MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-1
APPENDIX A
ELECTRICAL CHARACTERISTICS
This appendix contains electrical specification tables and reference timing diagrams
for MC68336 and MC68376 microcontroller units.
Table A-1 Maximum Ratings
Num Rating Symbol Value Unit
1Supply Voltage1, 2, 7
NOTES:
1. Permanent damage can occur if maximum ratings are exceeded. Exposure to voltages or currents in excess
of recommended values affects device reliability. Device modules may not operate normally while being ex-
posed to electrical extremes.
2. Although sections of the device contain circuitry to protect against damage from high static voltages or elec-
trical fields, take normal precautions to avoid exposure to voltages higher than maximum-rated voltages.
VDD – 0.3 to + 6.5 V
2Input Voltage11, 22, 3, 55, 77
3. All pins except TSTME/TSC.
Vin – 0.3 to + 6.5 V
3 Instantaneous Maximum Current
Single pin limit (applies to all pins)11, 55, 66,
77
ID25 mA
4 Operating Maximum Current
Digital Input Disruptive Current 4, 5, 6, 7, 8
VNEGCLMAP – 0.3 V
VPOSCLAMP VDD + 0.3
4. All functional non-supply pins are internally clamped to VSS. All functional pins except EXTAL and XFC are
internally clamped to VDD. Does not include QADC pins (refer to Table A-11).
5. Input must be current limited to the value specified. To determine the value of the required current-limiting
resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two
values.
6. Power supply must maintain regulation within operating VDD range during instantaneous and operating max-
imum current conditions.
7. This parameter is periodically sampled rather than 100% tested.
8. Total input current for all digital input-only and all digital input/output pins must not exceed 10 mA. Exceeding
this limit can cause disruption of normal operation.
IID
– 500 to 500 µA
5 Operating Temperature Range
MC68336/376 “C” Suffix
MC68336/376 “V” Suffix
MC68336/376 “M” Suffix
TA
TL to TH
– 40 to 85
– 40 to 105
– 40 to 125
°C
6 Storage Temperature Range Tstg 55 to 150 °C
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-2
Table A-2 Typical Ratings
Num Rating Symbol Value Unit
1 Supply Voltage VDD 5.0 V
2 Operating Temperature TA25 °C
3
VDD Supply Current
RUN
LPSTOP, VCO off
LPSTOP, External clock, maxi fsys
IDD
113
125
3.75
mA
µA
mA
4 Clock Synthesizer Operating Voltage VDDSYN 5.0 V
5
VDDSYN Supply Current
VCO on, maximum fsys
External Clock, maximum fsys
LPSTOP, VCO off
VDD powered down
IDDSYN
1.0
5.0
100
50
mA
mA
µA
µA
6 RAM Standby Voltage VSB 3.0 V
7
RAM Standby Current
Normal RAM operation
Standby operation
ISB 7.0
40
µA
µA
8 Power Dissipation PD570 mW
Table A-3 Thermal Characteristics
Num Rating Symbol Value Unit
1Thermal Resistance
Plastic 160-Pin Surface Mount θJA 37 °C/W
The average chip-junction temperature (TJ) in C can be obtained from:
(1)
where:
TA= Ambient Temperature, °C
ΘJA = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD= PINT + PI/O
PINT = IDD × VDD, Watts — Chip Internal Power
PI/O = Power Dissipation on Input and Output Pins — User Determined
For most applications PI/O < PINT and can be neglected. An approximate relationship between P
D and TJ (if PI/O is
neglected) is:
(2)
Solving equations 1 and 2 for K gives:
(3)
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P
D (at
equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1)
and (2) iteratively for any value of TA.
TJTAPDΘJA
×()+=
PDKT
J273 °C+()÷=
KPDTA273°C+()Θ
JA PD
×++
=
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-3
Table A-4 Clock Control Timing
(VDD and VDDSYN = 5.0 Vdc ± 5%, VSS = 0 Vdc, TA = TL to TH, 4.194 MHz reference)
Num Characteristic Symbol Min Max Unit
1 PLL Reference Frequency Range fref 4.194 5.243 MHz
2System Frequency1
On-Chip PLL System Frequency
External Clock Operation
NOTES:
1. All internal registers retain data at 0 Hz.
fsys
dc
fref/32
dc
20.97
20.97
20.97
MHz
3PLL Lock Time2, 3, 4, 5
2. This parameter is periodically sampled rather than 100% tested.
3. Assumes that a low-leakage external filter network is used to condition clock synthesizer input voltage. Total
external resistance from the XFC pin due to external leakage must be greater than 15 Mto guarantee this
specification. Filter network geometry can vary depending upon operating environment
.
4. Proper layout procedures must be followed to achieve specifications.
5. Assumes that stable VDDSYN is applied, and that the crystal oscillator is stable. Lock time is measured from the
time VDD and VDDSYN are valid until RESET is released. This specification also applies to the period required
for PLL lock after changing the W and Y frequency control bits in the synthesizer control register (SYNCR) while
the PLL is running, and to the period required for the clock to lock after LPSTOP.
tlpll —20ms
4VCO Frequency6
6. Internal VCO frequency (fVCO ) is determined by SYNCR W and Y bit values. The SYNCR X bit controls a di-
vide-by-two circuit that is not in the synthesizer feedback loop. When X = 0, the divider is enabled, and f sys =
fVCO ÷ 4. When X = 1, the divider is disabled, and fsys = fVCO ÷ 2. X must equal one when operating at maximum
specified fsys.
fVCO —2 (f
sys max) MHz
5 Limp Mode Clock Frequency
SYNCR X bit = 0
SYNCR X bit = 1
flimp
fsys max/2
fsys max
MHz
6CLKOUT Jitter2, 3, 4, 7
Short term (5 µs interval)
Long term (500 µs interval)
7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maxi-
mum fsys. Measurements are made with the device powered by filtered supplies and clocked by a stable exter-
nal clock signal. Noise injected into the PLL circuitry via VDDSYN and VSS and variation in crystal oscillator
frequency increase the Jclk percentage for a given interval. When jitter is a critical constraint on control system
operation, this parameter should be measured during functional testing of the final system.
Jclk –0.625
–0.0625
–0.625
–0.0625
%
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-4
Table A-5 DC Characteristic s
(VDD and VDDSYN = 5.0 Vdc ±5%, VSS = 0 Vdc, TA = TL to TH)
Num Characteristic Symbol Min Max Unit
1 Input High Voltage VIH 0.7 (VDD)V
DD + 0.3 V
2 Input Low Voltage VIL VSS – 0.3 0.2 (VDD)V
3Input Hysteresis1 VHYS 0.5 V
4Input Leakage Current2
Vin = VDD or VSS Input-only pins Iin –2.5 2.5 µA
5High Impedance (Off-State) Leakage Current22
Vin = VDD or VSS All input/output and output pins IOZ –2.5 2.5 µA
6CMOS Output High Voltage22, 3
IOH = –10.0 µA Group 1, 2, 4 input/output and all output pins VOH VDD – 0.2 V
7CMOS Output Low Voltage22
IOL = 10.0 µA Group 1, 2, 4 input/output and all output pins VOL —0.2V
8Output High Voltage22, 33
IOH = –0.8 mA Group 1, 2, 4 input/output and all output pins VOH VDD – 0.8 V
9
Output Low Voltage22
IOL = 1.6 mA Group 1 I/O Pins, CLKOUT, FREEZE/QUOT, IP-
IPE
IOL = 5.3 mA Group 2 and Group 4 I/O Pins, CSBOOT, BG/CS
IOL = 12 mA Group 3
VOL
0.4
0.4
0.4
V
10 Three State Control Input High Voltage VIHTSC 1.6 (VDD)9.1 V
11
Data Bus Mode Select Pull-up Current4
Vin = VIL DATA[15:0]
Vin = VIH DATA[15:0] IMSP
–15
–120
µA
12A
MC68336 VDD Supply Current5
RUN 6
RUN, TPU emulation mode
LPSTOP, 4.194 MHz crystal, VCO Off (STSIM = 0)
LPSTOP (External clock input frequency = maximum fsys)
IDD
IDD
SIDD
SIDD
140
150
3
7
mA
mA
mA
mA
12B
MC68376 VDD Supply Current5
RUN6
RUN, TPU emulation mode
LPSTOP, 4.194 MHz crystal, VCO Off (STSIM = 0)
LPSTOP (External clock input frequency = maximum fsys)
IDD
IDD
SIDD
SIDD
150
160
3
7
mA
mA
mA
mA
13 Clock Synthesizer Operating Voltage VDDSYN 4.75 5.25 V
14
VDDSYN Supply Current55
4.194 MHz crystal, VCO on, maximum fsys
External Clock, maximum fsys
LPSTOP, 4.194 MHz crystal, VCO off (STSIM = 0)
4.194 MHz crystal, VDD powered down
IDDSYN
IDDSYN
SIDDSYN
IDDSYN
3
5
3
3
mA
mA
mA
mA
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-5
15
RAM Standby Voltage7
Specified VDD applied
VDD = VSS
VSB 0.0
3.0
5.25
5.25
V
16
RAM Standby Current55, 77, 8
Normal RAM operationVDD > VSB – 0.5 V
Transient condition VSB – 0.5 V VDD VSS + 0.5 V
Standby operation VDD < VSS + 0.5 V
ISB
10
3
100
µA
mA
µA
17A MC68336 Power Dissipation9PD 756 mW
17B MC68376 Power Dissipation9PD 809 mW
18 Input Capacitance22, 10All input-only pins
All input/output pins Cin
10
20 pF
19
Load Capacitance22
Group 1 I/O Pins and CLKOUT, FREEZE/QUOT, IPIPE
Group 2 I/O Pins and CSBOOT, BG/CS
Group 3 I/O pins
Group 4 I/O pins
CL
90
100
130
200
pF
NOTES:
1. Applies to :
Port E[7:4] — SIZ[1:0], AS, DS
Port F[7:0] — IRQ[7:1], MODCLK
Port QS[7:0] — TXD, PCS[3:1], PCS0/SS, SCK, MOSI, MISO
TPUCH[15:0], T2CLK, CPWM[8:5], CTD[4:3], CTD[10:9], CTM2C
BKPT/DSCLK, IFETCH, RESET, RXD, TSTME/TSC
EXTAL (when PLL enabled)
2. Input-Only Pins: EXTAL, TSTME/TSC, BKPT, PAI, T2CLK, RXD, CTM2C
Output-Only Pins: CSBOOT, BG/CS, CLKOUT, FREEZE/QUOT, IPIPE
Input/Output Pins:
Group 1: DATA[15:0], IFETCH, TPUCH[15:0], CPWM[8:5], CTD[4:3], CTD[10:9]
Group 2: Port C[6:0] — ADDR[22:19]/CS[9:6], FC[2:0]/CS[5:3]
Port E[7:0] — SIZ[1:0], AS, DS, AVEC, RMC, DSACK[1:0]
Port F[7:0] — IRQ[7:1], MODCLK
Port QS[7:3] TXD, PCS[3:1], PCS0/SS
ADDR23/CS10/ECLK, ADDR[18:0], R/W, BERR, BR/CS0, BGACK/CS2
Group 3: HALT, RESET
Group 4: MISO, MOSI, SCK
Pin groups do not include QADC pins. See Tables A-11 through A-14 for information concerning the QADC.
3. Does not apply to HALT and RESET because they are open drain pins. Does not apply to port QS[7:0] (TXD,
PCS[3:1], PCS0/SS, SCK, MOSI, MISO) in wired-OR mode.
4. Use of an active pulldown device is recommended.
5. Total operating current is the sum of the appropriate IDD, IDDSYN, and ISB values. IDD values include supply
currents for device modules powered by VDDE and VDDI pins.
6. Current measured at maximum system clock frequency, all modules active.
7. The SRAM module will not switch into standby mode as long as VSB does not exceed VDD by more than 0.5
volts. The SRAM array cannot be accessed while the module is in standby mode.
8. When VDD is transitioning during power-up or power down sequence, and VSB is applied, current flows between
the VSTBY and VDD pins, which causes standby current to increase toward the maximum transient condition
specification. System noise on the VDD and VSTBY pins can contribute to this condition.
9. Power dissipation measured at system clock frequency, all modules active. Power dissipation can be calculated
using the following expression:
PD = Maximum VDD (Run IDD + IDDSYN + ISB) + Maximum VDDA (IDDA)
10. This parameter is periodically sampled rather than 100% tested.
Table A-5 DC Characteristics (Continued)
(VDD and VDDSYN = 5.0 Vdc ±5%, VSS = 0 Vdc, TA = TL to TH)
Num Characteristic Symbol Min Max Unit
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-6
Table A-6 AC Timin g
(VDD and VDDSYN = 5.0 Vdc ±5%, VSS = 0 Vdc, TA = TL to TH)1
Num Characteristic Symbol Min Max Unit
F1 Frequency of Operation2 fsys 20.97 MHz
1 Clock Period tcyc 47.7 ns
1A ECLK Period tEcyc 381 ns
1B External Clock Input Period3tXcyc 47.7 ns
2, 3 Clock Pulse Width tCW 18.8 ns
2A, 3A ECLK Pulse Width tECW 183 ns
2B, 3B External Clock Input High/Low Time3tXCHL 23.8 ns
3, 4 Clock Rise and Fall Time tCrf —5ns
4A, 5A Rise and Fall Time — All Outputs except CLKOUT trf —8ns
4B, 5B External Clock Rise and Fall Time4tXCrf —5ns
4 Clock High to Address, FC, SIZE, RMC Valid tCHAV 023ns
5 Clock High to Address, Data, FC, SIZE, RMC High Impedance tCHAZx 047ns
6Clock High to Address, FC, SIZE, RMC Invalid5tCHAZn 0—ns
7 Clock Low to AS, DS, CS Asserted tCLSA 023ns
8A AS to DS or CS Asserted (Read)6tSTSA –10 10 ns
8C Clock Low to IFETCH, IPIPE Asserted tCLIA 222ns
11 Address, FC, SIZE, RMC Valid to AS, CS Asserted tAVSA 10 ns
12 Clock Low to AS, DS, CS Negated tCLSN 223ns
12A Clock Low to IFETCH, IPIPE Negated tCLIN 222ns
13 AS, DS, CS Negated to Address, FC, SIZE Invalid (Address Hold) tSNAI 10 ns
14 AS, CS Width Asserted tSWA 80 ns
14A DS, CS Width Asserted (Write) tSWAW 36 ns
14B AS, CS Width Asserted (Fast Write Cycle) tSWDW 32 ns
15 AS, DS, CS Width Negated7tSN 32 ns
16 Clock High to AS, DS, R/W High Impedance tCHSZ —47ns
17 AS, DS, CS Negated to R/ W Negated tSNRN 10 ns
18 Clock High to R/W High tCHRH 023ns
20 Clock High to R/W Low tCHRL 023ns
21 R/W Asserted to AS, CS Asserted tRAAA 10 ns
22 R/W Low to DS, CS Asserted (Write) tRASA 54 ns
23 Clock High to Data Out Valid tCHDO —23ns
24 Data Out Valid to Negating Edge of AS, CS t
DVASN 10 ns
25 DS, CS Negated to Data Out Invalid (Data Out Hold) tSNDOI 10 ns
26 Data Out Valid to DS, CS Asserted (Write) tDVSA 10 ns
27 Data In Valid to Clock Low (Data Setup)5tDICL 5—ns
27A Late BERR, HALT Asserted to Clock Low (Setup Time) tBELCL 15 ns
28 AS, DS Negated to DSACK[1:0], BERR, HALT, AVEC Negated tSNDN 060ns
29 DS, CS Negated to Data In Invalid (Data In Hold)
8tSNDI 0—ns
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-7
29A DS, CS Negated to Data In High Impedance
88, 9tSHDI —48ns
30 CLKOUT Low to Data In Invalid (Fast Cycle Hold)88 tCLDI 10 ns
30A CLKOUT Low to Data In High Impedance88 tCLDH —72ns
31 DSACK[1:0] Asserted to Data In Valid10 tDADI —46ns
33 Clock Low to BG Asserted/Negated tCLBAN —23ns
35 BR Asserted to BG Asserted (RMC Not Asserted) 11 tBRAGA 1—t
cyc
37 BGACK Asserted to BG Negated tGAGN 12t
cyc
39 BG Width Negated tGH 2—t
cyc
39A BG Width Asserted tGA 1—t
cyc
46 R/W Width Asserted (Write or Read) tRWA 115 ns
46A R/W Width Asserted (Fast Write or Read Cycle) tRWAS 70 ns
47A Asynchronous Input Setup Time
BR, BGACK, DSACK[1:0], BERR, AVEC, HALT tAIST 5—ns
47B Asynchronous Input Hold Time tAIHT 12 ns
48 DSACK[1:0] Asserted to BERR, HALT Asserted12 tDABA —30ns
53 Data Out Hold from Clock High tDOCH 0—ns
54 Clock High to Data Out High Impedance tCHDH —23ns
55 R/W Asserted to Data Bus Impedance Change tRADC 32 ns
56 RESET Pulse Width (Reset Instruction) tHRPW 512 tcyc
57 BERR Negated to HALT Negated (Rerun) tBNHN 0—ns
70 Clock Low to Data Bus Driven (Show) tSCLDD 023ns
71 Data Setup Time to Clock Low (Show) tSCLDS 10 ns
72 Data Hold from Clock Low (Show) tSCLDH 10 ns
73 BKPT Input Setup Time tBKST 10 ns
74 BKPT Input Hold Time tBKHT 10 ns
75 Mode Select Setup Time tMSS 20 — tcyc
76 Mode Select Hold Time tMSH 0—ns
77 RESET Assertion Time13 tRSTA 4—t
cyc
78 RESET Rise Time14, 15 tRSTR —10t
cyc
NOTES:
1. All AC timing is shown with respect to 20% VDD and 70% VDD levels unless otherwise noted.
2. The base configuration of the MC68336/376 requires a 20.97 MHz crystal reference.
3. When an external clock is used, minimum high and low times are based on a 50% duty cycle. The minimum
allowable tXcyc period is reduced when the duty cycle of the external clock signal varies. The relationship between
external clock input duty cycle and minimum tXcyc is expressed:
Minimum tXcyc period = minimum tXCHL / (50% –external clock input duty cycle tolerance).
4. Parameters for an external clock signal applied while the internal PLL is disabled (MODCLK pin held low during
reset). Does not pertain to an external VCO reference applied while the PLL is enabled (MODCLK pin held high
during reset). When the PLL is enabled, the clock synthesizer detects successive transitions of the reference
signal. If transitions occur within the correct clock period, rise/fall times and duty cycle are not critical.
5. Address access time = (2.5 + WS) tcyc – tCHAV – tDICL
Chip select access time = (2 + WS) tcyc – tLSA – tDICL
Where: WS = number of wait states. When fast termination is used (2 clock bus) WS = –1.
Table A-6 AC Timing (Continued)
(VDD and VDDSYN = 5.0 Vdc ±5%, VSS = 0 Vdc, TA = TL to TH)1
Num Characteristic Symbol Min Max Unit
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-8
Figure A-1 CLKOUT Output Timing Diagram
Figure A-2 External Clock Input Timing Diagram
6. Specification 9A is the worst-case skew between AS and DS or CS. The amount of skew depends on the relative
loading of these signals. When loads are kept within specified limits, skew will not cause AS and DS to fall outside
the limits shown in specification 9.
7. If multiple chip selects are used, CS width negated (specification 15) applies to the time from the negation of a
heavily loaded chip select to the assertion of a lightly loaded chip select. The CS width negated specification
between multiple chip selects does not apply to chip selects being used for synchronous ECLK cycles.
8. Hold times are specified with respect to DS or CS on asynchronous reads and with respect to CLKOUT on fast
cycle reads. The user is free to use either hold time.
9. Maximum value is equal to (tcyc / 2) + 25 ns.
10. If the asynchronous setup time (specification 47A) requirements are satisfied, the DSACK[1:0] low to data setup
time (specification 31) and DSACK[1:0] low to BERR low setup time (specification 48) can be ignored. The data
must only satisfy the data-in to clock low setup time (specification 27) for the following clock cycle. BERR must
satisfy only the late BERR low to clock low setup time (specification 27A) for the following clock cycle.
11. To ensure coherency during every operand transfer, BG will not be asserted in response to BR until after all cycles
of the current operand transfer are complete and RMC is negated.
12. In the absence of DSACK[1:0], BERR is an asynchronous input using the asynchronous setup time (specification
47A).
13. After external RESET negation is detected, a short transition period (approximately 2 t
cyc) elapses, then the SIM
drives RESET low for 512 tcyc.
14. External assertion of the RESET input can overlap internally-generated resets. To insure that an external
reset is recognized in all cases, RESET must be asserted for at least 590 CLKOUT cycles.
15. External logic must pull RESET high during this period in order for normal MCU operation to begin.
68300 CLKOUT TI
M
4
CLKOUT
5
23
1
68300 EXT CLK INPUT
T
4B
EXTAL
5B
2B 3B
1B
NOTE: TIMING SHOWN WITH RESPECT TO 20% AND 70% VDD.
PULSE WIDTH SHOWN WITH RESPECT TO 50% VDD.
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-9
Figure A-3 ECLK Output Timing Diagram
68300 ECLK OUTPUT TI
4A
ECLK
5A
2A 3A
1A
NOTE: TIMING SHOWN WITH RESPECT TO 20% AND 70% VDD.
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-10
Figure A-4 Read Cycle Timing Diagram
68300 RD CYC TI
M
CLKOUT
S0 S1 S2 S3 S4 S5
48
27A
27
28
29
47A
21
9A
11
12
8
6
ADDR[23:20]
FC[2:0]
SIZ[1:0]
DS
CS
R/W
AS
DSACK0
DSACK1
DATA[15:0]
BERR
IFETCH
20
18
47B47A
ASYNCHRONOUS
INPUTS
HALT
12A12A
9C
BKPT
9
74
73
17
14 15
13
46
31
29A
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-11
Figure A-5 Write Cycle Timing Diagram
68300 WR CYC TI
M
CLKOUT
S0 S1 S2 S3 S4 S5
27A
28
25
20
9
11
12
8
6
ADDR[23:20]
FC[2:0]
SIZ[1:0]
DS
CS
R/W
AS
DSACK0
DSACK1
DATA[15:0]
BERR
HALT
BKPT
54
53
55
47A
2623
9
74
73
21
14
22 14A 17
46
13
15
48
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-12
Figure A-6 Fast Termination Read Cycle Timing Diagram
68300 FAST RD CYC TI
M
CLKOUT
S0 S1 S4 S5 S0
18
9
6
ADDR[23:0]
FC[2:0]
SIZ[1:0]
DS
CS
R/W
AS
DATA[15:0]
14B
8
BKPT
12
46A
30
27
73 29A
20
74
30A
29
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-13
Figure A-7 Fast Termination Write Cycle Timing Diagram
68300 FAST WR CYC TI
M
CLKOUT
S0 S1 S4 S5 S0
20
9
6
ADDR[23:0]
FC[2:0]
SIZ[1:0]
DS
CS
R/W
AS
DATA[15:0]
14B
8
BKPT
12
46A
23
73
24 18
25
74
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-14
Figure A-8 Bus Arbitration Timing Diagram — Active Bus Case
68300 BUS ARB TI
M
CLKOUT
S0 S1 S2 S3 S4
ADDR[23:0]
DATA[15:0]
7
S98A5A5A2
47A
39A
35
33
33
16
S5
AS
DS
R/W
DSACK0
DSACK1
BR
BG
BGACK
37
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-15
Figure A-9 Bus Arbitration Timing Diagram — Idle Bus Case
68300 BUS ARB TIM ID
L
CLKOUT
A0 A5
ADDR[23:0]
DATA[15:0]
A2 A3 A0A5
BR
AS
BG
BGACK
47A
33 33
47A
37
47A
35
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-16
Figure A-10 Show Cycle Timing Diagram
CLKOUT
S0 S41 S42 S0 S1 S2
6
ADDR[23:0]
R/W
AS
8
DS
72
DATA[15:0]
BKPT
71
70
12915
73
18
20
SHOW CYCLE START OF EXTERNAL CYCLE
74
S43
68300 SHW CYC TIM
NOTE:
Show cycles can stretch during clock phase S42 when bus accesses take longer than two cycles
due to IMB module wait-state insertion.
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-17
Figure A-11 Chip-Select Timing Diagram
Figure A-12 Reset and Mode Select Timing Diagram
68300 CHIP SEL TI
M
66 8
11 11
25
53
54
23
55
29A
29
27
46
46
14A
12
13
15
99
12
14
9
18 20 18
S0 S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5
14
CLKOUT
ADDR[23:0]
FC[2:0]
SIZ[1:0]
AS
DS
CS
R/W
DATA[15:0]
21 21
17 17
68300 RST/MODE SEL
T
RESET
D
ATA[15:0]
75
76
77 78
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-18
Figure A-13 Background Debugging Mode Timing — Serial Communication
Figure A-14 Background Debugging Mode Timing — Freeze Assertion
Table A-7 Background Debug Mode Timing
(VDD = 5.0 Vdc ±5%, VSS = 0 Vdc, TA = TL to TH)1
NOTES:
1. All AC timing is shown with respect to 20% V
DD and 70% VDD levels unless otherwise noted.
Num Characteristic Symbol Min Max Unit
B0 DSI Input Setup Time tDSISU 15 ns
B1 DSI Input Hold Time tDSIH 10 ns
B2 DSCLK Setup Time tDSCSU 15 ns
B3 DSCLK Hold Time tDSCH 10 ns
B4 DSO Delay Time tDSOD —25ns
B5 DSCLK Cycle Time tDSCCYC 2 — tcyc
B6 CLKOUT Low to FREEZE Asserted/Negated tFRZAN —50ns
B7 CLKOUT High to IFETCH High Impedance tIPZ —TBDns
B8 CLKOUT High to IFETCH Valid tIP —TBDns
B9 DSCLK Low Time tDSCLO 1—t
cyc
68300 BKGD DBM SER COM
T
B1
B3
B2
B0
B4
CLKOUT
FREEZE
BKPT/DSCLK
IFETCH/DSI
IPIPE/DSO
B5
B9
68300 BDM FRZ TIM
B8
CLKOUT
FREEZE
IFETCH/DSI
B6
B6
B7
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-19
Table A-8 ECLK Bus Timing
(VDD = 5.0 Vdc ±5%, VSS = 0 Vdc, TA = TL to TH)1
NOTES:
1. All AC timing is shown with respect to 20% VDD and 70% VDD levels unless otherwise noted.
Num Characteristic Symbol Min Max Unit
E1 ECLK Low to Address Valid2
2. When the previous bus cycle is not an ECLK cycle, the address may be valid before ECLK goes low.
tEAD —48 ns
E2 ECLK Low to Address Hold tEAH 10 ns
E3 ECLK Low to CS Valid (CS delay) tECSD 120 ns
E4 ECLK Low to CS Hold tECSH 10 ns
E5 CS Negated Width tECSN 25 ns
E6 Read Data Setup Time tEDSR 25 ns
E7 Read Data Hold Time tEDHR 5—ns
E8 ECLK Low to Data High Impedance tEDHZ —48 ns
E9 CS Negated to Data Hold (Read) tECDH 0—ns
E10 CS Negated to Data High Impedance tECDZ —1t
cyc
E11 ECLK Low to Data Valid (Write) tEDDW —2t
cyc
E12 ECLK Low to Data Hold (Write) tEDHW 10 ns
E13 Address Access Time (Read)3
3. Address access time = tEcyc – tEAD – tEDSR.
tEACC 308 ns
E14 Chip Select Access Time (Read)4
4. Chip select access time = tEcyc – tECSD – tEDSR.
tEACS 236 ns
E15 Address Setup Time tEAS 1/2 tcyc
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-20
Figure A-15 ECLK Timing Diagram
68300 E CYCLE TIM
CLKOUT
ADDR[23:0]
CS
ECLK
DATA[15:0]
E1
2A 3A
E2
E5
E4
E3
E9
E7
E8
E10
E12
E14
E13
1A
DATA[15:0]
E15
E11
WRITEREAD
WRITE
E6
R/W
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-21
Table A-9 QSPI Timing
(VDD and VDDSYN = 5.0 Vdc ± 5%, VSS = 0 Vdc, TA = TL to TH 200 pF load on all QSPI pins)1
NOTES:
1. All AC timing is shown with respect to 20% VDD and 70% VDD levels unless otherwise noted.
Num Function Symbol Min Max Unit
1
Operating Frequency
Master
Slave
fQSPI DC
DC
1/4
1/4
fsys
fsys
2 Cycle Time
Master
Slave
tqcyc 4
4
510
tcyc
tcyc
3 Enable Lead Time
Master
Slave
tlead 2
2
128
tcyc
tcyc
4 Enable Lag Time
Master
Slave
tlag
2
1/2
SCK
tcyc
5 Clock (SCK) High or Low Time
Master
Slave2
2. For high time, n = External SCK rise time; for low time, n = External SCK fall time.
tsw 2 tcyc – 60
2 tcyc – n
255 tcyc
ns
ns
6 Sequential Transfer Delay
Master
Slave (Does Not Require Deselect)
ttd 17
13
8192
tcyc
tcyc
7 Data Setup Time (Inputs)
Master
Slave
tsu 30
20
ns
ns
8 Data Hold Time (Inputs)
Master
Slave
thi 0
20
ns
ns
9 Slave Access Time ta—1 t
cyc
10 Slave MISO Disable Time tdis —2 t
cyc
11 Data Valid (after SCK Edge)
Master
Slave
tv
50
50
ns
ns
12 Data Hold Time (Outputs)
Master
Slave
tho 0
0
ns
ns
13 Rise Time
Input
Output
tri
tro
2
30
µs
ns
14 Fall Time
Input
Output
tfi
tfo
2
30
µs
ns
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-22
Figure A-16 QSPI Timing — Master, CPHA = 0
Figure A-17 QSPI Timing — Master, CPHA = 1
QSPI MAST CPHA0
13
11
6
10
12
4
4
13
12
3 2
5
1
DATA LSB IN MSB IN
MSB OUT
MSB IN
MSB OUT DATA LSB OUT PORT DATA
7
1213
PCS[3:0]
OUTPUT
PD
MISO
INPUT
MOSI
OUTPUT
SCK
CPOL=0
OUTPUT
SCK
CPOL=1
OUTPUT
QSPI MAST CPHA1
13
11 10
12
4
4
13
12
3 2
5
1
MSB
PCS[3:0]
OUTPUT
MISO
INPUT
MSBMSB OUT DATA LSB OUT PORT DATA
12
13
PORT DATA
MOSI
OUTPUT
DATA LSB IN
MSB IN
7
6
1
SCK
CPOL=0
OUTPUT
SCK
CPOL=1
OUTPUT
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-23
Figure A-18 QSPI Timing — Slave, CPHA = 0
Figure A-19 QSPI Timing — Slave, CPHA = 1
13
10
13
7
6
811 9
11
12
4
13
12
3 2
5
1
DATA LSB OUT PD MSB OUT
MSB IN
MSB OUT
MSB IN DATA LSB IN
SS
INPUT
SCK
CPOL=0
INPUT
SCK
CPOL=1
INPUT
MISO
OUTPUT
MOSI
INPUT
4
QSPI SLV CPHA0
QSPI SLV CPHA1
SS
INPUT
13
12
4
12
5
11
12
6
10 9
8
DATA SLAVE
LSB OUT PDMSB OUT
MSB IN DATA LSB IN
7
4
1
2
10
PD
13
3
MISO
OUTPUT
SCK
CPOL=1
INPUT
MOSI
INPUT
SCK
CPOL=0
INPUT
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-24
Figure A-20 TPU Timing Diagram
Table A-10 Time Processor Unit Timing
(VDD and VDDSYN = 5.0 Vdc ± 5%, VSS = 0 Vdc, TA = TL to TH, fsys = 20.97 MHz)1, 2
NOTES:
1. AC timing is shown with respect to 20% V
DD and 70% VDD levels.
2. Timing not valid for external T2CLK input.
Num Rating Symbol Min Max Unit
1CLKOUT High to TPU Output Channel Valid3, 4
3. Maximum load capacitance for CLKOUT pin is 90 pF.
4. Maximum load capacitance for TPU output pins is 100 pF.
tCHTOV 218ns
2 CLKOUT High to TPU Output Channel Hold tCHTOH 015ns
3 TPU Input Channel Pulse Width tTIPW 4—t
cyc
TPU I/O TIM
CLKOUT
TPU OUTPUT
TPU INPUT
2
1
3
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-25
Table A-11 QADC Maximum Ratings
Num Parameter Symbol Min Max Unit
1Analog Supply, with reference to VSSA VDDA – 0.3 6.5 V
2Internal Digital Supply, with reference to VSSI VDDI – 0.3 6.5 V
3Reference Supply, with reference to VRL VRH – 0.3 6.5 V
4VSS Differential Voltage VSSI – VSSA – 0.1 0.1 V
5VDD Differential Voltage VDDI – VDDA – 6.5 6.5 V
6VREF Differential Voltage VRH – VRL – 6.5 6.5 V
7VRH to VDDA Differential Voltage VRH – VDDA – 6.5 6.5 V
8VRL to VSSA Differential Voltage VRL – VSSA – 6.5 6.5 V
9
Disruptive Input Current1, 2, 3, 4, 5, 6, 7
VNEGCLAMP = – 0.3 V
VPOSCLAMP = 8 V
NOTES:
1. Below disruptive current conditions, the channel being stressed has conversion values of $3FF for analog inputs
greater than VRH and $000 for values less than VRL. This assumes that VRH VDDA and VRL VSSA due to the
presence of the sample amplifier. Other channels are not affected by non-disruptive conditions.
2. Input signals with large slew rates or high frequency noise components cannot be converted accurately. These
signals also affect the conversion accuracy of other channels.
3. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions
within the limit do not affect device reliability or cause permanent damage.
4. Input must be current limited to the value specified. To determine the value of the required current-limiting re-
sistor, calculate resistance values using positive and negative clamp values, then use the larger of the calculated
values.
5. This parameter is periodically sampled rather 100% tested.
6. Condition applies to one pin at a time.
7. Determination of actual maximum disruptive input current, which can affect operation, is related to external sys-
tem component values.
INA – 500 500 µA
10
Positive Overvoltage Current Coupling Ratio1, 5, 6, 8
PQA
PQB
8. Current coupling is the ratio of the current induced from overvoltage (positive or negative, through an external
series coupling resistor), divided by the current induced on adjacent pins. A voltage drop may occur across the
external source impedances of the adjacent pins, impacting conversions on these adjacent pins.
KP2000
2000
——
11
Negative Overvoltage Current Coupling Ratio1, 5, 6, 8
PQA
PQB
KN125
500
——
12
Maximum Input Current3, 4, 6
VNEGCLAMP = – 0.3 V
VPOSCLAMP = 8 V
IMA 25 25 mA
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-26
Table A-12 QADC DC Electrical Characteristics (Operating)
(VSSI and VSSA = 0Vdc, fQCLK = 2.1 MHz, TA = TL to TH)
Num Parameter Symbol Min Max Unit
1Analog Supply1
NOTES:
1. Refers to operation over full temperature and frequency range.
VDDA 4.5 5.5 V
2Internal Digital Supply1VDDI 4.5 5.5 V
3VSS Differential Voltage VSSI VSSA – 1.0 1.0 mV
4VDD Differential Voltage VDDI – VDDA – 1.0 1.0 V
5Reference Voltage Low2
2. To obtain full-scale, full-range results, VSSA VRL VINDC VRH VDDA.
VRL VSSA —V
6Reference Voltage High2VRH —V
DDA V
7VREF Differential Voltage3
3. Accuracy tested and guaranteed at VRH – VRL = 5.0V ± 10%.
VRH – VRL 4.5 5.5 V
8 Mid-Analog Supply Voltage VDDA/2 2.25 2.75 V
9 Input Voltage VINDC VSSA VDDA V
10 Input High Voltage, PQA and PQB VIH 0.7 (VDDA)V
DDA + 0.3 V
11 Input Low Voltage, PQA and PQB VIL VSSA – 0.3 0.2 (VDDA)V
12 Input Hysteresis4
4. Parameter applies to the following pins:
Port A: PQA[7:0]/AN[59:58]/ETRIG[2:1]
Port B: PQB[7:0]/AN[3:0]/AN[51:48]/AN[Z:W]
VHYS 0.5 V
13
Output Low Voltage, PQA5
IOL = 5.3 mA
IOL = 10.0 µA
5. Open drain only.
VOL
0.4
0.2
V
14
Analog Supply Current
Normal Operation6
Low-Power Stop
6. Current measured at maximum system clock frequency with QADC active.
IDDA
1.0
10.0
mA
µA
15 Reference Supply Current IREF 150 µA
16 Load Capacitance, PQA CL—90pF
17
Input Current, Channel Off7
PQA
PQB
7. Maximum leakage occurs at maximum operating temperature. Current decreases by approximately one-half
for each 10° C decrease from maximum temperature.
IOFF
250
150
nA
18
Total Input Capacitance8
PQA Not Sampling
PQA Sampling
PQB Not Sampling
PQB Sampling
8. This parameter is periodically sampled rather than 100% tested.
CIN
15
20
10
15
pF
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-27
Table A-13 QADC AC Electrical Characteristics (Operating)
(VDDI and VDDA = 5.0 Vdc ± 5%, VSSI and VSSA = 0Vdc, TA = TL to TH)
Num Parameter Symbol Min Max Unit
1QADC Clock (QCLK) Frequency1
NOTES:
1. Conversion characteristics vary with fQCLK rate. Reduced conversion accuracy occurs at max fQCLK rate.
fQCLK 0.5 2.1 MHz
2QADC Clock Duty Cycle2, 3
High Phase Time (tPSL tPSH)
2. Duty cycle must be as close as possible to 75% to achieve optimum performance.
3. Minimum applies to 1.0 MHz operation.
tPSH 500 ns
3Conversion Cycles4
4. Assumes that short input sample time has been selected (IST = 0).
CC 18 32 QCLK cycles
4
Conversion Time2,4,5
fQCLK = 0.999 MHz6
Min = CCW/IST = %00
Max = CCW/IST = %11
fQCLK = 2.097 MHz1, 7
Min = CCW/IST = %00
Max = CCW/IST = %11
5. Assumes that fsys = 20.97 MHz.
6. Assumes fQCLK = 0.999 MHz, with clock prescaler values of:
QACR0: PSH = %01111, PSA = %1, PSL = 100)
CCW: BYP = %0
7. Assumes fQCLK = 2.097 MHz, with clock prescaler values of:
QACR0: PSH = %00110, PSA = %1, PSL = 010)
CCW: BYP = %0
tCONV
18.0
8.58
32
15.24
µs
5 Stop Mode Recovery Time tSR —10 µs
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-28
Table A-14 QADC Conversion Characteristics (Operating)
(VDDI and VDDA = 5.0 Vdc ± 5%, VSSI and VSSA = 0 Vdc, TA = TL to TH,
0.5 MHz fQCLK 2.1 MHz, 2 clock input sample time)
Num Parameter Symbol Min Typ Max Unit
1Resolution1
NOTES:
1. At VRH – VRL = 5.12 V, one count = 5 mV.
1 Count 5 mV
2Differential nonlinearity2
2. This parameter is periodically sampled rather than 100% tested.
DNL ± 0.5 Counts
3Integral nonlinearity INL ± 2.0 Counts
4Absolute error2, 3, 4
fQCLK = 0.999 MHz5
PQA
PQB
fQCLK = 2.097 MHz6
PQA
PQB
3. Absolute error includes 1/2 count (2.5 mV) of inherent quantization error and circuit (differential, integral, and
offset) error. Specification assumes that adequate low-pass filtering is present on analog input pins — capacitive
filter with 0.01 µF to 0.1 µF capacitor between analog input and analog ground, typical source isolation
impedance of 20 k.
4. Assumes fsys = 20.97 MHz.
5. Assumes clock prescaler values of:
QACR0: PSH = %01111, PSA = %1, PSL = 100)
CCW: BYP = %0
6. Assumes clock prescaler values of:
QACR0: PSH = %00110, PSA = %1, PSL = 010)
CCW: BYP = %0
AE
± 2.5
± 2.5
± 4.0
± 4.0
Counts
5Source impedance at input7
7. Maximum source impedance is application-dependent. Error resulting from pin leakage depends on junction
leakage into the pin and on leakage due to charge-sharing with internal capacitance.
Error from junction leakage is a function of external source impedance and input leakage current. In the following
expression, expected error in result value due to junction leakage is expressed in voltage (V
errj):
Verrj = RS X IOFF
where IOFF is a function of operating temperature. Refer to Table A-12.
Charge-sharing leakage is a function of input source impedance, conversion rate, change in voltage between
successive conversions, and the size of the decoupling capacitor used. Error levels are best determined
empirically. In general, continuous conversion of the same channel may not be compatible with high source
impedance.
RS—20—k¾
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-29
Table A-15 FCSM Timing Characteristics
(VDD = 5.0 Vdc ± 5%, Vss = 0 Vdc, TA = TL to TH)
Num Parameter Symbol Min Max Unit
1Input pin frequency1
NOTES:
1. Value applies when using external clock.
fPCNTR 0f
sys/4 MHz
2Input pin low time1tPINL 2.0/fsys µs
3Input pin high time1tPINH 2.0/fsys µs
4 Clock pin to counter increment tPINC 4.5/fsys 6.5/fsys µs
5 Clock pin to new TBB value tPTBB 5.0/fsys 7.0/fsys µs
6 Clock pin to COF set ($FFFF) tPCOF 4.5/fsys 6.5/fsys µs
7 Pin to IN bit delay tPINB 1.5/fsys 2.5/fsys µs
8 Flag to IMB interrupt request tFIRQ 1.0/fsys 1.0/fsys µs
9Counter resolution2
2. Value applies when using internal clock. Minimum counter resolution depends on prescaler divide ra-
tio selection.
tCRES 2.0/fsys µs
Table A-16 MCSM Timing Characteristics
(VDD = 5.0 Vdc ± 5%, VSS = 0Vdc, TA = TL to TH)
Num Parameter Symbol Min Max Unit
1Input pin frequency1
NOTES:
1. Value applies when using external clock.
fPCNTR 0f
sys/4 MHz
2Input pin low time1tPINL 2.0/fsys µs
3Input pin high time1tPINH 2.0/fsys µs
4 Clock pin to counter increment tPINC 4.5/fsys 6.5/fsys µs
5 Clock pin to new TBB value tPTBB 5.0/fsys 7.0/fsys µs
6 Clock pin to COF set ($FFFF) tPCOF 4.5/fsys 6.5/fsys µs
7 Load pin to new counter value tPLOAD 2.5/fsys 3.5/fsys µs
8 Pin to IN bit delay tPINB 1.5/fsys 2.5/fsys µs
9 Flag to IMB interrupt request tFIRQ 1.0/fsys 1.0/fsys µs
10 Counter resolution2
2. Value applies when using internal clock. Minimum counter resolution depends on prescaler divide ra-
tio selection.
tCRES 2.0/fsys µs
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-30
Table A-17 SASM Timing Characteristics
(VDD = 5.0 Vdc ± 5%, VSS = 0Vdc, TA = TL to TH)
Num Parameter Symbol Min Max Unit
1 Input pin low time tPINL 2.0/fsys µs
2 Input pin high time tPINH 2.0/fsys µs
3Input capture resolution1
NOTES:
1. Minimum resolution depends on counter and prescaler divide ratio selection.
tRESCA 2.0/fsys µs
4 Pin to input capture delay tPCAPT 2.5/fsys 4.5/fsys µs
5Pin to FLAG set t
PFLAG 2.5/fsys 4.5/fsys µs
6 Pin to IN bit delay tPINB 1.5/fsys 2.5/fsys µs
7 OCT output pulse tOCT 2.0/fsys µs
8Compare resolution1tRESCM 2.0/fsys µs
9 TBB change to FLAG set tCFLAG 1.5/fsys 1.5/fsys µs
10 TBB change to pin change2
2. Time given from when new value is stable on time base bus.
tCPIN 1.5/fsys 1.5/fsys µs
11 FLAG to IMB interrupt request
2tFIRQ 1.0/fsys 1.0/fsys µs
Table A-18 DASM Timing Characteristics
(VDD = 5.0 Vdc ± 5%, VSS = 0 Vdc, TA = TL to TH)
Num Parameter Symbol Min Max Unit
1 Input pin low time tPINL 2.0/fsys µs
2 Input pin high time tPINH 2.0/fsys µs
3Input capture resolution1
NOTES:
1. Minimum resolution depends on counter and prescaler divide ratio selection.
tRESCA 2.0/fsys µs
4 Pin to input capture delay tPCAPT 2.5/fsys 4.5/fsys µs
5Pin to FLAG set t
PFLAG 2.5/fsys 4.5/fsys µs
6 Pin to IN bit delay tPINB 1.5/fsys 2.5/fsys µs
7 OCT output pulse tOCT 2.0/fsys µs
8Compare resolution1tRESCM 2.0/fsys µs
9 TBB change to FLAG set tCFLAG 1.5/fsys 1.5/fsys µs
10 TBB change to pin change2
2. Time given from when new value is stable on time base bus.
tCPIN 1.5/fsys 1.5/fsys µs
11 FLAG to IMB interrupt request
2tFIRQ 1.0/fsys 1.0/fsys µs
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-31
Table A-19 PWMSM Timing Characteristics
(VDD = 5.0Vdc ± 5%, VSS = 0 Vdc, TA = TL to TH)
Num Parameter Symbol Min Max Unit
1PWMSM output resolution1
NOTES:
1. Minimum output resolution depends on counter and prescaler divide ratio selection.
tPWMR ——µs
2PWMSM output pulse2
2. Excluding the case where the output is always zero.
tPWMO 2.0/fsys µs
3PWMSM output pulse3
3. Excluding the case where the output is always zero.
tPWMO 2.0/fsys 2.0/fsys µs
4
CPSM enable to output set
PWMSM enabled before CPSM , DIV23 = 0
PWMSM enabled before CPSM , DIV23 = 1
tPWMP 3.5/fsys
6.5/fsys
µs
5
PWM enable to output set
PWMSM enabled before CPSM , DIV23 = 0
PWMSM enabled before CPSM , DIV23 = 1
tPWME 3.5/fsys
5.5/fsys
4.5/fsys
6.5/fsys
µs
6 FLAG to IMB interrupt request tFIRQ 1.5/fsys 2.5/fsys µs
MC68336/376 ELECTRICAL CHARACTERISTICS MOTOROLA
USER’S MANUAL Rev. 15 Oct 2000 A-32