ee ee ee eee errr MOTORCLA SC DIODES/OPTO aye p ff uaez2ss cosoos4 s ff : Order this data sheet MOTOROLA by 3EZ3.9D5/D a SEMICONDUCTOR Ea SR ET TECHNICAL DATA 3EZ3.9D5 . Designers Data Sheet thru 3EZ400D5 3-Watt Surmetic 30 Silicon Zener Diodes BWATT ...a complete series of 3-Watt Zener Diodes with limits and operating characteristics ZENER REGULATOR that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an DIODES axial-lead, transfer-molded plastic package offering protection in all common environ- 3.9-400 VOLTS mental conditions. e Surge Rating of 98 Watts @ 1 ms e Maximum Limits Guaranteed on Six Electrical Parameters Package No Larger Than the Conventional 1 Watt Package Mechanical Characteristics: CASE: Void-free, transfer-molded, thermosetting plastic FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable POLARITY: Cathode indicated by polarity band. When operated in zener mode, cathode will be positive with respect to anode MOUNTING POSITION: Any WEIGHT: 0.4 gram (approx) OUTLINE DIMENSIONS Ses Pp, MAXIMUM POWER DISSIPATION (WATTS) 0 202 40s 6080s 1000's 120, 140 160 = 180 = 200 Ti, LEAD TEMPERATURE (C) NOTES: 4, ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY. 2. POLARITY DENOTED BY CATHODE BAND. 3. LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION. Figure 1. Power-Temperature Derating Curve MAXIMUM RATINGS Rating Symbol Value Unit DC Power Dissipation @ TL = 75C Pp 3 Watts Lead Length = 3/8 Derate above 75C 24 mWw/c _ DC Power Dissipation @ Ta = 50C Pp 1 Watt _ Derate above 50C 6.67 mwrc . CASE 59-03 Operating and Storage Junction Temperature Range Ty, Tstg | 65 to +200 C (DO-41) io Surmetic is a trademark of Motorola Inc. Designer's Data for Worst Case Conditions The Designer's Data Sheet permits the design of most circuits entirely from the information presented, Limit curves representing boundaries on device characteristics . are given to facilitate worst case design. (SY MOTOROLA MOTOROLA INC., 1989 DS7075R1______==T_X___e"*T-_-_t MOTORCLA SC OIODES/OFTC T-tl-15 44E D i 367255 o0a00%S. 7 i ELECTRICAL CHARACTERISTICS (Ta = 25C unless otherwise noted) Vr = 1.5 V max, IF = 200 mA for all types) Nominal Max Zener Impedance Leakage Maximum Surge Zener Voltage Test (Note 3) Current Zener Current Motorola Vz @ lzt Current Current |@ Ta = 25C Type No. Volts IzT Zzy @ lzt |ZzKk @ Izk 7K Ip VR IZM iy -mA (Note 1) (Note 2) mA Ohms Ohms mA pA Max @ Volts mA (Note 4) ) 3EZ3.9D5 3.9 192 4.5 400 1 80 1 630 4.4 3EZ4.3D5 43 174 4.5 400 1 30 1 590 41 3EZ4.7D5 47 160 4 500 1 20 1 550 3.8 3EZ5.1D5 5.1 147 3.5 550 1 5 1 520 3.5 3EZ5.6D5 5.6 134 2.5 600 1 5 2 480 3.3 3EZ6.2D5 6.2 121 1.5 700 4 5 3 435 3.1 3EZ6.8D5 6.8 110 2 700 1 5 4 393 2.9 3EZ7.5D5 75 100 2 700 0.5 5 5 360 2.66 3EZ8.2D5 8.2 91 2.3 700 0.5 5 6 330 2.44 3EZ9.1D5 9.1 82 2.5 700 0.5 3 7 297 2.2 3EZ10D5 10 75 3.5 700 0.25 3 7.6 270 2 3EZ11D5 11 68 4 700 0.25 1 8.4 225 1.82 3EZ12D5 12 63 4.5 700 0.25 1 9.1 246 1.66 3EZ13D5 13 58 4.5 700 0.25 0.5 9.9 208 1.54 3214D5 14 53 5 700 0.25 0.5 10.6 193 1.43 3&215D5 15 50 5.5 700 0.25 0.5 11.4 180 1.33 3EZ16D5 16 47 5.5 700 0.25 0.5 12.2 169 1.25 3EZ17D5 7 44 6 750 0.25 0.5 13 150 1.18 3EZ18D5 18 42 6 750 0.25 0.5 13.7 159 1.11 3EZ19D5 19 40 7 750 0.25 0.5 14.4 142 1.05 3EZ20D5 20 37 7 750 0.25 0.5 15.2 135 1 3EZ22D5 22 34 8 750 0.25 0.5 16.7 123 0.91 3EZ24D5 24 31 9 750 0.25 0.5 18.2 112 0.83 3EZ27D5 27 28 10 750 0.25 0.5 20.6 100 0.74 3EZ28D5 28 27 12 750 0.25 0.5 21 96 0.71 3EZ30D5 30 25 16 1000 0.25 0.5 22.5 90 0.67 3EZ33D5 33 23 20 1000 0.25 0.5 25.1 82 0.61 3EZ36D5 36 21 22 1000 0.25 0.5 27.4 78 0.56 3EZ38D5 39 19 28 1000 0.25 0.5 29.7 69 0.51 3EZ43D5 43 17 33 1500 0.25 0.5 32.7 63 0.45 3EZ47D5 47 16 38 1500 0.25 0.5 35.6 57 0.42 3EZ51D5 51 15 45 1500 0.25 0.5 38.8 53 0.39 3EZ56D5 56 13 50 2000 0.25 0.5 42.6 48 0.36 3EZ62D5 62 12 55 2000 0.25 0.5 47.1 44 0.32 3EZ68D5 68 11 70 2000 0.25 0.5 51.7 40 0.29 3EZ75D5 75 10 85 2000 0,25 0.5 56 36 0.27 3EZ82D5 82 9.1 95 3000 0.25 0.5 62.2 33 0.24 3EZ91D5 91 8.2 115 3000 0.25 0.5 69,2 30 0,22 3EZ100D5 100 7.5 160 3000 0.25 0.5 76 27 0.2 3EZ110D5 110 6.8 225 4000 0.25 0.5 83.6 25 0.18 3&Z120D5 120 6.3 300 4500 0.25 0.5 91.2 22 0.16 3EZ130D5 130 5.8 375 5000 0.25 0.5 98.8 21 0.15 3EZ140D5 140 5.3 475 5000 0.25 0.5 106.4 19 0.14 3EZ150D5 150 5 550 6000 0.25 0.5 114 18 0.13 3EZ160D5 160 47 625 6500 0.25 0.5 121.6 17 0.12 3EZ170D5 170 4.4 650 7000 0,25 0.5 130.4 16 0.12 3EZ180D5 180 4.2 700 7000 0.25 0.5 136.8 15 0.11 3EZ2190D5 190 4 800 8000 0.25 0.5 144.8 14 0.1 3&2200D5 200 3.7 875 8000 0.25 0.5 152 13 0.1 3EZ220D5 220 3.4 1000 9000 0.25 1 167 12 0.09 3EZ240D5 240 3.1 1300 9000 0.25 1 182 11 0.09 3EZ270D5 270 2.8 1600 9000 0.25 1 205 10 0.08 3EZ300D5 300 2.5 1900 9000 0.25 1 228 9 0.07 32330D5 330 2.3 2200 9000 0.25 1 251 8 0.06 3EZ360D5 360 2.1 2700 9000 0.25 1 274 8 0.06 3EZ400D5 400 1.9 3500 9000 0.25 1 304 7 0.06 NOTES: ance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the de zener current (Iz7 or Iz) is superimposed on |zT or 12K. (4) SURGE CURRENT (i) NON-REPETITIVE The rating listed in the electrical characteristics table is maximum peak, non- repetitive, reverse surge current of 1/2 square wave or equiv- alent sine wave pulse of 1/120 second duration superim- posed on the test current, Iz7, per JEDEC standards, how- ever, actual device capability is as described In Figure 3. (1) TOLERANCES Suffix 1 indicates 1% tolerance, suffix 2 indicates 2% tolerance, suffix 5 indicates 5% tolerance and suffix 10 indicates 10% tolerance, any other tolerance will be considered as a special device. (2) ZENER VOLTAGE (Vz) MEASUREMENT Motorola guar- antees the zener voltage when measured at 40 ms + 10 ms 3/8 from the diode body, and an ambient temperature of 25C (+8C, 2C). (3) ZENER IMPEDANCE (Zz) DERIVATION The zener imped- MOTOROLA 3EZ3.9D5 THRU 3EZ400D5 2wa uatorcea sc propessorto JVW- ID 07 NOTE: BELOW 0.1 SECOND, THERMAL RESPONSE CURVE |S APPLICABLE TO ANY {L). 6 J, {t, D) TRANSIENT THERMAL RESISTANCE JUNCTION-TO-LEAD (C/W) m w on st 03 0.0001 0.0002 0.0005 0.001 = 0.002 0.005 wae o Bp e3b7255 oosoo 9 f PPK aS tg DUTY CYCLE, D = tity PULSE ATy_ = yz (tIPpK REPETITIVE PULSES ATyL = Oy (t DIPpK 0.1 0.2 05 2 5 10 t, TIME (SECONDS) Figure 2. Typical Thermal Response L, Lead Length = 3/8 Inch = ~~ RECTANGULAR NON-REPETITIVE WAVEFORM Ty = 25C PRIOR TO INITIAL PULSE 88 8 8 8 Ppx, PEAK SURGE POWER (WATTS) 3 8 _ o 01 #0203 05 14 23 5 10 20 30 50 100 P.W., PULSE WIDTH (ms) Figure 3. Maximum Surge Power APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, Ti, should be determined from: TL = OLA Pp + Ta 6. is the lead-to-ambient thermal resistance (C/W) and Pp is the power dissipation. The value for @Lq will vary and depends on the device mounting method. 6,4 is generally 30-40C/W for the various clips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: Ty = TL + ATUL Ip, REVERSE LEAKAGE (Adc) @ Vp AS SPECIFIED IN ELEC. CHAR. TABLE 0.5 0.2 0.4 0.05 0.02 0.01 0.005 0,002 0.001 0,0005 0.0003 NOMINAL Vz (VOLTS) Figure 4. Typical Reverse Leakage ATL is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses (L = 3/8 inch) or from Figure 10 for dc power. ATJL = 8L Po For worst-case design, using expected limits of Iz, limits of Pp and the extremes of Ty (ATJ) may be estimated. Changes in voltage, Vz, can then be found from: AV = 6yz2 ATYJ 6yz, the zener voltage temperature coefficient, is found from Figures 5 and 6. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 2 should not be used to compute surge capa- bility. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temper- ature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded. Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola shall determine availability and suitability of its product or products for the use intended. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer. 3EZ3.9D5 THRU 3EZ400D5 MOTOROLA 3MaTORCLA sc oropes/optc T(\~ 15 rue o ff e3e7255 ooacoq o ff TEMPERATURE COEFFICIENT RANGES (90% of the Units are in the Ranges Indicated) _ QS 2 3 oo S = a ht o So ht yz, TEMPERATURE COEFFICIENT {(mV/PC) @ Izy Oyz, TEMPERATURE COEFFICIENT (mV/C) @ Iz S 50 0 -2 20 ~4 10 3 4 5 6 7 8 9 10 1 12 10 20 50 100 200 400 1000 Vz, ZENER VOLTAGE @ I77 (VOLTS) Vz, ZENER VOLTAGE @ Izt (VOLTS) Figure 5. Units To 12 Volts Figure 6. Units 10 To 400 Volts ZENER VOLTAGE versus ZENER CURRENT (Figures 7, 8 and 9) 100 50 30 _ 20 = = = < 10 5 2 eS 5 = 3 oO ao 5 3? = co i yo s N 05 NI ~~ 03 0,2 0.1 0 1 2 3 4 5 6 7 8 9 10 0 10 = .20 30 40 500 70 80 90 100 Vz, ZENER VOLTAGE (VOLTS) Vz, ZENER VOLTAGE (VOLTS) Figure 7. Vz = 3.9 thru 10 Volts Figure 8. Vz = 12 thru 82 Volts 10 = 20 2 5 & 70 2 LL Zz iB 60 LL | 2 Eo "| 5 z* = ig = = 1 & 40 le-L leLoe | 3B = La > L 5 2 30 [> + a 4 2 2 - TL 4 ~ 02 5 PRIMARY PATH OF . 5 10 CONDUCTION IS THROUGH s THE CATHODE LEAD 01 = 0 | ! L 100 150 200 250 300 350 400 = 0 18 1/4 3/8 1/2 58 3/4 118 i Vz, ZENER VOLTAGE (VOLTS) = L, LEAD LENGTH TO HEAT SINK (INCH) Figure 9. Vz = 100 thru 400 Volts Figure 10. Typical Thermal Resistance Literature Distribution Centers: USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. . EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. og ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong. JAPAN: Nippon Motorola Ltd.; 3-20-1 Minamiazabu, Minato-ku, Tokyo 106 Japan. a MOTOROLA a 20489-2 PRINTED IM USA 5-89 IMPERIAL LITHO C64374 18,000 YAACAA 3EZ3.9D5 THRU 3EZ400D5