|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Real-time Clock Module
2015-09-0015 PT0274-7 10/16/15
1
PT7C43190
Features
Low current consumption: 0.3µA typ. (VDD=3.0V,
TA = 25°C)
Wide operating voltage range: 1.35 to 5.5 V
Minimum time keeping operation voltage: 1.25 V
Built-in clock adjustment function
Built-in free user register
3-wire (micro wire) CPU interface
Built-in alarm interrupter
Built-in flag generator at power down or power on
Auto calendar up to the year 2099, automatic leap
year calculation function
Built-in constant voltage circuit
Built-in 32 kHz crystal oscillator circuit
Package: SOIC-8L, TSSOP-8L, and TDFN2x3-8L
Function Table
Item
Function
PT7C43190
1
Oscillator
Source
Crystal*
2
Time
Time
display
12-hour
24-hour
3
Interrup
t
Alarm interrupt pin output
2
Timer interrupt output
4
Programmable square wave output
(Hz)
1Hz,2Hz,4Hz
8Hz,16Hz
32kHz
5
Commu
nication
3-wire bus
Burst mode
6
Control
IC test mode
Power-on detector
Power supply voltage
detector
7
Clock calibration
80
Free register access
Description
The PT7C43190 is a CMOS 3-wire real-time clock IC,
which operates with the very low current consumption
and in the wide range of operation voltage. The
operation voltage is 1.35 V to 5.5 V so that the RTC can
be used for various power supplies from main supply to
backup battery. In the system which operates with a
backup battery, the included free registers can be used as
the function for user’s backup memory. Users always
can take back the information in the registers which is
stored before power-off the main power supply, after the
voltage is restored.
The IC has the function to correct advance / delay of the
clock data speed, in the wide range, which is caused by
the oscillation circuit’s frequency deviation. Correcting
according to the temperature change by combining this
function and a temperature sensor, it is possible to make
a high precise clock function which is not affected by
the ambient temperature.
Applications
Mobile game device
Digital still camera
Digital video camera
Electronic power meter
DVD recorder
TV, VCR
Mobile phone, PHS
Pin Configuration
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
2
Pin Description
Pin
No.
Pin
Name
Type
Description
1
INT
O
Output for Interrupt Signal. This pin outputs a signal of interrupt, or a clock pulse. By using the status
register 2, users can select either of: alarm 1
interrupt, alarm 2 interrupt, output of user-set frequency, per-minute edge interrupt, minute-periodical
interrupt 1, minute-periodical interrupt 2, or 32.768 kHz output. This pin has NCH open drain output.
2
XOUT
O
Oscillator Circuit Output. Together with X1, 32.768kHz crystal is connected between them. When
32.768kHz external input, X2 must be float.
3
XIN
I
Oscillator Circuit Input. Together with X1, 32.768kHz crystal is connected between them. Or external
clock input.
4
VSS
P
Negative power supply pin. Connects to GND.
5
CS
I
Chip select input pin. This pin is to input chip select, has a pull-down resistor. Communication is
available when this pin is in "H". If not using communication, set this pin "L" or open.
6
SCK
I
Serial clock input pin. This pin is to input a clock pulse for serial interface. When the CS pin is in "H",
the SIO pin inputs / outputs data by synchronizing with the clock pulse. When the CS pin is in "L" or
open, the SCK pin does not accept inputting a clock pulse.
7
SIO
I/O
Serial Data I/O pin. This pin is a data input / output pin of serial interface. When the CS pin is in "H",
the SIO pin inputs / outputs data by synchronizing with a clock pulse from the SCK pin. The status is in
"High-Z" when the CS pin is in "L" or open, so that the chip does not transmit data. Setting the CS pin to
"H" from "L" or open, this SIO pin goes in the input status so that it receives the command data. This pin
has CMOS input and NCH open drain output.
8
VDD
P
Positive power supply pin. Connect this VDD pin with a positive power supply.
Block Diagram
Second
Oscillator
Divider,
Timing generator INT register 1 INT controller 1
Clock correction register
Status register 1
Status register 2
Free register
Low power supply
voltage detector
Power-on
detection circuit
Constant-voltage
circuit
Comparator 1
Minute Hour Day of
Week Day Month Year
Comparator 2
Real-time data register
INT register 2 INT controller 2
INT register 2 Serial
interface
SIO
SCK
CS
INT
VSS
VDD
XOUT
XIN
PT7C43190
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
3
Maximum Ratings
Storage Temperature ................................................................................... -55oC to +125oC
Operating Temperature ..................................................................................-40oC to +85oC
Power Supply Voltage ........................................................................Vss-0.3V to Vss+6.5V
DC Input Voltage(CS, SCK, SIO) ...................................................Vss-0.3V to Vss+6.5V
DC Output Voltage(SIO, 32KO, SDA, INT) ..............................Vss-0.3V to Vss+6.5V
Control Input Voltage (EN) .................................................................... -0.5V to+6.0V
Power Dissipation ............................................................................................. 250mW
Recommended Operating Conditions
Symbol
Parameter
CONDITIONS
Min
Typ
Max
Unit
VDD
Power supply voltage
TA = −40 to +85°C
1.35
3.0
5.5
V
TOPR
Operating temperature
VDD =1.35 to 5.5 V
40
+25
+85
°C
VDDT
Time keeping voltage range
TA = −40 to +85°C
1.25
-
5.5
V
VDDR
Register data hold voltage
TA = −40 to +85°C
0.9
-
5.5
V
CL
Crystal oscillator CL value
-
-
6
12.5
pF
Note*: Reference value
Oscillation Characteristics
(TA = 25°C, VDD = 3.0 V, VSS = 0 V, crystal oscillator (CL = 6 pF, 32.768 kHz).)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
VSTA
Oscillation start voltage
Within 10 seconds
1.1
-
5.5
V
-
Oscillation start time
-
-
-
3
s
δIC
IC to IC frequency deviation
-
-10
-
+10
ppm
δV
Frequency voltage deviation
VDD =1.3 to 5.5 V
-3
-
+3
ppm
Note:
Stresses greater than those listed under MAXIMUM
RATINGS may cause permanent damage to the
device. This is a stress rating only and functional
operation of the device at these or any other condi-
tions above those indicated in the operational sec-
tions of this specification is not implied. Exposure
to absolute maximum rating conditions for extended
periods may affect reliability.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
4
DC Electrical Characteristics
(TA = -40°C to +85°C ; VSS = 0V, crystal oscillator CL = 6pF, 32.768 KHz, unless otherwise noted.)
Symbol
Parameter
Pin
Test Conditions
Min
Typ
Max
Unit
VDD = 3.0V
IDD1
Current consumption 1
VDD
Out of communication
-
0.3
0.6
uA
IDD2
Current consumption 2
VDD
During communication
(SCK=100kHz)
-
2.5
8
uA
IIZH
Input high leakage current
SCK,SIO
VIN = VDD
-0.5
-
+0.5
uA
IIZL
Input low leakage current
SCK,SIO
VIN = VSS
-0.5
-
+0.5
uA
II1
Input current 1
CS
VIN = VDD
-
0
-
uA
II2
Input current 2
CS
VIN = 0.4V
-
1.3
-
uA
II3
Input current 3
CS
VIN = 1.0V
-
2.6
-
uA
IOZH
Output high leakage current
SIO,INT,32kO
VOUT = VDD
-0.5
-
+0.5
uA
IOZL
Output low leakage current
SIO,INT,32kO
VOUT = VSS
-0.5
-
+0.5
uA
VIH
Input high voltage
SCK,SIO,CS
-
0.8
VDD
-
-
VIL
Input low voltage
SCK,SIO,CS
-
-
-
0.2
VDD
IOL1
Output low current 1
INT, 32kO
VOUT = 0.4V
1.0
1.4
-
mA
IOL3
Output low current 2
SIO
VOUT = 0.4V
5
10
-
mA
VDET
Power supply voltage detection voltage *1
-
-
0.70
1.05
1.40
V
VDD = 5.0V
IDD1
Current consumption 1
VDD
Out of communication
-
0.35
0.7
uA
IDD2
Current consumption 2
VDD
During communication
(SCK=100kHz)
-
5.0
14
uA
IIZH
Input high leakage current
SCK,SIO
VIN = VDD
-0.5
-
+0.5
uA
IIZL
Input low leakage current
SCK,SIO
VIN = VSS
-0.5
-
+0.5
uA
II1
Input current 1
CS
VIN = VDD
-
0
-
uA
II2
Input current 2
CS
VIN = 0.4V
-
2.3
-
uA
II3
Input current 3
CS
VIN = 1.0V
-
5.0
-
uA
IOZH
Output high leakage current
SIO,INT,32kO
VOUT = VDD
-0.5
-
+0.5
uA
IOZL
Output low leakage current
SIO,INT,32kO
VOUT = VSS
-0.5
-
+0.5
uA
VIH
Input high voltage
SCK,SIO,CS
-
0.8
VDD
-
-
VIL
Input low voltage
SCK,SIO,CS
-
-
-
0.2
VDD
IOL1
Output low current 1
INT, 32kO
VOUT = 0.4V
1.0
1.4
-
mA
IOL3
Output low current 2
SIO
VOUT = 0.4V
6
13
-
mA
VDET
Power supply voltage detection voltage *1
-
-
0.70
1.05
1.40
V
Note:
*1. Power supply voltage detection voltage: Constantly maintains the relation of VDET > VDDRM (minimum register data hold
voltage).
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
5
AC Electrical Characteristics
Measure conditions
Input pulse voltage
VIH = 0.8 × VDD, VIL = 0.2 × VDD
Input pulse rise/fall time
20ns
Output determination voltage
VOH = 0.8 × VDD, VOL = 0.2 × VDD
Output load
80pF + pull-up resistance 10kΩ
Symbol
Parameter
VDD = 1.35 to 3.0 V (VDD = 3.0 V)
VDD = 1.35 to 5.5 V (VDD = 5.5 V)
Unit
Min.
Typ.
Max.
Min.
Typ.
Max.
tSCK
Clock pulse width
5
-
250000
1
-
250000
μs
tDS
Setup before CS rise
1
-
-
0.2
-
-
μs
tCSH
Hold time after CS rise
1
-
-
0.2
-
-
μs
tISU
Input setup time
1
-
-
0.2
-
-
μs
tIHO
Input data hold time
1
-
-
0.2
-
-
μs
tACC
Output definition time *1
-
-
3.5
-
-
-
μs
tCSS
Setup before CS fall
1
-
-
0.2
-
-
μs
tDH
Hold time after CS fall
1
-
-
0.2
-
-
μs
tR, tF
Input rise/fall time
-
-
0.1
-
-
0.05
μs
*1. Since the output format of the SIO pin is Nch open-drain output, output data definition time is determined by the values of the
load resistance (RL) and load capacity (CL) outside the IC. Therefore, use this value only as a reference value.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
6
Recommended Layout for Crystal
Built-in Capacitors Specifications and Recommended External Capacitors
Parameter
Symbol
Typ.
Unit
Build in capacitors
XIN to GND
CG
5
pF
XOUT to GND
CD
5
pF
Recommended External capacitors for crystal
CL=12.5pF
XIN to GND
C1
18
pF
XOUT to GND
C2
18
pF
Recommended External capacitors for crystal
CL=6pF
XIN to GND
C1
7
pF
XOUT to GND
C2
7
pF
Note: The frequency of crystal can be optimized by external capacitor C1 and C2, for frequency=32.768 kHz, C1 and C2 should
meet the equation as below: Cpar + [(C1+CG)*(C2+CD)]/ [(C1+CG) + (C2+CD)] =CL
Cpar is all parasitical capacitor between X1 and X2.
CL is crystal’s load capacitance.
Crystal Specifications
Parameter
Symbol
Min.
Typ.
Max.
Unit
Nominal frequency
fO
-
32.768
-
kHz
Serial resistance
ESR
-
-
70
Load capacitance
CL
-
6/12.5
-
pF
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
7
Functional Description
1. Overview of Functions
1.1. Clock function
CPU can read or write data including the year (last two digits), month, date, day, hour, minute, and second. Any (two-digit) year
that is a multiple of 4 is treated as a leap year and calculated automatically as such until the year 2099.
1.2. Alarm function
This device has two alarm system (Alarm 1 and Alarm 2) that outputs interrupt signals from INT pin to CPU when the date, day
of the week, hour, minute or second correspond to the setting. Each of them may output interrupt signal separately at a specified
time. The alarm may be selectable between on and off for matching alarm or repeating alarm.
1.3. Programmable square wave output
For PT7C43190, square wave output at pin 1. Six frequencies are selectable: 1, 2, 4, 8, 16, 32768 Hz.
1.4. Interface with CPU
PT7C43190: 3-wire interface.
1.5. Calibration function
With the calibration bits properly set, the accuracy can be improved to better than ±2 ppm at 25°C.
2. Configuration of Data Communication
2.1. Data Communication
After setting the CS pin "H", transmit the 4-bit fixed code "0110", after that, transmit a 3-bit command and 1-bit read /write
command. Next, data is output or input from B7. Regarding details refer to "3-wire Serial Interface".
0
Fixed Code Command
1 1 0 C2 C1 C0 R/W
B7 B6 B5 B4 B3 B2 B1 B0
1-byte data
Read/Write bit
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
8
2.2. Configuration of Command
8 types of command are available for the RTC. The RTC reads / writes the various registers by inputting these fixed codes and
commands. The RTC does not perform any operation with any codes and commands other than those below. However, in case that
the fixed codes or the commands are failed to be recognized in the 1st byte but are successfully recognized in the 2nd and higher
bytes, the commands are executed.
*1. Write only flag. The PT7C43190 initializes by writing "1" in this register.
*2. Scratch bit. This is a register which is available for read / write operations and can be used by users freely.
*3. Read only flag. Valid only when use the alarm function. When the alarm time matches, this flag is set to "1", and it is cleared
to "0" when reading.
*4. Read only flag. "POC" is set to "1" when power is applied. It is cleared to "0" when reading. Regarding "BLD", refer to "Low
Power Supply Voltage Detection Circuit".
*5. Test bit. Be sure to set "0" in use.
*6. No effect when writing. It is "0" when reading.
3. Configuration of Registers
3.1. Real-time Data Register
The real-time data register is a 7-byte register that stores the data of year, month, day, day of the week, hour, minute, and second
in the BCD code. To write / read real-time data 1 access, transmit / receive the data of year in B7, month, day, day of the week,
hour, minute, second in B0, in 7-byte. When you skip the procedure to access the data of year, month, day, day of the week, read /
write real-time data 2 accesses. In this case, transmit / receive the data of hour in B7, minute, second in B0, in 3-byte.
The RTC transfers a set of data of time to the real-time data register when it recognizes the read command.
Therefore, the RTC keeps precise time even if time-carry occurs during the read operation of real-time data register.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
9
Year data (00 to 99): Y1, Y2, Y4, Y8, Y10, Y20, Y40, Y80
Sets the lower two digits of the Western calendar year (00 to 99) and links together with the auto calendar function until 2099.
Example: 2053 (Y1, Y2, Y4, Y8, Y10, Y20, Y40, Y80) = (1, 1, 0, 0, 1, 0, 1, 0)
Month data (01 to 12): M1, M2, M4, M8, M10
Example: December (M1, M2, M4, M8, M10, 0, 0, 0) = (0, 1, 0, 0, 1, 0, 0, 0)
Day data (01 to 31): D1, D2, D4, D8, D10, D20
The count value is automatically changed by the auto calendar function.
1 to 31: Jan., Mar., May, July, Aug., Oct., Dec., 1 to 30: April, June, Sep., Nov.
1 to 29: Feb. (leap year), 1 to 28: Feb. (non-leap year)
Example: 29 (D1, D2, D4, D8, D10, D20, 0, 0) = (1, 0, 0, 1, 0, 1, 0, 0)
Day of the week data (00 to 06): W1, W2, W4
Day of the week is counted in the order of 00, 01, 02, 03, 04, 05, 06, and 00. Set up day of the week and the count value.
Hour data (00 to 23 or 00 to 11): H1, H2, H4, H8, H10, H20, AM / PM
In 12-hour mode, write 0; AM, 1; PM in the AM / PM bit. In 24-hour mode, users can write either 0 or 1. 0 is read when the hour
data is from 00 to 11, and 1 is read when from 12 to 23.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
10
Example (12-hour mode): 11 p.m. (H1, H2, H4, H8, H10, H20, AM / PM, 0) = (1, 0, 0, 0, 1, 0, 1, 0)
Example (24-hour mode): 22 (H1, H2, H4, H8, H10, H20, AM / PM, 0) = (0, 1, 0, 0, 0, 1, 1, 0)
Minute data (00 to 59): m1, m2, m4, m8, m10, m20, m40
Example: 32 minutes (m1, m2, m4, m8, m10, m20, m40, 0) = (0, 1, 0, 0, 1, 1, 0, 0)
Example: 55 minutes (m1, m2, m4, m8, m10, m20, m40, 0) = (1, 0, 1, 0, 1, 0, 1, 0)
Second data (00 to 59): s1, s2, s4, s8, s10, s20, s40
Example: 19 seconds (s1, s2, s4, s8, s10, s20, s40, 0) = (1, 0, 0, 1, 1, 0, 0, 0)
3.2. Status Register 1
Status register 1 is a 1-byte register that is used to display and set various modes. The bit configuration is shown below.
B1: BLD
This flag is set to "1" when the power supply voltage decreases to the level of detection voltage (VDET) or less. Users can detect a
drop in the power supply voltage. This flag is set to "1" once, is not set to "0" again even if the power supply increases to the level
of detection voltage (VDET) or more. This flag is read-only. When this flag is "1", be sure to initialize. Regarding the operation of
the power supply voltage detection circuit, refer to "Low Power Supply Voltage Detection Circuit".
B2: INT2, B3: INT1
This flag indicates the time set by alarm and when the time has reached it. This flag is set to "1" when the time that users set by
using the alarm interrupt function has come. The INT1 flag at alarm 1 interrupt mode and the INT2 flag at alarm 2 interrupt mode
are set to "1". Set "0" in INT1AE (B5 in the status register 2) or in INT2AE (B1 in the status register 2) after reading "1" in the
INT1 flag or in the INT2 flag. This flag is read-only. This flag is read once, is set to "0" automatically.
B4: SC1, B5: SC0
These flags are SRAM type registers, they are 2 bits as a whole, can be freely set by users.
B6: 12 / 24
This flag is used to set 12-hour or 24-hour mode. Set the flag ahead of write operation of the real-time data register in case of 24-
hour mode.
0: 12-hour mode
1: 24-hour mode
B7: RESET
The internal IC is initialized by setting this bit to "1". This bit is write-only. It is always "0" when reading. When applying the
power supply voltage to the IC, be sure to write "1" to this bit to initialize the circuit. Regarding each status of data after
initialization, refer to "Register Status after Initialization".
3.3. Status Register 2
Status register 2 is a 1-byte register that is used to display and set various modes. The bit configuration is shown below.
INT1FE INT1ME INT1AE 32kE SC2 SC3 INT2AE TEST
B7 B6 B5 B4 B3 B2 B1 B0
R/W R/W R/W R/W R/W R/W R/W R/W
R/W : Read/Write
B0: TEST
This is a test flag. Be sure to set this flag to "0" in use. If this flag is set to "1", be sure to initialize to set "0".
B1: INT2AE
This is an enable bit for alarm 2 interrupt. When this bit is "0", alarm 2 interrupt is disabled. When it is "1", it is enabled.
To use alarm 2 interrupt, access the INT register 2 after enabling this flag.
Caution Note that alarm 2 interrupt is output from the INT pin regardless of the settings in flags B4 to B7.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
11
B2: SC3, B3: SC2
These are 2-bit SRAM type registers that can be freely set by users.
B4: 32kE, B5: INT1AE, B6: INT1ME, B7: INT1FE
These bits are used to select the output mode for the INT pin. Below Table shows how to select the mode. To use alarm
1 interrupt, access the INT register 1 after setting the alarm 1 interrupt mode.
Table: Output Modes for INT Pin
*1. Don't care (both of 0 and 1 are acceptable).
3.4. INT Register 1 and INT Register 2
The INT register 1 is to set up the output of user-set frequency, or to set up alarm 1 interrupt. The INT register 2 is for setting
alarm 2 interrupt. Users are able to switch the output mode by using the status register 2. If selecting to use the output mode for
alarm interrupt by status register 2; this register works as the alarm-time data register. In the INT register 1, if selecting the output
of user-set frequency by status register 2; this register works as the data register to set the frequency for clock output. From the
INT pin, a clock pulse and alarm interrupt are output, according to the or-condition that these two registers have.
a. Alarm interrupt
Users can set the alarm time (the data of day of the week, hour, minute) by using the INT1 and INT2 registers which are 3-byte
data registers. The configuration of register is as well as the data register of day of the week, hour, minute, in the real-time data
register; is expressed by the BCD code. Do not set a nonexistent day. Users are necessary to set up the alarm-time data according
to the 12 / 24 hour mode that they set by using the status register 1.
INT Register 1 and INT Register 2 (Alarm-Time Data)
The INT register 1 has A1WE, A1HE, and A1mE at B0 in each byte. It is possible to make data valid; the data of day of the week,
hour, minute which are in the corresponded byte; by setting these bits to "1". This is as well in A2WE, A2HE, and A2mE in the
INT register 2.
Setting example: alarm time "7:00 pm" in the INT register 1
(1) 12-hour mode (status register 1 B6 = 0)
Set up 7:00 PM
Data written to INT register 1
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
12
_(*1) 0
11100011
00000001
B7 B0
Day of the Week
Hour
Minute
_(*1) _(*1) _(*1) _(*1) _(*1) _(*1)
*1. Don't care (both of 0 and 1 are acceptable).
(2) 24-hour mode (status register 1 B6 = 1)
Set up 19:00 PM
Data written to INT register 1
0
1001101(*2) 1
00000001
B7 B0
Day of the Week
Hour
Minute
_(*1) _(*1) _(*1) _(*1) _(*1) _(*1) _(*1)
*1. Don't care (both of 0 and 1 are acceptable).
*2. Set up AM / PM flag along with the time setting.
b. INT Register 1 and INT Register 2
Output of user-set frequency
The INT register 1 is a 1-byte data register to set up the output frequency. Setting each bit B7 to B3 in the register to "1", the
frequency which corresponds to the bit is output in the AND-form. SC4 to SC6 is 3-bit SRAM type registers that can be freely set
by users.
1Hz 2Hz 4Hz 8Hz 16Hz SC4 SC5 SC6
B7 B6 B5 B4 B3 B2 B1 B0
R/W R/W R/W R/W R/W R/W R/W R/W
INT Register 1 (Data Register for Output Frequency)
Example of Output from INT Register 1 (Data Register for Output Frequency)
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
13
1 Hz Clock Output and Second-counter
3.5. Clock Correction Register
The clock correction register is a 1-byte register that is used to correct advance / delay of the clock. When not using this function,
set this register to "00h". Regarding the register values, refer to "Function to Clock Correction".
V0 V1 V2 V3 V4 V5 V6 V7
B7 B6 B5 B4 B3 B2 B1 B0
R/W R/W R/W R/W R/W R/W R/W R/W
R/W : Read/Write
3.6. Free Register
This free register is a 1-byte SRAM type register that can be set freely by users.
V0 V1 V2 V3 V4 V5 V6 V7
B7 B6 B5 B4 B3 B2 B1 B0
R/W R/W R/W R/W R/W R/W R/W R/W
R/W : Read/Write
4. Power-on Detection Circuit and Register Status
The power-on detection circuit operates by power-on the RTC, as a result each register is cleared; each register is set as follows.
Real-time data register: 00 (Y), 01 (M), 01 (D), 0 (day of the week), 00 (H), 00 (M), 00 (S)
Status register 1: "01h"
Status register 2: "80h"
INT register 1: "80h"
INT register 2: "00h"
Clock correction register: "00h"
Free register: "00h"
"1" is set in the POC flag (B0 in the status register 1) to indicate that power has been applied. To correct the oscillation frequency,
the status register 2 goes in the mode the output of user-set frequency, so that 1 Hz clock pulse is output from the INT pin. When
"1" is set in the POC flag, be sure to initialize. The POC flag is set to "0" due to initialization so that the output of user-set
frequency mode is cleared. (Refer to "Register Status After Initialization".)
For the regular operation of power-on detection circuit, as seen in below Figure, the period to power-up the RTC is that the
voltage reaches 1.3 V within 10 ms after setting the IC’s power supply voltage at 0 V. When the power-on detection
circuit is not working normally is; the POC flag (B0 in the status register) is not in "1", or 1 Hz is not output from the INT pin.
In this case, power-on the RTC once again because the internal data may be in the indefinite status.
Moreover, regarding the processing right after power-on, refer to "Flowchart of Initialization and Example of Real-time Data
Set-up".
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
14
*1. 0 V indicates that there are no potential differences between the VDD pin and VSS pin.
How to Raise the Power Supply Voltage
5. Register Status After Initialization
The status of each register after initialization is as follows.
Real-time data register: 00 (Y), 01 (M), 01 (D), 0 (day of the week), 00 (H), 00 (M), 00 (S)
Status register 1: "0 B6 B5 B4 0 0 0 0 b"
(In B6, B5, B4, the data of B6, B5, B6 in the status register 1 at initialization is set. Refer to below Figure.)
Status register 2: "00h"
INT1 register: "00h"
INT2 register: "00h"
Clock correction register: "00h"
Free register: "00h"
Status Register 1 Data at Initialization
6. Low Power Supply Voltage Detection Circuit
The RTC has a low power supply voltage detection circuit, so that users can monitor drops in the power supply voltage by reading
the BLD flag (B1 in the status register 1). There is a hysteresis width of approx. 0.15 V (typ.) between detection voltage and
release voltage (refer to "Characteristics (Typical Data)"). The low power supply voltage detection circuit does the sampling
operation only once in one sec for 15.6 ms. If the power supply voltage decreases to the level of detection voltage (VDET) or less,
"1" is set to the BLD flag so that sampling operation stops. Once "1" is detected in the BLD flag, no sampling operation is
performed even if the power supply voltage increases to the level of release voltage or more, and "1" is held in the BLD flag. If the
BLD flag is "1" even after the power supply voltage is recovered, the internal circuit may be in the indefinite status. In this case,
be sure to initialize the circuit. After reading the BLD flag, the sampling operation is restarted. Without initializing, if the next
BLD flag reading is done after sampling, the BLD flag gets reset to "0". In this case, be sure to initialize although the BLD flag is
in "0" because the internal circuit may be in the indefinite status.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
15
Timing of Low Power Supply Voltage Detection Circuit
7. Circuits Power-on and Low Power Supply Voltage Detection
Below Figure shows the changes of the POC flag and BLD flag due to VDD fluctuation.
POC Flag and BLD Flag
8. Nonexistent Data and End-of-Month
When users write the real-time data, the RTC checks it. In case that the data is invalid, the RTC does the following procedures.
Processing of nonexistent data
*1. In 12-hour mode, write the AM / PM flag (B1 in hour data in the real-time data register). In 24-hour expression, the AM / PM
flag in the real-time data register is omitted. However in the flag of reading, users are able to read 0; 0 to 11, 1; 12 to 23.
*2. Processing of nonexistent data, regarding second data, is done by a carry pulse which is generated in 1 second, after writing. At
this point the carry pulse is sent to the minute-counter.
Correction of end-of-month
A nonexistent day, such as February 30 and April 31, is set to the first day of the next month.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
16
9. Alarm and Interrupt Output
9.1. INT Pin Output Mode
These are selectable for the INT pin output mode;
Alarm 1 interrupt, alarm 2 interrupt, the output of user-set frequency, per-minute edge interrupt output, and minute-periodical
interrupt output 1 and 2, 32.768 kHz output. In alarm 1 interrupt / output of frequency; set data in the INT register 1. In alarm 2
interrupt, set data in the INT register 2. To switch the output mode, use the status register 2. Refer to "Status register 2" in
"Configuration of Registers". When switching the output mode, be careful of the output status of the pin. Especially, when using
alarm interrupt / output of frequency, switch the output mode after setting "00h" in the INT register 1 or 2. Alarm 2 interrupt is
dependent from other modes. Regardless of other settings of mode if alarm 2 interrupt was generated, be careful that "L" is output
from the INT pin. In 32.768 kHz output / per-minute edge interrupt output / minute-periodical interrupt output, it is unnecessary to
set data in the INT register 1 or 2 for users. Refer to the followings regarding each operation of output modes.
a. Alarm Interrupt Output
Alarm interrupt output is the function to output "L" from the INT pin, at the alarm time which is set by user has come. If setting
the pin output to "H", turn off the alarm function by setting "0" in INT1AE / INT2AE in the status register 2. To set the alarm time,
set the data of day of the week, hour, minute in the INT register 1 or 2, set the data of year, month, and day in the INT register 1 or
2. Refer to "INT register 1 and INT register 2" in "Configuration of Register".
Alarm setting of "W (day of the week), H (hour), m (minute)"
*1. If users clear INT1AE / INT2AE once; "L" is not output from the INT pin by setting INT1AE / INT2AE enable again, within a
period when the alarm time matches real-time data.
Alarm Interrupt Output Timing
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
17
Alarm setting of “H (hour)"
*1. If users clear INT1AE / INT2AE once; "L" is not output from the INT pin by setting INT1AE / INT2AE enable again, within a
period when the alarm time matches real-time data.
*2. If turning the alarm output on by changing the program, within the period when the alarm time matches real-time data, "L" is
output again from the INT pin when the minute is counted up.
Alarm Interrupt Output Timing
b. Output of user-set frequency
The output of user-set frequency is the function to output the frequency which is selected by using data, from the INT pin, in the
AND-form. Set up the data of frequency in the INT register 1.
Output Timing of User-set Frequency
c. Per-minute Edge Interrupt Output
Per-minute edge interrupt output is the function to output "L" from the INT pin, when the first minute-carry processing is done,
after selecting the output mode. To set the pin output to "H", set "0" in INT1ME in the status register 2 to turn off the output mode
of per-minute edge interrupt.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
18
*1. Pin output is set to "H" by disabling the output mode within 7.81 ms, because the signal of this procedure is maintained for
7.81ms. Note that pin output is set to "L" by setting enable the output mode again.
Timing of Per-Minute Edge Interrupt Output
d. Minute-periodical interrupt output 1
The minute-periodical interrupt 1 is the function to output the one-minute clock pulse (Duty 50%) from the INT pin, when the first
minute-carry processing is done, after selecting the output mode.
*1. Setting the output mode disable makes the pin output "H", while the output from the INT pin is in "L". Note that pin output is
set to "L" by setting enable the output mode again.
Timing of Minute-periodical Interrupt Output 1
e. Minute-periodical interrupt output 2
The output of minute-periodical interrupt 2 is the function to output "L", for 7.81 ms, from the INT pin, synchronizing with the
first minute-carry processing after selecting the output mode. However, during reading in the real-time data register, the procedure
delays at max. 0.5 seconds thus output "L" from the INT pin also delays at max. 0.5 seconds during writing in the real-time data
register, some delay is made in the output period due to write timing and the second-data during writing.
During normal operation
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
19
During reading in the real-time data register
During writing in the real-time data register
Timing of Minute-periodical Interrupt Output 2
f. Operation of power-on detection circuit
When power is applied to the RTC, the power-on detection operates to set "1" in the POC flag (B0 in the status register 1).
A 1 Hz clock pulse is output from the INT pin.
9.2. Alarm 1 Function and INT2 Pin Output Mode
In the output mode for INT2 pin, users are able to select the output; alarm 2 interrupt, user-set frequency, per-minute edge
interrupt, minute-periodical interrupt. To switch the output mode for INT2 pin and the alarm 1 function, use the status register 2.
Refer to "Status register 2" in "Configuration of Registers". When switching the output mode for INT2 pin, be careful of the
output status of the pin. Especially, when using alarm 2 interrupt output, or the output of user-set frequency, switch the output
mode after setting "00h" in the INT2 register. In per-minute edge interrupt output / minute-periodical interrupt output, it is
unnecessary to set data in the INT2 register for users. Refer to the followings regarding each operation of output modes.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
20
a. Alarm 1 function and Alarm 2 Interrupt
Alarm 2 interrupt output is the function to set the INT2 flag "H" by the output "L" from the INT2 pin, at the alarm time which is
set by user has come. If setting the pin output to "H", turn off the alarm function by setting "0" in INT2AE in the status register 2.
By reading, the INT2 flag is once cleared automatically. In the alarm 1 function, the INT1 flag (B3 in the status register 1) is set to
"H" when the set time has come. The INT1 flag is also cleared once by reading. In the alarm 1 function, set the data of day of the
week, hour, minute of the alarm time in the INT1 register. In alarm 2 interrupt, set in the INT2 register.
1) Alarm setting of "W (day of the week), H (hour), m (minute)"
*1. If users clear INT2AE once; "L" is not output from the INT2 pin by setting INT2AE enable again, within a period when the
alarm time matches real-time data. Alarm Interrupt Output Timing
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
21
2) Alarm setting of "H (hour)"
*1. If users clear INT2AE once; "L" is not output from the INT2 pin by setting INT2AE enable again, within a period when the
alarm time matches real-time data.
*2. If turning the alarm output on by changing the program, within the period when the alarm time matches real-time data, "L" is
output again from the INT2 pin when the minute is counted up.
Alarm Interrupt Output Timing
b. Output of user-set frequency
The output of user-set frequency is the function to output the frequency which is selected by using data, from the INT2 pin, in the
AND-form. Set up the data of frequency in the INT2 register. Refer to "INT1 register and INT2 register" in "Configuration of
Registers".
Output Timing of User-set Frequency
c. Per-minute edge interrupt output
Per-minute edge interrupt output is the function to output "L" from the INT2 pin, when the first minute-carry processing is done,
after selecting the output mode. To set the pin output to "H", in the INT2 pin output mode, input "0" in INT2ME in the status
register 2 in order to turn off this mode.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
22
*1. Pin output is set to "H" by disabling the output mode within 7.81 ms, because the signal of this procedure is maintained for
7.81 ms. Note that pin output is set to "L" by setting enable the output mode again.
Timing of Per-minute Edge Interrupt Output
d. Minute-periodical interrupt output 1
The minute-periodical interrupt 1 is the function to output the one-minute clock pulse (Duty 50%) from the INT2 pin, when the
first minute-carry processing is done, after selecting the output mode.
*1. Setting the output mode disable makes the pin output "H", while the output from the INT2 pin is in "L".
Note that pin output is set to "L" by setting enable the output mode again.
Timing of Minute-periodical Interrupt Output 1
10. Function to Clock Correction
The function to clock correction is to correct advance / delay of the clock due to the deviation of oscillation frequency, in order to
make a high precise clock. For correction, the RTC adjusts the clock pulse by using a certain part of the dividing circuit, not
adjusting the frequency of the crystal oscillator. Correction is performed once every 20 seconds (or 60 seconds). The minimum
resolution is approx. 3 ppm (or approx. 1 ppm) and the RTC corrects in the range of data,
refer to "15.2. How to calculate". When not using this function, be sure to set "00h".
Function to Clock Correction
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
23
10.1. Setting values for registers and correction values
Setting Values for Registers and Correction Values (Minimum Resolution: 3.052 ppm (B0 = 0))
Setting Values for Registers and Correction Values (Minimum Resolution: 1.017 ppm (B0 = 1))
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
24
10.2. How to calculate
a. If current oscillation frequency > target frequency (in case the clock is fast)
Caution The figure range which can be corrected is that the calculated value is from 0 to 64.
*1. Convert this value to be set in the clock correction register. For how to convert, refer to "Calculation example 1".
*2. Measurement value when 1 Hz clock pulse is output from the INT pin.
*3. Target value of average frequency when the clock correction function is used.
*4. Refer to "Function to Clock Correction".
Calculation example 1
In case of current oscillation frequency actual measurement value = 1.000070 [Hz], target oscillation frequency = 1.000000 [Hz],
B0 = 0 (Minimum resolution = 3.052 ppm)
Convert the correction value "106" to 7-bit binary and obtain "1101010b".
Reverse the correction value "1101010b" and set it to B7 to B1 of the clock correction register.
Thus, set the clock correction register: (B7, B6, B5, B4, B3, B2, B1, B0) = (0, 1, 0, 1, 0, 1, 1, 0)
b. If current oscillation frequency < target frequency (in case the clock is fast)
Caution The figure range which can be corrected is that the calculated value is from 0 to 62.
Calculation example 2
In case of current oscillation frequency actual measurement value = 0.999920 [Hz], target oscillation frequency = 1.000000 [Hz].
B0 = 0 (Minimum resolution = 3.052 ppm)
Thus, set the clock correction register:
(B7, B6, B5, B4, B3, B2, B1, B0) = (1, 1, 0, 1, 1, 0, 0, 0)
Calculation example 3
In case of current oscillation frequency actual measurement value = 0.999920 [Hz], target oscillation frequency = 1.000000 [Hz],
B0 = 1 (Minimum resolution = 1.017 ppm)
This calculated value exceeds the correctable range 0 to 62.
B0 = "1" (minimum resolution = 1.017 ppm) indicates the correction is impossible.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
25
10.3. How to confirm a setting value for a register and the result of correction
This RTC does not adjust the frequency of the crystal oscillation by using the function of clock correction. Therefore users cannot
confirm if it is corrected or not by measuring output 32.768 kHz. When the function of clock correction is being used, the cycle of
1 Hz clock pulse output from the INT pin changes once in 20 times or 60 times, as shown in below figure.
Confirmation of the clock correction
Measure a and b by using the frequency counter*1. Calculate the average frequency (Tave) based on the measurement results.
Calculate the error of the clock based on the average frequency (Tave). The following shows an example for confirmation.
Confirmation example: When B0 =0, 66h is set
Measurement results: a = 1.000080 Hz, b = 0.998493 Hz
Calculating the average frequency allows to confirm the result of correction.
*1. Use a high-accuracy frequency counter of 7 digits or more.
Caution Measure the oscillation frequency under the usage conditions.
11. Serial Interface
11.1. 3-wire Serial Interface
The PT7C43190 receives various commands via 3-wire serial interface to read / write data. Regarding transmission is as follows.
a. Data reading
When data is input from the SIO pin in synchronization with the falling of the SCK clock after setting the CS pin to "H", the data
is loaded internally in synchronization with the next rising of the SCK clock. When R / W bit = "1" is loaded at the eighth rising of
the SCK clock, the state of data reading is entered. Data corresponding to each command is then output in synchronization with
the falling of the subsequent SCK clock input. When the SCK clock is less than 8, the IC is in the clock-wait status, and no
processing is performed.
b. Data writing
When data is input from the SIO pin in synchronization with the falling of the SCK clock after setting the CS pin to "H", the data
is loaded internally in synchronization with the next rising of the SCK clock. When R / W bit = "0" is loaded at the eighth rising of
the SCK clock, the state of data writing is entered. In this state, the data, which is input in synchronization with the falling of the
subsequent SCK clock input, is written to registers according to each command. In data writing, input a clock pulse which is
equivalent to the byte of the register. As well as reading, when the SCK clock is less than 8, the IC is in the clock-wait status, and
no processing is performed.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
26
c. Data access
Real-time data 1 access
Real-time data 1 access
Real-time data 2 access
Real-time Data 2 Access
Status register 1 access and status register 2 access
*1. 0: Status register 1 selected
1: Status register 2 selected Status Register 1 Access and Status Register 2 Access
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
27
INT register 1 access and INT register 2 access
In read / write the INT register 1, data varies depending on the setting of the status register 2. Be sure to read / write the INT
register 1 after setting the status register 2. When setting the alarm by using the status register 2, these registers work as 3-byte
alarm time data registers, in other statuses, they work as 1-byte registers. When outputting the user-set frequency, they are the data
registers to set up the frequency. Read / write the INT register 2 after setting INT2AE in the status register 2. When INT2AE is in
"1", the INT register 2 works as for setting the 3-byte alarm time data. The INT register 2 does not have the function to output the
user-set frequency. Regarding details of each data, refer to "INT register 1 and INT register 2" in "Configuration of Register".
Caution Users cannot use both functions of alarm 1 interrupt and the output of user-set frequency simultaneously.
*1. 0: Status register 1 selected
1: Status register 2 selected INT Register 1 Access and INT Register 2 Access
INT Register 1 (Data Register for output frequency) Access
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
28
Clock correction register access
Clock Correction Register Access
Free register access
Free Register Access
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
29
12. Flowchart of Initialization and Example of Real-time Data Set-up
*1. Do not communicate for 0.5 seconds since the power-on detection circuit is in operation.
*2. Reading the real-time data 1 should be completed within 1 second after setting the real-time data 1.
Example of Initialization Flowchart
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
30
13. Examples of Application Circuits
Caution: Start communication under stable condition after power-on the power supply in the system.
Caution: The above connection diagrams do not guarantee operation. Set the constants after performing sufficient evaluation using
the actual application. Examples of Application Circuits for PT7C43190
Mechanical Information
TSSOP-8L
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
31
SOIC-8L
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2015-09-0015 PT0274-7 10/16/15
32
TDFN2x3-8L
Ordering Information
Part No.
Package Code
Package
PT7C43190LE
L
Lead free and Green 8-pin TSSOP
PT7C43190LEX
L
Lead free and Green 8-pin TSSOP Tape/Reel
PT7C43190WE
W
Lead free and Green 8-pin SOIC
PT7C43190WEX
W
Lead free and Green 8-pin SOIC Tape/Reel
PT7C43190ZEE
ZE
Lead free and Green 8-pin TDFN2x3
Note:
E = Pb-free and Green
Adding X Suffix= Tape/Reel
Pericom Semiconductor Corporation 1-800-435-2336 www.pericom.com
Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply
the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The
company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom.
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Pericom:
PT7C43190LE PT7C43190WE PT7C43190WEX PT7C43190LEX