

Order Codes $789-707$ (CLC408AJP) 789-719 (CLC408AJE)

Features:

- $96 m A$ output current
- 1.5 mA supply current
- 130MHz bandwidth (Av=+2)
- $-85 /-75 \mathrm{dBc}$ HD2/HD3 (1MHZ)
- 15 ns settling to 0.2%
- 350V/ $\mu \mathrm{s}$ slew rate

The Comlinear QC408AJP (PDIP) and CC408AJE (SOC) deliver high output drive current (96 mA), but consume minimal quiescent supply current (1.5 mA) Their current feedback architecture, fabricated in an advanced complimentary bipolar process, maintains consistent performance over a wide range of gains and signal levels.
They offer superior dynamic performance and the combination of low quiescent power, high output drive current and high-speed performance make them a great choice for many portable and battery-powered personal communication and computing systems. The Clutuo drives low-impedance loads, including capacitive loads, with little change in performance. They also have an excellent choice for driving high currents into single-ended transformers and coils.

Typical Application:

Full Duplex Cable Driver

CLC436
$200 \mathrm{MHz}, \pm 15 \mathrm{~V}$, Low Power Voltage Feedback Op Amp
COMLINEAR (NSC)

Order Code 792-731 (CLC436AJP)

Features:

- 2.3mA supply current
- 200MHz unity-gain bandwidth
- $2400 /$ Vus slew rate
- 115dB common-mode rejection ratio
- 100 mA drive current
- $20 \mathrm{~V}_{\text {pp }}$ output swing
- $\pm 5 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ supplies

Applications:

- Video ADCdriver
- Desktop multimedia
- Low powered cable driver

Video DACbuffer

- Active filters
- NTSC \& PAL video systems

The CLC436 is a high-performance voltagefeedback operational amplifier that has been esigned for low-cost general-purpose pplications. It can operate from dual $\pm 5 \mathrm{~V}$ $\pm 15 \mathrm{~V}$ power supplies. Operating from $\pm 5 \mathrm{~V}$ rails, it consumes a mere 20 mW . Operating from $\pm 15 \mathrm{~V}$ power supplies, it uses only 2.3 mA to provide a wide 200 MHz unity gain bandwidth, a very fast $2400 \mathrm{~V} / \mu$ s slew ate and quick 16ns rises/fall times (5Vpulse). At $\pm 15 \mathrm{~V}$ the device also provides larger signal swings ($20 \mathrm{~V}_{\mathrm{PP}}$) to give greater dynamic range and higher signal-to-noise ratios.

Typical Application:

The QLC533 is a high-speed 4:1 multiplexer employing active input and output stages. The QC533 also employs a closed-loop design which dramatically improves accuracy over conventional analogue multiplexer circuits. This monolithic device is bipolar process. The a 533 has been specifically bipolar process. . his coupled with the adjustable bandwidth, mak it an ideal choice for infra-red and COD imaging systems, with channel isolation of $80 \mathrm{~dB} @ 10 \mathrm{MHz}$ Low distortion and spurious signal levels (-80 dBC make the C-C533 a very suitable choice for I/Q processors in radar receivers.

Features:

- 12-bit settling (0.01\%) - 17ns
- Low noise - 42μ Vrms
- Isolation - 80dB @ 10MHz
- 110 MHz - 3dB bandwidth ($\mathrm{A}_{\mathrm{V}}=+2$)
- Low distortion - 80dB @ 5 MHz
- Adjustable bandwidth - 180 MHz (max)

Applications:

- Infrared system
multiplexing
- OCD sensor signals
- Radar I/Qswitching
- High definition video HDTV
- Test and calibration

CLC533AJP

EQL Level Channel SBEECTConfiguration

LM2825 1ADC/DC Converter
NSC

GND 1	24 NC (Do Not Use)
GND 2	23 GND
(Do Not Use) NC 3	22 NC (Do Not Use)
4	
5	20
Otput	19
	${ }^{18}$ In ${ }^{\text {In }}$
	17
(Do Not Use) NC 9	16
(Do Not Use) NC 10	15 NC (Do Not Use)
GND 11	14 Shutdow//Soft-start
GND 12	${ }_{13}$ Shutdow//Soft-start
Order Codes	
704-441 (LM2825N50)	
704-453 (LM2825N33)	

Features:

- Minimum design time required
- 3.3 V and 5 V fixed output versions
- Guaranteed 1A output current
- Wide input voltage range, up to 40 V
- Low-power standby mode, I Qtypically $65 \mu \mathrm{~A}$
- High-efficiency, typically 80%
- $\pm 4 \%$ output voltage tolerance
- Excellent line and load regulation
- TIL shutdown capability/programmable soft-start
- Thermal shutdown and current limit protection

Circuit using Shutdown/Soft-Start features

The LM2825N50 (5V) and LM2825N33 (3.3V) arecomplete 1A DCDCBuck converters in a 24 -leed moulded dual-in-line integrated circuit package. Contaned within the packageareall the active and passive componentsfor ahigh efficiency step-down (Buck) switching regulator. Available in fixed output voltages of 3.3 V and 5 V , thesedevioes can provide up to 1 A of load current with fully guranteod electrica specifications over the full operating temperature range. Self-contained, theseconverters arefully protected from output fault conditions, such as excessive load current, short dircuits, or excessivetemperaures.

Order Code 792-160 (LM56BIM) 791-787 (LM56CIM)

eatures

- Digital outputs support TTL logic levels

Internal temperature sensor
2 internal comparators with hysteresis

- Internal voltage reference
- Temperature trip point accuracy

LM56BIM $\pm 2^{\circ}{ }^{\circ}($ max $)$
LM56aM $\pm 3^{\circ}$ (max)

Applications:

- Microprocessor thermal management
- Appliances

Appliances
Portable battery powered systems
Fan control
ustrial process control
HVAC systems

- Remote temperature sensing
- Bectronic system protection

The LM56 is a low power thermostat with two stable temperature trip points generated by three external resistors dividing the 1.25 V bandgap voltage reference. It has two digital outputs. OU1 goes LO when the temperature exceeds T 1 and goes H when the temperatur exceeds T1 and goes Hl when the temperature goes below T1-THYST. OUT2 performs similarly with respect to T_{2}, where $\mathrm{T}_{\text {HYST }}$ is an internally set $5^{\circ} \mathrm{C}$ typical hystersis.

In the example shown here, an audio power amplifier IC is bolted to a heatsink which is mounted onto

Typical Application:

LM78 Microprocessor System Hardware Monitor
a PCB with the LM56 also mounted onto the PCB near the power amplifier. The back of the PCB has ground plane helping conduct heat to the device. The sensing element is to be at the same temperature as the heatsink therefore the sensor leads are fed through to the back e sensor leads are fed through to the back the heatsink temperature changes relative to the threshold which is set by R1 R2 and the volta hreshold which is set by R1, R2 and the voltag resce. her the fan

Audio power amplifier overtemperature detector.

The LM78 monitors servers, personal computer, or virtually any microprocessor based system. The device monitors power supply voltages, temperatures, and fan voltages, temperatures, and fan speeds in a PC environment. It also has, on-chip, two inverting inputs or monitoring negative voltages and an 8-bit ADC, making the LM78 a highly integrated Data Acquisition system.

Features:

- Temperature sensing

5 positive voltage inputs

- 2 op amps for negative voltage monitoring

3 fan speed monitoring inputs

- Input for additional temperature sensors
- Chassis intrusion detector input

Watchdog comprison of all

- Power on self test code storage RAM
- ISA and I ${ }^{2}$ C serial bus interfaces

Applications:

- System hardware monitoring for servers and PCS
- Office electronics
- Bectronic test equipment and instrumentation

PCapplication where LM780CVF monitors temperature, fan
speed for 3 fans speed for 3 fans
and 7 power supply and 7 power supply
voltages. It also monitors overtemperature
shutdown outputs of up to 8 LM7519M3 (703722) or LM75aM5 (703-710) digita temperature
sensors as wel sensors as well as
an optical chassis an optical chassis
intrusion detector.

The LM75 is a temperature sensor, 9 -bit Delta Sigma ADC and digital overtemperature shutdown detector with ${ }^{2}$ 'C interface. A digital comparator is also incorporated for comparison of user-selectable number of readings. The host system can query the LM75 at any time to read temperature. The open-drain overtemperature shutdown output activates when the temperature when the temperature limit. The 3.0 V to 5.5 V supply voltage range, low supply voltage range, low supply current and ${ }^{2}$ C interface make the LM75 ideal for a range of applications, including those already highlighted.

Features:

- I ${ }^{2}$ Cbus interface
- Separate open-drain output pin operates as interrupt or
comparator/thermostat output
- Register readback capability
- Power up defaults permit stand-alone operation as thermostat
- Shutdown mode to minimize power consumption
- Up to 8 LM75s can be connected to a single ${ }^{2} \mathrm{C}$ bus

Applications:

- System thermal management
- Personal computers
- Office electronics
- Bectronic test equipment

Temperature sensor with loudmouth alarm.

Product	Product Definition	Operating Temperature Range	Accuracy (Tmin to Tmax)	Sensor gain (Tmin to Tmax)	Supply Voltage Range	Quiescent Current (Tmin to Tmax)
LM34CZ LM34DZ	Output voltage linearity proportional to Fahrenheit temperature complement to LM35 family	$\begin{aligned} & -40^{\circ} \text { Fto }+230^{\circ} \mathrm{F} \\ & +32^{\circ} \mathrm{F} \text { to }+212^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \pm 3.0^{\circ} \mathrm{F} \\ & \pm 4.0^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 10 \mathrm{mV} /{ }^{\circ} \mathrm{F} \\ & 10 \mathrm{mV} /{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \text { to }+30 \mathrm{~V} \\ & +5 \mathrm{~V} \text { to }+30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 159 \mu \mathrm{~A} \\ & 159 \mu \mathrm{~A} \end{aligned}$
LM35CAH LM35CZ LM35DH/DZ	Output voltage linearly proportional to Celsius temperature. Complements to LM34 family.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 1.0^{\circ} \mathrm{C} \\ & \pm 1.5^{\circ} \mathrm{C} \\ & \pm 2.0^{\circ} \mathrm{C} \end{aligned}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & +4 \mathrm{~V} \text { to }+30 \mathrm{~V} \\ & +4 \mathrm{~V} \text { to }+30 \mathrm{~V} \\ & +4 \mathrm{~V} \text { to }+30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 116 \mu \mathrm{~A} \\ & 141 \mu \mathrm{~A} \\ & 141 \mu \mathrm{~A} \end{aligned}$
LM45CIM3	Low output impedance	$-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 4.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	+4 V to +10 V	$160 \mu \mathrm{~A}$
LM50CIM3	Negative temperature output available from single supply.	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 4.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	+4.5 V to +10 V	$180 \mu \mathrm{~A}$
LM60CIM3	Negative temperature reading	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$6.25 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	+2.7 V to +10 V	-
LM75CIM3 LM75CIM5	Integrated 9-bit Delta Sigma ADC. $1^{2} C$ communication interface. Programmable temperature trip points.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	-	+3.0 V to +5.5 V	$250 \mu \mathrm{~A}$

Order Code
597-351 (DG611DJ) 597-363 (DG612DJ) 597-375 (DG613DJ)

Features:

Fast sample \& hold
Synchronous demodulators

- Pixel rate video switching
- Disk/tape drives
- DAC deglitching
- Switched capacitor filters

Satellite receivers

The TEMICDG61/612/613 switches combine OMOS and DMOS technologies to produce extremely fast (12ns typical) low noise switches.
These characteristics can be used to good advantage when switching audio inputs at the summing junction of an op amp. It is of benefit to have the switches connected directly to the input of the op amp because the voltage swing and therefore any distortion due to resistance modulation is reduced when switching in to a virtual earth (OV)

Typical Applications:

DG61x family used in a low distortion audio mixer eliminates switching noise.
harawback of this configuration is that any charge injected into this node is amplified and can cause large output spikes. These switching spikes usually cause extremely low charge injection due to the very small values of capacitances inherent in DMOS technology. This virtually eliminates this type of switching noise completely and any remaining noise can be removed with a small snubbing filter.

Order Code
941-864(TFDS4000)

eatures:

Compatible to IrDA standard

- SMD Sideview

Low profile (height $=5.6 \mathrm{~mm}$)

- Low Power Consumption
- Microcomputer compatible
- Very few external components
- AGCfor BMI Immunity
- Wide supply voltage range :

$$
2.7 \mathrm{~V} \sim 5.5 \mathrm{~V}
$$

Applications:

- Personal Computer
- Printers
- Hand Held Termina
- Cellular Phone
- Modem
- Fax Machine
- Personal digital Assistant

The TRDS4000 is an infrared transceiver for data communications systems. The transceiver is compatible to the IrDA standard which allows data rates up to 115 kBaud and also supports SHARP AST
mode. An internal AGC (Automatic Gain Control) ensures proper operation under EMI conditions.

The output pin 8 can be connected by external resistor to an unregulated power supply. This will allow efficient serial drive capability for additiona IREDs for high power applications

The Si9104 contains most of the components to implement a higheffiency DC/DC converter up to 3
Watts. It can be operated from a low voltage dc supply or from a 10 to 20 V unregulated dc power source due to

Typical Application:

Si9434DY P-Channel Enhancement-Mode MOSFET
TEMIC

Order Code 663-773 (Si9434DY)

Features:

- High power dissipation
- Low profile
- Low RDS(on)

High current capability
5 V and 3.3 V logic input compatible

Applications:

- Portable electronics power switching
- Battery back-up switching
- DCDC conversion
- Load switching
- Motor drives
- Backlight inverte

Load switches help to save energy and extend battery life in multifunctional products, by closing down circuits not in use.

The p-channel Si9434DY in this application replaces expensive high-side driver IC and additional components used in an n-channel solution.
low quiescent current of the device. With an appropriate transformer most single-ended isolated power converter topologies can be implemented; flyback and forward.

Typical Application:

Logic-compatible high-side switch.

The Si9114A is ideal for use in Distributed Power Systems

Advantages of distributed power:

- Single 'safe' d.c. voltage within
system
- System upgrades without PSU redesign
- Improved local load regulation
- Reduced short circuit currents
- Increased reliability
- 'Hot' plug-in: No system downtime
- Smaller energy storage components (high switching frequency)

Order Code 704-957 (U4082BA)

The U4082B incorporates numerous functions including amplifiers, leve detectors, transmit and receive attenuators, background noise monitors, chip disable, dial tone detector and mute function. It can operate by low supply or via telephone line requiring 5.5 mA typically. It also features standalone operation or in conjunction with a handset
speech network.
Typical Application:

Level detectors/background noise monitor

Features:

- Two 10A Power MOS N-channel transistor
- Output voltage to 60V
- $r_{\text {DS(ON) }} 0.125 \Omega$ max. per transistor at $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$
- $r_{D S(O)} 0.15 \Omega$ max. per transistor at $V_{G S}=10 \mathrm{~V}$
- Pulsed current : 25 A transistor
- Avalanche energy : $100 \mathrm{~mJ} /$ transistor
- Grounded tab eliminates heat sink isolation

Typical Application:

Applications:

- Motor controls
- Uninterruptible power supplies
- Switch mode power supplies
- Voice coil motors
- Cass D power amplifiers

The HIP2060 is a power half-bridge MOSFET array that consists of two matched N -channel enhancement-mode MOS transistors. The advanced Harris PASIC2 process technology used in this product utilises efficient geometry hat provides outstanding device performance and ruggedness.
The HIP2060 is designed to integrate two power devices on one chip thus providing board layout area and heatsink savings.
HIP2100
High Frequency, Half-Bridge Driver 100V, 2A Peak
HARRIS

Order Code $786-822$ (HIP21001P)

The HIP21001P is a high frequency, 100 V half-bridge N -channel MOSFIT driver IC. The low-side and high-side gate drivers are independently controlled and matched to 5ns. This gives the user maximum flexibility in dead-tim selection and driver protocol. Undervoltage protection on both the lowside and high-side supplies force the outputs low. An on-chip diode eliminates the discrete diode required with other driver ICs. A new level-shifter topology yields the low-power benefits of pulsed operation with the safety of $D C$ operation. On this device the high-side output returns to its correct state after a momentary undervoltage of the highside supply.

Features:

- Drives N -channel MOSttt haf bridge
- Bootstrap supply max. voltage to

116Vdc

- On-chip bootstrap diode
- Fast propagation times needed for multi-MHz circuits
- Drives 1000 pF load at 1 MH with rise and fall times of typically 10 ns
- aMOS input thresholds for improved noise immunity - Independent inputs for non-half-bridge topologies - No start-up problems - atputs unaffected by supply glitches, HS ringing below ground, or HS slewing at high dv/dt
- Low power consumption
- Wide supply range
- Supply undervoltage protection
- 2Ω output resistance

Applications:

- Brushless motors
- High side switches
- AC motor drives
- Switched reluctance motor drives

The HIP4083 is specifically targeted for PWM motor control. Two HIP4083 may be used together for 3 phase full-bridge applications (see block diagram). Alternatively, the lower gates may be controlled directly from a buffered microprocessor output. This device has no built-in turn-on delay. Each output (AHO BHO and CHO) will turn-on 65ns after its nput is switched low. Likewise, each output will turn-off 60 ns after its input is switched high. Very short and very long dead times are possible when two HIP4083s are used to drive a full bridge. This dead time is controlled by the input signal timing.
The HIP4083 has reduced drive current making it ideal for low to moderate powe applications and is optimised for applications where size and cost are important.

Order Code 505-031 (HIP5600IS)

Features

- Operates from $50 V_{D C}$ to $400 V_{D C}$
- Operates from $50 \mathrm{~V}_{\text {RMS }}$ to $280 \mathrm{~V}_{\mathrm{RMS}}$ line.
- UL recognised
- Variable DCoutput voltage
$1.2 \mathrm{~V}_{\text {DC }}$ to $\mathrm{V}_{\mathrm{IN}}-50$
- Internal thermal shutdown protection
- Internal over current protection
- Up to 40 mA peak output curren
- Surge rated to $\pm 650 \mathrm{~V}$; meets I开/ANSI 062.41.1980

Applications:

- Switch mode power supply startup
- Bectronically communicated motor housekeeping supply
- Power supply for simple industrial/commercial /consumer equipment controls
- Off-line (Buck) switch mode power supply

The HIP5600 is an adjustable high voltage, 3 -terminal positive linear voltage regulator which is capable of sourcing 1 mA to 30 mA with proper heat sinking.
Protection is provided by the on chip thermal shutdown and output current limiting circuitry. The HIP5600IS has a unique advantage
ver other high voltage linear regulators due to its ability to withstand input to output voltages as high as 400 V (peak), a condition that could exist under output short circuit conditions.

Common linear regulator configurations can be implemented as well as AC/DC conversion and start-up circuits for switch mode power supplies. The HIP5600 requires a minimum output capacitor of 10μ F for stability of the output and may require a 0.02μ Finput decoupling capacitor depending on the source impedance. It also requires a minimum load current of 1 mA to maintain output voltage regulation.

All protection circuitry remains fully functional even if the adjustment terminal is disconnected. However, if this happens the output voltage will approach the input voltage.

Typical Application:

MC13055

Features:

- Input sensitivity $20 \mu \mathrm{~V} @ 40 \mathrm{MHz}$
- Signal strength indicator linear over 3 decades
- Easy applications, few peripheral components

MOTOROLA
oscillator/mixer. The IFbandwidth has been increased and the detector output has been revised to a balanced configuration. The received signal strength metering circuit has been retained, as has the versatile data slicer/comparator.

Typical Application

Features:

- Wide operating supply voltage range $: V_{\infty}$ $=2.0$ to 9.0 V
- Input limiting voltage sensitivity of -
3.0dB
- Low drain current : $I_{\propto}=3.2 \mathrm{~mA}, @ \mathrm{~V}_{\propto}=$ 4.0 V , squelch off
- Minimal drain current increase when squelched
- Signal starength indicator : 60dB dynamic range
- Mixer operating frequency up to $100 \mathrm{MH} z$
- Fewer external parts required than earlier devices

The MC3371 and MC3372 perform single conversion FM reception and consist of an oscill ator, mixer, limiting IF amplifier, quadrature discriminator, active filter. quadrature discriminator, active filter,解 These devices are designed for use dual conversion communications
equipment. The MC3371 is designed for equipment. The MC3371 is designed for
the use of parallel LC components, while the use of paralle LC components, wh372 is designed for use with either a 455 kHz ceramic discriminator or parallel LC components.

The SABC167CRLM is a high end member of the Siemens C166 family of 16 bit microcontrollers designed to provided ultra high real time performance. The C166 Processing Core executes most instructions in a single instruction cycle (100 ns at 20 MHz CPU clock). A high speed divide and multiply unit provides multiplication (16 bit by 16 bit) in 500 ns and division (32 bit by 16 bit) in $1 \mu \mathrm{~s}$. To even further enhance real time performance the C166 family incorporates a fast and flexible interrupt system. This interrupt system provides 16 levels of interrupt priotity with a typical interrupt response time of 400 ns and a context switch time of 100 ns . In addition an 8 channel peripheral event controller can be used to implement a DMA function (by cycle stealing) and thereby relieve the CPU of repetitive interrupt overhead.

The SABC167CRLM provides 4k bytes of on chip high speed RAM, a 1 K byte special function register area and integral chip select hardware (5 channels) which allows configuration of the external memory map for multiple memory/peripheral speeds and bus configuration (mux/demux and 8-/16-bit). An on-chip bootstrap loader facilitates in-situ system programming (FLASH memories etc.). The SABC167CRLM includes an extensive set of peripherals in addition to the standard C166 family peripheral set (asynchronous and synchronous serial channels, 5 timers etc.). The device teatures a fast and accurate 16 channe 10 -bit A to D converter ($9.7 \mu \mathrm{~s}$ conversion ± 2 LSB TUE), 32 capture compare channels, 4 PWM channels (with 50 ns resolution), oscillator watchdog, watchdog timer and CAN module. The CAN module is a 'Full Can' module providing 15 message objects to allow a high degree of decoupling from the CPU. It supports CAN version 2.0 part B (both 11 and 29-bit identifiers) at all data rates up to the maximum data rate of $1 \mathrm{Mbit} / \mathrm{s}$. Connection to the CAN bus is achieved simply with the addition of the appropriate CAN physical layer driver. Physical CANLink to $\left.\begin{array}{c}\text { Physical } \\ \text { LLyer } \\ \text { Driver }\end{array}\right)<\begin{gathered}\text { CANLink to } \\ \text { Bevator Car } \\ \text { and Lard }\end{gathered}$

Features:
 - Ultra high performance

- Fast and flexibile interrupt system
- 4K byte on-chip high speed RAM
- Embedded programmable chip selects
- Extensive peripheral set
- V2.0B full CAN module

Typical Application:

Bevator main control unit Fault
-
Emergency Intercom

The MICRO-ISP

Programmer System (795-

239) features include

- Connects to parallel port
- No power supply required
- Windows based software
- 8051 socket stealer module
- 8958252 microcontroller
- Atmel CD-ROM Databook

Supports ATMEL

microcontrollers: AT89S8252-24PC (795-
392) and AT89S8252-24JC (795-409)

795-409 (AT8958252-24JC)

Why use an In-System Programmable (ISP) Microcontroller?

An ISP microcontroller, such as those in the ever remove the device from the socket. With slower than a parallel transfer, but the Atmel 89 S and 90 S families, can be soldered directly to the user target socket and serially re-programmed in-system with no need to
hardware requirements are considerably less, and other advantages are gained, as shown in the table below.

	PARALLEL MODE	SERIAL MODE (ISP)
Programming speed (CODE+DATA)	FAST: Typically <15 secs	SLOW: Typically 30-40 secs
Programmer Fexibility	Remove device from socket	Solder device to board and use ISP
Programmer device support	Supports many devices	Only supports 89S, 90S and some serial EEPROM devices
Programmer cost	More expensive than SERIAL	Less expensive than Parallel
Device reliability	Less reliable as device is continually stressed when removed from socket	Very reliable as device does not physically move
Commission device during production?	No - all devices would have to be programmed before insertion into assembled PCB	Yes - The latest code revision can be downloaded 'just-in-time' during production
Update code during production due to a last-minute bug?	Very difficult - All devices would have to be removed from their sockets, re- programmed and then re-inserted.	Straightforward - Each unit is simply re- programmed again via the ISP header with no need to remove the device from the socket.
Program device with production line test parameters for unit under test? e.g. Calibration data	Not possible - Need to store parameters in external EEPROM	Parameters can be programmed either into the PLASH or ETPROM areas at time of test
Best used for:	Code development stage - Use in conjunction with Equinox AD-ICR-51	High Volume Production Environments (products which require frequent code adapter. in-circuit re-programmable and allows for fast code download

Control of the microcontroller RESET (RST) pin

The 8958252 is placed in serial programming
mode by applying a high (VCc) to the RESET (RST) pin of the device for a period of $>10 \mathrm{~ms}$. At this point the SPI 'Program point the SPI 'Programming Enable' command must be sent to initiate actual serial programming
To implement ISP of the 89S8252 it is therefore necessary for the MICRO-ISP programmer to be able to externally control the RESET pin of the device when in place in the user target system. This functionality can often be added by simply adding two diodes to the target system as shown in figure below.
The RESET outputs of the typical 8051 RESET circuit (made up of a capacitor connected to Vcc and a resistor to ground) and MICRO-ISP are ORd together so that both types of reset control are possible. When the MICRO-ISP is not connected to the target system, only the target system RESEI circuit has any effect.

Order Code 787-115 (DS1302)

Features

- Real time clock counts from secs to years with leap year compensation
- 31×8 RAM for scratchpad data storage
- Serial I/Ofor minimum pin count
- 2.5 to 5.5 V full operation
- Uses less than 300 nA at 2.5 V
- Single-byte or multiple-byte data transfer for read/write of clock/RAM data
- Simple 3-wire interface
- TLL-compatible (Vcc=5V

In the example shown, DS1302 is interfaced with an 8051 microcontroller. Each of the three lines from the DS1302 is connected to the bi-directional P3 bus of the 8051. This

Order Code
SOIC
787-127 (DS1302Z)
configuration can be used for any of the Dallas Semiconductor 3-wire interface devices. Here the DS1302 has its trickle charge circuit enabled and is being backed up by a rechargeable battery, which could also be Typical Application:

Interfacing an 8051 microcontroller with a DS1302 charge circuit is disabled, the device can be backed up with a $3 V$ lithium battery. The DS1302 communicates with a microprocessor via a serial interface and requires only 3 -wires to communicate with the clock/RAM. Data can be transferred to and from the clock/RAM one byte at a time or in a burst of up to 31 bytes. It is designed to operate on very low power and retain data/clock information on less than 1 microwatt. The DS1302 is the programmable trickle charger for Vcc1, and seven additional bytes of scratchpad memory.
replaced by a super cap (~1F). If the trickle

DS1644
Non-volatile Timekeeping RAM

Features:

- Upward compatibile with the

DS1643 timekeeping RAM

- Integrated NV SRAM, real time clock, crystal power fail control circuit and lithium energy source
- Standard JEDEC bytewide 32kx 8 Static RAM pinout
- Totally non-volatile with over 10 years of operation in the absence of power
- Quartz accuracy ± 1 minute a month @ $25^{\circ} \mathrm{C}$
- BCD coded year, month, date, day, hours, minutes and seconds
- Power fail write protection allows for $\pm 10 \%$ Vcc power supply tolerance

The DS1644 can substitute ROM, $\boxplus R O M$ and $\not \boxplus P R O M$ providing read/write non volatility and additionally real time clock function with the real time information residing in the uppermost RAM locations. The RTC clock registers are double buffered to avoid incorrect access of data

In the example shown, the DS1644 interfaces with a microcontroller. Multiplexed port Cof the 64 HCl 1 is used to provide both the output of eight LSDs of memory address and input/output of the data byte from the desired memory location. Port B of the 68 HC 11 is used to provide the 7 MSBs of memory address. With this arrangement the 68HC11 has direct access to 32K bytes of non-volatile RAM and a real time clock

Typical Application:
$68 \mathrm{HC1} 1$

Interfacing a simple microcontroller to the DS1644
S1644

SOT-23

Mirts. No.	DS1233	DS1233A-10	DS1233M-5	DS1810-10	DS1810R-10
Order Code	563-330	795-847	795-859	795-896	795-902
5.0V Operation	\checkmark		\checkmark	\checkmark	\checkmark
3.3V Operation		\checkmark	\checkmark		
Power Fail Detect	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pushbutton Reset	\checkmark	\checkmark			
Active Low Reset	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Package Type	3/TO-92	3/TO-92	3/TO-92	3/TO-92	3/SOT-23

EconoReset Selection Guide The simplest of Dallas Semiconductor's CPU supervisors are the EconoResets. These generally output a reset when voltages are out of

Features:

- Automatically restarts microprocessor after
power failure
- Monitors pushbutton for external override
- Internal circuitry debounces pushbutton switch
- Maintains reset for 350 ms after Vcc returns to an in-tolerancecondition or pushbutton released
- Reduces need for discrete components
- Precision temperaturecompensated voltage reference and voltage sensor
- Internal 5K pull-up resistor
- Operating temperature of $-40^{\circ} \mathrm{Cto}+85^{\circ} \mathrm{C}$
tolerance; some have a pushbutton reset function. They reduce component tolerance; some have a pushbutton reset function. They reduce component
v_{\circ} counts in designs by bringing all of the external reset components, i.e. pullup resistor and delay timing capacitor, inside a single package, thus reducing cost, simplifying design/board layout, and potentially improving reliability.

Micromonitors

Micromonitors by Dallas Semiconductor include a variety, as tabulated below as well as the original industry standard and popular DS1232. These devices perform the same functions as the EconoResets but have additional functions such as watchdogs and voltage sense inputs to
monitor power upstream from the actual device. Reliability is improved by closer monitoring processors and system functions by these devices.
The DS1705/6/7 are function and pin-compatible with the Maxim MAX705/6/7.
The MicroMonitors perform three vital functions for microprocessors:

- Monitoring status of power supply, Vcc
- Pushbutton reset button
- Watchdog timer

MicroMonitor Selection Guide

Mfrts. No. Order Code	$\begin{gathered} \text { DS1231-20 } \\ 391-372 \end{gathered}$	$\begin{aligned} & \text { DS1232 } \\ & 391-384 \end{aligned}$	$\begin{gathered} \text { DS1232LP } \\ 526-204 \end{gathered}$	$\begin{gathered} \text { DS1705EPA } \\ 795-860 \end{gathered}$	$\begin{gathered} \text { DS1706EPA } \\ 795-872 \end{gathered}$	$\begin{gathered} \hline \text { DS1707EPA } \\ 795-884 \\ \hline \end{gathered}$
5.0 V operation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
3.3 V operation						
Power fail detect	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pushbutton reset		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Referenced comparator	\checkmark			\checkmark	\checkmark	\checkmark
Watchdog timer		\checkmark	\checkmark	\checkmark	\checkmark	
Active high reset	\checkmark	\checkmark	\checkmark			\checkmark
Active low reset	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Features:

- 2 Separate standby: Reduced consumption and high impedance outputs
- Low supply current: $4.5 \mathrm{~mA} / \mathrm{mmp}$. typical
- High speed: $150 \mathrm{MHz}-110 \mathrm{~V} / \mu \mathrm{s}$
- Unity gain stability
- Low offset voltage: 3 mV
- Low noise $4.2 \mathrm{nV} / \mathrm{NHZ}$
- Specified for 600Ω and 150Ω loads
- High video performances: differential gain: 0.03\% differential phase: 0.07° gain Hatness: 6MHz, 0.1 dB max. @10dB Gain
- High audio performances

Sample and hold using TSH94:

The TSH94 in follower drives a tank capacitor and goes in high impedance state on logic threshold signal on standby pin. The output voltage then remains at the capacitor charge level. It is followed with a high impedance buffer to allow voltage reading without discharging the capacitor.
The only external components required are a resistor, the sampling capacitor and the decoupling capacitors.
Cis the tank capacitor that must remain charged at constant voltage between two samples. The accuracy and the bandwidth depend on its value.
As the input current of Ais 2pA typ. and the leakage current of the TSH94 output and inverting input in standby mode is less than 20pA It is possible to reach long hold time with small capacitor size.
R resistor is used to prevent the TSH94 from oscillating when using largeC capacitor. A 10Ω value allows to drive any capacitor without oscillating.

Video Line Transceiver with Remote Control:

Two operational amplifiers are used for transmission as followers. TSH94:C is a switch, to have on TSH94:A input the TX signal during transmission, and a ground in reception. Thus, output of TSH94:A drive the line in transmission and shows a virtual ground in reception allowing good impedance matching at cable end.

In reception, TSH94:B is a +2 amplifier to compensate the necessary voltage loss due to impedance matching resistors.
The remote control is achieved using a coupling capacitor on each line side,

Signal multiplexing:

The operational amplifiers are used as followers, outputs and standby pins are connected together forming a very simple circuit. The only external components are the supply decoupling capacitors.

Heavily loaded lines can be isolated using a Bus switch which has two advantages. Firstly the rise times can be improved, and secondly a lower drive buffering system can be implemented, saving cost and improving EMC characteristics.
Bi-directional voltage conversion from 5 V to 3.3 V is easily implemented using a Bus switch and an external diode.

Order Code
 569-914

Features:

- Compact design with excellent characteristics of AT-cut fundamental crystal
- Excellent shock resistance
- High stability assured with tight vacuum sealing

Applications:

- Microprocessor systems
- Telecommunications
- Consumer electronics
- Automotive electronics

The circuit shown is typical for a watch crystal, 32.768 kHz . The values for the components are given but some precaution should betaken, such as:
$R_{1} \cong 10 \mathrm{M} \Omega$ otherwise hard to oscillate when too low
Max. drive levels: 10 mW
This circuit is difficult to realize using transistors and a linear ICcircuit results in a too high a drive level which could damage the crystal element. OMOS ICs are therefore used provided the power supply voltage is around 5 Volts.

Typical Application:

Oscillation Oircuit for Wrist Watches

Freq. Range (kHz)	$\mathrm{R}_{2}(\mathrm{k} \Omega)$
$16-25$	1000
$25-35$	470
$35-60$	220

AEL
8/14 Pin DIL Crystal Clock Oscillator Modules

8 -pin DIL
(bottom view)
Order Code 788-491 (20MHz)

14-pin DIL
(bottom view)
Order Code
788-296 (20MHz)

Pin Connections		
8-Pin	14-Pin	
Pin 1	Pin 1	N.C. (Enable/disable)
Pin 4	Pin 7	Ground
Pin 5	Pin 8	OP
Pin 8	Pin 14	+ VDC

The Orystal Cock Oscillator provides a TT/HOMOS compatible square wave output signal. Requiring only a +5 V DC voltage supply
 it gives a modular approach to clock signal provision. Current consumption is typicall
30 mA with an absolute maximum rise/fall time

Applications:

- Microprocessor systems
- P.C.
- Network systems
- Instrumentation
of 10 ns and duty cycle of 45:55. Frequency stability is a maximum of 100 ppm overal. The device consists of a thick film substrate containing the oscillator circuitry, and a quartz crystal providing the frequency source.

Typical Application:

The AD768 is a high speed DAC with exceptional AC to DC performance. It is a current output DAC with nominal fullscale current of 20 mA and a $1 \mathrm{k} \Omega$ output impedance. Single or differential outputs are supported. Proprietary techniques from ADI have produced devices with excellent dc linearity, reduced glitch energy and maximised dynamic accuracy. The digital interface allows for compatibility to CMOS logic and support to clock rates of up to 40MSPS.

The AD768 can easily be used as a multiplying DAC since the Input Reference Current can be modulated from 1 mA to 7 mA . The reference amplifier sets the maximum multiplying bandwidth to 15 MHz while an externa capacitor to the noise reduction node limits the bandwidth The circuit shown demonstrates how the modulating signal can be scaled and converted to a current via $\mathrm{R}_{\text {R}}$ moob .

AD768 as a multiplying DAC

ADC912A

The ADC912AP is a monolithic 12-bit accurate OMOS ADC containing a complete uccessive approximation with high accuracy DAC and a precision bipolar transistor successive approxartor with improved tranition noise apectis nipolar transistor IPN diveed comparaior, with improved transtion noise between adjacent codes.
 . wait states. $10 \mu \mathrm{~s}$ conversion time is achieved with 1.25MHzz clock. An internal clock with external crystal may be used in standalone applications. For microprocessor interfacing the device contains logic for 8 -bit and 16 -bit data buses. The output data can be formatted into either 12-bit parallel word or 8-bit data word pair.

Applications:

- Data acquisition systems - Process control systems
- DSP system front end - Portable instrumentation

 Basic Connection Diagram

Features

- On-chip integrating capacito
- Gain programmed by timing
- Low input bias current
500fA (max)
- Low noise
- Fast pulse integration
- Low nonlinearity :
0.2% max

The IVC102 is a precision
integrating amplifier with FT op amp, integrating capacitors and low leakage fol swiches. It for a user-determined period, storing the resulting voltage on the capacitor. The output voltage can be held for accurate measurement. The IVC102
provides a precision, low noise alternative to conventional transimpedance op amp circuits that require a very high value feedback resistor. The IVC102 is deal for amplifying low-level sensors such as photodiodes and ionization chambers. The input signal current can be positive or negative.

TIL/CMOS-compatible timing nputs control the integration period, hold and reset functions to set the effective
transimpedance gain and to rese (discharge) the integrator capacitor.
Typical Application:

Applications:

- Precision low current measurement
- Photodiode measurements - Ionization chamber measurements
- Ourrent-output sensors
- Leakage current measurement

SHC298A

Features:

- 12-bit throughput accuracy
- Less than $10 \mu \mathrm{~s}$ acquisition time
- Wideband noise less than 20μ Vrms
- Reliable monolithic construction
$10^{10} \Omega$ input resistance
- TTL-OMOS compatible logic input

Applications

- 12-bit AD converters
- Data acquisition systems

Data distribution systems

- Analogue delay circuits

The SHC298A is a high performance monolithic sample/hold amplifier featuring high DC accuracy with fast acquisition times and a low droop rate. Dynamic performance and holding performance can be optimized with proper selection of the external holding capacitor. With a 1000 pF holding capacitor, 12-bit accuracy can be achieved with a $6 \mu \mathrm{~s}$ acquisition time. Droop rates less than $5 \mathrm{mV} / \mathrm{min}$ are possible with a 1μ F holding capacitor. These sample/holds will operate over a wide supply voltage ranging from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ with very little change in performance. A separate Offset Adjust pin is used to adjust the offset in either the Sample adjust the offset in ether the Sample or the Hold modes. The fully differential logic inputs have low input current and are compatible with VMOS and CMOS logic families The SHCA features improved gain offset error, improved drift over temperature and faster acquisition time.

Order Code 796-293 (LT1016CS8)

Features:

- Ultrafast (10ns typ)
- Operates off single +5 V supply, or $\pm 5 \mathrm{~V}$
- Complementary output to TIL
- Low offset voltage
- No minimum input slew rate requirement
- No power supply current spiking
- Output latch capability

Applications:

- High speed A to D converters
- High speed sampling circuits
- Line receiver
- Extended range V to Fconverters
- Fast pulse height/width discriminators

The LT1016 is an ultra fast (10ns) comparator specifically designed to interface directly to TL logic while operating off either a dual $\pm 5 \mathrm{~V}$ or a single +5 V supply. Tight offset voltage specifications and high gain allow the LT1016 to be used in precision applications. Matched complementary outputs further extend the versatility of this comparator
A unique output stage is featured on the T1016. It provides active drive in both directions for maximum speed into TIL logic current spikes normally found in 'totem pole' output stages. This

eliminates the need for a minimum input slew rate typical of other very fast comparators. The ability of the LT1016 to remain stable with the outputs in the active region greatly reduces the problem of output 'glitching' when the inpu
signal is slow moving or is low level. The signal is slow moving or is low level. The LT016 has a true latch pin for retaining input data al ne oupuls. Te outpuss wis nain latched as long as the latch pin is held high. 3 mA . This reduces dier supply current is only the negative supply pin to be driven from virtually any supply voltage with rually any supply voltage with performance is not affected by performance is not
variations in negati variations in negative supply voltage

50MHz Fibre Qptic Receiver with Adaptive Trigger

LTC1100 Precision Chopper-Stabilised Instrumentation Amplifier LINEAR TECHNOLOGY
 796-335 (LTC1100CN8)

The LTC1100 is a high precision instrumentation amplifier using chopperstabilisation techniques to achieve out standing DC performance. The input DC offset is typically $1 \mu \mathrm{~V}$ while the DC offset is typically $10 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ a very low bias current of 50 pA is also achieved.
The LTC1100 is self-contained, that is, it achieves a differential gain setting resistor achieves a differential gain setting resistor
the gain drift is $4 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The LTC1100 operates from a single 5 V supply up to $\pm 8 \mathrm{~V}$ The output typically swings 300 mV from its power supply rails with a 10 k load.
An optional external capacitor can be added from pin 7 to pin 8 to tailor the device's 18 kHz bandwidth and to eliminate any unwanted noise pickup The LTC1100 manufactured using Linear Technology's manufactured using Linear Technology's

Features:

- Offset voltage: $10 \mu \mathrm{~V}$ (max.)

Applications:

- Thermocouple amplifiers
- Offset voltage drift : $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ (max.)
- Bias current : 50pA (max.)
- Offset current : 50pA (max.)
- Gain nonlinearity : 8ppm (max.)
- Gain error : $\pm 0.05 \%$ (max.)
- CMRR: 104dB
- 0.1Hz to 10 Hz noise : $2 \mu \mathrm{~V}_{\text {p.p }}$
- Single 5 V supply operation
- Strain gauge amplifiers
- Differential to single-ended converters

Single 5V Supply, DCInstrumentation Amplifier

Order Code 788-971 (MAX840ISA)

Features:

- Fixed -2 V or adjustable -0.5 V to -9.4 V output at 4 mA
- 2.5 V to 10 V input voltage range
- Operate with small capacitors
- 1mVp-p output voltage ripple
- Charge pump switching frequency: 1000kHz in normal operation
- 1μ A max logic-level shutdown over temperature

The MAX840ISA is a low-noise, inverting charge-purge power supply for biasing GaAsFITs in cellular telephone transmitter mplifiers. It offers preset -2V output and an adjustable -0.5 V to -9.4 V output. The devices can be designed-in to operate with capacitors as low as $0.22 \mu \mathrm{~F}$.

Applications:

- Cellular phones
 modules
- Personal communicators, PDAs, wireless data loggers
- Continuously adjustable

GaAsFt bias

- LCD-bias contrast contro
- Requested negative power supplies

The device inverts the input voltage to a negative voltage by a capacitive charge pump followed by regulation; an internal low-noise linear regulator. The linear regulator reduces ripple noise induced by the charge pump and its ACrejection attenuates noise from the incoming supply

Typical Application:

MAX2402 800MHz to 1000 MHz Transmitter

MAXIM

Features:

- Low cost, flexible transmitter
- More than 100 mW of output into 50Ω
- Operates from 800 MHz to 1000 MHz
- Single +5 V supply
- Uses less than $2 \mu A$ in power-down
- More than 35dB of power range
- LOinput power range from -6 dBm to $+6 \mathrm{dBm}$
- 2 V linear range on modulation input

Applications:

- Direct-sequence spread-spectrum transmitter
- Frequency-hopping spread-spectrum transmitter
- FSK, GMSK, BPSK and ASK digital transmitter
- AM and FM analogue transmitter

TheMAX2402 transmitter integrates a double balanced mixer, buffered local oscillator (LO) port, variablegain stage and power amplifier into a single IC. It is intended for use in the 800 MHz to 1000MHzband and is compatible with both directsequence and frequency-hopping spread-spectrum designs in the 902MHzto 928MHzISM band.
In atypical application, adigital baseband signal is mixed with a local oscillator signal to yield a BPSK-modulated carrier at the antenna Alternatively, the baseband input may be grounded and an FSK-modulated LOsigna applied directly to the LOport. The LOport consists of alimiting amplifier that can accept a single ended or differential signal with input power between-6dBm in the 800 MHz to 1000 MH frequency range. The baseband modulation input is linear over a2V range and limits with larger signal levels within the supply range The double balanced mixer has been optimised for high

carrier rejection. The variable gain stage offers typically 40 dB of adjustment range. The power amplifier provides morethan 20dBm output power and has abias adjustment, which allows adiustment of efficiency and harmonic distortion. A shutdown function reduces thecurrent draw to less than 2uA in less than 10 us .

Order Code 740-871 (IRF7422D2)

Features:

- Combined package saves board space
- Latest Generation V technology
- 2.5W power handling
- 4.6 A
- Reduced parts count
- Reduced Rth packaging

Applications:

- Battery protection
- Synchonoous Buck regulators
- DCDC conversion

MIC1557
CMOS RC Oscillator

This FITKY product line aims to solve some of the board space and assembly cost issues facing designers today. The first ÆETKY products incpororate a co-packaged MOSFET and Schottky diode in surface mount SO-8 packages, and are targeted for use in portable electronics power converter applications.
Traditionally, designers of a 2-3A standard Buck regulator use a discrete MOSFTT and a discrete Schottky diode. A typical solution for this design could have used a single P channel MOSFET rated at $100 \mathrm{~m} \Omega$, 20 V in an SO 8 with a single surface mount Schottky diode rated at $30 \mathrm{~V}, 3 \mathrm{~A}$ in an SMC package.
Now the designer can use a single device with a $90 \mathrm{~m} \Omega$, 20 V P-channel MOSFET and a 3A Schottky SO-8 (30 mm ${ }^{2}$) $+\mathrm{SMC}\left(47 \mathrm{~mm}^{2}\right)$ =total board area of $77 \mathrm{~mm}^{2}$.

SO-8 FETKY (IRF7422D2)=30 mm^{2}
So the FIKY affords the designer a 60% savings in board space and the associated reduced assembly costs.

NEW DESIGN

Features:

- +2.7 V to +18 V operation
- Low Ourrent
$<1 \mu \mathrm{~A}$ Typ. shutdown mode $200 \mu \mathrm{~A}$ Typ. (TRG and THR low) @ 3V supply
- Timing from microseconds to hours
- TLL compatible inputs and outputs
- 'Zero' leakage trigger and threshold inputs
Threshold precedence over trigger input
< 15Ω output on resistance
- Time-delay generation
- No output cross-conduction current
spikes
- 0.005% per ${ }^{\circ} \mathrm{C}$ temperature stability
- 00.005% per volt supply stability
- 50% square wave with one resistor, one capacitor

Applications:

- Precision timer
- Pulse generation - Micropower oscillator to 5M1Hz - Charge-pump driver

- Voltage converter

- Voltage converter
- Variable frequency and duty cycle oscillator
- Isolated feedback for power
supplies
- LED blinker

The MIC1557BM5 is designed to provide rail-to-rail pulses for precise time delay or frequency generation. The device is similar in function to the industry standard ' 555 ' but with different pin configuration. The MIC1557BM5 is designed for astableoscillator operation with a chip select/reset (CS) input for low power shutdown. In the circuit shown the device is configured as a voltage quadrupler with 5 V input to fully enhance an N -channel MOSFET, for minimum $r_{\text {DS }}$ (on). A TLL ' 1 ' at CS enables a 10 kHz oscillator, allowing for 15 V at the MOSET osciliator, allowing for 15 V at the MOSET
 when the MIC1557 is turned off.

Typical Applications:
Typical Applications:

Features:

- 1.4 mA maximum operating current
- $100 \mu \mathrm{~A}$ maximum start-up current
- 125ns circuit delay
- Easier parallelability
- Improved benefits of current mode control
The UCC3806 is a BiCMOS PWM controller offering exceptionally improved performance with a family architecture. It has increased switching frequency capability while greatly reducing the bias current used within the device. With a typical start-up current of

$50 \mu \mathrm{~A}$ and a well defined voltage threshold for All the benefits of current mode control turn-on, this device favours applications ranging from off-line power supplies to battery operated portable equipment. Dual high current, ㅌT driving outputs and a fast current sense loop enhance device versatility
including simpler loop closing, voltage feedforward, parallelability with current sharing, pulse-by-pulse current limiting and push-pul symmetry correction are readily achievable with this device.

X25F064 Serial Flash ${ }^{\text {TM }}$ Memory with BlockLock ${ }^{\text {TM }}$ Protection XICOR

8	$v_{\circ C}$
7	HOD
6	sak
5	si

Xicor Serial Aash devices find applications where low voltage and power solutions are required. These devices are compatible with Serial $\#$ PROM and operate down to 1.8 V and are ideal for hand held battery operated systems, such as remote control units. These devices
utilize Xicor's proprietary flash cell, allowing for a minimum endurance of 100,000 cycles and a minimum data retention of 100 years. In the application circuit, the X25F064 is shown to interface with 68 HCl 1 via SPl port pins.

Features:

- Low voltage, 1.8 V
- Low standby current, $1 \mu \mathrm{~A}$
- 1 MHz data rate
- 32 byte sector programming
- SPI interface
- Blocklock capability

Other members of the family include:

Mfrts. No.	Order Code	Density	ORG.	Interface
X25F008P	$787-747$	8 K BITS	$1 \mathrm{~K} \times 8$	SPI
X25F016P	$787-759$	16K BITS	$2 \mathrm{~K} \times 8$	SPI
X25F032P	$787-760$	32K BITS	$4 \mathrm{~K} \times 8$	SPI
X25F064P	$787-772$	64KBITS	$8 \mathrm{~K} \times 8$	SPI
X24F016P	$787-784$	6K BITS	$2 \mathrm{~K} \times 8$	2-WIRE
X24F032P	$787-796$	32KBITS	$4 \mathrm{~K} \times 8$	2-WIRE
X24F064P	$787-802$	64KBITS	8K $\times 8$	2-WIRE

$\stackrel{\mathrm{VO}}{8}$

Typical hardware connection for interfacing an X25F064 to the 68HC11 microcontroller

Order Code Order Code
743-781 (ZHCS1000

Typical Application:

As switch mode PSU current densities increase, switching frequencies have correspondingly increased to several hundred kHz typically. In response, IC manufacturers now offer switch mode controllers incorporating synchronous ectification, replacing high current Schottky diodes with an N-channel MOSFI.
However, because of the slower switching time of the

MOSETT and timing mismatch between the high and low de switching MOSFIts, a Schottky is still needed to conduct the initial current as Q1 turns off, to prevent damage to the IC.
As the average diode current is low, the ZHCS series enhanced SOT-23 power capability is more than adequate, providing a much smaller solution than the alternative products.

Applications:

- DCDC converters
- PSU
- Mobile phones
- Reverse battery protection
- Power conversion
- Camcorders

Features:

- Compact size
- 1 A (cont.) current rating
- Low package height
- $\mathrm{V}_{\mathrm{f}} 0.5 \mathrm{~V} @ l_{f} 1 \mathrm{~A}$
- Supplied on tape and ree
- Replacement for axial, ME⿴F F SMA and SMB packages

ZTX1047AZTX1147A High Current, High Gain PNP Transistor

Order Code 663-256 (ZTX1047A) 935-440 (ZTX1147A)

eatures

- Complimentary pair
- 4A collector current, 20A pulsed
- hrt $250 \mathrm{~min} @ 0.5 \mathrm{Alc}$
- $\mathrm{V}_{\mathrm{CE}(\text { sat })} 235 \mathrm{mV} @ 4 \mathrm{Alc}$

Applications:

- DCDC conversion
- Battery powered circuits

Motor drives

- Darlington and P-channel MOSFET replacement

In battery powered applications it is vital that as much of the supply as possible is applied across the load, maximising battery life through greater efficiency and lower end of life battery voltage. Using the ZTX1047A and ZIZX1147A the bridge circuit shown will handle load/stall currents up to 4.0A. The circuit can easy be adapted for lower current motors by increasing the value of the base drive resistors. (Set 1_{B} for the PNPs to $1 / 50$ of the maximum load current and 1_{B} for the NPNs to $1 / 100$). The
saturation voltage losses at 4.0 A are a total of only 0.425 V or both NPN and PNP transistors combined at lower load currents, less than half this level can be expected.
The combination of low saturation losses and low base drive requirements of the ZTX1047A/1147A gives improved motor performance and endurance. Parallel diodes are not necessary for this circuit as the reverse $h_{\text {Fe }}$ of the driver transistor is sufficiently high to conduct regenerative currents and transients safely away.

HBridge Motor Drivers

FUNCTIONAL BLOCK DIAGRAM KM62256CLXX

FUNCTIONAL BLOCK DIAGRAM KM68100BXX

FUNCTIONAL BLOCK DIAGRAM

Memory Density	Memory Organisation	Access Time	Voltage	Operating Temp	Package Pin Out, Function	Mftr List No.	Order Code
256 K bit	$32 \mathrm{~K} \times 8$	70 ns	$5 \mathrm{~V} \pm 10 \%$	$0^{\circ}-70^{\circ}$	A	KM62256CLP-7	$794-144$
256 K bit	$32 \mathrm{~K} \times 8$	70 ns	$5 \mathrm{~V} \pm 10 \%$	$0^{\circ}-70^{\circ}$	A	KM62256CLG-7	$794-156$
256 K bit	$32 \mathrm{~K} \times 8$	70 ns	$5 \mathrm{~V} \pm 10 \%$	$0^{\circ}-70^{\circ}$	B	KM62256CLT-7	$794-168$
1 M bit	$128 \mathrm{~K} \times 8$	70 ns	$5 \mathrm{~V} \pm 10 \%$	$0^{\circ}-70^{\circ}$	C	KM681000BLG-7	$794-170$
1 M bit	$128 \mathrm{~K} \times 8$	70 ns	$5 \mathrm{~V} \pm 10 \%$	$0^{\circ}-70^{\circ}$	D	KM681000BLT-7	$794-181$
4 M bit	$512 \mathrm{~K} \times 8$	70 ns	$5 \mathrm{~V} \pm 10 \%$	$0^{\circ}-70^{\circ}$	E	KM684000ALP-7	$794-193$
4 M bit	$512 \mathrm{~K} \times 8$	70 ns	$5 \mathrm{~V} \pm 10 \%$	$0^{\circ}-70^{\circ}$	E	KM684000ALG-7	$794-200$
4 M bit	$512 \mathrm{~K} \times 8$	70 ns	$5 \mathrm{~V} \pm 10 \%$	$0^{\circ}-70^{\circ}$	E	KM684000ALT-7	$794-211$

KM62256CLXX
KM684000ALXX
KM681000BXX

Device	Order Code	Mfitrs. List No.	Description	Color	Typical I_{v}
	$\begin{aligned} & 324-140 \\ & 324-152 \end{aligned}$	HDSP-A101 HDSP-A103	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	AGas Red	600 Hcd @ 1mA
	$\begin{aligned} & 324-164 \\ & 324-176 \end{aligned}$	HDSP-7511 HDSP-7513	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	High Eficiency Red	$270 \mu \mathrm{~cd} @ 2 \mathrm{~mA}$
7.62 mm (0.30 in .) Mini Dual-in-Line 0.5 "HxO. 3"W $\times 0.24$ "D					
	$\begin{aligned} & 324-504 \\ & 324-516 \end{aligned}$	$\begin{aligned} & \text { HDSP-E101 } \\ & \text { HDSP-E103 } \end{aligned}$	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	AGgas Red	650 Hcd @ 1mA
	$\begin{aligned} & 324-530 \\ & 324-541 \end{aligned}$	HDSP-3351 HDSP-3353	Common Cathode Right Hand Decimal Common Anode ± 1. Overflow	High Eficiency Red	$300 \mu \mathrm{~cd} @ 2 \mathrm{~mA}$
10.92 mm (0.43 in .) Mini Dual-in-Line 0.75 "Hx0.3"Wx0.25"D					
	$\begin{aligned} & 324-723 \\ & 324-735 \\ & 324-747 \\ & 324-607 \\ & 324-619 \end{aligned}$	HDSP-H101 HDSP-H103 HDSP-H107 HDSP-K121 HDSP-K123	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	AGgas Red	700 Hcd @ 1mA
	$\begin{aligned} & 324-759 \\ & 324-760 \end{aligned}$	$\begin{aligned} & \text { HDSP-5551 } \\ & \text { HDSP-5553 } \end{aligned}$	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	High Eficiency Red	370 Hcd @ 2 mA
14.2 mm (0.56 in .) Dual-in-Line (Single Digit) $0.67 " H \times 0.49^{" W} \mathrm{~W} 0.31$ "D					
	$\begin{aligned} & 324-875 \\ & 324-887 \end{aligned}$	HDSP-N101 HDSP-N103	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	AlGas Red	590 Hcd @ 1mA
20 mm (0.8in.) Dual-in-Line 1.09"Hx0.78"Wx0.33"D					

Seven Segment Displays
HEWLETT PACKARD

Device	Order Code	Mitrs. List No.	Description	Color	Typical ${ }_{v}$
	$\begin{aligned} & 324-073 \\ & 324-085 \\ & \hline 243 \end{aligned}$	$\begin{aligned} & \text { HDSP-7301 } \\ & \text { HDSP-7303 } \end{aligned}$	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	Red	$\begin{aligned} & 1100 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$
	$\begin{aligned} & 264-260 \\ & 264-271 \end{aligned}$	HDSP-A151 HDSP-A153	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	AGgas Red	14 mod @20mA
	$\begin{aligned} & 324-103 \\ & 324-115 \end{aligned}$	$\begin{aligned} & \text { HDSP-7501 } \\ & \text { HDSP-7503 } \end{aligned}$	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	High Eficiency Red	$980 \mu \mathrm{~cd}$ @ 5 mA
7.62 mm (0.3in.) Microbright Dual-in-Line 0.5 "Hx0.3"Wx0.24"D	$\begin{aligned} & 324-127 \\ & 324-139 \end{aligned}$	$\begin{aligned} & \text { HDSP-7801 } \\ & \text { HDSP-7803 } \end{aligned}$	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	Geen	$3000 \mu \mathrm{~cd}$ @10mA

Seven Segment Displays (continued)

Device	Order Code	Mitrs. List No.	Description	Color	Typical I_{v}
	$\begin{aligned} & 324-188 \\ & 324-190 \\ & 324-206 \end{aligned}$	5082-7730 5082-7731 5082-7740	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	Red	$770 \mu \mathrm{~cd}$ @ 20mA
	$\begin{aligned} & 324-220 \\ & 324-231 \end{aligned}$	$\begin{aligned} & 5082-7610 \\ & 5082-7613 \end{aligned}$	Common Anode Left Hand Decimal Common Cathode Right Hand Decimal	High Eficiency Red	$800 \mu \mathrm{~cd}$ @ 5 mA
7.62mm (0.3in.) Dual-in-Line 0.75 "Hx0.4"Wx0.18"D	324-243	HDSP-3601	Common Anode Right Hand Decimal	Geen	$\begin{aligned} & 2700 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \end{aligned}$
$\begin{array}{lr} \hline+ & + \\ + & \\ + & \square+ \\ + \\ + & \square \\ + & \eta_{+}^{+} \\ + & + \\ + & 0 \\ + & + \\ \hline \end{array}$	$\begin{aligned} & 324-360 \\ & 324-371 \\ & 324-383 \\ & 324-395 \end{aligned}$	$5082-7750$ $5082-7751$ $5082-7760$ $5082-7756$	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	Red	$\begin{aligned} & 1100 \mu \mathrm{\mu cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$
	264-301	HDSP-E153	Common Cathode Right Hand Decimal	AGaAs Red	$\begin{aligned} & 15.0 \mathrm{mod} \\ & @ 20 \mathrm{~mA} \end{aligned}$
10.92mm (0.43in.) Dual-in-Line 0.75 "Hx0.5"Wx0.25"D	$\begin{aligned} & 324-401 \\ & 324-413 \\ & 324-425 \\ & 324-436 \end{aligned}$	$5082-7650$ $5082-7651$ 5082-7653 5082-7656	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Universal ± 1. Overflow Right Hand Decimal	High Efficiency Red	$\begin{aligned} & 1115 \mu \mathrm{~cd} \\ & @ 5 \mathrm{~mA} \end{aligned}$
	$\begin{aligned} & 324-474 \\ & 324-486 \end{aligned}$	$\begin{aligned} & \text { HDSP-4600 } \\ & \text { HDSP-4603 } \end{aligned}$	Common Anode Left Hand Decimal Common Cathode Right Hand Decimal	Geen	$\begin{aligned} & 4000 \mu \mathrm{~cd} \\ & @ 10 \mathrm{~mA} \end{aligned}$
	$\begin{aligned} & 324-620 \\ & 324-632 \\ & 324-644 \\ & 324-553 \\ & 324-565 \end{aligned}$	HDSP-5301 HDSP-5303 HDSP-5207 HDSP-5321 HDSP-5323	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	Red	$\begin{aligned} & 1300 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$
	$\begin{aligned} & 264-313 \\ & 264-325 \\ & 324-607 \\ & 324-619 \end{aligned}$	HDSP-H151 HDSP-H153 HDSP-K121 HDSP-K123	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Two Digit Common Anode Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	AGaAs Red	$\begin{aligned} & 16.0 \mathrm{mcd} \\ & @ 20 \mathrm{~mA} \end{aligned}$
14.2 mm (0.56 in .) Dual-in-Line (Single Digit) 0.67 "Hx0.49"Wx0.31"D	$\begin{aligned} & \begin{array}{l} 324-656 \\ 324-668 \\ 324-670 \\ 324-577 \\ 324-589 \end{array} \end{aligned}$	HDSP-5501 HDSP-5503 HDSP-5507 HDSP-5521 HDSP-5523	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overilow Two Digit Common Anonde Right Hand Decimal Two Digit Common Cathode Right Hand Decimal	High Eficiency Red	$2800 \mu \mathrm{~cd}$ @10mA
14.2 mm (0.56 in .) Dual-in-Line (Single Digit) 0.67 "Hx0.49"Wx0.31"D	$\begin{aligned} & 324-693 \\ & 324-700 \\ & 324-711 \\ & 324-590 \end{aligned}$	HDSP-5601 HDSP-5603 HDSP-5607 HDSP-5623	Common Anode Right Hand Decimal Common Cathode Right Hand Decimal Common Anode ± 1. Overflow Two Digit Common Cathode Right Hand Decimal	Geen	$\begin{aligned} & 2500 \mu \mathrm{\mu cd} \\ & @ 10 \mathrm{~mA} \end{aligned}$
	$\begin{aligned} & \hline 324-772 \\ & 324-796 \end{aligned}$	HDSP-3400 HDSP-3403	Common Anode Left Hand Decimal Common Cathode Right Hand Decimal	Red	$\begin{aligned} & 1200 \mu \mathrm{~cd} \\ & @ 20 \mathrm{~mA} \end{aligned}$
	264-350	HDSP-N151	Common Anode Right Hand Decimal	AGaAs Red	$14.0 \mu \mathrm{~cd}$ @20mA
	$\begin{aligned} & 324-814 \\ & 324-826 \\ & 324-838 \end{aligned}$	HDSP-3900 HDSP-3901 HDSP-3903	Common Anode Left Hand Decimal Common Anode Right Hand Decimal Common Cathode Right Hand Decimal	High Efficiency Red	7000 ucd @100mA peak $1 / 5$ Duty
20 mm (0.8in.)	324-840	HDSP-3905	Common Cathode Left Hand Decimal		Factor
Dual-in-Line 1.09"Hx0.78"Wx0.33"D	$\begin{aligned} & 324-851 \\ & 324-863 \end{aligned}$	$\begin{aligned} & \text { HDSP-3906 } \\ & \text { HDSP-8600 } \end{aligned}$	Universal ± 1. Overflow Right Hand Decimal Common Anode Left Hand Decimal	Geen	$1500 \mu \mathrm{~cd}$ @ 10 mA

Device	Order Code	Mftrs. List No.	Description	Typical I ${ }_{v}$ @ 100 mA Peak 1/5 Duty Factor
20 mm (0.8in.) Dual-in-Line 1.09"Hx0.78W x 0.33 "D	$324-449$ 324-450 324-462	HDSP-3730 HDSP-3731 HDSP-3733	High Eficiency Red, Common Anode, LHDP High Eficiency Red, Common Anode, RHDP High Eficiency Red, Common Cathode, RHDP	10900cd/seg

Alphanumeric LED Displays

Device	Order Code	Mfits. List No.	Description	Color	Application
++++++ \quad ++++++ $\square \square \square \square \square \square \square \square$ + ++++++++++++++	$\begin{aligned} & 325-168 \\ & 325-170 \end{aligned}$	HDSP-2112 HDSP-2113	5.0 mm (0.2in) 5×7 Eght Character Intelligent Display Operating Temperature Range: $45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ HDSP-211XASCII	High Efficiency Red Geen	- Medical - Telecommunications - Analytical Equipment - Computer Products - Office Equipment - Industrial Equipment
	$\begin{aligned} & 265-585 \\ & 265-603 \end{aligned}$	$\begin{aligned} & \text { HDSP-2502 } \\ & \text { HDSP-2503 } \end{aligned}$	15.24 mm (0.6 in) 28 pin DIP, ASCI 5×7 Eght Character Intelligent Display Operating Temperature Range: $45^{\circ} \mathrm{Cto}+85^{\circ} \mathrm{C}$	High Eficiency Red Geen	- Computer Products - Industrial Instrumentation - Medical Equipment - Portable Data Entry Devices - Cellular PHones - Telecommunications - Test Equipment
	$\begin{aligned} & 280-410 \\ & 280-409 \end{aligned}$	HDSP-2533 HDSP-2534	5.0 mm (0.2in) Eght Character Intelligent Display Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Geen AlGaAs Red	- Avionics - Computer Products - Industrial Instrumentation - Medical Equipment - Portable Data Entry Devices - Telecommunications - Test Equipment
	$\begin{aligned} & 325-144 \\ & 325-132 \\ & 325-120 \end{aligned}$	HDLG-2416 HDLO-2416 HDLR-2416	5.0 mm (0.2in) 5×7 Four Character Intelligent Display Operating Temperature Range: $-40^{\circ} \mathrm{Cto}+85^{\circ} \mathrm{C}$	Geen High Eficiency Red Red	- Portable Data Entry Devices - Industrial Instrumentation - Computer Products - Telecommunications
	$\begin{aligned} & 280-446 \\ & 280-434 \end{aligned}$	HCMS-2973 HCMS-2975	1 Row of 8 Characters 5.0 mm (0.20in)	Geen AGaAs	- Telecommunications - Portable Data Entry Devices - Computer Products - Medical Equipment - Test Equipment - Business Machines - Avionics - Industrial Controls

Hexadecimal and Dot Matrix Displays

Device	Order Code	Mfits. List No.	Description	Package	Application
(A) (B) 7.4 mm (0.29in) 4×7 Single Digit	(A) 324-991 (B) 325-016	5082-7300 5082-7340	Numeric RHDP Built-in Decoder/Driver/Memory Numeric RHDP Built-in Decoder/Driver/Memory	8.5 Pin Epoxy 15.2 mm (0.6 in) DIP	- Medical - Telecommunications - Anaytical Equipment - Computer Products - Office Equipment - Industrial Equipment

Device			Description			Typical Luminous Intensity @ 20 mA	Typical Forward Voltage @ 20mA
Package Outline Drawing	Order Code	Mfrts. List No.	Color	Package	Lens		
	323-561	HLMP-2300	$\begin{gathered} \text { High } \\ \text { Efficiency } \\ \text { Red } \end{gathered}$	4 Pin In-Line; $0.100^{\prime \prime}$ Centers; $0.400^{\prime \prime} \mathrm{Lx}$ $0.195^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$	Diffused	23 mcd	2.0 V
	323-585	HLMP-2400	Yellow		Diffused	20 mcd	2.1 V
	323-603	HLMP-2500	Geen		Geen Diffused	25 mod	2.2 V
\square	323-573	HLMP-2350	High Efficiency Red	8 Pin In-Line; 0.100" Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.195^{\prime \prime W} \mathrm{~W} 0.245^{\prime \prime} \mathrm{H}$	Diffused	45 mcd	2.0 V
	323-597	HLMP-2450	Yellow		Diffused	38 mod	2.1 V
	323-615	HLMP-2550	Geen		Geen Diffused	50 mcd	2.2 V
	323-720	HLMP-2600	High Efficiency Red	8 DIP; 0.100" Centers; $0.400^{\prime \prime} \mathrm{Lx}$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Dual Arrangement	Diffused	22 mcd	2.0 V
$\square \square$	323-834	HLMP-2800	Geen		Geen Diffused	25 mod	2.2 V
	323-731	HLMP-2620	High Efficiency Red	16 Pin DIP; 0.100" Centers; $0.800^{\prime \prime} \mathrm{Lx}$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Quad Arrangement	Diffused	25 mcd	2.0 V
	323-846	HLMP-2820	Geen		Geen Diffused	25 mcd	2.2 V
	323-755	HLMP-2655	High Efficiency Red	8 Pin DIP; 0.100" Centers; $0.400^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Square Arrangement	Diffused	43 mcd	2.0 V
	323-809	HLMP-2755	Yellow		Diffused	35 mcd	2.1 V
	323-858	HLMP-2855	Geen		Geen Diffused	50 mod	2.2 V
	323-779	HLMP-2685	High Efficiency Red	16 Pin DIP; $0.100^{"}$ Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Single Bar Arrangement	Diffused	80 mcd	2.0 V
	323-822	HLMP-2785	Yellow		Diffused	70 mcd	2.1 V
	323-858	HLMP-2855	Geen		Geen Diffused	100 mcd	2.2 V

DH AIGaAs Low Current LED Light Bars

Device			Description			Typical Luminous Intensity @ 3mA	Typical Forward Voltage @ 3mA
Package Outline Drawing	Order Code	Mirts. List No.	Color	Package	Lens		
	323-676	HLCP-D100	$\begin{aligned} & \text { AGaAs } \\ & \text { Red } \end{aligned}$	8 Pin DIP; 0.100" Centers; $0.400^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Dual Arrangement	Diffused	7.5 mcd	1.6 V
	323-688	HLCP-E100	$\begin{aligned} & \text { AIGaAs } \\ & \text { Red } \end{aligned}$	16 Pin DIP; 0.100" Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Quad Arrangement	Diffused	7.5 mcd	

DH AIGaAs Low Current LED Light Bars (Continued)

Device			Description			Typical Luminous Intensity @ 3mA	Typical Forward Voltage @ 3mA
Package Outline Drawing	Order Code	Mrits. List No.	Color	Package	Lens		
	323-690	HLCP-C100	AGaAs Red	8 Pin DIP; $0.100^{\prime \prime}$ Centers; $0.400^{\prime \prime} \mathrm{Lx}$ $0.400^{\prime \prime W} \mathrm{~W} 0.245^{\prime \prime} \mathrm{H}$ Square Arrangement	Diffused	15.0 mod	1.6 V
	323-718	HLCP-H100	$\begin{aligned} & \text { AGaAs } \\ & \text { Red } \end{aligned}$	16 Pin DIP; 0.100" Centers; $0.800^{\prime \prime} \mathrm{L} x$ $0.400^{\prime \prime} \mathrm{W} \times 0.245^{\prime \prime} \mathrm{H}$ Single Bar Arrangement	Diffused	30.0 mod	

LED Bicolour Light Bars
HEWLETT PACKARD

Device			Description			Typical Luminous Intensity @ 20mA	Typical Forward Voltage @ 20mA
Package Outline Drawing	Order Code	Mirts. List No.	Color	Package	Lens		
	323-871	HLCP-2965	High Efficiency Red/ Geen	8 Pin DIP; 0.100" Centers; $0.400{ }^{\prime \prime} \mathrm{Lx}$ $0.400^{\prime \prime W} \mathrm{~W} 0.245^{\prime \prime} \mathrm{H}$ Square Arrangement	Diffused	HR: 20 mcd Geen: 20 mcd	HER: 2.0 V Green: 2.2 V

LED Bar Graph Arrays
HEWLETT PACKARD

Device			Description			Typical Luminous Intensity	Typical Forward Voltage
Package Outline Drawing	Order Code	Mfrts. List No.	Color	Package	Lens		
	323-901	HDSP-4820	$\begin{gathered} \text { Standard } \\ \text { Red } \end{gathered}$	20 Pin DIP; 0.100" Centers; $1.0^{\prime \prime} \mathrm{L} \times 0.400^{\prime \prime} \mathrm{W} \times 0.200$ "	Diffused	$\begin{aligned} & 1250 \mathrm{\mu cd} @ \\ & 20 \mathrm{mADC} \end{aligned}$	$\begin{gathered} 1.6 \mathrm{~V} @ \\ 20 \mathrm{mADC} \end{gathered}$
	323-925	HDSP-4830	High Efficiency Red		Diffused	$\begin{array}{\|c\|} \hline 3500 \mathrm{mcd} @ \\ 10 \mathrm{mADC} \end{array}$	$\left\lvert\, \begin{gathered} 2.1 \mathrm{~V} @ \\ 20 \mathrm{mADC} \end{gathered}\right.$
	323-949	HDSP-4840	Yellow		Diffused	$\begin{gathered} 1900 \mu \mathrm{~cd} @ \\ 10 \mathrm{mADC} \end{gathered}$	$\left\|\begin{array}{c} 2.2 \mathrm{~V} @ \\ 20 \mathrm{mADC} \end{array}\right\|$
	323-962	HDSP-4850	High Performance Geeen		Geen Diffused	1900 Mod @ $10 \mathrm{mADC}$	$\begin{array}{\|c\|} \hline 2.1 \mathrm{~V} @ \\ 10 \mathrm{mADC} \end{array}$
	323-986	HDSP-4832	Multicolor		Diffused	$\begin{array}{\|c\|} \hline 1900 \mu \mathrm{~cd} @ \\ 10 \mathrm{mADC} \end{array}$	
	323-998	HDSP-4836	Multicolor		Diffused	1900ucd @ 10 mADC	
	323-913	HLCP-J100	AGaAs Red		Diffused	$\begin{gathered} 1000 \mu \mathrm{~cd} @ \\ 1 \mathrm{mADC} \end{gathered}$ 1mADC	$\begin{gathered} 1.6 \mathrm{~V} \\ @ 1 \mathrm{~mA} \end{gathered}$

Panel Mounts for LED Light Bars
HEWLETT PACKARD

Device			Corresponding Light Bar Module Part Number
Package Outline Drawing	Order Code	Mirts. List No.	
	323-639	HLMP-2598	HLMP -2350, -2450, -2550
\square	323-627	HLMP-2599	HLMP -2300, -2400, -2500
	323-883	HLMP-2898	$\begin{aligned} & \text { HLMP -2600, -2800 } \\ & \quad-2655,-2755,-2855 \\ & -2965, \text { HLCP-C100, -D100 } \end{aligned}$

