LTC3121
7
3121fa
For more information www.linear.com/LTC3121
pin FuncTions
SW (Pin 1): Switch Pin. Connect an inductor from this
pin to VIN. Keep PCB trace lengths as short and wide as
possible to reduce EMI and voltage overshoot. When VOUT
≥ VIN + 2V, an internal anti-ringing resistor is connected
between SW and VIN after the inductor current has dropped
to near zero, to minimize EMI. The anti-ringing resistor is
also activated in shutdown and during the sleep periods
of Burst Mode operation.
PGND (Pin 2, Exposed Pad Pin 13): Power Ground. When
laying out your PCB, provide a short, direct path between
PGND and the output capacitor and tie directly to the ground
plane. The exposed pad is ground and must be soldered
to the PCB ground plane for rated thermal performance.
VIN (Pin 3): Input Supply Pin. The device is powered from
VIN unless VOUT exceeds VIN and VIN is less than 3V. Place
a low ESR ceramic bypass capacitor of at least 4.7µF from
VIN to PGND. X5R and X7R dielectrics are preferred for
their superior voltage and temperature characteristics.
PWM/SYNC (Pin 4): Burst Mode Operation Select and
Oscillator Synchronization. Do not leave this pin floating.
• PWM/SYNC = High. Disable Burst Mode Operation and
maintain low noise, constant frequency operation.
• PWM/SYNC = Low. The converter operates in Burst
Mode operation, independent of load current.
• PWM/SYNC = External CLK. The internal oscillator is
synchronized to the external CLK signal. Burst Mode
operation is disabled. A clock pulse width between
100ns and 2µs is required to synchronize the oscillator.
An external resistor must be connected between RT
and GND to program the oscillator slightly below the
desired synchronization frequency.
In non-synchronized applications, repeated clocking of
the PWM/SYNC pin to affect an operating mode change
is supported with these restrictions:
• Boost Mode (VOUT > VIN): IOUT <500µA: ƒPWM/SYNC ≤
100Hz, IOUT ≥ 500µA: ƒPWM/SYNC ≤ 5kHz
• Buck Mode (VOUT < VIN): IOUT <5mA: ƒPWM/SYNC ≤ 5Hz,
IOUT ≥ 5mA: ƒPWM/SYNC ≤ 5kHz
VCC (Pin 5): VCC Regulator Output. Connect a low-ESR
filter capacitor of at least 4.7µF from this pin to GND to
provide an internal regulated rail approximately equal to
the lower of VIN and 4.25V. When VOUT is higher than VIN,
and VIN falls below 3V, VCC will regulate to the lower of
approximately VOUT and 4.25V. A UVLO event occurs if VCC
drops below 1.6V. Switching is inhibited, and a soft-start
is initiated when VCC returns above 1.7V.
RT (Pin 6): Frequency Adjust Pin. Connect an external
resistor (RT) from this pin to SGND to program the oscil-
lator frequency according to the formula:
RT = 57.6/ƒOSC
where ƒOSC is in MHz and RT is in kΩ.
VC (Pin 7): Error Amplifier Output. A frequency compen-
sation network is connected to this pin to compensate
the control loop. See Compensating the Feedback Loop
section for guidelines.
FB (Pin 8): Feedback Input to the Error Amplifier. Connect
the resistor divider tap to this pin. Connect the top of the
divider to VOUT and the bottom of the divider to SGND.
The output voltage can be adjusted from 2.2V to 15V ac-
cording to this formula:
VOUT = 1.202V • (1 + R1/R2)
SD (Pin 9): Logic Controlled Shutdown Input. Bringing this
pin above 1.6V enables normal, free-running operation,
forcing this pin below 0.25V shuts the LTC3121 down, with
quiescent current below 1μA. Do not leave this pin floating.
SGND (Pin 10): Signal Ground. When laying out a PC
board, provide a short, direct path between SGND and
the (–) side of the output capacitor.
VOUT (Pin 11): Output Voltage Sense and the Source of
the Internal Synchronous Rectifier MOSFET. Driver bias
is derived from VOUT. Connect the output filter capacitor
from VOUT to PGND, as close to the IC as possible. A
minimum value of 10µF ceramic is recommended. VOUT
is disconnected from VIN when SD is low.
CAP (Pin 12): Serves as the Low Reference for the Syn-
chronous Rectifier Gate Drive. Connect a low ESR filter
capacitor (typically 100nF) from this pin to VOUT to provide
an elevated ground rail, approximately 5.6V below VOUT,
used to drive the synchronous rectifier.