Line Driver	Comlinear (NSC)	1
789-707	CLC408AJP: High Speed Low Power Line Driver	Comlinear (NSC)	1
792-731	CLC436AJP: Low Power Voltage Feedback Amplifier	Comlinear (NSC)	1
792-561 704-453	CLC533AJP: High Speed 4:1 Analogue Mulitplexer	Comlinear (NSC) NSC	2
704-453 704-441	LM2825N33: 1A DC-DC Converter LM2825N50: 1A DC-DC Converter	NSC	2
792-160	LM56BIM: Dual Output Low Power Thermostat	NSC	2 2 2 3
791-787	LM56CIM: Dual Output Low Power Thermostat	NSC	3
790-722	LM78CCVF: Microprocessor System Hardware Monitor	NSC	3
703-722	LM75CIM3: I ² C Digital Temperature Sensor and Thermal Watchdog	NSC	4
703-710 597-351	LM75CIM5: I ² C Digital Temperature Sensor and Thermal Watchdog DG611DJ: Analogue Switch	NSC TEMIC	4 5
597-363	DG612DJ: Analogue Switch	TEMIC	
597-375	DG613DJ: Analogue Switch	TEMIC	5 5 5 6
941-864	TFDS4000: IrDA Compatible Transceiver	TEMIC	5
705-263	Si9104DJ: High Voltage Switchmode Regulator	TEMIC	
663-773 705-275	Si9434DY: P-Channel Enhancement-Mode MOSFET Si9114ADJ: High Frequency PWM Controller	TEMIC	6 7
704-957	U4082BA: Voice Switched Circuit	TEMIC	8
786-809	HIP2060AS1: Half Bridge Power MOSFET Array	HARRIS	9
786-810	HIP2060AS2: Half Bridge Power MOSFET Array	HARRIS	9
786-822	HIP2100IP: High Frequency, Half-Bridge Driver	HARRIS	9
795-410 505-031	HIP4083AP: Three Phase High Side Driver HIP5600IS: Thermally Protected High Voltage Regulator	HARRIS HARRIS	10 10
792-962	MC1496P: Balanced Modulator/Demodulator	MOTOROLA	11
793-061	MC13055D: Wideband FSK Receiver	MOTOROLA	11
793-358	MC3371P: Low Power Narrowband FM IF	MOTOROLA	12
793-360	MC3372P: Low Power Narrowband FM IF	MOTOROLA	12
632-405 795-239	SABC167CRLM: High Performance CMOS 16-Bit Microcontroller with CAN MICRO-ISP Programmer	SIEMENS EQUINOX TECHNOLOGIES	13 14
795-392	AT89S8252-24PC: In-System Programmable Micro	ATMEL	14/15
795-409	AT89S8252-24JC: In-System Programmable Micro	ATMEL	14/15
787-115	DS1302: Trickle Charge Timekeeping Chip	DALLAS	16
787-127 787-164	DS1302Z: Trickle Charge Timekeeping Chip DS1644-120: Non-Volatile Time-Keeping RAM	DALLAS DALLAS	16 16
/0/-104	DS1233: EconoReset Family	DALLAS	17
_	DS1810: EconoReset Family	DALLAS	17
_	DS1231/2: Micromonitor Family	DALLAS	17
787-346	DS1705/6/7: Micromonitor Family	DALLAS SGS-THOMSON	17 18
/0/-340	TSH94IN: High Speed Low Power Quad Op-Amp IDT74FST: Octal Bus Switch Family	IDT	10
569-914	3x6mm: Watch Crystal	AEL	20
788-491	8 Pin DIL: Crystal Clock Oscillator Module	AEL	20
788-296	14 Pin DIL: Crystal Clock Oscillator Module	AEL	20
789-446 699-871	AD768AR: 16-Bit D/A Converter ADC912AFP: CMOS Microprocessor Compatible 12- Bit ADC	ANALOG DEVICES ANALOG DEVICES	21 21
794-764	IVC102P: Precision Switched Integrator Transimpedance Amplifier	BURR-BROWN	22
791-945	SHC298AJP: Monolithic Sample/Hold Amplifier	BURR-BROWN	22
796-293	LT1016CS8: Ultra Fast Precision Comparator	LINEAR TECHNOLOGY	23
796-335 788-971	LTC1100CN8: Precision Chopper-Stabilised Instrumentation Amplifier MAX840ISA: Low Noise Regulated GaAsFET Bias	LINEAR TECHNOLOGY MAXIM	23 24
794-612	MAX64013A. Low Noise Regulated GaAsrel Blas MAX2402CEP: 800MHz to 1000MHz Transmitter	MAXIM	24 24
740-871	IRF7422D2: 'Fetky' HEXFET and Schottky Diode	INTERNATIONAL RECTIFIER	25
790-278	MIC1557BM5: CMOS RC Oscillator	MICREL	25
641-510	UCC3806N: Low Power, Dual Output, Current Mode PWM Controller	UNITRODE	26
743-781	X25F064 Serial Flash Memory Family ZHCS1000: 'Super-BAT' Schottky Diode	XICOR ZETEX	26 27
663-256	ZTX1047A: High Current, High Gain PNP Transistor	ZETEX	27
935-440	ZTX1147A: High Current, High Gain PNP Transistor	ZETEX	27
—	Low Power CMOS Static RAM	SAMSUNG	28
	Low Current Seven Segment Displays Seven Segment Displays	HEWLETT PACKARD HEWLETT PACKARD	29 29/30
_	High Ambient Light, Seven Segment Displays	HEWLETT PACKARD	29/30
_	Hexidecimal Dot Matrix Displays	HEWLETT PACKARD	31
—	LED Light Bars	HEWLETT PACKARD	32
—	DH AlGaAs Low Current LED Light Bars	HEWLETT PACKARD	32/33
_	LED Bicolour Light Bars LED Bar Graph Arrays	HEWLETT PACKARD HEWLETT PACKARD	33 33
_	Panel Mounts for LED Light Bars	HEWLETT PACKARD	33
		•	

CLC408

High Speed, Low-Power Line Driver

COMLINEAR

Applications:

- · Coaxial cable driver
- Twisted pair driver
- Transformer/coil driver
- High capacitive load driver
- Video line driver
- ADSL/HDSL driver
- · Portable/battery-powered line driver
- A/D driver

The Comlinear CLC408AJP (PDIP) and CLC408AJE (SOIC) deliver high output drive current (96mA), but consume minimal quiescent supply current (1.5mA). Their current feedback architecture, fabricated in an advanced complimentary bipolar process, maintains consistent performance over a wide range of gains and signal levels.

They offer superior dynamic performance and the combination of low quiescent power, high output drive current and high-speed performance make them a great choice for many portable and battery-powered personal communication and computing systems. The CLC408 drives low-impedance loads, including capacitive loads, with little change in performance. They also have an excellent choice for driving high currents into single-ended transformers and coils.

Full Duplex Cable Driver

Typical Application:

200MHz, ±15V, Low Power Voltage Feedback Op Amp

COMLINEAR (NSC)

As a low-power NTSC or PAL video line-

driver, the CLC436 delivers low differential

gain and phase errors (0.1%, 1.0°) and very

high output drive current of 100mA. Also as

high SFDR. The CLC436 may be configured

reconstruction DACs. The combination of low

cost and high performance in addition to its

a versatile conditioning building block for a

wide range of consumer-type applications.

low-power voltage-feedback topology make it

a video ADC driver, it offers low THD and

as an excellent active filter for video-

Features:

CLC436

- 2.3mA supply current
- 200MHz unity-gain bandwidth
- 2400/Vµs slew rate
- 115dB common-mode rejection ratio
- 100mA drive current
- 20V_{PP} output swing
- ±5V or ±15V supplies

Applications:

- Video ADC driver
- Desktop multimedia
- Low powered cable driver
- Video DAC buffer
- Active filters
- NTSC & PAL video systems

The CLC436 is a high-performance voltagefeedback operational amplifier that has been designed for low-cost general-purpose applications. It can operate from dual \pm 5V, \pm 15V power supplies. Operating from \pm 5V rails, it consumes a mere 20mW. Operating from \pm 15V power supplies, it uses only 2.3mA to provide a wide 200MHz unity gain bandwidth, a very fast 2400V/µs slew rate and quick 16ns rises/fall times (5Vpulse). At \pm 15V the device also provides larger signal swings (20V_{PP}) to give greater dynamic range and higher signal-to-noise ratios.

CI C533

GND 1

 IN_4

IN_P

 IN_{C}

INn

2

3 GND

4

5 GND

6

7 GND

8

High-Speed 4:1 Analogue Multiplexer

Output

COMP₁

DREF

 A_D

A₁

 V_{EE}

15

14 V_{CC}

13

12 COMP₂

11

10

9

Order Code

792-561 (CLC533AJP)

Features:

12-bit settling (0.01%) - 17ns

110MHz - 3dB bandwidth (A_V =+2)

Adjustable bandwidth - 180MHz (max)

Low distortion - 80dB @ 5MHz

Low noise - 42u Vrms

Isolation - 80dB @ 10MHz

COMLINEAR (NSC)

Applications:

- · Infra-red system
- multiplexing
- CCD sensor signals
- Radar I/Q switching
- · High definition video HDTV
- Test and calibration

CLC533AJP

LM2825

GND

(Do Not Use) NC

Output

(Do Not Use) NC

(Do Not Use) NC

2 GND

3

4

5

6

7

8

9

10

11 GND

12 GND

> Order Codes 704-441 (LM2825N50) 704-453 (LM2825N33)

processors in radar receivers.

1A DC/DC Converter

NC (Do Not Use)

NC (Do Not Use)

Input

NC (Do Not Use)

Shutdown/Soft-start

Shutdown/Soft-start

24

23

14

13

GND

Features:

- · Minimum design time required
- 3.3V and 5V fixed output versions
- · Guaranteed 1A output current
- Wide input voltage range, up to 40V
- Low-power standby mode, I_O typically 65µA
- High-efficiency, typically 80%
- ±4% output voltage tolerance
- · Excellent line and load regulation
- · TTL shutdown capability/programmable
- soft-start

protection

Thermal shutdown and current limit

Typical Application:

Circuit using Shutdown/Soft-Start features

Applications:

· Simple high-efficiency stepdown (Buck) regulator

ļ

То

NSC

- · On-card switching regulator
- · Efficient pre-regulator for linear regulators
- · Distributed power systems
- · DC/DC module replacement

Dual Output, Low Power Thermostat

LM75

I²C Digital Temperature Sensor and Thermal Watchdog

comparator/thermostat output

Register readback capability

• Separate open-drain output pin operates as interrupt or

• Power up defaults permit stand-alone operation as

703-710 (LM75CIM5)

 Shutdown mode to minimize power consumption • Up to 8 LM75s can be connected to a single I²C bus

thermostat

Features:

I²C bus interface

Applications:

- · System thermal management
- Personal computers
- Office electronics
- · Electronic test equipment

The LM75 is a temperature sensor, 9-bit Delta Sigma ADC and digital overtemperature shutdown detector with I²C interface. A digital comparator is also incorporated for comparison of user-selectable number of readings. The host system can query the LM75 at any time to read temperature. The open-drain overtemperature shutdown output activates when the temperature exceeds a programmable limit. The 3.0V to 5.5V supply voltage range, low supply current and I²C interface make the LM75 ideal for a range of applications, including those already highlighted.

Temperature sensor with loudmouth alarm.

Product	Product Definition	Operating Temperature Range	Accuracy (Tmin to Tmax)	Sensor gain (Tmin to Tmax)	Supply Voltage Range	Quiescent Current (Tmin to Tmax)
LM34CZ LM34DZ	Output voltage linearity proportional to Fahrenheit temperature complement to LM35 family	-40°F to +230°F +32°F to +212°F	±3.0°F ±4.0°F	10mV/°F 10mV/°F	+5V to +30V +5V to +30V	159µА 159µА
LM35CAH LM35CZ LM35DH/DZ	Output voltage linearly proportional to Celsius temperature. Complements to LM34 family.	-40°C to +110°C -40°C to +110°C 0°C to +110°C	±1.0°C ±1.5°C ±2.0°C	10mV/°C 10mV/°C 10mV/°C	+4V to +30V +4V to +30V +4V to +30V	116μΑ 141μΑ 141μΑ
LM45CIM3	Low output impedance	-20°C to +100°C	±4.0°C	10mV/°C	+4V to +10V	160µA
LM50CIM3	Negative temperature output available from single supply.	–40°C to +125°C	±4.0°C	10mV/°C	+4.5V to +10V	180µA
LM60CIM3	Negative temperature reading	-40°C to +125°C	±2.0°C	6.25mV/°C	+2.7V to +10V	_
LM75CIM3 LM75CIM5	Integrated 9-bit Delta Sigma ADC. I ² C communication interface. Programmable temperature trip points.	–55°C to +125°C	±2.0°C	-	+3.0V to +5.5V	250µA

DG61x

Analogue Switch

R3 10W

LED Anode

TxD

SD

NC

applications not necessary

- Personal digital Assistant

5

AND RECEVERS

Si9104

High-Voltage Switchmode Regulator

6

Si9114A

High Frequency PWM Controller

TEMIC

The Si9114A is ideal for use in Distributed Power Systems

- Single 'safe' d.c. voltage within
- System upgrades without PSU
- Improved local load regulation
- Reduced short circuit currents
- Increased reliability
- 'Hot' plug-in: No system
- Smaller energy storage components (high switching frequency)

U4082B

Voice Switched Circuit

The U4082B incorporates numerous functions including amplifiers, level detectors, transmit and receive attenuators, background noise monitors, chip disable, dial tone detector and mute function. It can operate by low supply or via telephone line requiring 5.5mA typically. It also features standalone operation or in conjunction with a handset speech network.

Typical Application:

The fundamental difference between speakerphone and handset operation is that of half or full duplex. The handset carries conversation in both directions simultaneously, hence full duplex. The gain levels are low enough not to cause oscillatory problems and coupling from earpiece to microphone. To date one solution has been to operate on a half duplex where one person speaks while the other listens. The circuit detects who is talking and switches appropriately maintaining loop gain under unity. To eliminate 'push to talk' process speech level detectors are used here to provide hands-free operation.

In the circuit shown, two level detectors are at transmit and two at receive end. The terms in parenthesis form one system and the other terms form the second system. Each level detector has a diode network in the feedback path allowing for non-linear gain, permitting operation under a wide dynamic range of speech levels. The sensitivity of each level detector is determind by resistor/capacitor at each input.

Another key feature of this device is the monitoring of background noise. Speech consists of bursts whereas background noise is relatively constant signal level. The device has two background noise monitors which monitor the noise by storing representative voltage of the noise levels. When speech is present it causes the comparator output to change which is sensed by the attenuator control block.

Features:

- · Low voltage operation: 3.0 to 6.5V
- Attenuator gain range between transmit and receive: 52dB
- Four point signal sensing for improved sensitivity
- Monitoring system for background noise
 level
- · Microphone amplifier gain adjustable
- Mute function
- · Chip disable for active/standby operation
- On board filter
- Dial tone detector

Applications:

 Hands-free operation in: Telephones Intercom systems Household Business use Car telephones

Level detectors/background noise monitor

Half-Bridge Power MOSFET Array 60V, 10A

HARRIS

HARRIS

HIP2100

V_{DD}

HO 3

HS

HB 2

HIP2060

Order Code 786-822 (HIP2100IP)

The HIP2100IP is a high frequency, 100V

half-bridge N-channel MOSFET driver IC.

The low-side and high-side gate drivers are independently controlled and

Undervoltage protection on both the lowside and high-side supplies force the

eliminates the discrete diode required

with other driver ICs. A new level-shifter

topology yields the low-power benefits

operation. On this device the high-side

momentary undervoltage of the high-

side supply.

matched to 5ns. This gives the user

maximum flexibility in dead-time

selection and driver protocol

outputs low. An on-chip diode

8 LO

 V_{SS}

7

6 111

5

· Drives N-channel MOSFET half bridge

High Frequency, Half-Bridge Driver 100V, 2A Peak

- · Bootstrap supply max. voltage to
- 116Vdc · On-chip bootstrap diode
- · Fast propagation times needed for multi-MHz circuits
- Drives 1000pF load at 1MHz with rise and fall times of typically 10ns
- · CMOS input thresholds for improved noise immunity
- · Independent inputs for nonhalf-bridge topologies
- No start-up problems
- · Outputs unaffected by supply glitches, HS ringing below ground, or HS slewing at high dv/dt
- · Low power consumption
- of pulsed operation with the safety of DC · Wide supply range
- · Supply undervoltage output returns to its correct state after a
 - protection
 - 2Ω output resistance

Applications:

- · Telecom half-bridge power supplies
- · Avionic DC/DC converters
- Two-switch forward converters
- · Active clamp forward converters

Typical Application:

HIP4083

Three Phase High Side Driver 80mA, 300mA

Applications:

- Brushless motors
- High side switches
- AC motor drives
- Switched reluctance motor drives

The HIP4083 is specifically targeted for PWM motor control. Two HIP4083 may be used together for 3 phase full-bridge applications (see block diagram). Alternatively, the lower gates may be controlled directly from a buffered microprocessor output. This device has no built-in turn-on delay. Each output (AHO. BHO and CHO) will turn-on 65ns after its input is switched low. Likewise, each output will turn-off 60ns after its input is switched high. Very short and very long dead times are possible when two HIP4083s are used to drive a full bridge. This dead time is controlled by the input signal timing. The HIP4083 has reduced drive current making it ideal for low to moderate power applications and is optimised for

applications where size and cost are important.

HIP5600

Features:

280V_{RMS} line.

UL recognised

protection

1.2V_{DC} to V_{IN} .50

· Internal thermal shutdown

Thermally Protected High Voltage Regulator

HARRIS

TAB ELECTRICALLY CONNECTED VOUT TO VOUT \mathbf{O} HIP5600 /0UT Ņ ADJ Order Code

505-031 (HIP5600IS)

Operates from 50V_{DC} to 400V_{DC}

· Up to 40mA peak output current Surge rated to ±650V; meets IEEE/ANSI C62.41.1980

Applications:

- · Switch mode power supply startup
- · Electronically communicated motor housekeeping supply
- · Power supply for simple
- industrial/commercial /consumer equipment controls
- · Off-line (Buck) switch mode power supply
- Operates from 50V_{PMS} to The HIP5600 is an adjustable high voltage, 3-terminal positive linear voltage regulator which is capable
- of sourcing 1mA to 30mA with · Variable DC output voltage proper heat sinking.
 - Protection is provided by the on chip thermal shutdown and output current limiting circuitry. The
- HIP5600IS has a unique advantage Internal over current protection

over other high voltage linear regulators due to its ability to withstand input to output voltages as high as 400V(peak), a condition that could exist under output short circuit conditions.

Common linear regulator configurations can be implemented as well as AC/DC conversion and start-up circuits for switch mode power supplies. The HIP5600 requires a minimum output capacitor of 10µF for stability of the output and may require a 0.02µF input decoupling capacitor depending on the source impedance. It also requires a minimum load current of 1mA to maintain output voltage regulation.

All protection circuitry remains fully functional even if the adjustment terminal is disconnected. However, if this happens the output voltage will approach the input voltage.

Typical Application:

MC1496

Balanced Modulator/Demodulator

MOTOROLA

MC13055

Wideband FSK Receiver

MOTOROLA

Features:

- Input sensitivity 20µV @ 40MHz
- · Signal strength indicator linear over 3 decades
- · Easy applications, few peripheral components

oscillator/mixer. The IF bandwidth has The MC13055 is intended for RF data link systems using carrier frequencies up to been increased and the detector output has 40MHz and FSK (Frequency Shift Keying) been revised to a balanced configuration. data rates up to 2.0M Baud (1.0MHz). The received signal strength metering This design is similar to the MC3356. circuit has been retained, as has the except that it does not include the versatile data slicer/comparator.

Typical Application:

MC3371/MC3372 Low Power Narrowband FM IF

MOTOROLA

Features:

- Wide operating supply voltage range :V_{CC} = 2.0 to 9.0V
- Input limiting voltage sensitivity of -3.0dB
- Low drain current : I_{CC} = 3.2mA, @ V_{CC} = 4.0V, squelch off
- Minimal drain current increase when squelched
- Signal starength indicator : 60dB dynamic range
- · Mixer operating frequency up to 100MHz
- Fewer external parts required than earlier devices

The MC3371 and MC3372 perform single conversion FM reception and consist of an oscillator, mixer, limiting IF amplifier, quadrature discriminator, active filter, squelch switch and meter drive circuitry. These devices are designed for use in FM dual conversion communications equipment. The MC3371 is designed for the use of parallel LC components, while the MC3372 is designed for use with either a 455 kHz ceramic discriminator or parallel LC components.

13

MICRO-ISP

EQUINOX TECHNOLOGIES

P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3)

39 P0.4 (AD4) 38 P0.5 (AD5)

37 P0.6 (AD6) 36 P0.7 (AD7)

35 EAVPP

 33
 ALE/PROG

 33
 ALE/PROG

 31
 PSEN

 31
 P2.7 (A15)

 30
 P2.6 (A14)

29 🗖 P2.5 (A13)

44 43 42 41 41

S

0

In-System Programmable Micros and

795-392 (AT8958252-24PC)

Why use an In-System Programmable (ISP) Microcontroller?

An ISP microcontroller, such as those in the Atmel 89S and 90S families, can be soldered directly to the user target socket and serially re-programmed in-system with no need to

ever remove the device from the socket. With In-System Programming (ISP), data is transferred one bit at a time, via a serial link, to the target device. Obviously, this will be

slower than a parallel transfer, but the hardware requirements are considerably less, and other advantages are gained, as shown in the table below.

	PARALLEL MODE	SERIAL MODE (ISP)
Programming speed (CODE+DATA)	FAST: Typically <15 secs	SLOW: Typically 30–40 secs
Programmer Flexibility	Remove device from socket	Solder device to board and use ISP
Programmer device support	Supports many devices	Only supports 89S, 90S and some serial EEPROM devices
Programmer cost	More expensive than SERIAL	Less expensive than Parallel
Device reliability	Less reliable as device is continually stressed when removed from socket	Very reliable as device does not physically move
Commission device during production?	No – all devices would have to be programmed before insertion into assembled PCB	Yes – The latest code revision can be downloaded 'just-in-time' during production
Update code during production due to a last-minute bug?	Very difficult – All devices would have to be removed from their sockets, re- programmed and then re-inserted.	Straightforward – Each unit is simply re- programmed again via the ISP header with no need to remove the device from the socket.
Program device with production line test parameters for unit under test? e.g. Calibration data	Not possible – Need to store parameters in external EEPROM	Parameters can be programmed either into the FLASH or EEPROM areas at time of test
Best used for:	Code development stage – Use in conjunction with Equinox AD-ICR-51 'parallel' in-circuit re-programmable adapter. This allows for fast code download and enhanced debugging facilities	High Volume Production Environments Products which require frequent code updates

The MICRO-ISP Programmer

Control of the microcontroller RESET (RST) pin

The 89S8252 is placed in serial programming mode by applying a high (Vcc) to the RESET (RST) pin of the device for a period of >10 ms. At this point the SPI 'Programming Enable' command must be sent to initiate actual serial programming.

To implement ISP of the 89S8252 it is therefore necessary for the MICRO-ISP programmer to be able to externally control the RESET pin of the device when in place in the user target system. This functionality can often be added by simply adding two diodes to the target system as shown in figure below.

The RESET outputs of the typical 8051 RESET circuit (made up of a capacitor connected to Vcc and a resistor to ground) and MICRO-ISP are ORd together so that both types of reset control are possible. When the MICRO-ISP is not connected to the target system, only the target system RESET circuit has any effect.

A suitable Reset Circuit for use with the MICRO-ISP and AT89S8252

DS1302

Trickle Charge Timekeeping Chip

DALLAS

energy source

The DS1644 can substitute ROM, EPROM and EEPROM providing read/write nor volatility and additionally real time clock function with the real time information residing in the uppermost RAM locations. The RTC clock registers are double buffered to avoid incorrect access of data.

In the example shown, the DS1644 interfaces with a microcontroller. Multiplexed port C of the 64HC11 is used to provide both the output of eight LSDs of memory address and input/output of the data byte from the desired memory location. Port B of the 68HC11 is used to provide the 7MSBs of memory address. With this arrangement, the 68HC11 has direct access to 32K bytes of non-volatile RAM and a real time clock.

Typical Application:

16

DS1233/DS1810 EconoReset

DALLAS

\bigcirc		Mfrts. No. Order Code	DS1233 563-330	DS1233A-10 795-847	DS1233M-5 795-859	DS1810-10 795-896	DS1810R-10 795-902	
\square		5.0V Operation	1		1	1	1	
		3.3V Operation		1	1			
		Power Fail Detect	1	1	1	1	1	
VCC A Reset O GND O	GND	Pushbutton Reset	1	1				
	Vcc	Active Low Reset	1	1	1	1	1	
T0-92	RESET	Package Type	3/TO-92	3/TO-92	3/TO-92	3/TO-92	3/SOT-23	
	S0T-23 EconoReset Selection Guide The simplest of Dallas Semiconductor's CPU supervisors are the							

RST

PUSHBUTTON

CAPACITOR

V_{CC}

DS1233A

 Δ

Features:

- Automatically restarts microprocessor after power failure
- Monitors pushbutton for external override
- Internal circuitry debounces pushbutton switch
- Maintains reset for 350ms after Vcc returns to an in-tolerance condition or pushbutton released
- Reduces need for discrete components
- Precision temperature-compensated voltage reference and voltage sensor
- Internal 5K pull-up resistor
- Operating temperature of -40°C to +85°C

Micromonitors

MicroMonitor Selection Guide

	Mfrts. No. Order Code	DS1231-20 391-372	DS1232 391-384	DS1232LP 526-204	DS1705EPA 795-860	DS1706EPA 795-872	DS1707EPA 795-884
	5.0V operation	1	1	1	1	1	1
	3.3V operation						
	Power fail detect	1	1	1	1	1	J
	Pushbutton reset		1	1	1	1	1
	Referenced comparator	1			1	1	1
ets ns	Watchdog timer		1	1	1	1	
113	Active high reset	1	1	1			1
om	Active low reset	1	1	1	1	1	1

EconoResets. These generally output a reset when voltages are out of

tolerance; some have a pushbutton reset function. They reduce component

counts in designs by bringing all of the external reset components, i.e. pull-

up resistor and delay timing capacitor, inside a single package, thus reducing cost, simplifying design/board layout, and potentially improving reliability.

RESET

Typical Application:

MICROPROCESSOR

Micromonitors by Dallas Semiconductor include a variety, as tabulated below, as well as the original industry standard and popular DS1232. These devices perform the same functions as the EconoRese but have additional function such as watchdogs and voltage sense inputs to monitor power upstream from the actual device. Reliability is improved by closer monitoring processors and system functions by these devices.

The DS1705/6/7 are function and pin-compatible with the Maxim MAX705/6/7.

The MicroMonitors perform three vital functions for microprocessors:

- Monitoring status of power supply, Vcc
- Pushbutton reset button
- Watchdog timer

TSH94

High Speed, Low Power Quad Op-Amp

SGS-THOMSON

Features:

- 2 Separate standby: Reduced consumption and high impedance outputs
- Low supply current: 4.5mA/amp. typical
 High speed: 150MHz – 110V/µs
- Unity gain stability
- Low offset voltage: 3mV

- Low noise 4.2nV/√HZ
- Specified for 600Ω and 150Ω loads
- High video performances: differential gain: 0.03%
- differential phase: 0.07°
- gain Flatness: 6MHz, 0.1dB max. @ 10dB Gain
- High audio performances

Sample and hold using TSH94:

The TSH94 in follower drives a tank capacitor and goes in high impedance state on logic threshold signal on standby pin. The output voltage then remains at the capacitor charge level. It is followed with a high impedance buffer to allow voltage reading without discharging the capacitor.

The only external components required are a resistor, the sampling capacitor and the decoupling capacitors.

C is the tank capacitor that must remain charged at constant voltage between two samples. The accuracy and the bandwidth depend on its value.

As the input current of A is 2pA typ. and the leakage current of the TSH94 output and inverting input in standby mode is less than 20pA. It is possible to reach long hold time with small capacitor size.

R resistor is used to prevent the TSH94 from oscillating when using large C capacitor. A 10Ω value allows to drive any capacitor without oscillating.

Video Line Transceiver with Remote Control:

Two operational amplifiers are used for transmission as followers. TSH94:C is a switch, to have on TSH94:A input the TX signal during transmission, and a ground in reception. Thus, output of TSH94:A drive the line in transmission and shows a virtual ground in reception allowing good impedance matching at cable end.

In reception, TSH94:B is a +2 amplifier to compensate the necessary voltage loss due to impedance matching resistors.

Signal multiplexing:

The operational amplifiers are used as followers, outputs and standby pins are connected together forming a very simple circuit. The only external components are the supply decoupling capacitors.

24

23

22

21

20

19 18

17

13

16 C₃ 15 D₂ 14 B₂

V_{CC}

D4

B₄

A₄

C4

D₃

B₃

 A_3

BX

BE

C₀

A₀ 3

B₀

D₀

C1

A₁

B₁

D₁

C₂ 10

A₂ 11

ND

1

2

4

5

6

7

8

9

12

A₀

 A_4

GND

IDT Bus Switch Applications

Order Code

787-887

(IDT74FST3383SO)

IDT Bus switch devices have many applications in digital systems. Internal construction is an enhanced mode N-FET which is on when the gate is sufficiently forward biased. They provide a "Zero delay" between input and output. In the off state the input capacitance is very low, typically Ci=4pF. With a low on resistance of 5 Ω between drain and source and a low noise 28 Ω version available, they are suitable for a variety of applications.

Bus switches are suitable for hot insertion into rack systems, mobile communications products, laptop accessories and PCMCIA cards. There are no parasitic diodes to Vcc or Gnd from either inputs or outputs.

IDT

3x6mm Watch Crystal

Order Code 569-914

Features:

- Compact design with excellent characteristics of AT-cut fundamental crystal
- · Excellent shock resistance
- · High stability assured with tight vacuum sealing

Applications:

- Microprocessor systems
- Telecommunications
- Consumer electronics
- · Automotive electronics

The circuit shown is typical for a watch crystal, 32.768kHz. The values for the components are given but some precaution should be taken, such as:

 $R_1\cong 10M\Omega$ otherwise hard to oscillate when too low

Max. drive levels: 10mW

This circuit is difficult to realize using transistors and a linear IC circuit results in a too high a drive level which could damage the crystal element. CMOS ICs are therefore used provided the power supply voltage is around 5 Volts.

8/14 Pin DIL

Pin 4

Pin 5 8-pin DIL

Pin 7

o∳

o∳

Pin 8

00

0

(bottom view)

Order Code

788-491 (20MHz)

14-pin DIL

(bottom view) Order Code 788-296 (20MHz)

Pin 1

Pin 8

Pin 1

φŌ

___0

Pin14

Crystal Clock Oscillator Modules

Pin Conn	ections	
8-Pin	14-Pin	
Pin 1	Pin 1	N.C. (Enable/disable)
Pin 4	Pin 7	Ground
Pin 5	Pin 8	0/P
Pin 8	Pin 14	+V DC

The Crystal Clock Oscillator provides a TTL/HCMOS compatible square-wave output signal. Requiring only a +5V DC voltage supply it gives a modular approach to clock signal provision. Current consumption is typically 30mA with an absolute maximum rise/fall time

- Microprocessor systems
- P.C.
- · Network systems
- Instrumentation

of 10ns and duty cycle of 45:55. Frequency stability is a maximum of 100ppm overall. The device consists of a thick film substrate containing the oscillator circuitry, and a quartz crystal providing the frequency source.

Typical Application:

 $10M\Omega$ www R1 ž R2 C1 C2

Typical Application:

Oscillation Circuit for Wrist Watches

Freq. Range (kHz)	R ₂ (kΩ)
16-25	1000
25-35	470
35-60	220
	16-25 25-35

AEL

HEF4069UBT

16-Bit, 30MPS D/A Convertor

ANALOG DEVICES

The AD768 is a high speed DAC with exceptional AC to DC performance. It is a current output DAC with nominal fullscale current of 20mA and a 1k Ω output impedance. Single or differential outputs are supported. Proprietary techniques from ADI have produced devices with excellent dc linearity, reduced glitch energy and maximised dynamic accuracy. The digital interface allows for compatibility to CMOS logic and support to clock rates of up to 40MSPS.

The AD768 can easily be used as a multiplying DAC since the Input Reference Current can be modulated from 1mA to 7mA. The reference amplifier sets the maximum multiplying bandwidth to 15MHz while an external capacitor to the noise reduction node limits the bandwidth. The circuit shown demonstrates how the modulating signal can be scaled and converted to a current via Reference

ADC912A

CMOS Microprocessor Compatible 12-Bit ADC

ANALOG DEVICES

AD768 as a multiplying DAC.

· Data acquisition systems · DSP system front end

· Process control systems

· Portable instrumentation

Typical Application:

XTAL=1MHz C1=0.1µF C2=10µF C3, C4=30 TO 100pF Depending on XTAL chosen

Basic Connection Diagram

IVC102

Precision Switched Integrator Transimpedance Amplifier

provides a precision, low noise

transimpedance op amp circuits

feedback resistor. The IVC102 is

sensors such as photodiodes and

that require a very high value

ideal for amplifying low-level

ionization chambers. The input

negative.

signal current can be positive or

alternative to conventional

The IVC102 is a precision

integrating amplifier with FET op

amp, integrating capacitors and

integrates low-level input current

low leakage FFT switches. It

for a user-determined period.

can be held for accurate

measurement. The IVC102

storing the resulting voltage on

the capacitor. The output voltage

TTL/CMOS-compatible timing

inputs control the integration

(discharge) the integrator

to set the effective

capacitor.

period, hold and reset functions

transimpedance gain and to reset

Order Code 794-764 (IVC102P)

Features:

- On-chip integrating capacitor
- Gain programmed by timing
- Low input bias current :
- 500fA (max)
- Low noise
- Fast pulse integration
- Low nonlinearity :
- 0.2% max

SHC298A

Monolithic Sample/Hold Amplifier

measurement

Features:

- 12-bit throughput accuracy
- Less than 10µs acquisition time
- Wideband noise less than 20µ Vrms
- Reliable monolithic construction
- 10¹⁰Ω input resistance
- · TTL-CMOS compatible logic input

Applications:

- 12-bit A/D converters
- Data acquisition systems
- Data distribution systems
- Analogue delay circuits

monolithic sample/hold amplifier featuring high DC accuracy with fast acquisition times and a low droop rate. Dynamic performance and holding performance can be optimized with proper selection of the external holding capacitor. With a 1000pF holding capacitor, 12-bit accuracy can be achieved with a 6µs acquisition time. Droop rates less than 5mV/min are possible with a 1µF holding capacitor. These sample/holds will operate over a wide supply voltage ranging from $\pm 5V$ to $\pm 18V$ with very little change in performance. A separate Offset Adjust pin is used to adjust the offset in either the Sample or the Hold modes. The fully differential logic inputs have low input current and are compatible with TTL, 5V CMOS and CMOS logic families. The SHCA features improved gain and offset error, improved drift over temperature and faster acquisition time.

The SHC298A is a high performance

22

IT1016

V+

+IN

-IN 3

Ultra Fast Precision Comparator

LINFAR TECHNOLOGY

LTC1100

Precision Chopper-Stabilised Instrumentation Amplifier

LINEAR TECHNOLOGY

The LTC1100 is a high precision instrumentation amplifier using chopperstabilisation techniques to achieve out standing DC performance. The input DC offset is typically 1µV while the DC offset is typically 10nV/°C a very low bias current of 50pA is also achieved.

The LTC1100 is self-contained, that is, it achieves a differential gain setting resistor or trim pot. The gain linearity is 8ppm and the gain drift is 4ppm/°C. The LTC1100 operates from a single 5V supply up to ±8V. The output typically swings 300mV from its power supply rails with a 10k load.

An optional external capacitor can be added from pin 7 to pin 8 to tailor the device's 18kHz bandwidth and to eliminate any unwanted noise pickup. The LTC1100 is manufactured using Linear Technology's enhanced LTCMOS[™] silicon gate process.

Features:

- Offset voltage : 10µV (max.)
- Offset voltage drift : 50nV/°C (max.)
- Strain gauge amplifiers · Bias current : 50pA (max.) · Differential to single-ended

Applications:

converters

· Thermocouple amplifiers

- Offset current : 50pA (max.)
- Gain nonlinearity : 8ppm (max.)
- Gain error : ±0.05% (max.)
- CMRR : 104dB
- 0.1Hz to 10Hz noise : 2µV_{P,P}
- Single 5V supply operation

MAX840

Low Noise Regulated-2V GaAsFET Bias

Applications:

modules

Cellular phones

GaAsFET power amplifier

· Personal communicators,

· Continuously adjustable

· LCD-bias contrast control

GaAsEET bias

PDAs, wireless data loggers

Requested negative power supplies

MAXIM

788-971 (MAX840ISA)

Features:

- Fixed -2V or adjustable -0.5V to -9.4V output at 4mA
- 2.5V to 10V input voltage range
- Operate with small capacitors
- 1mVp-p output voltage ripple
- Charge-pump switching frequency: 1000kHz in normal operation
- 1µA max logic-level shutdown over temperature

20

19

18

17

16

15

14

13

12

11 LGND

Order Code

794-612 (MAX2402CEP)

Low cost, flexible transmitter

· More than 100mW of output into

Operates from 800MHz to 1000MHz

Uses less than 2µA in power-down

• LO input power range from -6dBm to

· 2V linear range on modulation input

More than 35dB of power range

GND

 V_{CC}

GND

GND

OUT

GND

OUT

GND

 V_{CC}

The device inverts the input voltage to a negative voltage by a capacitive charge pump followed by regulation; an internal low-noise linear regulator. The linear regulator reduces ripple noise induced by the charge pump and its AC rejection attenuates noise from the incoming supply.

Typical Application:

+ C3 Τ 0.ŽŽμF IN $V_{OUT} = -2V$ MAX840ISA (VGG of GaAsFET) 001 C4 + 4.7μF NEGOUT C2 0.22u ON/OFF SHDN GND Circuit Using Smaller Capacitors

MAX2402

2

3

LO+ 6

GND 8

VGC 1

MOD

GND

V_{CC} 4

GND 5

LO- 7

SHDN 9

BADJ 10

Features:

50Ω

+6dBm

Single +5V supply

800MHz to 1000MHz Transmitter

Applications:

- Direct-sequence spread-spectrum transmitter
- Frequency-hopping spread-spectrum transmitter
- FSK, GMSK, BPSK and ASK digital transmitter
- AM and FM analogue transmitter

The MAX2402 transmitter integrates a doublebalanced mixer, buffered local oscillator (LO) port, variable gain stage and power amplifier into a single IC. It is intended for use in the 800MHz to 1000MHz band and is compatible with both directsequence and frequency-hopping spread-spectrum designs in the 902MHz to 928MHz ISM band.

In a typical application, a digital baseband signal is mixed with a local oscillator signal to yield a BPSK-modulated carrier at the antenna. Alternatively, the baseband input may be grounded and an FSK-modulated LO signal applied directly to the LO port. The LO port consists of a limiting amplifier that can accept a single-ended or differential signal with input power between-6dBm in the 800MHz to 1000MHz frequency range. The baseband modulation input is linear over a 2V range and limits with larger signal levels within the supply range. The doublebalanced mixer has been optimised for high

carrier rejection. The variable gain stage offers typically 40dB of adjustment range. The power amplifier provides more than 20dBm output power and has a bias adjustment, which allows adjustment of efficiency and harmonic distortion. A shutdown function reduces the current draw to less than 2uA in less than 10us.

MAXIM

been

24

IRF7422

'Fetky' HEXFET and Schottky Diode

Order Code 740-871 (IRF7422D2)

Features:

- · Combined package saves board
- space
- Latest Generation V technology
- 2.5W power handling
- 4.6A
- Reduced parts count
- Reduced Rth packaging

Applications:

- Battery protection
- Synchonoous Buck regulators

5

DC/DC conversion

MIC1557

CS GND T/T

3 2

4

VS

Order Code

790-278

(MIC1557BM5)

- Features: 1
 - +2.7V to +18V operation Low Current
 - <1µA Typ. shutdown mode 200µA Typ. (TRG and THR low) @

CMOS RC Oscillator

- 3V supply Timing from microseconds to hours • TTL compatible inputs and outputs
- · 'Zero' leakage trigger and threshold inputs
- Threshold precedence over trigger input

The MIC1557BM5 is designed to provide railto-rail pulses for precise time delay or frequency generation. The device is similar in function to the industry standard '555' but with different pin configuration. The MIC1557BM5 is designed for astableoscillator operation with a chip select/reset (CS) input for low power shutdown. In the circuit shown the device is configured as a voltage guadrupler with 5V input to fully enhance an N-channel MOSFET, for minimum r_{DS}(on). A TTL '1' at CS enables a 10kHz oscillator, allowing for 15V at the MOSFET gate, clamped by a zener diode. A resistor from the gate to ground turns the FET off when the MIC1557 is turned off.

New devices have been developed that take a MOSFET transistor built with Generation 5 vertical DMOS technology, add a Schottky diode offering extremely low forward voltage drop technology and combine them both in a single package using a customised leadframe. This concept is the basis for the new FETKY family of devices.

This FETKY product line aims to solve some of the board space and assembly cost issues facing designers today. The first FETKY products incoororate a co-packaged MOSEFT and Schottky diode in surface mount SO-8 packages, and are targeted for use in portable electronics power converter applications.

Traditionally, designers of a 2-3A standard Buck regulator use a discrete MOSFET and a discrete Schottky diode. A typical solution for this design could have used a single P channel MOSFET rated

at 100m Ω , 20V in an ŠO-8 with a single surface mount Schottky diode rated at 30V, 3A in an SMC

package. Now the designer can use a single

device with a 90mΩ, 20V P-channel MOSFET and a 3A Schottky SO-8 (30mm²) + SMC (47mm²)

=total board area of 77mm²

- <15Ω output on resistance · No output cross-conduction current
 - spikes
 - <0.005% per °C temperature stability <0.005% per volt supply stability

 - · 50% square wave with one resistor, one capacitor

- Applications:
- Precision timer Pulse generation
- · Sequential timing
- TTL Hiah = ON +5V O MIC1557BM5 VS CS

OLD DESIGN

3A Schottky SMC 47mm2

NEW DESIGN

SO-8 FETKY (IRF7422D2)=30mm²

So the FETKY affords the designer a 60% savings in board space and the associated reduced assembly costs.

- Time-delay generation
- Missing pulse detector
- Micropower oscillator to 5MHz
- Charge-pump driver
- Voltage converter
- Linear Sweep generation
- · Variable frequency and duty cycle oscillator

+12V

· Isolated feedback for power supplies

 LED blinker N-Channel MOSFET

INTERNATIONAL RECTIFIER

UCC3806

Low Power, Dual Output, Current Mode PWM Controller

Typical Application:

Precision

Adjustable Shunt

Regulator

ωŤ

- 1.4mA maximum operating current
- 100µA maximum start-up current
- 125ns circuit delay
- Easier parallelability
- · Improved benefits of current mode control

The UCC3806 is a BiCMOS PWM controller offering exceptionally improved performance with a family architecture. It has increased switching frequency capability while greatly reducing the bias current used within the device. With a typical start-up current of

50µA and a well defined voltage threshold for turn-on, this device favours applications ranging from off-line power supplies to battery operated portable equipment. Dual high current. FET driving outputs and a fast current sense loop enhance device versatility.

Xicor Serial Flash devices find applications

where low voltage and power solutions are

required. These devices are compatible with

Serial EEPROM and operate down to 1.8V and

are ideal for hand held battery operated systems,

15

LICC 3806N

INV

COMP 7

AOUT 11

SHUT 16

CS+ 4

BOUT 14

> All the benefits of current mode control including simpler loop closing, voltage feedforward, parallelability with current sharing, pulse-by-pulse current limiting and push-pull symmetry correction are readily achievable with this device.

utilize Xicor's proprietary flash cell, allowing for a

In the application circuit, the X25F064 is shown

minimum endurance of 100,000 cycles and

a minimum data retention of 100 years.

Serial Flash[™] Memory with BlockLock[™] Protection

D1

ORG.

1K x 8

2K x 8

4K x 8

8K x 8

2K x 8

4K x 8

8K x 8

Density

8K BITS

16K BITS

32K BITS

64K BITS

6K BITS

32K BITS

64K BITS

XICOR

Features:

X25F064

- Low voltage, 1.8V
- Low standby current, 1µA
- 1MHz data rate
- 32 byte sector programming

Other members of the family include:

Order Code

787-747

787-759

787-760

787-772

787-784

787-796

787-802

SPI interface

Mfrts. No.

X25F008P

X25F016P

X25F032P

X25F064P

X24F016P

X24F032P

X24F064P

Blocklock capability

Typical hardware connection for interfacing an X25F064 to the 68HC11 microcontroller

ZHCS1000

'Super-BAT' Schottky Diode

ZETEX

Typical Application:

As switch mode PSU current densities increase, switching frequencies have correspondingly increased to several hundred kHz typically. In response, IC manufacturers now offer switch mode controllers incorporating synchronous rectification, replacing high current Schottky diodes with an N-channel MOSFET.

However, because of the slower switching time of the

MOSFET and timing mismatch between the high and low side switching MOSFETs, a Schottky is still needed to conduct the initial current as Q1 turns off, to prevent damage to the IC.

As the average diode current is low, the ZHCS series enhanced SOT-23 power capability is more than adequate, providing a much smaller solution than the alternative products.

Order Code 743-781 (ZHCS1000)

Applications:

- DC/DC converters
- PSU
- Mobile phones
- Reverse battery protection
- Power conversion
- Camcorders

Features:

- Compact size
- 1A (cont.) current rating
- Low package height
- V_f 0.5V @ I_f 1A
- Supplied on tape and reel
- Replacement for axial, MELF, SMA and SMB packages

Schottky use with Synchronous Rectifier to compensate for MOSFET switching time.

ZTX1047A/ZTX1147A High Current, High Gain PNP Transistor

ZETEX

In battery powered applications it is vital that as much of the supply as possible is applied across the load, maximising battery life through greater efficiency and lower end of life battery voltage. Using the ZTX1047A and ZTZX1147A, the bridge circuit shown will handle load/stall currents up to 4.0A. The circuit can easy be adapted for lower current motors by increasing the value of the base drive resistors. (Set 1_B for the PNPs to 1/50 of the maximum load current and 1_R for the NPNs to 1/100). The

saturation voltage losses at 4.0A are a total of only 0.425V for both NPN and PNP transistors combined at lower load currents, less than half this level can be expected.

The combination of low saturation losses and low base drive requirements of the ZTX1047A/1147A gives improved motor performance and endurance. Parallel diodes are not necessary for this circuit as the reverse h_{FE} of the driver transistor is sufficiently high to conduct regenerative currents and transients safely away.

Order Code 663-256 (ZTX1047A) 935-440 (ZTX1147A)

Features:

- Complimentary pair
- 4A collector current, 20A pulsed
- h_{FF} 250 min @ 0.5A lc
- V_{CE (sat)} 235mV @ 4A Ic

Applications:

- DC/DC conversion
- Battery powered circuits
- Motor drives
- Darlington and P-channel MOSFET
 replacement

Low Power CMOS Static RAM

SAMSUNG

FUNCTIONAL BLOCK DIAGRAM

Memory	Memory	Access		Operating	Package Pin Out,	Mftr	Order
Density	Organisation	Time	Voltage	Temp	Function	List No.	Code
256K bit	32K x 8	70ns	5V±10%	0°-70°	А	KM62256CLP-7	794-144
256K bit	32K x 8	70ns	5V±10%	0°-70°	А	KM62256CLG-7	794-156
256K bit	32K x 8	70ns	5V±10%	0°-70°	В	KM62256CLT-7	794-168
1M bit	128K x 8	70ns	5V±10%	0°-70°	С	KM681000BLG-7	794-170
1M bit	128K x 8	70ns	5V±10%	0°-70°	D	KM681000BLT-7	794-181
4M bit	512K x 8	70ns	5V±10%	0°-70°	E	KM684000ALP-7	794-193
4M bit	512K x 8	70ns	5V±10%	0°-70°	E	KM684000ALG-7	794-200
4M bit	512K x 8	70ns	5V±10%	0°-70°	E	KM684000ALT-7	794-211
	1		1	1	1	1	

FUNCTIONAL BLOCK DIAGRAM KM62256CLXX

FUNCTIONAL BLOCK DIAGRAM KM68100BXX

/CS1, CS2 /WE, /OE

Low Current Seven Segment Displays

HEWLETT PACKARD

Device	Order Code	Mftrs. List No.	Description	Color	Typical I _v
	324-140 324-152	HDSP-A101 HDSP-A103	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	AlGas Red	600 µcd @ 1mA
	324-164 324-176	HDSP-7511 HDSP-7513	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	High Efficiency Red	270 µcd @ 2mA
7.62mm (0.30in.) Mini Dual-in-Line 0.5"Hx0.3"Wx0.24"D					
	324-504 324-516	HDSP-E101 HDSP-E103	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	AlGas Red	650 µcd @ 1mA
	324-530 324-541	HDSP-3351 HDSP-3353	Common Cathode Right Hand Decimal Common Anode ±1. Overflow	High Efficiency Red	300 µcd @ 2mA
10.92mm (0.43in.) Mini Dual-in-Line 0.75"Hx0.3"Wx0.25"D					
	324-723 324-735 324-747 324-607 324-619	HDSP-H101 HDSP-H103 HDSP-H107 HDSP-K121 HDSP-K123	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ±1. Overflow Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	AlGas Red	700 µcd @ 1mA
14.2mm (0.56in.) Dual-in-Line (Single Digit) 0.67"Hx0.49"Wx0.31"D	324-759 324-760	HDSP-5551 HDSP-5553	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	High Efficiency Red	370 µcd @ 2mA
	324-875 324-887	HDSP-N101 HDSP-N103	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	AlGas Red	590 μcd @ 1mA
20mm (0.8in.) Dual-in-Line 1.09"Hx0.78"Wx0.33"D					

Seven Segment Displays

Device	Order Code	Mftrs. List No.	Description	Color	Typical I _V
(++)	324-073 324-085	HDSP-7301 HDSP-7303	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	Red	1100 µcd @ 20mA
	264-260 264-271	HDSP-A151 HDSP-A153	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	AlGas Red	14 mcd @ 20mA
<u> + +</u>	324-103 324-115	HDSP-7501 HDSP-7503	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	High Efficiency Red	980 µcd @ 5mA
7.62mm (0.3in.) Microbright Dual-in-Line 0.5"Hx0.3"Wx0.24"D	324-127 324-139	HDSP-7801 HDSP-7803	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	Green	3000 µcd @ 10mA

Seven Segment Displays (continued)

Device	Order Code	Mftrs. List No.	Description	Color	Typical I _V
+ + + 1 - - - - - - - - - - - - - - - -	324-188 324-190 324-206	5082-7730 5082-7731 5082-7740	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	Red	770 µcd @ 20mA
+ <i>100</i> + \$405 +	324-220 324-231	5082-7610 5082-7613	Common Anode Left Hand Decimal Common Cathode Right Hand Decimal	High Efficiency Red	800 µcd @ 5mA
7.62mm (0.3in.) Dual-in-Line 0.75"Hx0.4"Wx0.18"D	324-243	HDSP-3601	Common Anode Right Hand Decimal	Green	2700 µcd @ 10mA
	324-360 324-371 324-383 324-395	5082-7750 5082-7751 5082-7760 5082-7756	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ±1. Overflow Right Hand Decimal	Red	1100 µcd @ 20mA
	264-301	HDSP-E153	Common Cathode Right Hand Decimal	AlGaAs Red	15.0mcd @ 20mA
	324-401 324-413 324-425 324-436	5082-7650 5082-7651 5082-7653 5082-7656	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ±1. Overflow Right Hand Decimal	High Efficiency Red	1115 µcd @ 5mA
10.92mm (0.43in.) Dual-in-Line 0.75"Hx0.5"Wx0.25"D	324-474 324-486	HDSP-4600 HDSP-4603	Common Anode Left Hand Decimal Common Cathode Right Hand Decimal	Green	4000 µcd @ 10mA
	324-620 324-632 324-644 324-553 324-565	HDSP-5301 HDSP-5303 HDSP-5207 HDSP-5321 HDSP-5323	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ±1. Overflow Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	Red	1300 µcd @ 20mA
[¥़,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	264-313 264-325 324-607 324-619	HDSP-H151 HDSP-H153 HDSP-K121 HDSP-K123	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	AlGaAs Red	16.0 mcd @ 20mA
14.2mm (0.56in.) Dual-in-Line (Single Digit) 0.67″Hx0.49″Wx0.31″D	324-656 324-668 324-670 324-577 324-589	HDSP-5501 HDSP-5503 HDSP-5507 HDSP-5521 HDSP-5523	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ±1. Overflow Two Digit Common Anonde Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	High Efficiency Red	2800 µcd @ 10mA
	324-693 324-700 324-711 324-590	HDSP-5601 HDSP-5603 HDSP-5607 HDSP-5623	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode±1. Overflow Two Digit Common Cathode Right Hand Decimal	Green	2500 μcd @ 10mA
14.2mm (0.56in.) Dual-in-Line (Single Digit) 0.67"Hx0.49"Wx0.31"D					
ţ,;t	324-772 324-796	HDSP-3400 HDSP-3403	Common Anode Left Hand Decimal Common Cathode Right Hand Decimal	Red	1200 µcd @ 20mA
	264-350	HDSP-N151	Common Anode Right Hand Decimal	AlGaAs Red	14.0 µcd @20mA
20mm (0.8in.)	324-814 324-826 324-838 324-840	HDSP-3900 HDSP-3901 HDSP-3903 HDSP-3905	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Cathode Left Hand Decimal	High Efficiency Red	7000 µcd @ 100mA peak 1/5 Duty Factor
Dual-in-Line 1.09"Hx0.78"Wx0.33"D	324-851 324-863	HDSP-3906 HDSP-8600	Universal ±1. Overflow Right Hand Decimal Common Anode Left Hand Decimal	Green	1500 µcd @ 10mA

High Ambient Light, Seven Segment Displays

HEWLETT PACKARD

Device	Order Code	Mftrs. List No.	Description	Typical I _V @ 100mA Peak 1/5 Duty Factor
+ + 20mm (0.8in.) + + 20mm (0.8in.) Dual-in-Line 1.0° Hx0.78W x 0.33"D	324-449 324-450 324-462	HDSP-3730 HDSP-3731 HDSP-3733	High Efficiency Red, Common Anode, LHDP High Efficiency Red, Common Anode, RHDP High Efficiency Red, Common Cathode, RHDP	10900cd/seg

Alphanumeric LED Displays

HEWLETT PACKARD

Device	Order Code	Mftrs. List No.	Description	Color	Application
	325-168 325-170	HDSP-2112 HDSP-2113	5.0mm (0.2in) 5x7 Eight Character Intelligent Display Operating Temperature Range: 45°C to +85°C HDSP-211X ASCII	High Efficiency Red Green	Medical Telecommunications Analytical Equipment Computer Products Office Equipment Industrial Equipment
	265-585 265-603	HDSP-2502 HDSP-2503	15.24mm (0.6in) 28 pin DIP, ASCII 5x7 Eight Character Intelligent Display Operating Temperature Range: 45°C to +85°C	High Efficiency Red Green	Computer Products Industrial Instrumentation Medical Equipment Portable Data Entry Devices Cellular PHones Telecommunications Test Equipment
	280-410 280-409	HDSP-2533 HDSP-2534	5.0mm (0.2in) Eight Character Intelligent Display Operating Temperature Range: -40°C to +85°C	Green AlGaAs Red	Avionics Computer Products Industrial Instrumentation Medical Equipment Portable Data Entry Devices Telecommunications Test Equipment
	325-144 325-132 325-120	HDLG-2416 HDLO-2416 HDLR-2416	5.0mm (0.2in) 5x7 Four Character Intelligent Display Operating Temperature Range: -40°C to +85°C	Green High Efficiency Red Red	Portable Data Entry Devices Industrial Instrumentation Computer Products Telecommunications
	280-446 280-434	HCMS-2973 HCMS-2975	1 Row of 8 Characters 5.0mm (0.20in)	Green AlGaAs	Telecommunications Portable Data Entry Devices Computer Products Medical Equipment Test Equipment Business Machines Avionics Industrial Controls

Hexadecimal and Dot Matrix Displays

Device	Order Code	Mftrs. List No.	Description	Package	Application
	(A) 324-991	5082-7300	Numeric RHDP Built-in Decoder/Driver/Memory	8.5 Pin Epoxy 15.2mm (0.6in) DIP	Medical Telecommunications Analytical Equipment
	(B) 325-016	5082-7340	Numeric RHDP Built-in Decoder/Driver/Memory		Computer Products Office Equipment Industrial Equipment
(A) (B)					
7.4mm (0.29in) 4x7 Single Digit					

LED Light Bars

HEWLETT PACKARD

Device	Device			Description			Typical Forward Voltage
Package Outline Drawing	Order Code	Mfrts. List No.	Color	Package	Lens	Intensity @ 20mA	@ 20mA
	323-561	HLMP-2300	High Efficiency Red	4 Pin In-Line; 0.100" Centers; 0.400"L x 0.195"W x 0.245"H	Diffused	23mcd	2.0V
	323-585	HLMP-2400	Yellow		Diffused	20mcd	2.1V
	323-603	HLMP-2500	Green		Green Diffused	25mcd	2.2V
	323-573	HLMP-2350	High Efficiency Red	8 Pin In-Line; 0.100" Centers; 0.800"L x 0.195"W x 0.245"H	Diffused	45mcd	2.0V
	323-597	HLMP-2450	Yellow		Diffused	38mcd	2.1V
	323-615	HLMP-2550	Green		Green Diffused	50mcd	2.2V
	323-720	HLMP-2600	High Efficiency Red	8 DIP; 0.100" Centers; 0.400"L x 0.400"W x 0.245"H	Diffused	22mcd	2.0V
	323-834	HLMP-2800	Green	Dual Arrangement	Green Diffused	25mcd	2.2V
	323-731	HLMP-2620	High Efficiency Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H	Diffused	25mcd	2.0V
	323-846	HLMP-2820	Green	Quad Arrangement	Green Diffused	25mcd	2.2V
	323-755	HLMP-2655	High Efficiency Red	8 Pin DIP; 0.100" Centers; 0.400"L x 0.400"W x 0.245"H	Diffused	43mcd	2.0V
	323-809	HLMP-2755	Yellow	Square Arrangement	Diffused	35mcd	2.1V
	323-858	HLMP-2855	Green		Green Diffused	50mcd	2.2V
	323-779	HLMP-2685	High Efficiency Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H	Diffused	80mcd	2.0V
	323-822	HLMP-2785	Yellow	Single Bar Arrangement	Diffused	70mcd	2.1V
	323-858	HLMP-2855	Green		Green Diffused	100mcd	2.2V

DH AIGaAs Low Current LED Light Bars

Device			Description			Typical Luminous Intensity	Typical Forward Voltage
Package Outline Drawing	Order Code	Mfrts. List No.	Color	Package	Lens	@ 3mA	@ 3mA
	323-676	HLCP-D100	AlGaAs Red	8 Pin DIP; 0.100" Centers: 0.400"L x 0.400"W x 0.245"H Dual Arrangement	Diffused	7.5mcd	1.6V
	323-688	HLCP-E100	AlGaAs Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H Quad Arrangement	Diffused	7.5mcd	

DH AIGaAs Low Current LED Light Bars (Continued)

Device			Description			Typical Luminous Intensity	Typical Forward Voltage
Package Outline Drawing	Order Code	Mfrts. List No.	Color	Package	Lens	@ 3mA	@ 3mA
	323-690	HLCP-C100	AlGaAs Red	8 Pin DIP; 0.100" Centers; 0.400"L x 0.400"W x 0.245"H Square Arrangement	Diffused	15.0mcd	1.6V
	323-718	HLCP-H100	AlGaAs Red	16 Pin DIP; 0.100" Centers; 0.800"L x 0.400"W x 0.245"H Single Bar Arrangement	Diffused	30.0mcd	

LED Bicolour Light Bars

HEWLETT PACKARD

	Device			Description			Typical Luminous Intensity	Typical Forward Voltage
Pa	ckage Outline Drawing	Order Code	Mfrts. List No.	Color	Package	Lens	@ 20mÁ	@ 20mA
		323-871	HLCP-2965	High Efficiency Red/ Green	8 Pin DIP; 0.100" Centers; 0.400"L x 0.400"W x 0.245"H Square Arrangement	Diffused	HER: 20mcd Green: 20mcd	HER: 2.0V Green: 2.2V

LED Bar Graph Arrays

HEWLETT PACKARD

Device			Description			Typical Luminous	Typical Forward
Package Outline Drawing	Order Code	Mfrts. List No.	Color	Package	Lens	Intensity	Voltage
	323-901	HDSP-4820	Standard Red	20 Pin DIP; 0.100" Centers; 1.0"L x 0.400"W x 0.200 "	Diffused	1250µcd @ 20mA DC	1.6V @ 20mA DC
	323-925	HDSP-4830	High Efficiency Red		Diffused	3500µcd @ 10mA DC	2.1V @ 20mA DC
	323-949	HDSP-4840	Yellow		Diffused	1900µcd @ 10mA DC	2.2V @ 20mA DC
	323-962	HDSP-4850	High Performance Green		Green Diffused	1900µcd @ 10mA DC	2.1V @ 10mA DC
	323-986	HDSP-4832	Multicolor		Diffused	1900µcd @ 10mA DC	
	323-998	HDSP-4836	Multicolor		Diffused	1900µcd @ 10mA DC	
	323-913	HLCP-J100	AlGaAs Red		Diffused	1000µcd @ 1mA DC	1.6V @ 1mA

Panel Mounts for LED Light Bars

Device			
Package Outline Drawing	Order Code	Mfrts. List No.	Corresponding Light Bar Module Part Number
	323-639	HLMP-2598	HLMP -2350, -2450, -2550
	323-627	HLMP-2599	HLMP -2300, -2400, -2500
	323-883	HLMP-2898	HLMP -2600, -2800 -2655, -2755, -2855 -2965, HLCP-C100, -D100