HCS12
Microcontrollers
freescale.com
MC9S12K Family
Device User Guide
Covers MC9S12KT256, MC9S12KG256,
MC9S12KG128, MC9S12KL128, MC9S12KC128,
MC9S12KG64, MC9S12KL64, MC9S12KC64
and MC9S12KG32
9S12KT256DGV1/D
V01.09
9 SEP 2004
Device User Guide — 9S12KT256DGV1/D V01.09
2Freescale Semiconductor
Revision History
Version
Number Revision
Date Author Description of Changes
01.00 16 JUL 02 Original Version.
01.01 22 NOV 02 Change load cap value on VDD and VDDPLL.
Correct expanded bus timing from 20MHz to 25 MHz.
01.02 15 JAN 03 Move ATD interrupt vector from $ffd0 to $ffd2.
Change PWeh and tDSW parameter in external bus timing.
01.03 13 JUN 03 Expand to a K-Family SoC Guide and include 9S12KT256.
01.04 18 JUN 03 Replace 16-channel ATD with two 8-channel ATDs for 9S12KT256.
01.05 14 NOV 03
Changed to a Device User Guide and added Document number.
Updated Table A-17 Oscillator Characteristics.
Replaced XCLKS with PE7 for Clock Selection diagrams.
Added CTRL to Table 2-1 Signal Properties.
Replaced Burst programming with Row Programming in NVM
electricals.
Changed Digital logic to Internal Logic.
Added LRAE bootloader information.
Changed PWEL, PWEH, tDSW, tACCE, tNAD, tNAV, tRWV, tLSV, tNOV,
tP0V and tP1V in the external bus timing.
Added voltage regulator characteristics.
01.06 10 FEB 04 Updated Table A-7 3.3V I/O Characteristics.
01.07 13 MAY 04 Updated Table A-16 NVM Timing Characteristics.
Corrected A.6.1.2 Row Programming time tbwpgm equation
01.08 20 JUL 04 Expanded K-f amily to include 9S12KC128, 9S12KC64, 9S12KL128
and 9S12KL64.
01.09 9 SEP 04 Updated osciilator start up time and supply current characteristics.
Added ATDCTL0 and ATDCTL1 register bits to Sec 1.7.
Device User Guide — 9S12KT256DGV1/D V01.09
3
Freescale Semiconductor
Table of Contents
Section 1 Introduction
1.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 MC9S12KG(L)(C)128(64)(32) Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 MC9S12KT(G)256 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.7 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.8 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Section 2 Signal Description
2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.3 TEST — Test Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.4 VREGEN — Voltage Regulator Enable Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.5 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . 61
2.3.7 PAD[15:8] / AN[15:8] — Port AD Input Pins [15:8]. . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.8 PAD[7:0] / AN[7:0] — Port AD Input Pins [7:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.9 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . 61
2.3.10 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . 62
2.3.11 PE7 / NOACC / XCLKS — Port E I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.12 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.13 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.14 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.15 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.16 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.17 PE1 / IRQ — Port E Input Pin 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.18 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.19 PH7 / KWH7 / SS2 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Device User Guide — 9S12KT256DGV1/D V01.09
4Freescale Semiconductor
2.3.20 PH6 / KWH6 / SCK2 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.21 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.22 PH4 / KWH4 / MISO2 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.23 PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.24 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.25 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.26 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.27 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.28 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . 65
2.3.29 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.30 PK7 / ECS / ROMCTL — Port K I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.31 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.32 PM7 / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.33 PM6 / RXCAN4 — Port M I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.34 PM5 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . 66
2.3.35 PM4 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . 66
2.3.36 PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . 67
2.3.37 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2. . . . . . . . . . . . . . . . . . . 67
2.3.38 PM1 / TXCAN0 — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.39 PM0 / RXCAN0 — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.40 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.41 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.42 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.43 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.44 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3. . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.45 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.46 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.47 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.48 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.49 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.50 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.51 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.52 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.53 PS2 / RXD1 — Port S I/O Pin 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.54 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.55 PS0 / RXD0 — Port S I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Device User Guide — 9S12KT256DGV1/D V01.09
5
Freescale Semiconductor
2.3.56 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.1 VDDX,VSSX — Power Supply Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . . . 70
2.4.2 VDDR, VSSR — Power Supply Pins for I/O Drivers & for Internal Voltage Regulator
70
2.4.3 VDD1, VDD2, VSS1, VSS2 — Power Supply Pins for Internal Logic . . . . . . . . . 70
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . 70
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL. . . . . . . . . . . . . . . . . . . . . . . . 70
Section 3 System Clock Description
Section 4 Modes of Operation
4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
4.3.1 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.3 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.4 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Section 5 Resets and Interrupts
5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Section 6 HCS12 Core Block Description
6.1 CPU12 Block Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 HCS12 Background Debug Module (BDM) Block Description. . . . . . . . . . . . . . . . . 78
6.3 HCS12 Debug (DBG) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 HCS12 Interrupt (INT) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Device User Guide — 9S12KT256DGV1/D V01.09
6Freescale Semiconductor
6.5 HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . 79
6.6 HCS12 Module Mapping Control (MMC) Block Description. . . . . . . . . . . . . . . . . . . 79
Section 7 Analog to Digital Converter (ATD) Block Description
Section 8 Clock Reset Generator (CRG) Block Description
8.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Section 9 EEPROM Block Description
Section 10 Flash EEPROM Block Description
Section 11 IIC Block Description
Section 12 MSCAN Block Description
Section 13 OSC Block Description
Section 14 Port Integration Module (PIM) Block Description
Section 15 Pulse Width Modulator (PWM) Block Description
Section 16 Serial Communications Interface (SCI) Block Description
Section 17 Serial Peripheral Interface (SPI) Block Description
Section 18 Timer (TIM) Block Description
Section 19 Voltage Regulator (VREG) Block Description
19.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
19.1.1 VDD1, VDD2, VSS1, VSS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.2 Power Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Device User Guide — 9S12KT256DGV1/D V01.09
7
Freescale Semiconductor
A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.6 ESD Protection and Latch-up Immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Voltage Regulator (VREG_3V3) Operating Characteristics. . . . . . . . . . . . . . . . . . . 94
A.3 Chip Power-up and LVI/LVR graphical explanation . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.4 Output Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.4.1 Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.4.2 Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.5 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.5.1 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.5.2 Factors influencing accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.5.3 ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.6 NVM, Flash and EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.6.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.6.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.7 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.7.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.7.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.7.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.8 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.9 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.9.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.9.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.10 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.10.1 General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Appendix B Package Information
B.1 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.2 100-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.3 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Device User Guide — 9S12KT256DGV1/D V01.09
8Freescale Semiconductor
Device User Guide — 9S12KT256DGV1/D V01.09
9
Freescale Semiconductor
List of Figures
Figure 0-1 Order Part number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 1-1 MC9S12KG(L)(C)128(64)(32) Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 1-2 MC9S12KT(G)256 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 1-3 MC9S12KT256 and MC9S12KG256 Memory Map. . . . . . . . . . . . . . . . . . . . 23
Figure 1-4 MC9S12KG128, MC9S12KL128 and MC9S12KC128 Memory Map . . . . . . 24
Figure 1-5 MC9S12KG64, MC9S12KL64 and MC9S12KC64 Memory Map . . . . . . . . . 25
Figure 1-6 MC9S12KG32 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 2-1 Pin assignments for 112 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 2-2 Pin assignments for 100 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 2-3 Pin assignments for 80 QFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 2-4 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 2-5 Loop Controlled Pierce Oscillator Connections (PE7=1). . . . . . . . . . . . . . . . 62
Figure 2-6 Full Swing Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . 63
Figure 2-7 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure A-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled) . . . . . 95
Figure A-2 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure A-3 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure A-4 Jitter Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure A-5 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure A-6 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure A-7 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure A-8 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure A-9 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure B-1 80-pin QFP Mechanical Dimensions (case no. 841B). . . . . . . . . . . . . . . . 122
Figure B-2 100-pin LQFP Mechanical Dimensions (case no. 983) . . . . . . . . . . . . . . . 123
Figure B-3 112-pin LQFP Mechanical Dimensions (case no. 987) . . . . . . . . . . . . . . . 124
Device User Guide — 9S12KT256DGV1/D V01.09
10 Freescale Semiconductor
Device User Guide — 9S12KT256DGV1/D V01.09
11
Freescale Semiconductor
List of Tables
Table 0-1 List of MC9S12K-Family members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 0-2 Document References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 1-1 MC9S12KT(G)256 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 1-2 MC9S12KG(L)(C)128(64)(32) Device Memory Map . . . . . . . . . . . . . . . . . . . . 22
Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . 43
Table 1-4 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 1-5 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 2-2 Power and Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 2-3 Clock selection based on PE7 during reset. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 5-2 Reset Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table A-1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-3 ESD and Latch-Up Protection Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 86
Table A-4 Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table A-7 3.3V I/O Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table A-8 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table A-9 VREG_3V3 - Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table A-10 Voltage Regulator - Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table A-11 5V ATD Operating Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table A-12 3.3V ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table A-13 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table A-14 5V ATD Conversion Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table A-15 3.3V ATD Conversion Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table A-16 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table A-17 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table A-18 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Device User Guide — 9S12KT256DGV1/D V01.09
12 Freescale Semiconductor
Table A-19 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table A-20 PLL Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table A-21 MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table A-22 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table A-23 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table A-24 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Device User Guide — 9S12KT256DGV1/D V01.09
13
Freescale Semiconductor
Preface
The Device User Guide provides information about the MC9S12K-Family devices made up of standard
HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A
complete set of device manuals also includes all the individual Block Guides of the implemented modules.
In a effort to reduce redundancy all module specific information is located only in the respective Block
Guide. If applicable, special implementation details of the module are given in the block description
sections of this document.
Table 0-1 shows a feature overview of the MC9S12K-Family members.
Table 0-1 List of MC9S12K-Family members
Flash RAM EEPROM Device Temp Options1
NOTES:
1. C: TA = 85˚C, f = 25MHz. V: TA=105˚C, f = 25MHz. M: TA= 125˚C, f = 25MHz
Package CAN SCI SPI IIC A/D2
2. Number of channels
PWM2TIM2I/O3
3. I/O is the sum of ports capable to act as digital input or output.
256K 12K 4K MC9S12KT256 C, V, M 112 LQFP 3 2 3 1 16 8 8 91
256K 12K 4K MC9S12KG256 C, V, M 112 LQFP 2 2 3 1 16 8 8 91
80 QFP 2 2 3 1 8 7 8 59
128K 8K 2K MC9S12KG128 C, V, M 112 LQFP 2 2 3 1 16 8 8 91
100 LQFP 2 2 2 1 13 7 8 79
80 QFP 2 2 2 1 8 7 8 59
64K 4K 1K MC9S12KG64 C, V, M 112 LQFP 2 2 2 1 16 8 8 91
80 QFP 2 2 2 1 8 7 8 59
32K 2K 1K MC9S12KG32 C, V, M 80 QFP 2 2 2 1 8 7 8 59
128K 6K 2K MC9S12KL128 C, V, M 112 LQFP 1 1 2 1 16 8 8 91
100 LQFP 1 1 2 1 13 7 8 79
80 QFP 1 1 2 1 8 7 8 59
64K 4K 1K MC9S12KL64 C, V, M 112 LQFP 1 1 2 1 16 8 8 91
80 QFP 1 1 2 1 8 7 8 59
128K 6K None MC9S12KC128 C, V, M 112 LQFP 1 1 2 1 16 8 8 91
100 LQFP 1 1 2 1 13 7 8 79
80 QFP 1 1 2 1 8 7 8 59
64K 4K None MC9S12KC64 C, V, M 112 LQFP 1 1 2 1 16 8 8 91
80 QFP 1 1 2 1 8 7 8 59
Device User Guide — 9S12KT256DGV1/D V01.09
14 Freescale Semiconductor
Figure 0-1 shows the part number coding based on the package and temperature options for the
MC9S12K-Family.
Figure 0-1 Order Part number Coding
Table 0-2 shows names and versions of the referenced documents throughout the Device User Guide.
Table 0-2 Document References
User Guide Version Document Order Number
CPU12 Reference Manual V02 S12CPUV2/D
HCS12 Background Debug (BDM) Block Guide V04 S12BDMV4/D
HCS12 Debug (DBG) Block Guide V01 S12DBGV1/D
HCS12 Interrupt (INT) Block Guide V01 S12INTV1/D
HCS12 Multiplexed Expanded Bus Interface (MEBI) Block Guide V03 S12MEBIV3/D
HCS12 Module Mapping Control (MMC) Block Guide V04 S12MMCV4/D
Analog to Digital Converter: 10-Bit, 16 Channels (ATD_10B16C) Block Guide V03 S12ATD10B16CV3/D1
NOTES:
1. Block Guide for MC9S12K-Family except MC9S12KT256 and MC9S12KG256.
Analog to Digital Converter: 10-Bit, 8 Channels (ATD_10B8C) Block Guide V03 S12ATD10B8CV3/D2
2. Block Guide for MC9S12KT256 and MC9S12KG256 only.
Clock and Reset Generator (CRG) Block Guide V04 S12CRGV4/D
2K Byte EEPROM (EETS2K) Block Guide V01 S12EETS2KV1/D(1)
4K Byte EEPROM (EETS4K) Block Guide V02 S12EETS4KV2/D(2)
128K Byte Flash with Error Code Correction (FTS128K1ECC) Block Guide V01 FTS128K1ECCV1/D(1)
256K Byte Flash with Error Code Correction (FTS256K2ECC) Block Guide V01 FTS256K2ECCV1/D(2)
Inter IC Bus (IIC) Block Guide V02 S12IICV2/D
Motorola Scalable CAN (MSCAN) Block Guide V02 S12MSCANV2/D
Oscillator Loop Control Pierce (OSC_LCP) Block Guide V01 S12OSCLCPV1/D
Port Integration Module(1) (PIM_9KG128) Block Guide V01 S12KG128PIMV1/D
Port Integration Module(2) (PIM_9KT256) Block Guide V01 S12KT256PIMV1/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block Guide V01 S12PWM8B6CV1/D
Serial Communications Interface (SCI) Block Guide V02 S12SCIV2/D
Serial Peripheral Interface (SPI) Block Guide V03 S12SPIV3/D
Timer: 16-Bit, 8 Channels (TIM_16B8C) Block Guide V01 S12TIM16B8CV1/D
Voltage Regulator (VREG_3V3) Block Guide V01 S12VREG3V3V1/D
MC9S12 KT256 C FU
Package Option
Temperature Option
Device Title
Controller Family
Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C
Package Options
PV = 112LQFP
PU = 100LQFP
FU = 80QFP
Device User Guide — 9S12KT256DGV1/D V01.09
15
Freescale Semiconductor
Section 1 Introduction
1.1 Overview
The MC9S12K-Family is a 112/100/80 pin 16-bit Flash-based microcontroller family targeted for high
reliability systems. Members of the MC9S12K-Family have an increased performance in reliability over
the life of the product due to a built-in Error Checking and Correction Code (ECC) in the Flash memory.
The program and erase operations automatically generate six parity bits per word making ECC transparent
to the user.
All members of the MC9S12K-Family are comprised of standard on-chip peripherals including a 16-bit
central processing unit (CPU12), up to 256K bytes of Flash EEPROM, up to 4K bytes of EEPROM, up to
12K bytes of RAM, up to two asynchronous serial communications interface (SCI), up to three serial
peripheral interface (SPI), IIC-bus, an 8-channel IC/OC timer, 16-channel or two 8-channel 10-bit
analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), up to three CAN 2.0 A,
B software compatible modules, 29 discrete digital I/O channels (Port A, Port B, Port E and Port K), and
20 discrete digital I/O lines with interrupt and wakeup capability. The MC9S12K-Family has full 16-bit
data paths throughout, however, the external bus can operate in an 8-bit narrow mode so single 8-bit wide
memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power
consumption and performance to be adjusted to suit operational requirements.
1.2 Features
HCS12 Core
16-bit HCS12 CPU
i. Upward compatible with M68HC11 instruction set
ii. Interrupt stacking and programmer’s model identical to M68HC11
iii. Instruction queue
iv. Enhanced indexed addressing
MEBI (Multiplexed External Bus Interface)
MMC (Memory Map and Interface)
INT (Interrupt Controller)
DBG (Debugger)
BDM (Background Debug Mode)
Oscillator
4Mhz to 16Mhz frequency range
Pierce with amplitude loop control
Clock monitor
Device User Guide — 9S12KT256DGV1/D V01.09
16 Freescale Semiconductor
Clock and Reset Generator (CRG)
Phase-locked loop clock frequency multiplier
Self Clock mode in absence of external clock
COP watchdog
Real Time interrupt (RTI)
Memory
32K, 64K, 128K or 256K Byte Flash EEPROM
i. Internal program/erase voltage generation
ii. Security and Block Protect bits
iii. Hamming Error Correction Coding (ECC)
1K, 2K or 4K Byte EEPROM
2K, 4K, 6K, 8K or 12K Byte static RAM
Single-cycle misaligned word accesses without wait states
Analog-to-Digital Converter(s) (ADC)
One 16-channel module with 10-bit resolution except for MC9S12KT256 and MC9S12KG256
Two 8-channel module with 10-bit resolution for MC9S12KT256 and MC9S12KG256
External conversion trigger capability
8-channel Timer (TIM)
Programmable input capture or output compare channels
Simple PWM mode
Counter Modulo Reset
External Event Counting
Gated Time Accumulation
8-channel Pulse Width Modulator (PWM)
Programmable period and duty cycle per channel
8-bit 8-channel or 16-bit 4-channel
Edge and center aligned PWM signals
Emergency shutdown input
Two or Three 1M bit per second, CAN 2.0 A, B software compatible modules
Five receive and three transmit buffers
Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
Four separate interrupt channels for Rx, Tx, error and wake-up
Device User Guide — 9S12KT256DGV1/D V01.09
17
Freescale Semiconductor
Low-pass filter wake-up function
Loop-back for self test operation
Serial interfaces
Two asynchronous serial communication interface (SCI)
Three synchronous serial peripheral interface (SPI)
Inter-IC Bus (IIC)
Internal 2.5V Regulator
Input voltage range from 3.15V to 5.5V
Low power mode capability
Low Voltage Reset (LVR) and Low Voltage Interrupt (LVI)
20 key wake up inputs
Rising or falling edge triggered interrupt capability
Digital filter to prevent short pulses from triggering interrupts
Programmable pull ups and pull downs
Operating frequency for ambient temperatures (TA -40°C to 125°C)
50MHz equivalent to 25MHz Bus Speed
112-Pin LQFP, 100-Pin LQFP, or 80-Pin QFP package
I/O lines with 3.3V/5V input and drive capability
3.3V/5V A/D converter inputs
1.3 Modes of Operation
Normal modes
Normal Single-Chip Mode
Normal Expanded Wide Mode
Normal Expanded Narrow Mode
Emulation Expanded Wide Mode
Emulation Expanded Narrow Mode
Special Operating Modes
Special Single-Chip Mode with active Background Debug Mode
Special Test Mode (Motorola use only)
Special Peripheral Mode (Motorola use only)
Each of the above modes of operation can be configured for three Low power submodes
Device User Guide — 9S12KT256DGV1/D V01.09
18 Freescale Semiconductor
Stop Mode
Pseudo Stop Mode
Wait Mode
Secure operation, preventing the unauthorized read and write of the memory contents.
Device User Guide — 9S12KT256DGV1/D V01.09
19
Freescale Semiconductor
1.4 MC9S12KG(L)(C)128(64)(32) Block Diagram
Figure 1-1 MC9S12KG(L)(C)128(64)(32) Block Diagram
128K Byte Flash EEPROM
8K Byte RAM
RESET
EXTAL
XTAL
VDD1,2
VSS1,2
SCI0
BKGD
R/W
MODB
XIRQ
NOACC/XCLKS
System
Integration
Module
(SIM)
VDDR
CPU12
Periodic Interrupt
COP Watchdog
Clock Monitor
Single-wire BDM
Breakpoints
PLL
VSSPLL
XFC
VDDPLL
Multiplexed Address/Data Bus
ATD
Multiplexed
Wide Bus
Multiplexed
VDDX
VSSX
Internal Logic 2.5V
Narrow Bus
PPAGE
V
DDPLL
VSSPLL
OSC/PLL 2.5V
IRQ
LSTRB
ECLK
MODA
PA4
PA3
PA2
PA1
PA0
PA7
PA6
PA5
TEST
ADDR12
ADDR11
ADDR10
ADDR9
ADDR8
ADDR15
ADDR14
ADDR13
DATA12
DATA11
DATA10
DATA9
DATA8
DATA15
DATA14
DATA13
PB4
PB3
PB2
PB1
PB0
PB7
PB6
PB5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0
ADDR7
ADDR6
ADDR5
DATA4
DATA3
DATA2
DATA1
DATA0
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
DATA7
DATA6
DATA5
PE3
PE4
PE5
PE6
PE7
PE0
PE1
PE2
AN02
AN06
AN00
AN07
AN01
AN03
AN04
AN05
PAD03
PAD04
PAD05
PAD06
PAD07
PAD00
PAD01
PAD02
IOC2
IOC6
IOC0
IOC7
IOC1
IOC3
IOC4
IOC5
PT3
PT4
PT5
PT6
PT7
PT0
PT1
PT2
VRH
VRL
VDDA
VSSA
VRH
VRL
AN10
AN14
AN08
AN15
AN09
AN11
AN12
AN13
PAD11
PAD12
PAD13
PAD14
PAD15
PAD08
PAD09
PAD10
VDDA
VSSA
RXD
TXD
MISO
MOSI
PS3
PS4
PS5
PS0
PS1
PS2
SCI1 RXD
TXD
PWM2
PWM6
PWM0
PWM7
PWM1
PWM3
PWM4
PWM5
PP3
PP4
PP5
PP6
PP7
PP0
PP1
PP2
PIX2
PIX0
PIX1
PIX3
ECS
PK3
PK7
PK0
PK1
XADDR17
ECS
XADDR14
XADDR15
XADDR16
SCK
SS PS6
PS7
SPI0
IIC SDA
SCL PJ6
PJ7
CAN0 RxCAN
TxCAN PM1
PM0
PM2
PM3
PM4
PM5
PM6
PM7
KWH2
KWH6
KWH0
KWH7
KWH1
KWH3
KWH4
KWH5
PH3
PH4
PH5
PH6
PH7
PH0
PH1
PH2
KWJ0
KWJ1 PJ0
PJ1
I/O Driver 3.3V/5V
VDDA
VSSA
A/D Converter 3.3V/5V
DDRA DDRB
PTA PTB
DDRE
PTE
PAD
PAD
PTK
DDRK
PTT
DDRT
PTP
DDRP
PTS
DDRS
PTM
DDRM
PTH
DDRH
PTJ
DDRJ
PK2
CRG
Voltage Regulator
VSSR
VDD1,2
VSS1,2
VREGEN
VDDR
VSSR
Voltage Regulator 3.3V/5V
PIX4
PIX5 PK4
PK5 XADDR18
XADDR19
Voltage Reference
KWP2
KWP6
KWP0
KWP7
KWP1
KWP3
KWP4
KWP5
KWJ6
KWJ7
TIM
Signals shown in Bold are not available on n the 80 Pin Package
Module to
Port Routing
2K Byte EEPROM
PWM
MISO
MOSI
SCK
SS
SPI1
MISO
MOSI
SCK
SS
SPI2
CAN4 RxCAN
TxCAN
OSC
Debugger
Device User Guide — 9S12KT256DGV1/D V01.09
20 Freescale Semiconductor
1.5 MC9S12KT(G)256 Block Diagram
Figure 1-2 MC9S12KT(G)256 Block Diagram
256K Byte Flash EEPROM
12K Byte RAM
RESET
EXTAL
XTAL
VDD1,2
VSS1,2
SCI0
BKGD
R/W
MODB
XIRQ
NOACC/XCLKS
System
Integration
Module
(SIM)
VDDR
CPU12
Periodic Interrupt
COP Watchdog
Clock Monitor
Single-wire BDM
Breakpoints
PLL
VSSPLL
XFC
VDDPLL
Multiplexed Address/Data Bus
ATD0
Multiplexed
Wide Bus
Multiplexed
VDDX
VSSX
Internal Logic 2.5V
Narrow Bus
PPAGE
V
DDPLL
VSSPLL
OSC/PLL 2.5V
IRQ
LSTRB
ECLK
MODA
PA4
PA3
PA2
PA1
PA0
PA7
PA6
PA5
TEST
ADDR12
ADDR11
ADDR10
ADDR9
ADDR8
ADDR15
ADDR14
ADDR13
DATA12
DATA11
DATA10
DATA9
DATA8
DATA15
DATA14
DATA13
PB4
PB3
PB2
PB1
PB0
PB7
PB6
PB5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0
ADDR7
ADDR6
ADDR5
DATA4
DATA3
DATA2
DATA1
DATA0
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
DATA7
DATA6
DATA5
PE3
PE4
PE5
PE6
PE7
PE0
PE1
PE2
AN2
AN6
AN0
AN7
AN1
AN3
AN4
AN5
PAD03
PAD04
PAD05
PAD06
PAD07
PAD00
PAD01
PAD02
IOC2
IOC6
IOC0
IOC7
IOC1
IOC3
IOC4
IOC5
PT3
PT4
PT5
PT6
PT7
PT0
PT1
PT2
VRH
VRL
VDDA
VSSA
VRH
VRL
AN2
AN6
AN0
AN7
AN1
AN3
AN4
AN5
PAD11
PAD12
PAD13
PAD14
PAD15
PAD08
PAD09
PAD10
VDDA
VSSA
RXD
TXD
MISO
MOSI
PS3
PS4
PS5
PS0
PS1
PS2
SCI1 RXD
TXD
PWM2
PWM6
PWM0
PWM7
PWM1
PWM3
PWM4
PWM5
PP3
PP4
PP5
PP6
PP7
PP0
PP1
PP2
PIX2
PIX0
PIX1
PIX3
ECS
PK3
PK7
PK0
PK1
XADDR17
ECS
XADDR14
XADDR15
XADDR16
SCK
SS PS6
PS7
SPI0
IIC SDA
SCL PJ6
PJ7
CAN0 RxCAN
TxCAN PM1
PM0
PM2
PM3
PM4
PM5
PM6
PM7
KWH2
KWH6
KWH0
KWH7
KWH1
KWH3
KWH4
KWH5
PH3
PH4
PH5
PH6
PH7
PH0
PH1
PH2
KWJ0
KWJ1 PJ0
PJ1
I/O Driver 3.3V/5V
VDDA
VSSA
A/D Converter 3.3V/5V
DDRA DDRB
PTA PTB
DDRE
PTE
AD1
AD0
PTK
DDRK
PTT
DDRT
PTP
DDRP
PTS
DDRS
PTM
DDRM
PTH
DDRH
PTJ
DDRJ
PK2
CRG
Voltage Regulator
VSSR
VDD1,2
VSS1,2
VREGEN
VDDR
VSSR
Voltage Regulator 3.3V/5V
PIX4
PIX5 PK4
PK5 XADDR18
XADDR19
Voltage Reference
KWP2
KWP6
KWP0
KWP7
KWP1
KWP3
KWP4
KWP5
KWJ6
KWJ7
TIM
Signals shown in Bold are not available on n the 80 Pin Package
Module to
Port Routing
4K Byte EEPROM
PWM
MISO
MOSI
SCK
SS
SPI1
MISO
MOSI
SCK
SS
SPI2
CAN4 RxCAN
TxCAN
OSC
Debugger
CAN1 RxCAN
TxCAN
ATD1
VRH
VRL
VDDA
VSSA
VRH
VRL VDDA
VSSA
Device User Guide — 9S12KT256DGV1/D V01.09
21
Freescale Semiconductor
1.6 Device Memory Map
Table 1-1 shows the device register map of the MC9S12KT256 and MC9S12KG256 after reset. Table
1-2 shows the device register map of the MC9S12KG128(64)(32), MC9S12KL128(64) and
MC9S12KC128(64) after reset.
Table 1-1 MC9S12KT(G)256 Device Memory Map
Address Module Size
$000 - $017 CORE (Ports A, B, E, Modes, Inits, Test) 24
$018 Reserved 1
$019 Voltage Regulator (VREG) 1
$01A - $01B Device ID register (PARTID) 2
$01C - $01F CORE (MEMSIZ, IRQ, HPRIO) 4
$020 - $02F CORE (DBG) 16
$030 - $033 CORE (PPAGE, Port K) 4
$034 - $03F Clock and Reset Generator (PLL, RTI, COP) 12
$040 - $06F Standard Timer 16-bit 8 channels (TIM) 48
$070 - $07F Reserved 16
$080 - $09F Analog to Digital Converter 10-bit 8 channels (ATD0) 32
$0A0 - $0C7 Reserved 40
$0C8 - $0CF Serial Communications Interface 0 (SCI0) 8
$0D0 - $0D7 Serial Communications Interface 1 (SCI1) 8
$0D8 - $0DF Serial Peripheral Interface 0 (SPI0) 8
$0E0 - $0E7 Inter Integrated Circuit Bus (IIC) 8
$0E8 - $0EF Reserved 8
$0F0 - $0F7 Serial Peripheral Interface 1 (SPI1) 8
$0F8 - $0FF Serial Peripheral Interface 2 (SPI2) 8
$100- $10F Flash Control Register 16
$110- $11B EEPROM Control Register 12
$11C - $11F Reserved 4
$120 - $13F Analog to Digital Converter 10-bit 8 channels (ATD1) 32
$140 - $17F Motorola Scalable Controller Area Network 0 (CAN0) 64
$180 - $1BF Motorola Scalable Controller Area Network 1 (CAN1) 64
$1C0 - $23F Reserved 128
$240 - $27F Port Integration Module (PIM) 64
$280 - $2BF Motorola Scalable Controller Area Network 4 (CAN4) 64
$2C0 - $2E7 Pulse Width Modulator 8-bit 8 channels (PWM) 40
$2E8 - $3FF Reserved 280
Device User Guide — 9S12KT256DGV1/D V01.09
22 Freescale Semiconductor
Table 1-2 MC9S12KG(L)(C)128(64)(32) Device Memory Map
Address Module Size
$000 - $017 CORE (Ports A, B, E, Modes, Inits, Test) 24
$018 Reserved 1
$019 Voltage Regulator (VREG) 1
$01A - $01B Device ID register (PARTID) 2
$01C - $01F CORE (MEMSIZ, IRQ, HPRIO) 4
$020 - $02F CORE (DBG) 16
$030 - $033 CORE (PPAGE, Port K) 4
$034 - $03F Clock and Reset Generator (PLL, RTI, COP) 12
$040 - $06F Standard Timer 16-bit 8 channels (TIM) 48
$070 - $07F Reserved 16
$080 - $0AF Analog to Digital Converter 10-bit 16 channels (ATD) 48
$0B0 - $0C7 Reserved 24
$0C8 - $0CF Serial Communications Interface 0 (SCI0) 8
$0D0 - $0D7 Serial Communications Interface 1 (SCI1) 8
$0D8 - $0DF Serial Peripheral Interface 0 (SPI0) 8
$0E0 - $0E7 Inter Integrated Circuit Bus (IIC) 8
$0E8 - $0EF Reserved 8
$0F0 - $0F7 Serial Peripheral Interface 1 (SPI1) 8
$0F8 - $0FF Serial Peripheral Interface 2 (SPI2) 8
$100- $10F Flash Control Register 16
$110- $11B EEPROM Control Register 12
$11C - $13F Reserved 36
$140 - $17F Motorola Scalable Controller Area Network 0 (CAN0) 64
$180 - $23F Reserved 192
$240 - $27F Port Integration Module (PIM) 64
$280 - $2BF Motorola Scalable Controller Area Network 4 (CAN4) 64
$2C0 - $2E7 Pulse Width Modulator 8-bit 8 channels (PWM) 40
$2E8 - $3FF Reserved 280
Device User Guide — 9S12KT256DGV1/D V01.09
23
Freescale Semiconductor
Figure 1-4 illustrates the full user configurable device memory map of MC9S12KT256 and
MC9S12KG256.
Figure 1-3 MC9S12KT256 and MC9S12KG256 Memory Map
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$1000 - $3FFF: 12K RAM
$0000 - $0FFF: 4K EEPROM (1K hidden behind Register Space)
$0000
$FFFF
$C000
$8000
$4000
$0400
$1000
$FF00
EXT
NORMAL
SINGLE CHIP EXPANDED SPECIAL
SINGLE CHIP
VECTORSVECTORS VECTORS
$FF00
$FFFF
BDM
(If Active)
$C000
$FFFF
16K Fixed Flash EEPROM
2K, 4K, 8K or 16K Protected Boot Sector
$8000
$BFFF
16K Page Window
sixteen * 16K Flash EEPROM Pages
$4000
$7FFF 16K Fixed Flash EEPROM
0.5K, 1K, 2K or 4K Protected Sector
$1000
$3FFF
12K Bytes RAM
Mappable to any 16K Boundary
$0000
$0FFF
4K Bytes EEPROM
Mappable to any 4K Boundary
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
and alignable to top or bottom
Device User Guide — 9S12KT256DGV1/D V01.09
24 Freescale Semiconductor
Figure 1-4 illustrates the full user configurable device memory map of MC9S12KG128, MC9S12KL128
and MC9S12KC128.
Figure 1-4 MC9S12KG128, MC9S12KL128 and MC9S12KC128 Memory Map
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $1FFF: 8K RAM (1K RAM hidden behind Register Space)
$0000 - $07FF: 2K EEPROM (not visible)
$0000
$FFFF
$C000
$8000
$4000
$0400
$0800
$1000
$2000
$FF00
EXT
NORMAL
SINGLE CHIP EXPANDED SPECIAL
SINGLE CHIP
VECTORSVECTORS VECTORS
$FF00
$FFFF
BDM
(If Active)
$C000
$FFFF
16K Fixed Flash EEPROM
2K, 4K, 8K or 16K Protected Boot Sector
$8000
$BFFF
16K Page Window
eight * 16K Flash EEPROM Pages
$4000
$7FFF 16K Fixed Flash EEPROM
0.5K, 1K, 2K or 4K Protected Sector
$2000
$3FFF
8K Bytes RAM
Mappable to any 8K Boundary
$0800
$0FFF
2K Bytes EEPROM
Mappable to any 2K Boundary
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
Device User Guide — 9S12KT256DGV1/D V01.09
25
Freescale Semiconductor
Figure 1-5 illustrates the full user configurable device memory map of MC9S12KG64, MC9S12KL64
and MC9S12KC64.
Figure 1-5 MC9S12KG64, MC9S12KL64 and MC9S12KC64 Memory Map
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $0FFF: 4K RAM (1K RAM hidden behind Register Space)
$0000 - $03FF: 1K EEPROM (not visible)
$0000
$FFFF
$C000
$8000
$4000
$0400
$0800
$1000
$3000
$FF00
EXT
NORMAL
SINGLE CHIP EXPANDED SPECIAL
SINGLE CHIP
VECTORSVECTORS VECTORS
$FF00
$FFFF
BDM
(If Active)
$C000
$FFFF
16K Fixed Flash EEPROM
2K, 4K, 8K or 16K Protected Boot Sector
$8000
$BFFF
16K Page Window
four * 16K Flash EEPROM Pages
$4000
$7FFF 16K Fixed Flash EEPROM
0.5K, 1K, 2K or 4K Protected Sector
$3000
$3FFF
4K Bytes RAM
Mappable to any 4K Boundary
$0800
$0FFF
1K Bytes EEPROM
Mappable to any 2K Boundary
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
(1K mapped two times in 2K space)
Device User Guide — 9S12KT256DGV1/D V01.09
26 Freescale Semiconductor
Figure 1-6 illustrates the full user configurable device memory map of MC9S12KG32.
Figure 1-6 MC9S12KG32 Memory Map
The figure shows a useful map, which is not the map out of reset. After reset the map is:
$0000 - $03FF: Register Space
$0000 - $07FF: 2K RAM (1K RAM hidden behind Register Space)
$0000 - $03FF: 1K EEPROM (not visible)
$0000
$FFFF
$8000
$4000
$0400
$0800
$1000
$3800
$FF00
EXT
NORMAL
SINGLE CHIP EXPANDED SPECIAL
SINGLE CHIP
VECTORSVECTORS VECTORS
$FF00
$FFFF
BDM
(If Active)
$FFFF
32K Fixed Flash EEPROM
2K, 4K, 8K or 16K Protected Boot Sector
$8000
$3800
$3FFF
2K Bytes RAM
Mappable to any 2K Boundary
$0800
$0FFF
1K Bytes EEPROM
Mappable to any 2K Boundary
$0000
$03FF
1K Register Space
Mappable to any 2K Boundary
(1K mapped two times in 2K space)
Device User Guide — 9S12KT256DGV1/D V01.09
27
Freescale Semiconductor
1.7 Detailed Register Map
The following tables show the detailed register map of the MC9S12K-Family.
$0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0000 PORTA Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0001 PORTB Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0002 DDRA Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0003 DDRB Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0004 Reserved Read:00000000
Write:
$0005 Reserved Read:00000000
Write:
$0006 Reserved Read:00000000
Write:
$0007 Reserved Read:00000000
Write:
$0008 PORTE Read: Bit 7 6 5 4 3 2 Bit 1 Bit 0
Write:
$0009 DDRE Read: Bit 7 6 5 4 3 Bit 2 0 0
Write:
$000A PEAR Read: NOACCE 0PIPOE NECLK LSTRE RDWE 0 0
Write:
$000B MODE Read: MODC MODB MODA 0IVIS 0EMK EME
Write:
$000C PUCR Read: PUPKE 0 0 PUPEE 0 0 PUPBE PUPAE
Write:
$000D RDRIV Read: RDPK 0 0 RDPE 0 0 RDPB RDPA
Write:
$000E EBICTL Read: 0 0 0 0 0 0 0 ESTR
Write:
$000F Reserved Read:00000000
Write:
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0010 INITRM Read: RAM15 RAM14 RAM13 RAM12 RAM11 0 0 RAMHAL
Write:
$0011 INITRG Read: 0 REG14 REG13 REG12 REG11 000
Write:
Device User Guide — 9S12KT256DGV1/D V01.09
28 Freescale Semiconductor
$0012 INITEE Read: EE15 EE14 EE13 EE12 EE11 0 0 EEON
Write:
$0013 MISC Read: 0 0 0 0 EXSTR1 EXSTR0 ROMHM ROMON
Write:
$0014 Reserved Read:00000000
Write:
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0015 ITCR Read: 0 0 0 WRINT ADR3 ADR2 ADR1 ADR0
Write:
$0016 ITEST Read: INTE INTC INTA INT8 INT6 INT4 INT2 INT0
Write:
$0017 - $0017 MMC map 2 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0017 Reserved Read:00000000
Write:
$0018 - $0018 Miscellaneous Peripherals (Device Guide)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0018 Reserved Read:00000000
Write:
$0019 - $0019 VREG3V3 (Voltage Regulator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0019 VREGCTRL Read: 0 0 0 0 0 LVDS LVIE LVIF
Write:
$001A - $001B Miscellaneous Peripherals (Device Guide)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001A PARTIDH Read: ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8
Write:
$001B PARTIDL Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Write:
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
29
Freescale Semiconductor
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, Device
Guide)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001C MEMSIZ0 Read: reg_sw0 0 eep_sw1 eep_sw0 0 ram_sw2 ram_sw1 ram_sw0
Write:
$001D MEMSIZ1 Read: rom_sw1 rom_sw0 0 0 0 0 pag_sw1 pag_sw0
Write:
$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001E INTCR Read: IRQE IRQEN 000000
Write:
$001F - $001F INT map 2 of 2 (HCS12 Interrupt)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$001F HPRIO Read: PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1 0
Write:
$0020 - $002F DBG (including BKP) map 1of 1 (HCS12 Debug)
Addres
sName Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0020 DBGC1 read DBGEN ARM TRGSEL BEGIN DBGBRK 0CAPMOD
-write
$0021 DBGSC read AF BF CF 0 TRG
-write
$0022 DBGTBH read Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
-write
$0023 DBGTBL read Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
- write
$0024 DBGCNT read TBF 0 CNT
- write
$0025 DBGCCX read PAGSEL EXTCMP
- write
$0026 DBGCCH read Bit 15 14 13 12 11 10 9 Bit 8
write
$0027 DBGCCL read Bit 7 6 5 4 3 2 1 Bit 0
- write
$0028 DBGC2 read BKABEN FULL BDM TAGAB BKCEN TAGC RWCEN RWC
BKPCT0 write
$0029 DBGC3 read BKAMBH BKAMBL BKBMBH BKBMBL RWAEN RWA RWBEN RWB
BKPCT1 write
$002A DBGCAX read PAGSEL EXTCMP
BKP0X write
$002B DBGCAH read Bit 15 14 13 12 11 10 9 Bit 8
BKP0H write
Device User Guide — 9S12KT256DGV1/D V01.09
30 Freescale Semiconductor
$002C DBGCAL read Bit 7 6 5 4 3 2 1 Bit 0
BKP0L write
$002D DBGCBX read PAGSEL EXTCMP
BKP1X write
$002E DBGCBH read Bit 15 14 13 12 11 10 9 Bit 8
BKP1H write
$002F DBGCBL read Bit 7 6 5 4 3 2 1 Bit 0
BKP1L write
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0030 PPAGE Read: 0 0 PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
Write:
$0031 Reserved Read:00000000
Write:
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0032 PORTK Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0033 DDRK Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0034 - $003F CRG (Clock and Reset Generator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0034 SYNR Read: 0 0 SYN5 SYN4 SYN3 SYN2 SYN1 SYN0
Write:
$0035 REFDV Read: 0 0 0 0 REFDV3 REFDV2 REFDV1 REFDV0
Write:
$0036 CTFLG
TEST ONLY Read: TOUT7 TOUT6 TOUT5 TOUT4 TOUT3 TOUT2 TOUT1 TOUT0
Write:
$0037 CRGFLG Read: RTIF PROF 0LOCKIF LOCK TRACK SCMIF SCM
Write:
$0038 CRGINT Read: RTIE 0 0 LOCKIE 0 0 SCMIE 0
Write:
$0039 CLKSEL Read: PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI
Write:
$003A PLLCTL Read: CME PLLON AUTO ACQ 0PRE PCE SCME
Write:
$003B RTICTL Read: 0 RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0
Write:
$003C COPCTL Read: WCOP RSBCK 000CR2 CR1 CR0
Write:
$0020 - $002F DBG (including BKP) map 1of 1 (HCS12 Debug)
Addres
sName Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
31
Freescale Semiconductor
$003D FORBYP
TEST ONLY Read: RTIBYP COPBYP 0PLLBYP 0 0 FCM 0
Write:
$003E CTCTL
TEST ONLY Read: TCTL7 TCTL6 TCTL5 TCTL4 TCLT3 TCTL2 TCTL1 TCTL0
Write:
$003F ARMCOP Read:00000000
Write: Bit 7 6 5 4 3 2 1 Bit 0
$0040 - $006F TIM (Timer 16 Bit 8 Channels)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0040 TIOS Read: IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0
Write:
$0041 CFORC Read:00000000
Write: FOC7 FOC6 FOC5 FOC4 FOC3 FOC2 FOC1 FOC0
$0042 OC7M Read: OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0
Write:
$0043 OC7D Read: OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0
Write:
$0044 TCNT (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0045 TCNT (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0046 TSCR1 Read: TEN TSWAI TSFRZ TFFCA 0000
Write:
$0047 TTOV Read: TOV7 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1 TOV0
Write:
$0048 TCTL1 Read: OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4
Write:
$0049 TCTL2 Read: OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0
Write:
$004A TCTL3 Read: EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A
Write:
$004B TCTL4 Read: EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A
Write:
$004C TIE Read: C7I C6I C5I C4I C3I C2I C1I C0I
Write:
$004D TSCR2 Read: TOI 000TCRE PR2 PR1 PR0
Write:
$004E TFLG1 Read: C7F C6F C5F C4F C3F C2F C1F C0F
Write:
$004F TFLG2 Read: TOF 0000000
Write:
$0050 TC0 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0051 TC0 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0052 TC1 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0053 TC1 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0034 - $003F CRG (Clock and Reset Generator)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
32 Freescale Semiconductor
$0054 TC2 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0055 TC2 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0056 TC3 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0057 TC3 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0058 TC4 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$0059 TC4 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$005A TC5 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$005B TC5 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$005C TC6 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$005D TC6 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$005E TC7 (hi) Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$005F TC7 (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0060 PACTL Read: 0 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI
Write:
$0061 PAFLG Read: 0 0 0 0 0 0 PAOVF PAIF
Write:
$0062 PACNT (hi) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0063 PACNT (lo) Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$0064 Reserved Read:00000000
Write:
$0065 Reserved Read:00000000
Write:
$0066 Reserved Read:00000000
Write:
$0067 Reserved Read:00000000
Write:
$0068 Reserved Read:00000000
Write:
$0069 Reserved Read:00000000
Write:
$006A Reserved Read:00000000
Write:
$006B Reserved Read:00000000
Write:
$006C Reserved Read:00000000
Write:
$0040 - $006F TIM (Timer 16 Bit 8 Channels)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
33
Freescale Semiconductor
$006D Reserved Read:00000000
Write:
$006E Reserved Read:00000000
Write:
$006F Reserved Read:00000000
Write:
$0070 - $007F Reserved space
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0070
- $007F Reserved Read:00000000
Write:
$0080 - $00AF ATD (Analog to Digital Converter 10 Bit 16 Channel)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0080 ATDCTL0 Read: 0 0 0 0 WRAP3 WRAP2 WRAP1 WRAP0
Write:
$0081 ATDCTL1 Read: ETRIGSEL 000ETRIGCH3 ETRIGCH2 ETRIGCH1 ETRIGCH0
Write:
$0082 ATDCTL2 Read: ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF
Write:
$0083 ATDCTL3 Read: 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0
Write:
$0084 ATDCTL4 Read: SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
Write:
$0085 ATDCTL5 Read: DJM DSGN SCAN MULT 0CC CB CA
Write:
$0086 ATDSTAT0 Read: SCF 0ETORF FIFOR 0 CC2 CC1 CC0
Write:
$0087 Reserved Read:00000000
Write:
$0088 ATDTEST0 Read:00000000
Write:
$0089 ATDTEST1 Read: 0 0 0 0 0 0 0 SC
Write:
$008A ATDSTAT0 Read: CCF15 CCF14 CCF13 CCF12 CCF11 CCF10 CCF9 CCF8
Write:
$008B ATDSTAT1 Read: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
Write:
$008C ATDDIEN1 Read: IEN15 IEN14 IEN13 IEN12 IEN11 IEN10 IEN9 IEN8
Write:
$008D ATDDIEN0 Read: IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 IEN0
Write:
$008E PORTAD1 Read: PTAD15 PTAD14 PTAD13 PTAD12 PTAD11 PTAD10 PTAD9 PTAD8
Write:
$008F PORTAD0 Read: PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0
Write:
$0040 - $006F TIM (Timer 16 Bit 8 Channels)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
34 Freescale Semiconductor
$0090 ATDDR0H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0091 ATDDR0L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0092 ATDDR1H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0093 ATDDR1L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0094 ATDDR2H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0095 ATDDR2L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0096 ATDDR3H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0097 ATDDR3L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0098 ATDDR4H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0099 ATDDR4L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$009A ATDDR5H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009B ATDDR5L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$009C ATDDR6H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009D ATDDR6L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$009E ATDDR7H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009F ATDDR7L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$00A0 ATDDR8H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$00A1 ATDDR8L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$00A2 ATDDR9H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$00A3 ATDDR9L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$00A4 ATDDR10H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$00A5 ATDDR10L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$00A6 ATDDR11H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$00A7 ATDDR11L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$00A8 ATDDR12H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0080 - $00AF ATD (Analog to Digital Converter 10 Bit 16 Channel)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
35
Freescale Semiconductor
$00A9 ATDDR12L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$00AA ATDDR13H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$00AB ATDDR13L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$00AC ATDDR14H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$00AD ATDDR14L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$00AE ATDDR15H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$00AF ATDDR15L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
NOTES:
1. Registers only available on MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64)
$00B0 - $00C7 Reserved space1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00B0
- $00C7 Reserved Read:00000000
Write:
NOTES:
1. Reserved space for MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64)
$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0080 ATD0CTL0 Read: 0 0 0 0 0 WRAP2 WRAP1 WRAP0
Write:
$0081 ATD0CTL1 Read: ETRIGSEL 0000ETRIGCH2 ETRIGCH1 ETRIGCH0
Write:
$0082 ATD0CTL2 Read: ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF
Write:
$0083 ATD0CTL3 Read: 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0
Write:
$0084 ATD0CTL4 Read: SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
Write:
$0085 ATD0CTL5 Read: DJM DSGN SCAN MULT 0CC CB CA
Write:
$0086 ATD0STAT0 Read: SCF 0ETORF FIFOR 0 CC2 CC1 CC0
Write:
$0087 Reserved Read:00000000
Write:
$0088 ATD0TEST0 Read:00000000
Write:
$0089 ATD0TEST1 Read: 0 0 0 0 0 00SC
Write:
$0080 - $00AF ATD (Analog to Digital Converter 10 Bit 16 Channel)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
36 Freescale Semiconductor
$008A Reserved Read:00000000
Write:
$008B ATD0STAT1 Read: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
Write:
$008C Reserved Read:00000000
Write:
$008D ATD0DIEN Read: IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 IEN0
Write:
$008E Reserved Read:00000000
Write:
$008F PORTAD0 Read: PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0
Write:
$0090 ATD0DR0H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0091 ATD0DR0L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0092 ATD0DR1H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0093 ATD0DR1L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0094 ATD0DR2H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0095 ATD0DR2L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0096 ATD0DR3H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0097 ATD0DR3L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0098 ATD0DR4H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0099 ATD0DR4L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$009A ATD0DR5H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009B ATD0DR5L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$009C ATD0DR6H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009D ATD0DR6L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$009E ATD0DR7H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$009F ATD0DR7L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
NOTES:
1. Registers only available on MC9S12KT256 and MC9S12KG256
$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
37
Freescale Semiconductor
$00A0 - $00C7 Reserved space1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00A0
- $00C7 Reserved Read:00000000
Write:
NOTES:
1. Reserved space for MC9S12KT256 and MC9S12KG256
$00C8 - $00CF SCI0 (Asynchronous Serial Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00C8 SCI0BDH Read: 0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8
Write:
$00C9 SCI0BDL Read: SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
Write:
$00CA SCI0CR1 Read: LOOPS SCISWAI RSRC M WAKE ILT PE PT
Write:
$00CB SCI0CR2 Read: TIE TCIE RIE ILIE TE RE RWU SBK
Write:
$00CC SCI0SR1 Read: TDRE TC RDRF IDLE OR NF FE PF
Write:
$00CD SCI0SR2 Read: 0 0 0 0 0 BRK13 TXDIR RAF
Write:
$00CE SCI0DRH Read: R8 T8 000000
Write:
$00CF SCI0DRL Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0
$00D0 - $00D7 SCI1 (Asynchronous Serial Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00D0 SCI1BDH Read: 0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8
Write:
$00D1 SCI1BDL Read: SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
Write:
$00D2 SCI1CR1 Read: LOOPS SCISWAI RSRC M WAKE ILT PE PT
Write:
$00D3 SCI1CR2 Read: TIE TCIE RIE ILIE TE RE RWU SBK
Write:
$00D4 SCI1SR1 Read: TDRE TC RDRF IDLE OR NF FE PF
Write:
$00D5 SCI1SR2 Read: 0 0 0 0 0 BRK13 TXDIR RAF
Write:
$00D6 SCI1DRH Read: R8 T8 000000
Write:
$00D7 SCI1DRL Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0
Device User Guide — 9S12KT256DGV1/D V01.09
38 Freescale Semiconductor
$00D8 - $00DF SPI0 (Serial Peripheral Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00D8 SPI0CR1 Read: SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Write:
$00D9 SPI0CR2 Read: 0 0 0 MODFEN BIDIROE 0SPISWAI SPC0
Write:
$00DA SPI0BR Read: 0 SPPR2 SPPR1 SPPR0 0SPR2 SPR1 SPR0
Write:
$00DB SPI0SR Read: SPIF 0 SPTEF MODF 0 0 0 0
Write:
$00DC Reserved Read:00000000
Write:
$00DD SPI0DR Read: Bit7 6 5 4 3 2 1 Bit0
Write:
$00DE Reserved Read:00000000
Write:
$00DF Reserved Read:00000000
Write:
$00E0 - $00E7 IIC (Inter IC Bus)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00E0 IBAD Read: ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 0
Write:
$00E1 IBFD Read: IBC7 IBC6 IBC5 IBC4 IBC3 IBC2 IBC1 IBC0
Write:
$00E2 IBCR Read: IBEN IBIE MS/SL TX/RX TXAK 0 0 IBSWAI
Write: RSTA
$00E3 IBSR Read: TCF IAAS IBB IBAL 0 SRW IBIF RXAK
Write:
$00E4 IBDR Read: D7 D6 D5 D4 D3 D2 D1 D 0
Write:
$00E5 Reserved Read: 0 0 0 0 0 0 0 0
Write:
$00E6 Reserved Read:00000000
Write:
$00E7 Reserved Read:00000000
Write:
$00E8 - $00EF Reserved space
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00E8
- $00EF Reserved Read:00000000
Write:
Device User Guide — 9S12KT256DGV1/D V01.09
39
Freescale Semiconductor
$00F0 - $00F7 SPI1 (Serial Peripheral Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00F0 SPI1CR1 Read: SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Write:
$00F1 SPI1CR2 Read: 0 0 0 MODFEN BIDIROE 0SPISWAI SPC0
Write:
$00F2 SPI1BR Read: 0 SPPR2 SPPR1 SPPR0 0SPR2 SPR1 SPR0
Write:
$00F3 SPI1SR Read: SPIF 0 SPTEF MODF 0 0 0 0
Write:
$00F4 Reserved Read:00000000
Write:
$00F5 SPI1DR Read: Bit7 6 5 4 3 2 1 Bit0
Write:
$00F6 Reserved Read:00000000
Write:
$00F7 Reserved Read:00000000
Write:
$00F8 - $00FF SPI2 (Serial Peripheral Interface)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$00F8 SPI2CR1 Read: SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Write:
$00F9 SPI2CR2 Read: 0 0 0 MODFEN BIDIROE 0SPISWAI SPC0
Write:
$00FA SPI2BR Read: 0 SPPR2 SPPR1 SPPR0 0SPR2 SPR1 SPR0
Write:
$00FB SPI2SR Read: SPIF 0 SPTEF MODF 0 0 0 0
Write:
$00FC Reserved Read:00000000
Write:
$00FD SPI2DR Read: Bit7 6 5 4 3 2 1 Bit0
Write:
$00FE Reserved Read:00000000
Write:
$00FF Reserved Read:00000000
Write:
$0100 - $010F Flash Control Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0100 FCLKDIV Read: FDIVLD PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0
Write:
$0101 FSEC Read: KEYEN RNV5 RNV4 RNV3 RNV2 SEC
Write:
$0102 FTSTMOD Read: 0 0 0 WRALL1FDFD 000
Write:
$0103 FCNFG Read: CBEIE CCIE KEYACC 0DFDIE 0 0 BKSEL(1)
Write:
Device User Guide — 9S12KT256DGV1/D V01.09
40 Freescale Semiconductor
$0104 FPROT Read: FPOPEN RNV6 FPHDIS FPHS FPLDIS FPLS
Write:
$0105 FSTAT Read: CBEIF CCIF PVIOL ACCERR DFDIF BLANK 0 0
Write:
$0106 FCMD Read: 0 CMDB
Write:
$0107 FCTL2Read: NV7 NV6 NV5 NV4 NV3 NV2 NV1 NV0
Write:
$0108 FADDRHI Read: FADDRHI
Write:
$0109 FADDRLO Read: FADDRLO
Write:
$010A FDATAHI Read: FDATAHI
Write:
$010B FDATALO Read: FDATALO
Write:
$010C Reserved Read:00000000
Write:
$010D Reserved Read:00000000
Write:
$010E Reserved Read:00000000
Write:
$010F Reserved Read:00000000
Write:
NOTES:
1. Bit only available on MC9S12KT256 and MC9S12KG256.
2. Register only available on MC9S12KT256 and MC9S12KG256.
$0110 - $011B EEPROM Control Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0110 ECLKDIV Read: EDIVLD PRDIV8 EDIV5 EDIV4 EDIV3 EDIV2 EDIV1 EDIV0
Write:
$0111 Reserved Read:00000000
Write:
$0112 Reserved for
Factory Test Read:00000000
Write:
$0113 ECNFG Read: CBEIE CCIE 000000
Write:
$0114 EPROT Read: EPOPEN NV6 NV5 NV4 EPDIS EP2 EP1 EP0
Write:
$0115 ESTAT Read: CBEIF CCIF PVIOL ACCERR 0BLANK 0 0
Write:
$0116 ECMD Read: 0 CMDB6 CMDB5 0 0 CMDB2 0CMDB0
Write:
$0117 Reserved for
Factory Test Read:00000000
Write:
$0118 EADDRHI Read: 0 0 0 0 0 10 9 Bit 8
Write:
$0100 - $010F Flash Control Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
41
Freescale Semiconductor
$0119 EADDRLO Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$011A EDATAHI Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
$011B EDATALO Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$011C - $011F Reserved space
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$011C
- $011F Reserved Read:00000000
Write:
$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0120 ATD1CTL0 Read: 0 0 0 0 0 WRAP2 WRAP1 WRAP0
Write:
$0121 ATD1CTL1 Read: ETRIGSEL 0000ETRIGCH2 ETRIGCH1 ETRIGCH0
Write:
$0122 ATD1CTL2 Read: ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF
Write:
$0123 ATD1CTL3 Read: 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0
Write:
$0124 ATD1CTL4 Read: SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
Write:
$0125 ATD1CTL5 Read: DJM DSGN SCAN MULT 0CC CB CA
Write:
$0126 ATD1STAT0 Read: SCF 0ETORF FIFOR 0 CC2 CC1 CC0
Write:
$0127 Reserved Read:00000000
Write:
$0128 ATD1TEST0 Read:00000000
Write:
$0129 ATD1TEST1 Read: 0 0 0 0 0 00SC
Write:
$012A Reserved Read:00000000
Write:
$012B ATD1STAT1 Read: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
Write:
$012C Reserved Read:00000000
Write:
$012D ATD1DIEN Read: IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 IEN0
Write:
$012E Reserved Read:00000000
Write:
$012F PORTAD1 Read: PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0
Write:
$0110 - $011B EEPROM Control Register
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
42 Freescale Semiconductor
$0130 ATD1DR0H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0131 ATD1DR0L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0132 ATD1DR1H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0133 ATD1DR1L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0134 ATD1DR2H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0135 ATD1DR2L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0136 ATD1DR3H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0137 ATD1DR3L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$0138 ATD1DR4H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$0139 ATD1DR4L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$013A ATD1DR5H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$013B ATD1DR5L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$013C ATD1DR6H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$013D ATD1DR6L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
$013E ATD1DR7H Read: Bit15 14 13 12 11 10 9 Bit8
Write:
$013F ATD1DR7L Read: Bit7 Bit6 0 0 0 0 0 0
Write:
NOTES:
1. Registers only available on MC9S12KT256 and MC9S12KG256. Reserved space for MC9S12KG128(64)(32),
MC9S12KL128(64) and MC9S12KC128(64).
$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0140 CAN0CTL0 Read: RXFRM RXACT CSWAI SYNCH TIME WUPE SLPRQ INITRQ
Write:
$0141 CAN0CTL1 Read: CANE CLKSRC LOOPB LISTEN 0WUPM SLPAK INITAK
Write:
$0142 CAN0BTR0 Read: SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:
$0143 CAN0BTR1 Read: SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
$0144 CAN0RFLG Read: WUPIF CSCIF RSTAT1 RSTAT0 TSTAT1 TSTAT0 OVRIF RXF
Write:
$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
43
Freescale Semiconductor
$0145 CAN0RIER Read: WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:
$0146 CAN0TFLG Read: 0 0 0 0 0 TXE2 TXE1 TXE0
Write:
$0147 CAN0TIER Read: 0 0 0 0 0 TXEIE2 TXEIE1 TXEIE0
Write:
$0148 CAN0TARQ Read: 0 0 0 0 0 ABTRQ2 ABTRQ1 ABTRQ0
Write:
$0149 CAN0TAAK Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:
$014A CAN0TBSEL Read: 0 0 0 0 0 TX2 TX1 TX0
Write:
$014B CAN0IDAC Read: 0 0 IDAM1 IDAM0 0 IDHIT2 IDHIT1 IDHIT0
Write:
$014C Reserved Read:00000000
Write:
$014D Reserved Read:00000000
Write:
$014E CAN0RXERR Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:
$014F CAN0TXERR Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:
$0150 -
$0153 CAN0IDAR0 -
CAN0IDAR3 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0154 -
$0157 CAN0IDMR0 -
CAN0IDMR3 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0158 -
$015B CAN0IDAR4 -
CAN0IDAR7 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$015C -
$015F CAN0IDMR4 -
CAN0IDMR7 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0160 -
$016F CAN0RXFG Read: FOREGROUND RECEIVE BUFFER see (Table 1-3)
Write:
$0170 -
$017F CAN0TXFG Read: FOREGROUND TRANSMIT BUFFER see (Table 1-3)
Write:
Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$xxx0 Extended ID Read: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
Standard ID Read: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
CANxRIDR0 Write:
$xxx1 Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15
Standard ID Read: ID2 ID1 ID0 RTR IDE=0
CANxRIDR1 Write:
$xxx2 Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
Standard ID Read:
CANxRIDR2 Write:
$xxx3 Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR
Standard ID Read:
CANxRIDR3 Write:
$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
44 Freescale Semiconductor
$xxx4-
$xxxB CANxRDSR0 -
CANxRDSR7 Read: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Write:
$xxxC CANRxDLR Read: DLC3 DLC2 DLC1 DLC0
Write:
$xxxD Reserved Read:
Write:
$xxxE CANxRTSRH Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8
Write:
$xxxF CANxRTSRL Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0
Write:
$xx10
Extended ID Read: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
CANxTIDR0 Write:
Standard ID Read: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
Write:
$xx10
Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15
CANxTIDR1 Write:
Standard ID Read: ID2 ID1 ID0 RTR IDE=0
Write:
$xx12
Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
CANxTIDR2 Write:
Standard ID Read:
Write:
$xx13
Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR
CANxTIDR3 Write:
Standard ID Read:
Write:
$xx14-
$xx1B CANxTDSR0 -
CANxTDSR7 Read: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Write:
$xx1C CANxTDLR Read: DLC3 DLC2 DLC1 DLC0
Write:
$xx1D CONxTTBPR Read: PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0
Write:
$xx1E CANxTTSRH Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8
Write:
$xx1F CANxTTSRL Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0
Write:
$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0180 CAN1CTL0 Read: RXFRM RXACT CSWAI SYNCH TIME WUPE SLPRQ INITRQ
Write:
$0181 CAN1CTL1 Read: CANE CLKSRC LOOPB LISTEN 0WUPM SLPAK INITAK
Write:
$0182 CAN1BTR0 Read: SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:
$0183 CAN1BTR1 Read: SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
45
Freescale Semiconductor
$0184 CAN1RFLG Read: WUPIF CSCIF RSTAT1 RSTAT0 TSTAT1 TSTAT0 OVRIF RXF
Write:
$0185 CAN1RIER Read: WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:
$0186 CAN1TFLG Read: 0 0 0 0 0 TXE2 TXE1 TXE0
Write:
$0187 CAN1TIER Read: 0 0 0 0 0 TXEIE2 TXEIE1 TXEIE0
Write:
$0188 CAN1TARQ Read: 0 0 0 0 0 ABTRQ2 ABTRQ1 ABTRQ0
Write:
$0189 CAN1TAAK Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:
$018A CAN1TBSEL Read: 0 0 0 0 0 TX2 TX1 TX0
Write:
$018B CAN1IDAC Read: 0 0 IDAM1 IDAM0 0 IDHIT2 IDHIT1 IDHIT0
Write:
$018C Reserved Read:00000000
Write:
$018D Reserved Read:00000000
Write:
$018E CAN1RXERR Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:
$018F CAN1TXERR Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:
$0190 CAN1IDAR0 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0191 CAN1IDAR1 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0192 CAN1IDAR2 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0193 CAN1IDAR3 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0194 CAN1IDMR0 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0195 CAN1IDMR1 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0196 CAN1IDMR2 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0197 CAN1IDMR3 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0198 CAN1IDAR4 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0199 CAN1IDAR5 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$019A CAN1IDAR6 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$019B CAN1IDAR7 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$019C CAN1IDMR4 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
46 Freescale Semiconductor
$019D CAN1IDMR5 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$019E CAN1IDMR6 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$019F CAN1IDMR7 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$01A0 -
$01AF CAN1RXFG Read: FOREGROUND RECEIVE BUFFER see (Table 1-3)
Write:
$01B0 -
$01BF CAN1TXFG Read: FOREGROUND TRANSMIT BUFFER see (Table 1-3)
Write:
NOTES:
1. Registers only available on MC9S12KT256. Reserved space for MC9S12KG256(128)(64)(32), MC9S12KL128(64)
and MC9S12KC128(64).
$01C0 - $023F Reserved space
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$01C0
- $023F Reserved Read:00000000
Write:
$0240 - $027F PIM (Port Integration Module)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0240 PTT Read: PTT7 PTT6 PTT5 PTT4 PTT3 PTT2 PTT1 PTT0
Write:
$0241 PTIT Read: PTIT7 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0
Write:
$0242 DDRT Read: DDRT7 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0
Write:
$0243 RDRT Read: RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0
Write:
$0244 PERT Read: PERT7 PERT6 PERT5 PERT4 PERT3 PERT2 PERT1 PERT0
Write:
$0245 PPST Read: PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0
Write:
$0246 Reserved Read:00000000
Write:
$0247 Reserved Read:00000000
Write:
$0248 PTS Read: PTS7 PTS6 PTS5 PTS4 PTS3 PTS2 PTS1 PTS0
Write:
$0249 PTIS Read: PTIS7 PTIS6 PTIS5 PTIS4 PTIS3 PTIS2 PTIS1 PTIS0
Write:
$024A DDRS Read: DDRS7 DDRS7 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0
Write:
$024B RDRS Read: RDRS7 RDRS6 RDRS5 RDRS4 RDRS3 RDRS2 RDRS1 RDRS0
Write:
$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN)1
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
47
Freescale Semiconductor
$024C PERS Read: PERS7 PERS6 PERS5 PERS4 PERS3 PERS2 PERS1 PERS0
Write:
$024D PPSS Read: PPSS7 PPSS6 PPSS5 PPSS4 PPSS3 PPSS2 PPSS1 PPSS0
Write:
$024E WOMS Read: WOMS7 WOMS6 WOMS5 WOMS4 WOMS3 WOMS2 WOMS1 WOMS0
Write:
$024F Reserved Read:00000000
Write:
$0250 PTM Read: PTM7 PTM6 PTM5 PTM4 PTM3 PTM2 PTM1 PTM0
Write:
$0251 PTIM Read: PTIM7 PTIM6 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0
Write:
$0252 DDRM Read: DDRM7 DDRM7 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0
Write:
$0253 RDRM Read: RDRM7 RDRM6 RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0
Write:
$0254 PERM Read: PERM7 PERM6 PERM5 PERM4 PERM3 PERM2 PERM1 PERM0
Write:
$0255 PPSM Read: PPSM7 PPSM6 PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0
Write:
$0256 WOMM Read: WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
Write:
$0257 MODRR Read: 0 MODRR6 MODRR5 MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
Write:
$0258 PTP Read: PTP7 PTP6 PTP5 PTP4 PTP3 PTP2 PTP1 PTP0
Write:
$0259 PTIP Read: PTIP7 PTIP6 PTIP5 PTIP4 PTIP3 PTIP2 PTIP1 PTIP0
Write:
$025A DDRP Read: DDRP7 DDRP7 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0
Write:
$025B RDRP Read: RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0
Write:
$025C PERP Read: PERP7 PERP6 PERP5 PERP4 PERP3 PERP2 PERP1 PERP0
Write:
$025D PPSP Read: PPSP7 PPSP6 PPSP5 PPSP4 PPSP3 PPSP2 PPSP1 PPSS0
Write:
$025E PIEP Read: PIEP7 PIEP6 PIEP5 PIEP4 PIEP3 PIEP2 PIEP1 PIEP0
Write:
$025F PIFP Read: PIFP7 PIFP6 PIFP5 PIFP4 PIFP3 PIFP2 PIFP1 PIFP0
Write:
$0260 PTH Read: PTH7 PTH6 PTH5 PTH4 PTH3 PTH2 PTH1 PTH0
Write:
$0261 PTIH Read: PTIH7 PTIH6 PTIH5 PTIH4 PTIH3 PTIH2 PTIH1 PTIH0
Write:
$0262 DDRH Read: DDRH7 DDRH7 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0
Write:
$0263 RDRH Read: RDRH7 RDRH6 RDRH5 RDRH4 RDRH3 RDRH2 RDRH1 RDRH0
Write:
$0264 PERH Read: PERH7 PERH6 PERH5 PERH4 PERH3 PERH2 PERH1 PERH0
Write:
$0240 - $027F PIM (Port Integration Module)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
48 Freescale Semiconductor
$0265 PPSH Read: PPSH7 PPSH6 PPSH5 PPSH4 PPSH3 PPSH2 PPSH1 PPSH0
Write:
$0266 PIEH Read: PIEH7 PIEH6 PIEH5 PIEH4 PIEH3 PIEH2 PIEH1 PIEH0
Write:
$0267 PIFH Read: PIFH7 PIFH6 PIFH5 PIFH4 PIFH3 PIFH2 PIFH1 PIFH0
Write:
$0268 PTJ Read: PTJ7 PTJ6 0000PTJ1 PTJ0
Write:
$0269 PTIJ Read: PTIJ7 PTIJ6 0 0 0 0 PTIJ1 PTIJ0
Write:
$026A DDRJ Read: DDRJ7 DDRJ7 0000DDRJ1 DDRJ0
Write:
$026B RDRJ Read: RDRJ7 RDRJ6 0000RDRJ1 RDRJ0
Write:
$026C PERJ Read: PERJ7 PERJ6 0000PERJ1 PERJ0
Write:
$026D PPSJ Read: PPSJ7 PPSJ6 0000PPSJ1 PPSJ0
Write:
$026E PIEJ Read: PIEJ7 PIEJ6 0000PIEJ1 PIEJ0
Write:
$026F PIFJ Read: PIFJ7 PIFJ6 0000PIFJ1 PIFJ0
Write:
$0270 -
$027F Reserved Read:
$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0280 CAN4CTL0 Read: RXFRM RXACT CSWAI SYNCH TIME WUPE SLPRQ INITRQ
Write:
$0281 CAN4CTL1 Read: CANE CLKSRC LOOPB LISTEN 0WUPM SLPAK INITAK
Write:
$0282 CAN4BTR0 Read: SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:
$0283 CAN4BTR1 Read: SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
$0284 CAN4RFLG Read: WUPIF CSCIF RSTAT1 RSTAT0 TSTAT1 TSTAT0 OVRIF RXF
Write:
$0285 CAN4RIER Read: WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:
$0286 CAN4TFLG Read: 0 0 0 0 0 TXE2 TXE1 TXE0
Write:
$0287 CAN4TIER Read: 0 0 0 0 0 TXEIE2 TXEIE1 TXEIE0
Write:
$0288 CAN4TARQ Read: 0 0 0 0 0 ABTRQ2 ABTRQ1 ABTRQ0
Write:
$0289 CAN4TAAK Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:
$028A CAN4TBSEL Read: 0 0 0 0 0 TX2 TX1 TX0
Write:
$0240 - $027F PIM (Port Integration Module)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
49
Freescale Semiconductor
$028B CAN4IDAC Read: 0 0 IDAM1 IDAM0 0 IDHIT2 IDHIT1 IDHIT0
Write:
$028C Reserved Read:00000000
Write:
$028D Reserved Read:00000000
Write:
$028E CAN4RXERR Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:
$028F CAN4TXERR Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:
$0290 CAN4IDAR0 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0291 CAN4IDAR1 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0292 CAN4IDAR2 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0293 CAN4IDAR3 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0294 CAN4IDMR0 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0295 CAN4IDMR1 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0296 CAN4IDMR2 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0297 CAN4IDMR3 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$0298 CAN4IDAR4 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$0299 CAN4IDAR5 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$029A CAN4IDAR6 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$029B CAN4IDAR7 Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0
Write:
$029C CAN4IDMR4 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$029D CAN4IDMR5 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$029E CAN4IDMR6 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$029F CAN4IDMR7 Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0
Write:
$02A0 -
$02AF CAN4RXFG Read: FOREGROUND RECEIVE BUFFER see (Table 1-3)
Write:
$02B0 -
$02BF CAN4TXFG Read: FOREGROUND TRANSMIT BUFFER see (Table 1-3)
Write:
$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
50 Freescale Semiconductor
$02C0 - $02E7 PWM (Pulse Width Modulator 8 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$02C0 PWME Read: PWME7 PWME6 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0
Write:
$02C1 PWMPOL Read: PPOL7 PPOL6 PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0
Write:
$02C2 PWMCLK Read: PCLK7 PCLK6 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0
Write:
$02C3 PWMPRCLK Read: 0 PCKB2 PCKB1 PCKB0 0PCKA2 PCKA1 PCKA0
Write:
$02C4 PWMCAE Read: CAE7 CAE6 CAE5 CAE4 CAE3 CAE2 CAE1 CAE0
Write:
$02C5 PWMCTL Read: CON67 CON45 CON23 CON01 PSWAI PFRZ 0 0
Write:
$02C6 PWMTST
Test Only Read:00000000
Write:
$02C7 PWMPRSC Read:00000000
Write:
$02C8 PWMSCLA Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02C9 PWMSCLB Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02CA PWMSCNTA Read:00000000
Write:
$02CB PWMSCNTB Read:00000000
Write:
$02CC PWMCNT0 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$02CD PWMCNT1 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$02CE PWMCNT2 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$02CF PWMCNT3 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$02D0 PWMCNT4 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$02D1 PWMCNT5 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$02D2 PWMCNT6 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$02D3 PWMCNT7 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0
$02D4 PWMPER0 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02D5 PWMPER1 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02D6 PWMPER2 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02D7 PWMPER3 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02D8 PWMPER4 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
Device User Guide — 9S12KT256DGV1/D V01.09
51
Freescale Semiconductor
1.8 Part ID Assignments
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after
reset. The read-only value is a unique part ID for each revision of the chip. Table 1-4 Assigned Part
ID Numbers shows the assigned part ID number.
$02D9 PWMPER5 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02DA PWMPER6 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02DB PWMPER7 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02DC PWMDTY0 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02DD PWMDTY1 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02DE PWMDTY2 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02DF PWMDTY3 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02E0 PWMDTY4 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02E1 PWMDTY5 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02E2 PWMDTY6 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02E3 PWMDTY7 Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:
$02E4 PWMSDN Read: PWMIF PWMIE PWMRS
TRT PWMLVL 0PWM7IN PWM7IN
LPWM7E
NA
Write:
$02E5 Reserved Read:00000000
Write:
$02E6 Reserved Read:00000000
Write:
$02E7 Reserved Read:00000000
Write:
$02E8 - $03FF Reserved space
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$02E8
- $03FF Reserved Read:00000000
Write:
$02C0 - $02E7 PWM (Pulse Width Modulator 8 Bit 8 Channel)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device User Guide — 9S12KT256DGV1/D V01.09
52 Freescale Semiconductor
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C
and $001D after reset). Table 1-5 shows the read-only values of these registers. Refer to HCS12 Module
Mapping and Control (MMC) Block Guide for further details.
Table 1-4 Assigned Part ID Numbers
Device Mask Set Number Part ID1
NOTES:
1. The coding is as follows:
Bit 15-12: Major family identifier
Bit 11-8: Minor family identifier
Bit 7-4: Major mask set revision number including FAB transfers
Bit 3-0: Minor - non full - mask set revision
MC9S12KT256 0L33V $7000
MC9S12KG128 0L74N $7100
Table 1-5 Memory size registers
Device Register name Value
MC9S12KT256 MEMSIZ0 $25
MC9S12KT256 MEMSIZ1 $81
MC9S12KG128 MEMSIZ0 $13
MC9S12KG128 MEMSIZ1 $80
Device User Guide — 9S12KT256DGV1/D V01.09
53
Freescale Semiconductor
Section 2 Signal Description
2.1 Device Pinout
The MC9S12K-Family and its derivatives are available in a 112-pin low profile quad flat pack (LQFP), a
100-pin low profile quad flat pack (LQFP), and a 80-pin quad flat pack (QFP). Most pins perform two or
more functions, as described in the Signal Descriptions. Figure 2-1, Figure 2-2 and Figure 2-3 show
the pin assignments for different packages.
Device User Guide — 9S12KT256DGV1/D V01.09
54 Freescale Semiconductor
Figure 2-1 Pin assignments for 112 LQFP
VRH
VDDA
PAD15/AN15
PAD07/AN07
PAD14/AN14
PAD06/AN06
PAD13/AN13
PAD05/AN05
PAD12/AN12
PAD04/AN04
PAD11/AN11
PAD03/AN03
PAD10/AN10
PAD02/AN02
PAD09/AN09
PAD01/AN01
PAD08/AN08
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
PP4/KWP4/PWM4/MISO2
PP5/KWP5/PWM5/MOSI2
PP6/KWP6/PWM6/SS2
PP7/KWP7/PWM7/SCK2
PK7/ECS
VDDX
VSSX
PM0/RXCAN0
PM1/TXCAN0
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN0/RXCAN4/MOSI0
PM5/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA
PJ7/KWJ7/TXCAN4/SCL
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
PM6/RXCAN4
PM7/TXCAN4
VSSA
VRL
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
XADDR17/PK3
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
XADDR19/PK5
XADDR18/PK4
KWJ1/PJ1
KWJ0/PJ0
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
SS2/KWH7/PH7
SCK2/KWH6/PH6
MOSI2/KWH5/PH5
MISO2/KWH4/PH4
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
SS1/KWH3/PH3
SCK1/KWH2/PH2
MOSI1/KWH1/PH1
MISO1/KWH0/PH0
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
Signals shown in Bold are not available on the 80 Pin Package
MC9S12K-Family
112LQFP
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
Signals shown in Italic are only available in MC9S12KT256
Device User Guide — 9S12KT256DGV1/D V01.09
55
Freescale Semiconductor
Figure 2-2 Pin assignments for 100 LQFP
VRH
VDDA
PAD07/AN07
PAD06/AN06
PAD05/AN05
PAD12/AN12
PAD04/AN04
PAD11/AN11
PAD03/AN03
PAD10/AN10
PAD02/AN02
PAD09/AN09
PAD01/AN01
PAD08/AN08
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
PP4/KWP4/PWM4/MISO2
PP5/KWP5/PWM5/MOSI2
PP6/KWP6/PWM6/SS2
PP7/KWP7/PWM7/SCK2
VDDX
VSSX
PM0/RXCAN0
PM1/TXCAN0
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN0/RXCAN4/MOSI0
PM5/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA
PJ7/KWJ7/TXCAN4/SCL
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
VSSA
VRL
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
KWJ1/PJ1
KWJ0/PJ0
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
KWH5/PH5
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
SS1/KWH3/PH3
SCK1/KWH2/PH2
MOSI1/KWH1/PH1
MISO1/KWH0/PH0
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
Signals shown in Bold are not available on the 80 Pin Package
MC9S12K-Family
100LQFP
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
Signals shown in Italic are only available in MC9S12KT256
Device User Guide — 9S12KT256DGV1/D V01.09
56 Freescale Semiconductor
Figure 2-3 Pin assignments for 80 QFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
VRH
VDDA
PAD07/AN07
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
PP4/KWP4/PWM4/MISO2
PP5/KWP5/PWM5/MOSI2
PP7/KWP7/PWM7SCK2
VDDX
VSSX
PM0/RXCAN0
PM1/TXCAN0
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN0/RXCAN4/MOSI0
PM5/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA
PJ7/KWJ7/TXCAN4/SCL
VREGEN
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
VSSA
VRL
PWM3/KWP3/PP3
PWM2/KWP2/PP2
PWM1/KWP1/PP1
PWM0/KWP0/PP0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
MC9S12K-Family
80 QFP
Signals shown in Italic are only available in MC9S12KT256
Device User Guide — 9S12KT256DGV1/D V01.09
57
Freescale Semiconductor
2.2 Signal Properties Summary
(Table 2-1) summarizes the pin functionality. Signals shown in bold are not available in the 80 pin
package. (Table 2-2) summarizes the power and ground pins.
Table 2-1 Signal Properties
Pin Name
Function 1 Pin Name
Function 2 Pin Name
Function 3 Pin Name
Function 4 Powered
by
Internal Pull
Resistor Description
CTRL Reset
State
EXTAL VDDPLL NA NA Oscillator Pins
XTAL VDDPLL NA NA
RESET VDDR None None External Reset
TEST NA NA NA Test Input
VREGEN VDDX NA NA Voltage Regulator Enable Input
XFC VDDPLL NA NA PLL Loop Filter
BKGD TAGHI MODC VDDR Always
Up Up Background Debug, Tag High, Mode
Input
PAD[15:8] AN[15:8] AN1[7:0]1 VDDA None None
Port AD Input, Analog Inputs of ATD
in MC9S12KG128(64)(32),
MC9S12KL128(64) and
MC9S12KC128(64); Analog Inputs of
ATD1 in MC9S12KT256 and
MC9S12KG256
PAD[7:0] AN[7:0] AN0[7:0]1 VDDA None None
Port AD Input, Analog Inputs of ATD in
MC9S12KG128(64)(32),
MC9S12KL128(64) and
MC9S12KC128(64); Analog Inputs of
ATD0 in MC9S12KT256 and
MC9S12KG256
PA[7:0] ADDR[15:8]/
DATA[15:8] VDDR PUCR Disabled Port A I/O, Multiplexed Address/Data
PB[7:0] ADDR[7:0]/
DATA[7:0] VDDR PUCR Disabled Port B I/O, Multiplexed Address/Data
PE7 NOACC XCLKS VDDR PUCR Up Port E I/O, Access, Clock Select
PE6 IPIPE1 MODB VDDR While RESET
pin is low:
Down Port E I/O, Pipe Status, Mode Input
PE5 IPIPE0 MODA VDDR While RESET
pin is low:
Down Port E I/O, Pipe Status, Mode Input
PE4 ECLK VDDR PUCR Up Port E I/O, Bus Clock Output
PE3 LSTRB TAGLO VDDR PUCR Up Port E I/O, Byte Strobe, Tag Low
PE2 R/W VDDR PUCR Up Port E I/O, R/W in expanded modes
PE1 IRQ VDDR Always Up Port E Input, Maskable Interrupt
PE0 XIRQ VDDR Port E Input, Non Maskable Interrupt
PH7 KWH7 SS2 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt, SS of SPI2
Device User Guide — 9S12KT256DGV1/D V01.09
58 Freescale Semiconductor
PH6 KWH6 SCK2 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt, SCK of SPI2
PH5 KWH5 MOSI2 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt, MOSI of SPI2
PH4 KWH4 MISO2 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt, MISO of SPI2
PH3 KWH3 SS1 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt, SS of SPI1
PH2 KWH2 SCK1 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt, SCK of SPI1
PH1 KWH1 MOSI1 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt, MOSI of SPI1
PH0 KWH0 MISO1 VDDR PERH/
PPSH Disabled Port H I/O, Interrupt, MISO of SPI1
PJ7 KWJ7 TXCAN4 SCL VDDX PERJ/
PPSJ Up Port J I/O, Interrupt, TX of CAN4,
SCL of IIC
PJ6 KWJ6 RXCAN4 SDA VDDX PERJ/
PPSJ Up Port J I/O, Interrupt, RX of CAN4,
SDA of IIC
PJ[1:0] KWJ[1:0] VDDX PERJ/
PPSJ Up Port J I/O, Interrupts
PK7 ECS ROMCTL VDDX PUCR Up Port K I/O, Emulation Chip Select,
ROM On Enable
PK[5:0] XADDR[19:14] VDDX PUCR Up Port K I/O, Extended Addresses
PM7 TXCAN4 VDDX PERM/
PPSM Disabled Port M I/O, CAN4 TX
PM6 RXCAN4 VDDX PERM/
PPSM Disabled Port M I/O, CAN4 RX
PM5 TXCAN0 TXCAN4 SCK0 VDDX PERM/
PPSM Disabled Port M I/O, CAN0 TX, CAN4 TX,
SPI0 SCK
PM4 RXCAN0 RXCAN4 MOSI0 VDDX PERM/
PPSM Disabled Port M I/O, CAN0 RX, CAN4 RX,
SPI0 MOSI
PM3 TXCAN11TXCAN0 SS0 VDDX PERM/
PPSM Disabled Port M I/O, CAN1 TX, CAN0 TX, SPI0
SS
PM2 RXCAN11RXCAN0 MISO0 VDDX PERM/
PPSM Disabled Port M I/O, CAN1 RX, CAN0 RX, SPI0
MISO
PM1 TXCAN0 VDDX PERM/
PPSM Disabled Port M I/O, CAN0 TX
PM0 RXCAN0 VDDX PERM/
PPSM Disabled Port M I/O, CAN0 RX
PP7 KWP7 PWM7 SCK2 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt, PWM Channel 7,
SCK of SPI2
PP6 KWP6 PWM6 SS2 VDDX PERP/
PPSP Disabled P ort P I/O, Interrupt, PWM Channel 6,
SPI2 SS
PP5 KWP5 PWM5 MOSI2 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt, PWM Channel 5,
SPI2 MOSI
PP4 KWP4 PWM4 MISO2 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt, PWM Channel 4,
SPI2 MISO
Pin Name
Function 1 Pin Name
Function 2 Pin Name
Function 3 Pin Name
Function 4 Powered
by
Internal Pull
Resistor Description
CTRL Reset
State
Device User Guide — 9S12KT256DGV1/D V01.09
59
Freescale Semiconductor
Table 2-2 Power and Ground
PP3 KWP3 PWM3 SS1 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt, PWM Channel 3,
SPI1 SS
PP2 KWP2 PWM2 SCK1 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt, PWM Channel 2,
SPI1 SCK
PP1 KWP1 PWM1 MOSI1 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt, PWM Channel 1,
SPI1 MOSI
PP0 KWP0 PWM0 MISO1 VDDX PERP/
PPSP Disabled Port P I/O, Interrupt, PWM Channel 0,
SPI1 MISO
PS7 SS0 VDDX PERS/
PPSS Up Port S I/O, SPI0 SS
PS6 SCK0 VDDX PERS/
PPSS Up Port S I/O, SPI0 SCK
PS5 MOSI0 VDDX PERS/
PPSS Up Port S I/O, SPI0 MOSI
PS4 MISO0 VDDX PERS/
PPSS Up Port S I/O, SPI0 MISO
PS3 TXD1 VDDX PERS/
PPSS Up Port S I/O, SCI1TXD
PS2 RXD1 VDDX PERS/
PPSS Up Port S I/O, SCI1RXD
PS1 TXD0 VDDX PERS/
PPSS Up Port S I/O, SCI0 TXD
PS0 RXD0 VDDX PERS/
PPSS Up Port S I/O, SCI0 RXD
PT[7:0] IOC[7:0] VDDX Up or
Down Disabled Port T I/O, Timer channels
NOTES:
1. Only available on MC9S12KT256.
Mnemonic Nominal
Voltage Description
VDD1
VDD2 2.5 V Internal power and ground generated by internal regulator. These also
allow an external source to supply the core VDD/VSS voltages and
bypass the internal voltage regulator.
VSS1
VSS2 0V
VDDR 3.3/5.0 V External power and ground, supply to pin drivers and internal voltage
regulator.
VSSR 0 V
VDDX 3.3/5.0 V External power and ground, supply to pin drivers.
VSSX 0 V
VDDA 3.3/5.0 V Operating voltage and ground for the analog-to-digital converter and
the reference for the internal voltage regulator, allows the supply
voltage to the A/D to be bypassed independently.
VSSA 0 V
VRH 3.3/5.0 V Reference voltage high for the ATD converter.
VRL 0 V Reference voltage low for the ATD converter.
Pin Name
Function 1 Pin Name
Function 2 Pin Name
Function 3 Pin Name
Function 4 Powered
by
Internal Pull
Resistor Description
CTRL Reset
State
Device User Guide — 9S12KT256DGV1/D V01.09
60 Freescale Semiconductor
NOTE: All VSS pins must be connected together in the application. Because fast signal
transitions place high, short-duration current demands on the power supply, use
bypass capacitors with high-frequency characteristics and place them as close to
the MCU as possible. Bypass requirements depend on MCU pin load.
2.3 Detailed Signal Descriptions
2.3.1 EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.
2.3.2 RESET — External Reset Pin
An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up
state, and an output when an internal MCU function causes a reset.
2.3.3 TEST — Test Pin
This input only pin is reserved for test.
NOTE: The TEST pin must be tied to VSS in all applications.
2.3.4 VREGEN — Voltage Regulator Enable Pin
This input only pin enables or disables the on-chip voltage regulator.
VDDPLL 2.5 V Provides operating voltage and ground for the Phased-Locked Loop.
This allows the supply voltage to the PLL to be bypassed
independently. Internal power and ground generated by internal
regulator.
VSSPLL 0 V
Mnemonic Nominal
Voltage Description
Device User Guide — 9S12KT256DGV1/D V01.09
61
Freescale Semiconductor
2.3.5 XFC — PLL Loop Filter Pin
PLL loop filter. Please ask your Motorola representative for the interactive application note to compute
PLL loop filter elements. Any current leakage on this pin must be avoided.
Figure 2-4 PLL Loop Filter Connections
2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin
The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the
instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is
latched to the MODC bit at the rising edge of RESET.
2.3.7 PAD[15:8] / AN[15:8] — Port AD Input Pins [15:8]
PAD15 - PAD8 are general purpose input pins and analog inputs of the single analog to digital converter
with 16 channels on MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). PAD15 -
PAD8 are general purpose input pins and analog inputs of the analog to digital converter with 8 channels
(ATD1) on MC9S12KT256 and MC9S12KG256.
2.3.8 PAD[7:0] / AN[7:0] — Port AD Input Pins [7:0]
PAD7 - PAD0 are general purpose input pins and analog inputs of the single analog to digital converter
with 16 channels on MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). PAD7 -
PAD0 are general purpose input pins and analog inputs of the analog to digital converter with 8 channels
(ATD0) on MC9S12KT256 and MC9S12KG256.
2.3.9 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins
PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
MCU
XFC
R
CS
CP
VDDPLLVDDPLL
Device User Guide — 9S12KT256DGV1/D V01.09
62 Freescale Semiconductor
2.3.10 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
2.3.11 PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.
The XCLKS is an input signal which controls whether a crystal in combination with the internal Loop
Controlled Pierce (low power) oscillator is used or whether Full Swing Pierce oscillator/external clock
circuitry is used. The state of this pin is latched at the rising edge of RESET. If the input is a logic low the
EXTAL pin is configured for an external clock drive or Full Swing Pierce Oscillator. If input is a logic
high a Loop Controlled Pierce oscillator circuit is configured on EXTAL and XTAL. Since this pin is an
input with a pull-up device during reset, if the pin is left floating, the default configuration is a Loop
Controlled Pierce oscillator circuit on EXTAL and XTAL.
Figure 2-5 Loop Controlled Pierce Oscillator Connections (PE7=1)
Table 2-3 Clock selection based on PE7 during reset
PE7 Description
1 Loop Controlled Pierce Oscillator selected
0 Full Swing Pierce Oscillator or external clock selected
MCU
EXTAL
XTAL
VSSPLL
Crystal or
ceramic resonator
C8
C7
Device User Guide — 9S12KT256DGV1/D V01.09
63
Freescale Semiconductor
Figure 2-6 Full Swing Pierce Oscillator Connections (PE7=0)
Figure 2-7 External Clock Connections (PE7=0)
2.3.12 PE6 / MODB / IPIPE1 — Port E I/O Pin 6
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1.
2.3.13 PE5 / MODA / IPIPE0 — Port E I/O Pin 5
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0.
2.3.14 PE4 / ECLK — Port E I/O Pin 4
PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK.
ECLK can be used as a timing reference.
* Rs can be zero (shorted) when use with higher frequency crystals.
Refer to manufacturer’s data.
MCU
EXTAL
XTAL RS*
RB
VSSPLL
Crystal or
ceramic resonator
C8
C7
MCU
EXTAL
XTAL
CMOS-COMPATIBLE
EXTERNAL OSCILLATOR
not connected
(VDDPLL-Level)
Device User Guide — 9S12KT256DGV1/D V01.09
64 Freescale Semiconductor
2.3.15 PE3 / LSTRB / TAGLO — Port E I/O Pin 3
PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used
for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on,
TAGLO is used to tag the low half of the instruction word being read into the instruction queue.
2.3.16 PE2 / R/W Port E I/O Pin 2
PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the
read/write output signal for the external bus. It indicates the direction of data on the external bus.
2.3.17 PE1 / IRQ — Port E Input Pin 1
PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.3.18 PE0 / XIRQ — Port E Input Pin 0
PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.3.19 PH7 / KWH7 / SS2 — Port H I/O Pin 7
PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface
2 (SPI2).
2.3.20 PH6 / KWH6 / SCK2 — Port H I/O Pin 6
PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface
2 (SPI2).
2.3.21 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5
PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2).
2.3.22 PH4 / KWH4 / MISO2 — Port H I/O Pin 2
PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2).
Device User Guide — 9S12KT256DGV1/D V01.09
65
Freescale Semiconductor
2.3.23 PH3 / KWH3 / SS1 — Port H I/O Pin 3
PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface
1 (SPI1).
2.3.24 PH2 / KWH2 / SCK1 — Port H I/O Pin 2
PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface
1 (SPI1).
2.3.25 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1
PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).
2.3.26 PH0 / KWH0 / MISO1 — Port H I/O Pin 0
PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).
2.3.27 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7
PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable
Controller Area Network controller 4 (CAN4) or the serial clock pin SCL of the IIC module.
2.3.28 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6
PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable
Controller Area Network controller 4 (CAN4) or the serial data pin SDA of the IIC module.
2.3.29 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]
PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt
causing the MCU to exit STOP or WAIT mode.
2.3.30 PK7 / ECS / ROMCTL — Port K I/O Pin 7
PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used
as the emulation chip select output (ECS). During MCU expanded modes of operation, this pin is used to
Device User Guide — 9S12KT256DGV1/D V01.09
66 Freescale Semiconductor
enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the
state of this pin is latched to the ROMON bit.For all other modes the reset state of the ROMON bit is as
follows:
special single : ROMCTL = 1
normal single : ROMCTL = 1
emulation expanded wide : ROMCTL = 0
emulation expanded narrow : ROMCTL = 0
special test : ROMCTL = 0
peripheral test : ROMCTL = 1
2.3.31 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]
PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins
provide the expanded address XADDR[19:14] for the external bus.
2.3.32 PM7 / TXCAN4 — Port M I/O Pin 7
PM7 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controllers 4 (CAN4).
2.3.33 PM6 / RXCAN4 — Port M I/O Pin 6
PM6 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controllers 4 (CAN4).
2.3.34 PM5 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5
PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controllers 0 or 4 (CAN0 or CAN4). It can be configured as
the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).
2.3.35 PM4 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4
PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controllers 0 or 4 (CAN0 or CAN4). It can be configured as
the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial
Peripheral Interface 0 (SPI0).
Device User Guide — 9S12KT256DGV1/D V01.09
67
Freescale Semiconductor
2.3.36 PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3
PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as
the slave select pin SS of the Serial Peripheral Interface 0 (SPI0).
2.3.37 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2
PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as
the master input (during master mode) or slave output pin (during slave mode) MISO for the Serial
Peripheral Interface 0 (SPI0).
2.3.38 PM1 / TXCAN0 — Port M I/O Pin 1
PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0).
2.3.39 PM0 / RXCAN0 — Port M I/O Pin 0
PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0).
2.3.40 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7
PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output. It
can be configured as serial clock pin SCK of the Serial Peripheral Interface 2 (SPI2).
2.3.41 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6
PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output. It
can be configured as slave select pin SS of the Serial Peripheral Interface 2 (SPI2).
2.3.42 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5
PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output. It
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of
the Serial Peripheral Interface 2 (SPI2).
Device User Guide — 9S12KT256DGV1/D V01.09
68 Freescale Semiconductor
2.3.43 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4
PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output. It
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of
the Serial Peripheral Interface 2 (SPI2).
2.3.44 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3
PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It
can be configured as slave select pin SS of the Serial Peripheral Interface 1 (SPI1).
2.3.45 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2
PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It
can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).
2.3.46 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1
PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of
the Serial Peripheral Interface 1 (SPI1).
2.3.47 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0
PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of
the Serial Peripheral Interface 1 (SPI1).
2.3.48 PS7 / SS0 — Port S I/O Pin 7
PS6 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial
Peripheral Interface 0 (SPI0).
2.3.49 PS6 / SCK0 — Port S I/O Pin 6
PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial
Peripheral Interface 0 (SPI0).
Device User Guide — 9S12KT256DGV1/D V01.09
69
Freescale Semiconductor
2.3.50 PS5 / MOSI0 — Port S I/O Pin 5
PS5 is a general purpose input or output pin. It can be configured as master output (during master mode)
or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.3.51 PS4 / MISO0 — Port S I/O Pin 4
PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or
slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.3.52 PS3 / TXD1 — Port S I/O Pin 3
PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 1 (SCI1).
2.3.53 PS2 / RXD1 — Port S I/O Pin 2
PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 1 (SCI1).
2.3.54 PS1 / TXD0 — Port S I/O Pin 1
PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 0 (SCI0).
2.3.55 PS0 / RXD0 — Port S I/O Pin 0
PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 0 (SCI0).
2.3.56 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]
PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output
compare pins IOC7-IOC0 of the Timer (TIM).
2.4 Power Supply Pins
MC9S12K-Family power and ground pins are described below.
NOTE: All VSS pins must be connected together in the application.
Device User Guide — 9S12KT256DGV1/D V01.09
70 Freescale Semiconductor
2.4.1 VDDX,VSSX — Power Supply Pins for I/O Drivers
External power and ground for I/O drivers. Because fast signal transitions place high, short-duration
current demands on the power supply, use bypass capacitors with high-frequency characteristics and place
them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are
loaded.
2.4.2 VDDR, VSSR — Power Supply Pins for I/O Drivers & for Internal Voltage
Regulator
External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal
transitions place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on how heavily the MCU pins are loaded.
2.4.3 VDD1, VDD2, VSS1, VSS2 — Power Supply Pins for Internal Logic
Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high,
short-duration current demands on the power supply, use bypass capacitors with high-frequency
characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the
internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is
turned off, if VREGEN is tied to ground.
NOTE: No load allowed except for bypass capacitors.
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to
digital converter. It also provides the reference for the internal voltage regulator. This allows the supply
voltage to the ATD and the reference voltage to be bypassed independently.
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog to digital converter.
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the
supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by
the internal voltage regulator.
NOTE: No load allowed except for bypass capacitors.
Device User Guide — 9S12KT256DGV1/D V01.09
71
Freescale Semiconductor
Section 3 System Clock Description
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.
Figure 3-1 shows the clock connections from the CRG to all modules. Consult the CRG Block Guide for
details on clock generation.
Figure 3-1 Clock Connections
CRG Bus Clock
Core Clock
EXTAL
XTAL Oscillator Clock
HCS12 CORE
Flash
BDM
OSC
CPU
MEBI MMC
INT DBG
IIC
RAM
SCI0, SCI1
PWM
ATD
EEPROM
TIM
SPI0, SPI1, SPI2
CAN0, CAN1, CAN4
PIM
Device User Guide — 9S12KT256DGV1/D V01.09
72 Freescale Semiconductor
Section 4 Modes of Operation
4.1 Overview
Eight possible modes determine the operating configuration of the MC9S12K-Family. Each mode has an
associated default memory map and external bus configuration controlled by a further pin.
Three low power modes exist for the device.
4.2 Chip Configuration Summary
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during
reset ((Table 4-1)). The MODC, MODB, and MODA bits in the MODE register show the current
operating mode and provide limited mode switching during operation. The states of the MODC, MODB,
and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal
allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is
visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the
ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.
For further explanation on the modes refer to the HCS12 MEBI Block Guide.
Table 4-1 Mode Selection
BKGD =
MODC PE6 =
MODB PE5 =
MODA PK7 =
ROMCTL ROMON
Bit Mode Description
0 0 0 X 1 Special Single Chip, BDM allowed and ACTIVE. BDM is
allowed in all other modes but a serial command is
required to make BDM active.
0010 1 Emulation Expanded Narrow, BDM allowed
1 0
0 1 0 X 0 Special Test (Expanded Wide), BDM allowed
0110 1 Emulation Expanded Wide, BDM allowed
1 0
1 0 0 X 1 Normal Single Chip, BDM allowed
1010 0 Normal Expanded Narrow, BDM allowed
1 1
1 1 0 X 1 P eripheral; BDM allo wed b ut b us oper ations would cause
bus conflicts (must not be used)
1110 0 Normal Expanded Wide, BDM allowed
1 1
Device User Guide — 9S12KT256DGV1/D V01.09
73
Freescale Semiconductor
4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
Protection of the contents of FLASH,
Protection of the contents of EEPROM,
Operation in single-chip mode,
Operation from external memory with internal FLASH and EEPROM disabled.
The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters stored in EEPROM.
4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by
programming the security bits located in the FLASH module. These non-volatile bits will keep the part
secured through resetting the part and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash Block Guide for more details on the security configuration.
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS Description
1 Loop Controlled Pierce Oscillator selected
0 Full Swing Pierce Oscillator or external clock selected
Table 4-3 Voltage Regulator VREGEN
VREGEN Description
1Internal Voltage Regulator enabled
0Internal Voltage Regulator disabled, VDD1,2 and
VDDPLL must be supplied externally with 2.5V
Device User Guide — 9S12KT256DGV1/D V01.09
74 Freescale Semiconductor
4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
4.3.2.2 Executing from External Memory
The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM
operations will be blocked.
4.3.3 Unsecuring the Microcontroller
In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be
done through an external program in expanded mode.
Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode.
This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program
completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally
done through the BDM, but the user could also change to expanded mode (by writing the mode bits
through the BDM) and jumping to an external program (again through BDM commands). Note that if the
part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be
secured again.
4.4 Low Power Modes
The microcontroller features three main low power modes. Consult the respective Block Guide for
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of
information about the clock system is the Clock and Reset Generator Guide (CRG).
4.4.1 Stop
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.
4.4.2 Pseudo Stop
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this
mode is significantly shorter.
Device User Guide — 9S12KT256DGV1/D V01.09
75
Freescale Semiconductor
4.4.3 Wait
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.
For further power consumption the peripherals can individually turn off their local clocks.
4.4.4 Run
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save
power.
Device User Guide — 9S12KT256DGV1/D V01.09
76 Freescale Semiconductor
Section 5 Resets and Interrupts
5.1 Overview
Consult the Exception Processing section of the CPU12 Reference Manual for information on resets and
interrupts. Both local masking and CCR masking are included as listed in Table 5-1. System resets can
be generated through external control of the RESET pin, through the clock and reset generator module
CRG or through the low voltage reset (LVR) generator of the voltage regulator module. Refer to the CRG
and VREG Block Guides for detailed information on reset generation.
5.2 Vectors
5.2.1 Vector Table
(Table 5-1) lists interrupt sources and vectors in default order of priority.
Table 5-1 Interrupt Vector Locations
Vector Address Interrupt Source CCR
Mask Local Enable HPRIO Value
to Elevate
$FFFE, $FFFF External Reset, Power On Reset or Low
Voltage Reset (see CRG Flags Register
to determine reset source) None None
$FFFC, $FFFD Clock Monitor fail reset None PLLCTL (CME, FCME)
$FFFA, $FFFB COP failure reset None COP rate select
$FFF8, $FFF9 Unimplemented instruction trap None None
$FFF6, $FFF7 SWI None None
$FFF4, $FFF5 XIRQ X-Bit None
$FFF2, $FFF3 IRQ I-Bit IRQCR (IRQEN) $F2
$FFF0, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $F0
$FFEE, $FFEF Standard Timer channel 0 I-Bit TIE (C0I) $EE
$FFEC, $FFED Standard Timer channel 1 I-Bit TIE (C1I) $EC
$FFEA, $FFEB Standard Timer channel 2 I-Bit TIE (C2I) $EA
$FFE8, $FFE9 Standard Timer channel 3 I-Bit TIE (C3I) $E8
$FFE6, $FFE7 Standard Timer channel 4 I-Bit TIE (C4I) $E6
$FFE4, $FFE5 Standard Timer channel 5 I-Bit TIE (C5I) $E4
$FFE2, $FFE3 Standard Timer channel 6 I-Bit TIE (C6I) $E2
$FFE0, $FFE1 Standard Timer channel 7 I-Bit TIE (C7I) $E0
$FFDE, $FFDF Standard Timer overflow I-Bit TSCR2 (TOI) $DE
$FFDC, $FFDD Pulse accumulator overflow I-Bit PACTL (PAOVI) $DC
$FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA
$FFD8, $FFD9 SPI0 I-Bit SPICR1 (SPIE, SPTIE) $D8
$FFD6, $FFD7 SCI0 I-Bit SCICR2
(TIE, TCIE, RIE, ILIE) $D6
$FFD4, $FFD5 SCI1 I-Bit SCICR2
(TIE, TCIE, RIE, ILIE) $D4
$FFD2, $FFD3 ATD0 I-Bit ATDCTL2 (ASCIE) $D2
Device User Guide — 9S12KT256DGV1/D V01.09
77
Freescale Semiconductor
$FFD0, $FFD1 ATD1 I-Bit ATDCTL2 (ASCIE)1$D0
$FFCE, $FFCF Port J I-Bit PIEJ
(PIEJ7, PIEJ6, PIEJ1, PIEJ0) $CE
$FFCC, $FFCD Port H I-Bit PIEH (PIEH7-0) $CC
$FFCA, $FFCB Reserved I-Bit Reserved $CA
$FFC8, $FFC9 I-Bit $C8
$FFC6, $FFC7 CRG PLL lock I-Bit CRGINT (LOCKIE) $C6
$FFC4, $FFC5 CRG Self Clock Mode I-Bit CRGINT (SCMIE) $C4
$FFC2, $FFC3 FLASH Double Fault Detect I-Bit FCNFG (DFDIE) $C2
$FFC0, $FFC1 IIC Bus I-Bit IBCR (IBIE) $C0
$FFBE, $FFBF SPI1 I-Bit SPICR1 (SPIE, SPTIE) $BE
$FFBC, $FFBD SPI2 I-Bit SPICR1 (SPIE, SPTIE) $BC
$FFBA, $FFBB EEPROM command I-Bit ECNFG (CCIE, CBEIE) $BA
$FFB8, $FFB9 FLASH command I-Bit FCNFG (CCIE, CBEIE) $B8
$FFB6, $FFB7 CAN0 wake-up I-Bit CAN0RIER (WUPIE) $B6
$FFB4, $FFB5 CAN0 errors I-Bit CAN0RIER (CSCIE, OVRIE) $B4
$FFB2, $FFB3 CAN0 receive I-Bit CAN0RIER (RXFIE) $B2
$FFB0, $FFB1 CAN0 transmit I-Bit CAN0TIER (TXEIE2 - TXEIE0) $B0
$FFAE, $FFAF CAN1 wake-up I-Bit CAN1RIER (WUPIE)1$AE
$FFAC, $FFAD CAN1 errors I-Bit CAN1RIER (CSCIE, OVRIE)1$AC
$FFAA, $FFAB CAN1 receive I-Bit CAN1RIER (RXFIE)1$AA
$FFA8, $FFA9 CAN1 transmit I-Bit CAN1TIER (TXEIE2 - TXEIE0)1$A8
$FFA6, $FFA7
Reserved
I-Bit
Reserved
$A6
$FFA4, $FFA5 I-Bit $A4
$FFA2, $FFA3 I-Bit $A2
$FFA0, $FFA1 I-Bit $A0
$FF9E, $FF9F I-Bit $9E
$FF9C, $FF9D I-Bit $9C
$FF9A, $FF9B I-Bit $9A
$FF98, $FF99 I-Bit $98
$FF96, $FF97 CAN4 wake-up I-Bit CAN4RIER (WUPIE) $96
$FF94, $FF95 CAN4 errors I-Bit CAN4RIER (CSCIE, OVRIE) $94
$FF92, $FF93 CAN4 receive I-Bit CAN4RIER (RXFIE) $92
$FF90, $FF91 CAN4 transmit I-Bit CAN4TIER (TXEIE2 - TXEIE0) $90
$FF8E, $FF8F Port P I-Bit PIEP (PIEP7-0) $8E
$FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C
$FF8A, $FF8B VREG Low Voltage Interrupt I-Bit CTRL0 (LVIE) $8A
$FF80 to $FF89 Reserved
NOTES:
1. Interrupt vector is only available on MC9S12KT256. Otherwise it is reserved.
Device User Guide — 9S12KT256DGV1/D V01.09
78 Freescale Semiconductor
5.3 Resets
Resets are a subset of the interrupts featured inTable 5-1. The different sources capable of generating a
system reset are summarized in Table 5-2.
5.3.1 Effects of Reset
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block Guides for register reset states. Refer to the HCS12 MEBI Block Guide for mode
dependent pin configuration of port A, B and E out of reset.
Refer to the PIM Block Guide for reset configurations of all peripheral module ports.
Refer to Table 1-2(Table 1-2) for locations of the memories depending on the operating mode after reset.
The RAM array is not automatically initialized out of reset.
Section 6 HCS12 Core Block Description
6.1 CPU12 Block Description
Consult the CPU12 Reference Manual for information about the Central Processing Unit.
When the CPU12 Reference Manual refers to cycles this is equivalent to Bus Clock periods.
So 1 cycle is equivalent to 1 Bus Clock period.
6.2 HCS12 Background Debug Module (BDM) Block Description
Consult the HCS12 BDM Block Guide for information about the Background Debug Module.
When the BDM Block Guide refers to alternate clock this is equivalent to Oscillator Clock.
Table 5-2 Reset Summary
Reset Priority Source Vector
Power-on Reset 1 CRG Module $FFFE, $FFFF
External Reset 1 RESET pin $FFFE, $FFFF
Low Voltage Reset 1 VREG Module $FFFE, $FFFF
Clock Monitor Reset 2 CRG Module $FFFC, $FFFD
COP Watchdog Reset 3 CRG Module $FFFA, $FFFB
Device User Guide — 9S12KT256DGV1/D V01.09
79
Freescale Semiconductor
6.3 HCS12 Debug (DBG) Block Description
Consult the HCS12 DBG Block Guide for information about the Debug module.
6.4 HCS12 Interrupt (INT) Block Description
Consult the HCS12 INT Block Guide for information about the Interrupt module.
6.5 HCS12 Multiplexed External Bus Interface (MEBI) Block
Description
Consult the HCS12 MEBI Block Guide for information about the Multiplexed External Bus Interface
module.
6.6 HCS12 Module Mapping Control (MMC) Block Description
Consult the HCS12 MMC Block Guide for information about the Module Mapping Control module.
Section 7 Analog to Digital Converter (ATD) Block
Description
Consult the ATD_10B16C Block Guide for further information about the A/D Converter module for the
MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). When the ATD_10B16C Block
Guide refers to freeze mode this is equivalent to active BDM mode.
Consult the ATD_10B8C Block Guide for further information about the A/D Converter module for the
MC9S12KT256 and MC9S12KG256. When the ATD_10B8C Block Guide refers to freeze mode this is
equivalent to active BDM mode.
Section 8 Clock Reset Generator (CRG) Block Description
Consult the CRG Block Guide for information about the Clock and Reset Generator module.
8.1 Device-specific information
The Low Voltage Reset feature uses the low voltage reset signal from the VREG module as an input to the
CRG module. When the regulator output voltage supply to the internal chip logic falls below a specified
threshold the LVR signal from the VREG module causes the CRG module to generate a reset. Consult the
VREG Block Guide for voltage level specifications.
Device User Guide — 9S12KT256DGV1/D V01.09
80 Freescale Semiconductor
Section 9 EEPROM Block Description
Consult the EETS2K Block Guide for information about the EEPROM module for the
MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64).
Consult the EETS4K Block Guide for information about the EEPROM module for the MC9S12KT256
and MC9S12KG256.
Section 10 Flash EEPROM Block Description
Consult the FTS128K1ECC Block Guide for information about the flash module for the
MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64).
Consult the FTS256K2ECC Block Guide for information about the flash module for the MC9S12KT256
and MC9S12KG256.
The "S12 LRAE" is a generic Load RAM and Execute (LRAE) program which will be programmed into
the flash memory of this device during manufacture. This LRAE program will provide greater
programming flexibility to the end users by allowing the device to be programmed directly using SCI after
it is assembled on the PCB. Use of the LRAE program is at the discretion of the end user and, if not
required, it must simply be erased prior to flash programming. For more details of the S12 LRAE and its
implementation, please see the S12 LREA Application Note (AN2546/D) .
It is planned that most HC9S12 devices manufactured after Q1 of 2004 will be shipped with the S12 LRAE
programmed in the Flash . Exact details of the changeover (ie blank to programmed) for each product will
be communicated in advance via GPCN and will be traceable by the customer via datecode marking on
the device.
Please contact Motorola SPS Sales if you have any additional questions.
Section 11 IIC Block Description
Consult the IIC Block Guide for information about the Inter-IC Bus module.
Section 12 MSCAN Block Description
There are three MSCAN modules (CAN4, CAN1 and CAN0) implemented on the MC9S12KT256. There
are only two MSCAN modules (CAN4 and CAN0) implemented on the MC9S12KG128(64)(32). There
is only one MSCAN module (CAN0) implemented on the MC9S12KL128(64) and MC9S12KC128(64).
Consult the MSCAN Block Guide for information about the Motorola Scalable CAN Module.
Section 13 OSC Block Description
Device User Guide — 9S12KT256DGV1/D V01.09
81
Freescale Semiconductor
Consult the OSC_LCP Block Guide for information about the Oscillator module.
Section 14 Port Integration Module (PIM) Block Description
Consult the PIM_9KG128 Block Guide for information about the Port Integration Module for the
MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64).
Consult the PIM_9KT256 Block Guide for information about the Port Integration Module for the
MC9S12KT256 and MC9S12KG256.
Section 15 Pulse Width Modulator (PWM) Block
Description
Consult the PWM_8B8C Block Guide for information about the Pulse Width Modulator Module. When
the PWM_8B8C Block Guide refers to freeze mode this is equivalent to active BDM mode.
Section 16 Serial Communications Interface (SCI) Block
Description
There are two Serial Communications Interface modules (SCI1 and SCI0). Consult the SCI Block Guide
for information about the Serial Communications Interface module.
Section 17 Serial Peripheral Interface (SPI) Block
Description
There are three Serial Peripheral Interfaces (SPI2, SPI1 and SPI0) implemented on MC9S12K-Family.
Consult the SPI Block Guide for information about each Serial Peripheral Interface module.
Section 18 Timer (TIM) Block Description
Consult the TIM_16B8C Block Guide for information about the Timer module. When the TIM_16B8C
Block Guide refers to freeze mode this is equivalent to active BDM mode.
Section 19 Voltage Regulator (VREG) Block Description
Consult the VREG_3V3 Block Guide for information about the dual output linear voltage regulator.
Device User Guide — 9S12KT256DGV1/D V01.09
82 Freescale Semiconductor
19.1 Device-specific information
19.1.1 VDD1, VDD2, VSS1, VSS2
In all package versions, both internal VDD and VSS of the 2.5V domain are bonded out on 2 sides of the
device as two pin pairs (VDD1, VSS1 & VDD2, VSS2). VDD1 and VDD2 are connected together
internally. VSS1 and VSS2 are connected together internally. This allows systems to employ better supply
routing and further decoupling.
Device User Guide — 9S12KT256DGV1/D V01.09
83
Freescale Semiconductor
Appendix A Electrical Characteristics
A.1 General
NOTE: The electrical characteristics given in this section are preliminary and should be
used as a guide only. Values cannot be guaranteed by Motorola and are subject to
change without notice.
This supplement contains the most accurate electrical information for the MC9S12K-Family of
microcontrollers available at the time of publication. The information should be considered
PRELIMINARY and is subject to change.
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.
NOTE: This classification is shown in the column labeled “C” in the parameter tables
where appropriate.
P:
Those parameters are guaranteed during production testing on each individual device.
C:
Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations. They are regularly verified by production monitors.
T:
Those parameters are achieved by design characterization on a small sample size from typical
devices. All values shown in the typical column are within this category.
D:
Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12K-Family utilizes several pins to supply power to the I/O ports, A/D converter, oscillator,
PLL and internal logic.
The VDDA, VSSA pair supplies the A/D converter.
The VDDX, VSSX pair supplies the I/O pins
Device User Guide — 9S12KT256DGV1/D V01.09
84 Freescale Semiconductor
The VDDR, VSSR pair supplies the internal voltage regulator.
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic.
VDDPLL, VSSPLL supply the oscillator and the PLL.
VSS1 and VSS2 are internally connected by metal.
VDD1 and VDD2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted. IDD5 denotes the
sum of the currents flowing into the VDDA, VDDX and VDDR pins. VDD is used
for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL. IDD is
used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 3.3V/5V I/O pins
Those I/O pins have a nominal level of 3.3V or 5V depending on the application operating point. This
group of pins is comprised of all port I/O pins, the analog inputs, BKGD pin and the RESET inputs.The
internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for
the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently.
A.1.3.2 Analog Reference
This group of pins is comprised of the VRH and VRL pins.
A.1.3.3 Oscillator
The pins EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by
VDDPLL.
A.1.3.4 PLL
The pin XFC dedicated to the oscillator have a nominal 2.5V level. It is supplied by VDDPLL.
A.1.3.5 TEST
This pin is used for production testing only.
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Device User Guide — 9S12KT256DGV1/D V01.09
85
Freescale Semiconductor
Insure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).
Table A-1 Absolute Maximum Ratings
Num Rating Symbol Min Max Unit
1 I/O, Regulator and Analog Supply Voltage VDD5 -0.3 6.5 V
2Internal Logic Supply Voltage1
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.
VDD -0.3 3.0 V
3PLL Supply Voltage (1) VDDPLL -0.3 3.0 V
4 Voltage difference VDDX to VDDR and VDDA VDDX -0.3 0.3 V
5 Voltage difference VSSX to VSSR and VSSA VSSX -0.3 0.3 V
6 Digital I/O Input Voltage VIN -0.3 6.5 V
7 Analog Reference VRH, VRL -0.3 6.5 V
8 XFC, EXTAL, XTAL inputs VILV -0.3 3.0 V
9 TEST input VTEST -0.3 10.0 V
10 Instantaneous Maximum Current
Single pin limit for all digital I/O pins 2
2. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
ID-25 +25 mA
11 Instantaneous Maximum Current
Single pin limit for XFC, EXTAL, XTAL3
3. These pins are internally clamped to VSSPLL and VDDPLL
IDL -25 +25 mA
12 Instantaneous Maximum Current
Single pin limit for TEST4
4. This pin is clamped low to VSSR, but not clamped high. This pin must be tied low in applications.
IDT -0.25 0 mA
13 Operating Temperature Range (packaged) TA– 40 125 °C
14 Operating Temperature Range (junction) TJ– 40 140 °C
15 Storage Temperature Range Tstg – 65 155 °C
Device User Guide — 9S12KT256DGV1/D V01.09
86 Freescale Semiconductor
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
A.1.7 Operating Conditions
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions
apply to all the following data.
Table A-2 ESD and Latch-up Test Conditions
Model Description Symbol Value Unit
Human Body
Series Resistance R1 1500 Ohm
Storage Capacitance C 100 pF
Number of Pulse per pin
positive
negative --
3
3
Machine
Series Resistance R1 0 Ohm
Storage Capacitance C 200 pF
Number of Pulse per pin
positive
negative --
3
3
Latch-up Minimum input voltage limit -2.5 V
Maximum input voltage limit 7.5 V
Table A-3 ESD and Latch-Up Protection Characteristics
Num C Rating Symbol Min Max Unit
1 C Human Body Model (HBM) VHBM 2000 - V
2 C Machine Model (MM) VMM 200 - V
3 C Charge Device Model (CDM) VCDM 500 - V
4 C Latch-up Current at 125°C
positive
negative ILAT +100
-100 - mA
5 C Latch-up Current at 27°C
positive
negative ILAT +200
-200 - mA
Device User Guide — 9S12KT256DGV1/D V01.09
87
Freescale Semiconductor
NOTE: Instead of specifying ambient temperature all parameters are specified for the more
meaningful silicon junction temperature. For power dissipation calculations refer
to Section A.1.8 Power Dissipation and Thermal Characteristics.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:
Table A-4 Operating Conditions
Rating Symbol Min Typ Max Unit
I/O, Regulator and Analog Supply Voltage VDD5 3.15 3.3/5 5.5 V
Internal Logic Supply Voltage1
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The
absolute maximum ratings apply when this regulator is disabled and the device is powered from an external
source.
VDD 2.35 2.5 2.75 V
PLL Supply Voltage (1) VDDPLL 2.35 2.5 2.75 V
Voltage Difference VDDX to VDDA VDDX -0.1 0 0.1 V
Voltage Difference VSSX to VSSR and VSSA VSSX -0.1 0 0.1 V
Oscillator fosc 0.5 - 16 MHz
Bus Frequency fbus 0.5 - 25 MHz
MC9S12K-FamilyC/MC9S12KT256C
Operating Junction Temperature Range TJ-40 - 100 °C
Operating Ambient Temperature Range 2
2. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the rela-
tion between ambient temperature TA and device junction temperature TJ.
TA-40 27 85 °C
MC9S12K-FamilyV/MC9S12KT256V
Operating Junction Temperature Range TJ-40 - 120 °C
Operating Ambient Temperature Range (2) TA-40 27 105 °C
MC9S12K-FamilyM/MC9S12KT256M
Operating Junction Temperature Range TJ-40 - 140 °C
Operating Ambient Temperature Range (2) TA-40 27 125 °C
TJTAPDΘJA
()+=
TJJunction Temperature, [°C]=
TAAmbient Temperature, [°C]=
Device User Guide — 9S12KT256DGV1/D V01.09
88 Freescale Semiconductor
The total power dissipation can be calculated from:
Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal Voltage Regulator disabled
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.
For RDSON is valid:
respectively
2. Internal voltage regulator enabled
IDDR is the current shown in Table A-8 and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.
PDTotal Chip Power Dissipation, [W]=
ΘJA Package Thermal Resistance, [°C/W]=
PDPINT PIO
+=
PINT Chip Internal Power Dissipation, [W]=
PINT IDD VDD
IDDPLL VDDPLL
IDDA
+V
DDA
+=
PIO RDSON
i
IIOi2
=
RDSON VOL
IOL
------------ for outputs driven low;=
RDSON VDD5 VOH
IOH
------------------------------------ for outputs driven high;=
PINT IDDR VDDR
IDDA VDDA
+=
PIO RDSON
i
IIOi2
=
Device User Guide — 9S12KT256DGV1/D V01.09
89
Freescale Semiconductor
A.1.9 I/O Characteristics
This section describes the characteristics of all 3.3V/5V I/O pins. All parameters are not always applicable,
e.g. not all pins feature pull up/down resistances.
Table A-5 Thermal Package Characteristics1
NOTES:
1. The values for thermal resistance are achieved by package simulations
Num C Rating Symbol Min Typ Max Unit
1 T Thermal Resistance LQFP112, single sided PCB2
2. PC Board according to EIA/JEDEC Standard 51-2
θJA - - 54 oC/W
2 T Thermal Resistance LQFP112, double sided PCB
with 2 internal planes3
3. PC Board according to EIA/JEDEC Standard 51-7
θJA - - 41 oC/W
3 T Thermal Resistance QFP 80, single sided PCB θJA - - 51 oC/W
4 T Thermal Resistance QFP 80, double sided PCB with
2 internal planes θJA - - 41 oC/W
Device User Guide — 9S12KT256DGV1/D V01.09
90 Freescale Semiconductor
Table A-6 5V I/O Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Input High Voltage VIH 0.65*VDD5 -VDD5 + 0.3 V
2 P Input Low Voltage VIL VSS5 - 0.3 -0.35*VDD5 V
3 C Input Hysteresis VHYS 250 mV
4 P Input Leakage Current (pins in high impedance input
mode)
Vin = VDD5 or VSS5
Iin –2.5 - 2.5 µA
5 P Output High Voltage (pins in output mode)
Partial Drive IOH = –2.0mA
Full Drive IOH = –10.0mA VOH VDD5 – 0.8 - - V
6 P Output Low Voltage (pins in output mode)
Partial Drive IOL = +2.0mA
Full Drive IOL = +10.0mA VOL - - 0.8 V
7 P Internal Pull Up Device Current,
tested at VIL Max. IPUL - - –130 µA
8 P Internal Pull Up Device Current,
tested at VIH Min. IPUH -10 - - µA
9 P Internal Pull Down Device Current,
tested at VIH Min. IPDH - - 130 µA
10 P Internal Pull Down Device Current,
tested at VIL Max. IPDL 10 - - µA
11 D Input Capacitance Cin 7 - pF
12 T Injection current1
Single Pin limit
Total Device Limit. Sum of all injected currents
NOTES:
1. Refer to Section A.1.4 Current Injection, for more details
IICS
IICP
-2.5
-25 - 2.5
25 mA
13 P Port H, J, P Interrupt Input Pulse filtered2
2. Parameter only applies in STOP or Pseudo STOP mode.
tpign 3µs
14 P Port H, J, P Interrupt Input Pulse passed(2) tpval 10 µs
Device User Guide — 9S12KT256DGV1/D V01.09
91
Freescale Semiconductor
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
Table A-7 3.3V I/O Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Input High Voltage VIH 0.65*VDD5 -VDD5 + 0.3 V
2 P Input Low Voltage VIL VSS5 - 0.3 -0.35*VDD5 V
3 C Input Hysteresis VHYS 250 mV
4 P Input Leakage Current (pins in high impedance input
mode)
Vin = VDD5 or VSS5
Iin –1 - 1 µA
5 P Output High Voltage (pins in output mode)
Partial Drive IOH = –0.75mA
Full Drive IOH = –4.5mA VOH VDD5 – 0.4 - - V
6 P Output Low Voltage (pins in output mode)
Partial Drive IOL = +0.9mA
Full Drive IOL = +5.5mA VOL - - 0.4 V
7 P Internal Pull Up Device Current,
tested at VIL Max. IPUL - - –60 µA
8 P Internal Pull Up Device Current,
tested at VIH Min. IPUH -6 - - µA
9 P Internal Pull Down Device Current,
tested at VIH Min. IPDH - - 60 µA
10 P Internal Pull Down Device Current,
tested at VIL Max. IPDL 6 - - µA
11 D Input Capacitance Cin 7 - pF
12 T Injection current1
Single Pin limit
Total Device Limit. Sum of all injected currents
NOTES:
1. Refer to Section A.1.4 Current Injection, for more details
IICS
IICP
-2.5
-25 - 2.5
25 mA
13 P Port P, J Interrupt Input Pulse filtered2
2. Parameter only applies in STOP or Pseudo STOP mode.
tPULSE 3µs
14 P Port P, J Interrupt Input Pulse passed(2) tPULSE 10 µs
Device User Guide — 9S12KT256DGV1/D V01.09
92 Freescale Semiconductor
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.
Device User Guide — 9S12KT256DGV1/D V01.09
93
Freescale Semiconductor
Table A-8 Supply Current Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num Rating Symbol Min Typ Max Unit
1Run supply currents
Single Chip, Internal regulator enabled IDD5 65 mA
2Wait Supply current All modules enabled
only RTI enabled1
NOTES:
1. PLL off
IDDW 40
5mA
3
Pseudo Stop Current (RTI and COP enabled)1,2
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
IDDPS
90
130
155
180
250
295
470
520
1000
350
1200
2400
5000
µA
4
Pseudo Stop Current (RTI and COP disabled)1,2
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
IDDPS
40
80
105
130
200
245
420
470
800
200
1000
2000
5000
µA
5
Stop Current2
-40°C
27°C
70°C
85°C
"C" Temp Option 100°C
105°C
"V" Temp Option 120°C
125°C
"M" Temp Option 140°C
2. All those low power dissipation levels TJ = TA can be assumed.
IDDS
20
60
85
110
180
225
400
450
600
100
800
1800
5000
µA
Device User Guide — 9S12KT256DGV1/D V01.09
94 Freescale Semiconductor
A.2 Voltage Regulator (VREG_3V3) Operating Characteristics
This section describes the characteristics of the on chip voltage regulator.
Table A-9 VREG_3V3 - Operating Conditions
Num C Characteristic Symbol Min Typical Max Unit
1 P Input Voltages VVDDR,A 3.15 5.5 V
2 P Regulator Current
Reduced Power Mode
Shutdown Mode IREG
20
12 50
40 µA
µA
3 P
Output Voltage Core
Full Performance Mode
Reduced Power Mode
Shutdown Mode1
NOTES:
1. High Impedance Output
VDD 2.35
1.7
2.5
2.5
2.75
2.75
V
V
V
4 P
Output Voltage PLL
Full Performance Mode
Reduced Power Mode2
Shutdown Mode(1)
2. Current IDDPLL = 500µA
VDDPLL 2.35
1.7
2.5
2.5
2.75
2.75
V
V
V
5 P Low Voltage Interrupt3
Assert Level
Deassert Level
3. Monitors VDDA, active only in Full Performance Mode. Indicates I/O & ADC performance degradation due to
low supply voltage.
VLVIA
VLVID
4.1
4.25 4.37
4.52 4.66
4.77 V
V
5 P Low Voltage Reset4
Assert Level
Deassert Level
4. Monitors VDD, active only in Full Performance Mode. VLVRA and VPORD must overlap
VLVRA
VLVRD
2.25
2.55 V
V
7 C Power-on Reset5
Assert Level
Deassert Level
5. Monitors VDD. Active in all modes.
NOTE: The electrical characteristics given in this section are preliminary and
should be used as a guide only. Values in this section cannot be
guaranteed by Motorola and are subject to change without notice.
VPORA
VPORD
0.97
---
---
2.05 V
V
Device User Guide — 9S12KT256DGV1/D V01.09
95
Freescale Semiconductor
A.3 Chip Power-up and LVI/LVR graphical explanation
Voltage regulator sub modules LVI (low voltage interrupt), POR (power-on reset) and LVR (low voltage
reset) handle chip power-up or drops of the supply voltage. Their function is described in Figure A-1.
Figure A-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled)
A.4 Output Loads
A.4.1 Resistive Loads
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits allows no
external DC loads.
VLVID
VLVIA
VLVRD
VLVRA
VPORD
LVI
POR
LVR
t
VVDDA
VDD
LVI enabled LVI disabled due to LVR
Device User Guide — 9S12KT256DGV1/D V01.09
96 Freescale Semiconductor
A.4.2 Capacitive Loads
The capacitive loads are specified in Table A-10. Ceramic capacitors with X7R dielectricum are required.
Table A-10 Voltage Regulator - Capacitive Loads
Num Characteristic Symbol Min Typical Max Unit
1 VDD external capacitive load CDDext 200 440 12000 nF
2 VDDPLL external capacitive load CDDPLLext 90 220 5000 nF
Device User Guide — 9S12KT256DGV1/D V01.09
97
Freescale Semiconductor
A.5 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
A.5.1 ATD Operating Characteristics
The Table A-11 shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA VRLVINVRHVDDA. This constraint exists since the sample buffer amplifier can not
drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will
effectively be clipped.
Table A-11 5V ATD Operating Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 D Reference Potential Low
High VRL
VRH VSSA
VDDA/2 VDDA/2
VDDA V
V
2 C Differential Reference Voltage1
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.75V
VRH-VRL 4.75 5.0 5.25 V
3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz
4 D
ATD 10-Bit Conversion Period Clock Cycles2
Conv, Time at 2.0MHz ATD Clock fATDCLK
Conv, Time at 4.0MHz3 ATD Clock fATDCLK
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
3. Reduced accuracy see Table A-14 and Table A-15.
NCONV10
TCONV10
TCONV10
14
7
3.5
28
14
7
Cycles
µs
µs
5 D ATD 8-Bit Conversion Period Clock Cycles(1)
Conv, Time at 2.0MHz ATD Clock fATDCLK NCONV8
TCONV8
12
626
13 Cycles
µs
6 D Stop Recovery Time (VDDA=5.0 Volts) tSR 20 µs
7 P Reference Supply current (two ATD modules) IREF 0.750 mA
8 P Reference Supply current (one ATD module) IREF 0.375 mA
Device User Guide — 9S12KT256DGV1/D V01.09
98 Freescale Semiconductor
Table A-12 3.3V ATD Operating Characteristics
A.5.2 Factors influencing accuracy
Three factors - source resistance, source capacitance and current injection - have an influence on the
accuracy of the ATD.
A.5.2.1 Source Resistance:
Due to the input pin leakage current as specified in Table A-6 and Table A-7in conjunction with the
source resistance there will be a voltage drop from the signal source to the ATD input. The maximum
source resistance RS specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage
current. If device or operating conditions are less than worst case or leakage-induced error is acceptable,
larger values of source resistance are allowed.
A.5.2.2 Source capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage 1LSB, then the external filter capacitor, Cf 1024 * (CINS- CINN).
A.5.2.3 Current injection
There are two cases to consider.
Conditions are shown in Table A-4 unless otherwise noted; Supply Voltage 3.3V-10% <= VDDA <= 3.3V+10%
Num C Rating Symbol Min Typ Max Unit
1 D Reference Potential Low
High VRL
VRH
VSSA
VDDA/2 VDDA/2
VDDA
V
V
2 C Differential Reference Voltage VRH-VRL 3.0 3.3 3.6 V
3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz
4 D
ATD 10-Bit Conversion Period Clock Cycles1
Conv, Time at 2.0MHz ATD Clock fATDCLK
Conv, Time at 4.0MHz2 ATD Clock fATDCLK
NOTES:
1. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
2. Reduced accuracy see Table A-14 and Table A-15.
NCONV10
TCONV10
TCONV10
14
7
3.5
28
14
7
Cycles
µs
µs
5 D ATD 8-Bit Conversion Period Clock Cycles(1)
Conv, Time at 2.0MHz ATD Clock fATDCLK NCONV8
TCONV8
12
626
13 Cycles
µs
6 D Recovery Time (VDDA=3.3 Volts) tREC 20 µs
7 P Reference Supply current (two ATD modules) IREF 0.500 mA
8 P Reference Supply current (one ATD module) IREF 0.250 mA
Device User Guide — 9S12KT256DGV1/D V01.09
99
Freescale Semiconductor
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less
than VRL unless the current is higher than specified as disruptive conditions.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channel.
A.5.3 ATD accuracy
Table A-14 and Table A-15 specify the ATD conversion performance excluding any errors due to
current injection, input capacitance and source resistance.
Table A-13 ATD Electrical Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num Rating Symbol Min Typ Max Unit
1 Max input Source Resistance RS- - 1 K
2Total Input Capacitance
Non Sampling
Sampling CINN
CINS
10
22 pF
3 Disruptive Analog Input Current INA -2.5 2.5 mA
4 Coupling Ratio positive current injection Kp10-4 A/A
5 Coupling Ratio negative current injection Kn10-2 A/A
Table A-14 5V ATD Conversion Performance
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz
Num C Rating Symbol Min Typ Max Unit
1 P 10-Bit Resolution LSB 5 mV
2 P 10-Bit Differential Nonlinearity DNL –1 1 Counts
3 P 10-Bit Integral Nonlinearity INL –2.5 ±1.5 2.5 Counts
4 P 10-Bit Absolute Error1AE -3 ±2.0 3 Counts
5 C 10-Bit Absolute Error at fATDCLK= 4MHz AE ±7.0 Counts
6 P 8-Bit Resolution LSB 20 mV
7 P 8-Bit Differential Nonlinearity DNL –0.5 0.5 Counts
8 P 8-Bit Integral Nonlinearity INL –1.0 ±0.5 1.0 Counts
9 P 8-Bit Absolute Error(1) AE -1.5 ±1.0 1.5 Counts
Device User Guide — 9S12KT256DGV1/D V01.09
100 Freescale Semiconductor
Table A-15 3.3V ATD Conversion Performance
For the following definitions see also Figure A-2.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
NOTES:
1. These values include quantization error which is inherently 1/2 count for any A/D converter.
Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 3.328V. Resulting to one 8 bit count = 13mV and one 10 bit count = 3.25mV
fATDCLK = 2.0MHz
Num C Rating Symbol Min Typ Max Unit
1 P 10-Bit Resolution LSB 3.25 mV
2 P 10-Bit Differential Nonlinearity DNL –1.5 1.5 Counts
3 P 10-Bit Integral Nonlinearity INL –3.5 ±1.5 3.5 Counts
4 P 10-Bit Absolute Error1
NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
AE -5 ±2.5 5 Counts
5 C 10-Bit Absolute Error at fATDCLK= 4MHz AE ±7.0 Counts
6 P 8-Bit Resolution LSB 13 mV
7 P 8-Bit Differential Nonlinearity DNL –0.5 0.5 Counts
8 P 8-Bit Integral Nonlinearity INL –1.5 ±0.1 1.5 Counts
9 P 8-Bit Absolute Error(1) AE -2.0 ±1.5 2.0 Counts
DNL i() ViVi1
1LSB
------------------------ 1=
INL n() DNL i()
i1=
n
VnV0
1LSB
--------------------n==
Device User Guide — 9S12KT256DGV1/D V01.09
101
Freescale Semiconductor
Figure A-2 ATD Accuracy Definitions
NOTE:Figure A-2 shows only definitions, for specification values refer to Table A-14 and Table
A-15 .
1
5Vin
mV
10 15 20 25 30 35 40 5085 5090 5095 5100 5105 5110 5115 51205065 5070 5075 50805060
0
3
2
5
4
7
6
50
$3F7
$3F9
$3F8
$3FB
$3FA
$3FD
$3FC
$3FE
$3FF
$3F4
$3F6
$3F5
8
9
1
2
$FF
$FE
$FD
$3F3
10-Bit Resolution
8-Bit Resolution
Ideal Transfer Curve
10-Bit Transfer Curve
8-Bit Transfer Curve
5055
10-Bit Absolute Error Boundary
8-Bit Absolute Error Boundary
LSB
Vi-1 Vi
DNL
Device User Guide — 9S12KT256DGV1/D V01.09
102 Freescale Semiconductor
A.6 NVM, Flash and EEPROM
NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for
both Flash and EEPROM.
A.6.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within
the limits specified as fNVMOP.
The minimum program and erase times shown in Table A-16 are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
A.6.1.1 Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency fNVMOP and can be calculated according to the following formula.
A.6.1.2 Row Programming
Flash programming where up to 64 words in a row can be programmed consecutively by keeping the
command pipeline filled. The time to program a consecutive word can be calculated as:
The time to program a whole row is:
Row programming is more than 2 times faster than single word programming.
A.6.1.3 Sector Erase
Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:
tswpgm 91
fNVMOP
---------------------
25 1
fbus
----------
+=
tbwpgm 41
fNVMOP
---------------------
91
fbus
----------
+=
tbrpgm tswpgm 63 tbwpgm
+=
Device User Guide — 9S12KT256DGV1/D V01.09
103
Freescale Semiconductor
The setup time can be ignored for this operation.
A.6.1.4 Mass Erase
Erasing a NVM block takes:
The setup time can be ignored for this operation.
A.6.1.5 Blank Check
The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup
of the command.
Table A-16 NVM Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 D External Oscillator Clock fNVMOSC 0.5 50 1
NOTES:
1. Restrictions for oscillator in crystal mode apply!
MHz
2 D Bus frequency for Programming or Erase Operations fNVMBUS 1 MHz
3 D Operating Frequency fNVMOP 150 200 kHz
4 P Single Word Programming Time tswpgm 46 2
2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency
fbus.
74.5 3
3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus.
Refer to formula in Sections Section A.6.1.1 Single Word Programming- Section A.6.1.4 Mass Erase for guidance.
µs
5 D Flash Burst Programming consecutive word 4
4. Burst Programming operations are not applicable to EEPROM
tbwpgm 20.4 (2) 31 (3) µs
6 D Flash Burst Programming Time for 64 Words (4) tbrpgm 1331.2 (2) 2027.5 (3) µs
7 P Sector Erase Time tera 20 5
5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP.
26.7 (3) ms
8 P Mass Erase Time tmass 100 (5) 133 (3) ms
9 D Blank Check Time Flash per block tcheck 11 6
6. Minimum time, if first word in the array is not blank
65546 7
7. Maximum time to complete check on an erased block
tcyc
10 D Blank Check Time EEPROM per block tcheck 11 (6) 2058(7) tcyc
tera 4000 1
fNVMOP
---------------------
tmass 20000 1
fNVMOP
---------------------
tcheck location tcyc 10 tcyc
+
Device User Guide — 9S12KT256DGV1/D V01.09
104 Freescale Semiconductor
A.6.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.
The failure rates for data retention and program/erase cycling are specified at the operating conditions
noted.
The program/erase cycle count on the sector is incremented every time a sector or mass erase event is
executed.
NOTE: All values shown in Table A-17 are target values and subject to further extensive
characterization.
Table A-17 NVM Reliability Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 C Data Retention at an av erage junction temperature of
TJavg = 70°CtNVMRET 15 Years
2 C Flash number of Program/Erase cycles nFLPE 1000 10,000 Cycles
3 C EEPROM number of Program/Erase cycles
(–40°C TJ 0°C) nEEPE 10,000 Cycles
4 C EEPROM number of Program/Erase cycles
(0°C < TJ 140°C) nEEPE 100,000 Cycles
Device User Guide — 9S12KT256DGV1/D V01.09
105
Freescale Semiconductor
A.7 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).
A.7.1 Startup
Table A-18 summarizes several startup characteristics explained in this section. Detailed description of
the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.
Table A-18 Startup Characteristics
A.7.1.1 POR
The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
A.7.1.2 SRAM Data Retention
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.
A.7.1.3 External Reset
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.
A.7.1.4 Stop Recovery
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system.
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 T POR release level VPORR 2.07 V
2 T POR assert level VPORA 0.97 V
3 D Reset input pulse width, minimum input time PWRSTL 2tosc
4 D Startup from Reset nRST 192 196 nosc
5 D Interrupt pulse width, IRQ edge-sensitive mode PWIRQ 20 ns
6 D Wait recovery startup time tWRS 14 tcyc
Device User Guide — 9S12KT256DGV1/D V01.09
106 Freescale Semiconductor
A.7.1.5 Pseudo Stop and Wait Recovery
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts
fetching the interrupt vector.
A.7.2 Oscillator
The device features an internal low-power loop controlled Pierce oscillator and a full swing Pierce
oscillator/external clock mode. The selection of loop controlled Pierce oscillator or full swing Pierce
oscillator/external clock depends on the XCLKS signal which is sampled during reset. Full swing Pierce
oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the
internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP
or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode after
POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum
oscillator start-up time tUPOSC. The device also features a clock monitor. A Clock Monitor Failure is
asserted if the frequency of the incoming clock signal is below the Assert Frequency fCMFA
Table A-19 Oscillator Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1a C Crystal oscillator range (loop controlled Pierce) fOSC 4.0 16 MHz
1b C Crystal oscillator range (full swing Pierce) 1,2
NOTES:
1. Depending on the crystal a damping series resistor might be necessary
fOSC 0.5 40 MHz
2 P Startup Current iOSC 100 µA
3 C Oscillator start-up time (loop controlled Pierce) tUPOSC 33504ms
4 D Clock Quality check time-out tCQOUT 0.45 2.5 s
5 P Clock Monitor Failure Assert Frequency fCMFA 50 100 200 KHz
6 P External square wave input frequency 2fEXT 0.5 50 MHz
7 D External square wave pulse width low tEXTL 9.5 ns
8 D External square wave pulse width high tEXTH 9.5 ns
9 D External square wave rise time tEXTR 1 ns
10 D External square wave fall time tEXTF 1 ns
11 D Input Capacitance (EXTAL, XTAL pins) CIN 7 pF
12 P EXTAL Pin Input High Voltage VIH,EXTAL 0.7*VDDPLL V
T EXTAL Pin Input High Voltage VIH,EXTAL VDDPLL + 0.3 V
13 P EXTAL Pin Input Low Voltage VIL,EXTAL 0.3*VDDPLL V
T EXTAL Pin Input Low Voltage VIL,EXTAL VSSPLL - 0.3 V
14 C EXTAL Pin Input Hysteresis VHYS,EXTAL 250 mV
Device User Guide — 9S12KT256DGV1/D V01.09
107
Freescale Semiconductor
A.7.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.
A.7.3.1 XFC Component Selection
This section describes the selection of the XFC components to achieve a good filter characteristics.
Figure A-3 Basic PLL functional diagram
The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from Table A-20.
The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.
The VCO Gain at the desired VCO frequency is approximated by:
The phase detector relationship is given by:
2. Only valid if full swing Pierce oscillator/external clock mode is selected
3. fOSC = 4MHz, C = 22pF.
4. Maximum value is for extreme cases using high Q, low frequency crystals
fosc 1
refdv+1 fref
Phase
Detector
VCO
KV
1
synr+1
fvco
Loop Divider
KΦ
1
2
fcmp
CsR
Cp
VDDPLL
XFC Pin
KVK1e
f1fvco
()
K11V
-----------------------
=100e
60 50()
100
------------------------
=
= -90.48MHz/V
Device User Guide — 9S12KT256DGV1/D V01.09
108 Freescale Semiconductor
ich is the current in tracking mode.
The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.
And finally the frequency relationship is defined as
With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=10kHz:
The capacitance Cs can now be calculated as:
The capacitance Cp should be chosen in the range of:
A.7.3.2 Jitter Information
NOTE: This section is under construction
The basic functionality of the PLL is shown in Figure A-3. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-4.
KΦich
KV
== 316.7Hz/
fC2ζfref
⋅⋅
πζ 1ζ2
++


------------------------------------------ 1
10
------ fCfref
410
-------------- ζ0.9=();<<
fC < 25kHz
nfVCO
fref
------------- 2 s y n r 1+()== = 50
R2πnf
C
⋅⋅⋅
KΦ
-----------------------------= = 2*π*50*10kHz/(316.7Hz/)=9.9k=~10k
Cs2ζ2
πfCR⋅⋅
----------------------0.516
fCR
---------------ζ0.9=();== 5.19nF =~ 4.7nF
Cs20CpCs10≤≤ Cp = 470pF
Device User Guide — 9S12KT256DGV1/D V01.09
109
Freescale Semiconductor
Figure A-4 Jitter Definitions
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).
Defining the jitter as:
NOTE: From the evaluation data a formula for tmax= f(N), resp. tmin = f(N) should be
derived.
Assuming no long term drift of the reference clock, the following will hold
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.
2 3 N-1 N1
0
tnom
tmax1
tmin1
tmaxN
tminN
JN() max 1 tmax N()
Nt
nom
---------------------
1tmin N()
Nt
nom
---------------------
,



=
JN()
N
lim 0=
Device User Guide — 9S12KT256DGV1/D V01.09
110 Freescale Semiconductor
Table A-20 PLL Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P Self Clock Mode frequency fSCM 1 5.5 MHz
2 D VCO locking range fVCO 8 50 MHz
3 D Lock Detector transition from Acquisition to Tracking
mode trk 3% 4%1
NOTES:
1. % deviation from target frequency
4 D Lock Detection Lock 0% 1.5%(1)
5 D Un-Lock Detection unl 0.5% 2.5%(1)
6 D Lock Detector transition from Tracking to Acquisition
mode unt 6% 8%(1)
7 C PLLON Total Stabilization delay2
2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =
10K.
tstab 0.5 ms
8 D PLLON Acquisition mode stabilization delay(2) tacq 0.3 ms
9 D PLLON Tracking mode stabilization delay(2) tal 0.2 ms
10 D Fitting parameter VCO loop gain K1-100 MHz/V
11 D Fitting parameter VCO loop frequency f160 MHz
12 D Charge pump current acquisition mode ich -38.5 µA
13 D Charge pump current tracking mode ich -3.5 µA
14 C Jitter fit parameter 1(2) j11.1 %
15 C Jitter fit parameter 2(2) j20.13 %
Device User Guide — 9S12KT256DGV1/D V01.09
111
Freescale Semiconductor
A.8 MSCAN
Table A-21 MSCAN Wake-up Pulse Characteristics
Conditions are shown in Table A-4 unless otherwise noted
Num C Rating Symbol Min Typ Max Unit
1 P MSCAN Wake-up dominant pulse filtered tWUP 2µs
2 P MSCAN Wake-up dominant pulse pass tWUP 5µs
Device User Guide — 9S12KT256DGV1/D V01.09
112 Freescale Semiconductor
A.9 SPI
A.9.1 Master Mode
Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-22.
Figure A-5 SPI Master Timing (CPHA = 0)
SCK
(OUTPUT)
SCK
(OUTPUT)
MISO
(INPUT)
MOSI
(OUTPUT)
SS1
(OUTPUT)
1
9
5 6
MSB IN2
BIT 6 . . . 1
LSB IN
MSB OUT2LSB OUT
BIT 6 . . . 1
10
4
4
2
9
(CPOL = 0)
(CPOL = 1)
3
11
12
1.if configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Device User Guide — 9S12KT256DGV1/D V01.09
113
Freescale Semiconductor
Figure A-6 SPI Master Timing (CPHA =1)
Table A-22 SPI Master Mode Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs
Num C Rating Symbol Min Typ Max Unit
1 P Operating Frequency fop DC 1/4fbus
1 P SCK Period tsck 4 2048 tbus
2 D Enable Lead Time tlead 1/2 tsck
3 D Enable Lag Time tlag 1/2tsck
4 D Clock (SCK) High or Low Time twsck tbus 30 1024 tbus ns
5 D Data Setup Time (Inputs) tsu 25 ns
6 D Data Hold Time (Inputs) thi 0 ns
9 D Data Valid (after SCK Edge) tv25 ns
10 D Data Hold Time (Outputs) tho 0 ns
11 D Rise Time Inputs and Outputs tr25 ns
12 D Fall Time Inputs and Outputs tf25 ns
SCK
(OUTPUT)
SCK
(OUTPUT)
MISO
(INPUT)
MOSI
(OUTPUT)
1
5 6
MSB IN2
BIT 6 . . . 1
LSB IN
MASTER MSB OUT2MASTER LSB OUT
BIT 6 . . . 1
4
4
9
11 12
10
PORT DATA
(CPOL = 0)
(CPOL = 1)
PORT DATA
SS1
(OUTPUT)
212 11 3
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Device User Guide — 9S12KT256DGV1/D V01.09
114 Freescale Semiconductor
A.9.2 Slave Mode
Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-23.
Figure A-7 SPI Slave Timing (CPHA = 0)
Figure A-8 SPI Slave Timing (CPHA =1)
SCK
(INPUT)
SCK
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
SS
(INPUT)
1
9
5 6
MSB IN
BIT 6 . . . 1
LSB IN
MSB OUT SLAVE LSB OUT
BIT 6 . . . 1
10
4
4
2
7
(CPOL = 0)
(CPOL = 1)
3
12
NOTE: Not defined but normally MSB of character just received.
SLAVE
12
11
10
SEE
11
NOTE
8
SCK
(INPUT)
SCK
(INPUT)
MOSI
(INPUT)
MISO
(OUTPUT)
1
5 6
MSB IN
BIT 6 . . . 1
LSB IN
MSB OUT SLAVE LSB OUT
BIT 6 . . . 1
4
4
9
11 12
10
SEE
(CPOL = 0)
(CPOL = 1)
SS
(INPUT)
212 11 3
NOTE: Not defined but normally LSB of character just received.
SLAVE
NOTE
7
8
Device User Guide — 9S12KT256DGV1/D V01.09
115
Freescale Semiconductor
Table A-23 SPI Slave Mode Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs
Num C Rating Symbol Min Typ Max Unit
1 P Operating Frequency fop DC 1/4fbus
1 P SCK Period tsck 4 2048 tbus
2 D Enable Lead Time tlead 1tcyc
3 D Enable Lag Time tlag 1tcyc
4 D Clock (SCK) High or Low Time twsck tcyc 30 ns
5 D Data Setup Time (Inputs) tsu 25 ns
6 D Data Hold Time (Inputs) thi 25 ns
7 D Slave Access Time ta1tcyc
8 D Slave MISO Disable Time tdis 1tcyc
9 D Data Valid (after SCK Edge) tv25 ns
10 D Data Hold Time (Outputs) tho 0 ns
11 D Rise Time Inputs and Outputs tr25 ns
12 D Fall Time Inputs and Outputs tf25 ns
Device User Guide — 9S12KT256DGV1/D V01.09
116 Freescale Semiconductor
A.10 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure A-9 with the actual timing
values shown on table Table A-24. All major bus signals are included in the diagram. While both a data
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.
A.10.1 General Muxed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
Device User Guide — 9S12KT256DGV1/D V01.09
117
Freescale Semiconductor
Figure A-9 General External Bus Timing
Addr/Data
(read)
Addr/Data
(write)
addr data
data
5 10 11
8
166
ECLK
1, 2
3 4
addr data
data
12
159
7
14 13
ECS
2120 22 23
Non-Multiplexed
17
19
LSTRB
29
NOACC
32
PIPO0
PIPO1, PE6,5
35
18
27
28
30
33 36
31
34
R/W
24
26
25
Addresses
PE4
PA, PB
PA, PB
PK5:0
PK7
PE2
PE3
PE7
Device User Guide — 9S12KT256DGV1/D V01.09
118 Freescale Semiconductor
Table A-24 Expanded Bus Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF
Num C Rating Symbol Min Typ Max Unit
1 P Frequency of operation (E-clock) fo0 25.0 1
2 P Cycle time tcyc 40 2
3 D Pulse width, E low PWEL 17 3
4 D Pulse width, E high1PWEH 17 4
5 D Address delay time tAD 8 5
6 D Address valid time to E rise (PWEL–tAD) tAV 11 6
7 D Muxed address hold time tMAH 2 7
8 D Address hold to data valid tAHDS 7 8
9 D Data hold to address tDHA 2 9
10 D Read data setup time tDSR 13 10
11 D Read data hold time tDHR 0 11
12 D Write data delay time tDDW 7 12
13 D Write data hold time tDHW 2 13
14 D Write data setup time(1) (PWEH–tDDW)tDSW 10 14
15 D Address access time(1) (tcyc–tAD–tDSR)tACCA 19 15
16 D E high access time(1) (PWEH–tDSR)tACCE 4 16
17 D Non-multiplexed address delay time tNAD 7 17
18 D Non-muxed address valid to E rise (PWEL–tNAD) tNAV 10 18
19 D Non-multiplexed address hold time tNAH 2 19
20 D Chip select delay time tCSD 16 20
21 D Chip select access time(1) (tcyc–tCSD–tDSR)tACCS 11 21
22 D Chip select hold time tCSH 2 22
23 D Chip select negated time tCSN 8 23
24 D Read/write delay time tRWD 7 24
25 D Read/write valid time to E rise (PWEL–tRWD) tRWV 10 25
26 D Read/write hold time tRWH 2 26
27 D Low strobe delay time tLSD 7 27
28 D Low strobe valid time to E rise (PWEL–tLSD) tLSV 10 28
29 D Low strobe hold time tLSH 2 29
30 D NOACC strobe delay time tNOD 7 30
31 D NOACC valid time to E rise (PWEL–tLSD) tNOV 10 31
Device User Guide — 9S12KT256DGV1/D V01.09
119
Freescale Semiconductor
32 D NOACC hold time tNOH 2 32
33 D PIPO0 delay time tP0D 2 7 33
34 D PIPO0 valid time to E rise (PWEL–tP0D) tP0V 10 34
35 D PIPO1 delay time(1) (PWEH-tP1V)tP1D 2 7 35
36 D PIPO1 valid time to E fall tP1V 10 36
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
Table A-24 Expanded Bus Timing Characteristics
Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF
Device User Guide — 9S12KT256DGV1/D V01.09
120 Freescale Semiconductor
Device User Guide — 9S12KT256DGV1/D V01.09
121
Freescale Semiconductor
Appendix B Package Information
This section provides the physical dimensions of the MC9S12K-Family packages.
Device User Guide — 9S12KT256DGV1/D V01.09
122 Freescale Semiconductor
B.1 80-pin QFP package
Figure B-1 80-pin QFP Mechanical Dimensions (case no. 841B)
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-, -B- AND -D- TO BE
DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE -H-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT
BE LOCATED ON THE LOWER RADIUS OR
THE FOOT.
SECTION B-B
61 60
DETAIL A
L
41
40
80
-A-
L
-D-
A
S
A-B
M
0.20 D S
H
0.05 A-B
S
120
21
-B-
BV
J
F
N
D
VIEW ROTATED 90 °
DETAIL A
B
BP
-A-,-B-,-D-
E
H
GM
MDETAIL C
SEATING
PLANE
-C-
CDATUM
PLANE
0.10
-H-
DATUM
PLANE -H-
U
T
R
Q
K
WX
DETAIL C
DIM MIN MAX
MILLIMETERS
A13.90 14.10
B13.90 14.10
C2.15 2.45
D0.22 0.38
E2.00 2.40
F0.22 0.33
G0.65 BSC
H--- 0.25
J0.13 0.23
K0.65 0.95
L12.35 REF
M5 10
N0.13 0.17
P0.325 BSC
Q0 7
R0.13 0.30
S16.95 17.45
T0.13 ---
U0 ---
V16.95 17.45
W0.35 0.45
X1.6 REF
°°
°°
°
S
A-B
M
0.20 D S
C
S
A-B
M
0.20 D S
H
0.05 D
S
A-B
M
0.20 D S
C
S
A-B
M
0.20 D S
C
Device User Guide — 9S12KT256DGV1/D V01.09
123
Freescale Semiconductor
B.2 100-pin LQFP package
Figure B-2 100-pin LQFP Mechanical Dimensions (case no. 983)
ÇÇÇ
ÇÇÇ
ÉÉ
ÉÉ
CASE 983–02
ISSUE E
DATE 01/30/96
DIM
AMIN MAX
14.00 BSC
MILLIMETERS
A1 7.00 BSC
B14.00 BSC
B1 7.00 BSC
C1.70
C1 0.05 0.20
C2 1.30 1.50
D0.10 0.30
E0.45 0.75
F0.15 0.23
G0.50 BSC
J0.07 0.20
K0.50 REF
R1 0.08 0.20
S16.00 BSC
S1 8.00 BSC
U0.09 0.16
V16.00 BSC
V1 8.00 BSC
W0.20 REF
Z1.00 REF
q
0 7
q
0
q
12 REF
q
NOTES:
1. DIMENSIONS AND TOLERANCES PER ASME
Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT THE
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
PER SIDE. DIMENSIONS A AND B INCLUDE MOLD
MISMATCH.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
NOT CAUSE THE LEAD WIDTH TO EXCEED 0.35.
MINIMUM SPACE BETWEEN PROTRUSION AND
ADJACENT LEAD OR PROTRUSION 0.07.
1
2
3
_
__
_
VIEW Y
4X 25 TIPS
4X
25
100 76
75
51
26 50
1
VIEW AA
C
N0.2 T L–M
0.08 T
C2
C1 (K)
(Z)
(W)
GAGE PLANE
VIEW AA
VIEW Y
AB
PLATING
U
J
D
F
ROTATED 90 CLOCKWISE
BASE METAL
SECTION AB–AB
0.05
E
0.25
C
L
L–M
M
0.08 NT
3X
3
q
4X
1
q
2X R R1
q
X = L, M OR N
G
_
A
S
A1
S1
B1 V1
BV
–––
–––
N0.2 T L–M
M
N
T
SEATING
2
q
4X
100X
PLANE
X
AB
L
12 REF
_
Device User Guide — 9S12KT256DGV1/D V01.09
124 Freescale Semiconductor
B.3 112-pin LQFP package
Figure B-3 112-pin LQFP Mechanical Dimensions (case no. 987)
DIM
AMIN MAX
20.000 BSC
MILLIMETERS
A1 10.000 BSC
B20.000 BSC
B1 10.000 BSC
C--- 1.600
C1 0.050 0.150
C2 1.350 1.450
D0.270 0.370
E0.450 0.750
F0.270 0.330
G0.650 BSC
J0.090 0.170
K0.500 REF
P0.325 BSC
R1 0.100 0.200
R2 0.100 0.200
S22.000 BSC
S1 11.000 BSC
V22.000 BSC
V1 11.000 BSC
Y0.250 REF
Z1.000 REF
AA 0.090 0.160
θ
θ
θ
θ11 °
11 °13 °
7 °
13 °
VIEW Y
L-M0.20 N
T
4X 4X 28 TIPS
PIN 1
IDENT
1
112 85
84
28 57
29 56
BV
V1
B1
A1
S1
A
S
VIEW AB
0.10
3
CC2
θ
2θ
0.050
SEATING
PLANE
GAGE PLANE
1θ
θ
VIEW AB
C1
(Z)
(Y) E
(K)
R2
R1 0.25
J1
VIEW Y
J1
P
G
108X
4X
SECTION J1-J1
BASE
ROTATED 90 COUNTERCLOCKWISE
°
METAL
JAA
F
DL-M
M
0.13 NT
1
2
3
C
L
L-M0.20 NT
L
N
M
T
T
112X
X
X=L, M OR N
R
R
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DA TUMS L, M AND N TO BE DETERMINED A T
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED
ATSEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE.
DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.
6. DIMENSION D DOES NOT INCLUDE
DAMBAR
8 °
3 °
0 °
Device User Guide — 9S12KT256DGV1/D V01.09
125
Freescale Semiconductor
9S12KT256DGV1/D
V01.09, 9 SEP 2004
How to Reach Us:
USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130
Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569
Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334
Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com
Information in this document is provided solely to enab le system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the inf ormation
in this document.
F reescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for an y particular purpose, nor does F reescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability , including without limitation consequential or incidental damages. “T ypical” parameters
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated f or each customer application by customer’ s technical e xperts.
F reescale Semiconductor does not conve y any license under its patent rights nor the rights of others.
F reescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
F reescale Semiconductor products for an y such unintended or unauthorized application, Buyer shall
indemnify and hold F reescale Semiconductor and its officers, employ ees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale.s Environmental Products program, go to
http://www.freescale.com/epp.