DOUBLE HETEROJUNCTION AlGaAs IPTOCLECTRORICS LOW CURRENT RED LED LAMPS T-1% HLMP-D150A4/D155A T-1 HLMP-K150/K155 3.15202 3.0202 = >| [toss _ oe = z= = x z = o $ _+ a ~ ST4020 >I 2.54 200 (5.08) 180 (4.57) | < | | FLAT DENOTES \\ ae CATHODE 350 (8.89) 330 (8.38) : (ran) ae | f 017 (0.43) ! 023 (0.58) T TL |: f | | 1.00 (25.4) MIN. i | | 050 (7.27) NOM. | 100 (2.54) NOM. -| la 050 (1.27) he 6C2201 200 {5.10} 180 (4.57) oe : f foo FLAT DENOTES THO DE 490 (12.44) 460 (11.68) (a3) 350 (8.89) 330 (8.38) tt O17 (0.43) + + 023 (0.68) 7 la. 0.055 (1.40) I. 0.045 (1.15) gy (23.0) MIN. -050 (1.27) NOM. 100 (2.54) NOM. j c 050 (1.27) C2200 re 3. ALL DIMENSIONS ARE IN INCHES (mm) 2. TOLERANCES ARE +.010" UI 3. AN EPOXY MENISCUS MAY EXTEND ABO: -040" (1 mm) DOWN THE LEADS Arecently developed double heterojunction (DH) AlGaAs/GaAs material technology is the basis of the light emitting chip utilized in these solid state lamps. Exceptional light output typifies these devices and provides for their use over a broad range of drive currents. At a dominant wavelength of 637 nanometers, the light is perceived as a deep red color. These lamps are ideally suited for use in applications where high light output is required with minimum power input. @ Luminous intensity specified at 1 mA High light output at low currents m Wide viewing angle @ Low power/low forward voltage = Outstanding material efficiency = CMOS/MOS compatible = TTL compatible m@ Deep red color a Low power circuits = Battery powered equipment = Telecommunication indicators UNLESS OTHERWISE SPECIFIED UTDOUBLE HETEROJUNCTION AlGaAs LOW CURRENT RED LED LAMPS OPTOELECTAONICS ~ 1, (med) @ imA VIEWING ANGLE SIZE TYPE LENS EFFECT MIN. TYP. 2201/2 DEGREES PKG. TH HLMP-K150 Red Tinted Diffused 12 2 60 A TA HLMP-K155 Clear 2 3 45 A TA% HLMP-D150A Red Tinted Diffused 12 3 65 B T1% HLMP-D155A Clear 5 10 24 C PARAMETER Forward voltage Peak wavelength Dominant wavelength Spectral line half width Capacitance Reverse breakdown voltage Power dissipation SYMBOL Ve Ap Ad TEST UNITS CONDITIONS Vv nm nm nm =1mA l=1mA =1mA =1mA V.=0, f=1 MHz Ip=100 WA Operating temperature 2.0... eee e nnn e teen eben ened eden een enees Storage temperature 0.0 nen nn enn een e enn een ete nes 55C to +100C Lead soldering time at 260C oe en ene nn dene enn n tebe e eee 5 seconds Peak forward current (SQC@ NOG 1) oe een en eee eee eee eee eee e bebe bbb E re bnee 300 mA Reverse voltage (In = 100pA) 00. e renee ne ene ERC En eee En een eens 5V Average forward current (see Note 2) 00. een n ee nett nett bbe enes 20 mA 20C to +100C 1. Maximum Ioe. at f = 1 kHz, DF = 6.7% 2. Derate linearly as shown in Figure 4.DOUBLE HETEROJUNCTION AlGaAs OPTOELECTRONICS LOW CURRENT RED LED LAMPS RELATIVE INTENSITY NORMALIZED LUMINOUS INTENSITY (NORMALIZED AT 1.0 mA) IeFORWARD CURRENTmA 600 650 700 oS 10 #145 #20 25 30 35 Ve FORWARD VOLTAGEV WAVELENGTHam 2208 Ceara Fig. 1. Relative intensity Fig, 2. . vs. Wavelength ig. 2. Forward Current vs. Forward Voltage R6y, = 459C/W Raja = S74C/W Rja = 689C/W Ir-FORWARD CURRENTmA 02 oA 0102 05 1 #2 5 10 203050 100 20 40 60 80 100 locDC FORWARD CURRENTmA Ta AMBIENT TEMPERATURE C C2213 C2205 Fig. 4. Maximum Forwad DC Current vs, Ambient Temperature. Derating Fig. 3. Relative Luminous Intensity vs. DC Forward Current Based on T, MAX = 110C@ DOUBLE HETEROJUNCTION AlGaAs OPTOELECTROWICS LOW CURRENT RED LED LAMPS _ (25C Free Air Ternperatu 10 203040506070 8090" 100 10 2030405060708090 100 C2209 C2211 Fig. 8. Relative Luminous intensity Fig. 6. Relative Luminous Intensity vs. Angular Displacement. vs. Angular Displacement. HLMP-D150A HLMP-K150 10 2030405060708090 100 C2210 C2212 10 203040S0607080 90 100 Fig. 7. Relative Luminous Intensity Fig. 8. Relative Luminous Intensity vs. Angular Displacement. vs. Angular Displacement. HLMP-D155A HLMP-K155