Quad Low Offset, Low Power Operational Amplifier OP400 FUNCTIONAL BLOCK DIAGRAMS OUTA 1 OUT A 1 -IN A 2 - + - + +IN A 3 V+ 4 OP400 +IN B 5 -IN B 6 - + + - OUT B 7 14 OUT D -IN A 2 13 -IN D +IN A 3 12 +IN D V+ 4 11 V- 10 +IN C -IN B 6 9 -IN C OUT B 7 8 OUT C 16 OUT D - + + - NC 8 15 -IN D 14 +IN D 13 V- OP400 +IN B 5 00304-001 Low input offset voltage: 150 V maximum Low offset voltage drift over -55C to +125C: 1.2 pV/C maximum Low supply current (per amplifier): 725 A maximum High open-loop gain: 5000 V/mV minimum Input bias current: 3 nA maximum Low noise voltage density: 11 nV/Hz at 1 kHz Stable with large capacitive loads: 10 nF typical Pin-compatible to LM148, HA4741, RM4156, and LT1014, with improved performance Available in die form 12 +IN C - + + - 11 -IN C 10 OUT C 9 NC NC = NO CONNECT Figure 1. 14-Pin Ceramic DIP (Y-Suffix) and 14-Pin Plastic DIP (P-Suffix) 00304-002 FEATURES Figure 2. 16-Pin SOIC (S-Suffix) GENERAL DESCRIPTION The OP400 is the first monolithic quad operational amplifier that features OP77-type performance. Precision performance is not sacrificed with the OP400 to obtain the space and cost savings offered by quad amplifiers. The OP400 features an extremely low input offset voltage of less than 150 V with a drift of less than 1.2 V/C, guaranteed over the full military temperature range. Open-loop gain of the OP400 is more than 5 million into a 10 k load, input bias current is less than 3 nA, CMR is more than 120 dB, and PSRR is less than 1.8 V/V. On-chip Zener zap trimming is used to achieve the low input offset voltage of the OP400 and eliminates the need for offset nulling. The OP400 conforms to the industrystandard quad pinout, which does not have null terminals. The OP400 features low power consumption, drawing less than 725 A per amplifier. The total current drawn by this quad amplifier is less than that of a single OP07, yet the OP400 offers significant improvements over this industry-standard op amp. Voltage noise density of the OP400 is a low 11 nV/Hz at 10 Hz, half that of most competitive devices. The OP400 is pin-compatible with the LM148, HA4741, RM4156, and LT1014 operational amplifiers and can be used to upgrade systems having these devices. The OP400 is an ideal choice for applications requiring multiple precision operational amplifiers and where low power consumption is critical. V+ BIAS VOLTAGE LIMITING NETWORK +IN OUT -IN 00304-003 V- Figure 3. Simplified Schematic (One of Four Amplifiers Is Shown) Rev. G Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. www.analog.com Tel: 781.329.4700 Fax: 781.461.3113 (c)2011 Analog Devices, Inc. All rights reserved. OP400 TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................6 Functional Block Diagrams ............................................................. 1 Applications..................................................................................... 11 General Description ......................................................................... 1 Dual Low Power Instrumentation Amplifier ......................... 11 Revision History ............................................................................... 2 Bipolar Current Transmitter ..................................................... 12 Specifications..................................................................................... 3 Differential Output Instrumentation Amplifier .................... 12 Electrical Characteristics ............................................................. 3 Multiple Output Tracking Voltage Reference ......................... 13 Absolute Maximum Ratings ............................................................ 5 Outline Dimensions ....................................................................... 14 Thermal Resistance ...................................................................... 5 Ordering Guide .......................................................................... 15 ESD Caution .................................................................................. 5 SMD Parts and Equivalents ...................................................... 15 REVISION HISTORY 2/11--Rev. F to Rev. G Added S Package to Storage Temperature Range in Table 4 ....... 5 Updated Outline Dimensions ....................................................... 15 12/08--Rev. E to Rev. F Added New Figure 28, Renumbered Sequentially ..................... 10 Updated Outline Dimensions ....................................................... 15 1/07--Rev. D to Rev. E Updated Format .................................................................. Universal Changes to Figure 1 and Figure 2 ................................................... 1 Removed Figure 4 ............................................................................. 4 Changes to Table 3 ............................................................................ 4 Changes to Figure 16 through Figure 19, Figure 21..................... 8 Changes to Figure 27 ........................................................................ 9 Changes to Figure 28 ...................................................................... 10 Changes to Figure 33 ...................................................................... 13 Updated Outline Dimensions ....................................................... 14 6/03--Rev. B to Rev. C Edits to Specifications .......................................................................2 10/02--Rev. A to Rev. B Addition of Absolute Maximum Ratings .......................................5 Edits to Outline Dimensions......................................................... 12 4/02--Rev. 0 to Rev. A Edits to Features.................................................................................1 Edits to Ordering Information ........................................................1 Edits to Pin Connections ..................................................................1 Edits to General Descriptions ..................................................... 1, 2 Edits to Package Type .......................................................................2 3/06--Rev. C to Rev. D Updated Format .................................................................. Universal Deleted Wafer Test Limits Table ..................................................... 4 New Package Drawing: R-14 ......................................................... 15 Updated Outline Dimensions ....................................................... 15 Changes to Ordering Guide .......................................................... 16 Rev. G | Page 2 of 16 OP400 SPECIFICATIONS ELECTRICAL CHARACTERISTICS @ VS = 15 V, TA = +25C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Input Offset Voltage Long-Term Input Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Resistance Differential Mode Input Resistance Common Mode Large Signal Voltage Gain Symbol Conditions VOS IOS IB en p-p RIN VCM = 0 V VCM = 0 V 0.1 Hz to 10 Hz RINCM AVO Capacitive Load Stability NOISE PERFORMANCE Input Noise Voltage Density3 Input Noise Current Input Noise Current Density IVR CMR OP400A/E Typ Max Min OP400F Typ Max Min OP400G/H Typ Max Unit 40 0.1 150 60 0.1 230 80 0.1 300 V V/mo 0.1 0.75 0.5 10 1.0 3.0 0.1 0.75 0.5 10 2.0 6.0 0.1 0.75 0.5 10 3.5 7.0 nA nA V p-p M 200 200 200 G 7000 3000 13 135 V/mV V/mV V dB 3.2 pF 12.6 V VO = 10 V RL = 10 k RL = 2 k Input Voltage Range 1 Common-Mode Rejection Input Capacitance OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Channel Separation Min VCM = 12 V 5000 12,000 2000 3500 12 13 120 140 CIN 3000 1500 12 115 3.2 3000 1500 12 110 3.2 VO RL = 10 k PSRR VS = 3 V to 18 V 0.1 1.8 0.1 3.2 0.2 5.6 V/V ISY No load 600 725 600 725 600 725 A SR GBWP AV = 1 CS en in p-p in VO = 20 V p-p, fO = 10 Hz2 AV = 1, no oscillations fO = 10 Hz3 fO = 1000 Hz3 0.1 Hz to 10 Hz fO = 10 Hz 12 7000 3000 13 140 12.6 12 12.6 12 0.1 0.15 500 0.1 0.15 500 0.1 0.15 500 V/s kHz 123 135 123 135 123 135 dB 10 nF 22 11 15 0.6 nV/Hz nV/Hz pA p-p pA/Hz 10 22 11 15 0.6 10 36 18 1 Guaranteed by CMR test. Guaranteed but not 100% tested. 3 Sample tested. 2 Rev. G | Page 3 of 16 22 11 15 0.6 36 18 OP400 @ VS = 15 V, -55C TA +125C for OP400A, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Symbol Input Voltage Range1 Common-Mode Rejection OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Capacitive Load Stability IVR CMR VCM = 12 V VO RL = 10 k PSRR ISY VO = 3 V to 18 V No load 0.2 600 AV = 1, no oscillations 8 1 VOS TCVOS IOS IB AVO Conditions Min VCM = 0 V VCM = 0 V VO = 10 V, RL = 10 k RL = 2 k 3000 1000 12 12 Typ Max Unit 70 0.3 0.1 1.3 9000 2300 12.5 115 270 1.2 2.5 5.0 V V/C nA nA V/mV 130 V dB 3.2 775 V/V A 12.4 nF Guaranteed by CMR test. @ VS = 15 V, -25C TA +85C for OP400E/F, 0C TA 70C for OP400G, -40C TA +85C for OP400H, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large-Signal Voltage Gain Input Voltage Range1 Common-Mode Rejection OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Capacitive Load Stability 1 Symbol Conditions Min VOS TCVOS IOS IB AVO VCM = 0 V E, F, G grades H grade VCM = 0 V E, F, G grades H grade VCM = 0 V RL = 10 k RL = 2 k OP400E Typ Max Min OP400F Typ Max Min OP400G/H Typ Max Unit 60 0.3 220 1.2 80 0.3 350 2.0 110 0.6 400 2.5 V V/C 0.1 2.5 0.1 3.5 0.2 0.2 6.0 12.0 nA nA 0.9 5.0 0.9 10.0 1.0 1.0 12.0 20.0 nA nA VCM = 12 V 3000 1500 12 115 10,000 2700 12.5 135 2000 1000 12 110 5000 2000 12.5 135 2000 1000 12 105 5000 2000 12.5 130 V/mV V/mV V dB VO RL = 10 k RL = 2 k 12 11 12.4 12 12 11 12.4 12 12 11 12.6 12.2 V V PSRR VS = 3 V to 18 V No load 0.15 3.2 0.15 5.6 0.3 10.0 V/V 600 775 600 775 600 775 A No oscillations 10 IVR CMR ISY Guaranteed by CMR test. Rev. G | Page 4 of 16 10 10 nF OP400 ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Supply Voltage Differential Input Voltage Input Voltage Output Short-Circuit Duration Storage Temperature Range P, Y, S Packages Lead Temperature (Soldering 60 sec) Junction Temperature (TJ) Range Operating Temperature Range OP400A OP400E, OP400F OP400G OP400H Rating 20 V 30 V Supply voltage Continuous -65C to +150C 300C -65C to +150C -55C to +125C -25C to +85C 0C to 70C -40C to +85C THERMAL RESISTANCE JA is specified for worst-case mounting conditions, that is, JA is specified for device in socket for CERDIP and PDIP packages; JA is specified for device soldered to printed circuit board for SOIC package. Table 5. Thermal Resistance Package Type 14-Pin Ceramic DIP (Y) 14-Pin Plastic DIP (P) 16-Pin SOIC (S) ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply to both dice and packaged parts, unless otherwise noted. Rev. G | Page 5 of 16 JA 94 76 88 JC 10 33 23 Unit C/W C/W C/W OP400 TYPICAL PERFORMANCE CHARACTERISTICS 3 VS = 15V 2 1 0 0 1 2 3 4 110 100 90 00304-007 INPUT OFFSET CURRENT (pA) 120 80 00304-004 CHANGE IN OFFSET VOLTAGE (V) TA = 25C VS = 15V -75 5 -50 -25 0 25 50 75 100 125 TEMPERATURE (C) TIME (Minutes) Figure 7. Input Offset Current vs. Temperature Figure 4. Warmup Drift 1.1 70 VS = 15V 1.0 INPUT BIAS CURRENT (nA) 50 40 30 0.8 0.7 00304-005 20 10 -75 0.9 -50 -25 0 25 50 75 100 0.6 -15 125 00304-008 INPUT OFFSET VOLTAGE (V) 60 -10 -5 0 5 10 Figure 8. Input Bias Current vs. Common-Mode Voltage Figure 5. Input Offset Voltage vs. Temperature 140 2.0 TA = 25C VS = 15V 1.2 0.8 0.4 00304-006 INPUT BIAS CURRENT (nA) 1.6 -50 -25 0 25 50 75 100 120 100 80 60 40 20 0 125 00304-009 COMMON-MODE REJECTION (dB) VS = 15V 0 -75 15 COMMON-MODE VOLTAGE (V) TEMPERATURE (C) 1 10 100 1k 10k FREQUENCY (Hz) TEMPERATURE (C) Figure 9. Common-Mode Rejection vs. Frequency Figure 6. Input Bias Current vs. Temperature Rev. G | Page 6 of 16 100k OP400 2.5 100 1 10 100 2.4 2.3 2.2 00304-013 10 00304-010 TOTAL SUPPLY CURRENT (mA) NOISE VOLTAGE DENSITY (nV/ Hz) FOUR AMPLIFIERS TA = 25C 2.1 2 1k 4 6 8 2.5 TOTAL SUPPLY CURRENT (mA) 800 600 400 00304-011 200 16 18 20 100 FOUR AMPLIFIERS VS = 15V 2.4 2.3 2.2 2.1 -75 1k -50 -25 0 25 50 75 100 125 150 TEMPERATURE (C) FREQUENCY (Hz) Figure 14. Total Supply Current vs. Temperature Figure 11. Current Noise Density vs. Frequency 0 2 4 6 8 120 NEGATIVE SUPPLY 100 80 POSITIVE SUPPLY 60 40 20 0 0.1 10 TIME (Seconds) 00304-015 POWER SUPPLY REJECTION (dB) 140 00304-012 CURRENT NOISE DENSITY (fA/ Hz) TA = 25C VS = 15V 10 14 00304-014 1k 1 12 Figure 13. Total Supply Current vs. Supply Voltage Figure 10. Noise Voltage Density vs. Frequency 0 10 SUPPLY VOLTAGE (V) FREQUENCY (Hz) 1 10 100 1k 10k FREQUENCY (Hz) Figure 12. 0.1 Hz to 10 Hz Noise Figure 15. Power Supply Rejection vs. Frequency Rev. G | Page 7 of 16 100k OP400 144 POWER SUPPLY REJECTION (dB) VS = 15V TA = 25C VS = 15V 80 142 AV = 1000 60 GAIN (dB) 140 AV = 100 40 AV = 10 138 20 AV = 1000 136 00304-016 134 -75 00304-019 0 -50 -25 0 25 50 75 TEMPERATURE (C) 100 125 1 150 10 100 1k 10k FREQUENCY (Hz) 100k 1M Figure 19. Closed-Loop Gain vs. Frequency Figure 16. Power Supply Rejection vs. Temperature VS = 15V RL = 2k OPEN-LOOP GAIN (V/mV) 4k 3k 2k 0 -75 00304-017 1k -50 -25 0 25 50 75 TEMPERATURE (C) 100 125 TA = 25C VS = 15V 25 20 15 10 5 00304-020 OUTPUT SWING (V p-p AT 1% Distortion) 5k 10 150 TA = 25C VS = 15V 90 20 135 0 180 1k 10k FREQUENCY (Hz) 100k 1M RL = 2k AV = 100 1 AV = 10 AV = 1 0.1 0.01 0.001 000304-021 PHASE 40 VOUT = 10V p-p DISTORTION (%) 45 PHASE SHIFT (Degrees) GAIN 00304-018 OPEN-LOOP GAIN (dB) 0 100 100k TA = 25C 80 10 10k VS = 15V 10 100 60 1k FREQUENCY (Hz) Figure 20. Maximum Output Swing Frequency Figure 17. Open-Loop Gain vs. Temperature 120 100 100 1k FREQUENCY (Hz) Figure 21. Total Harmonic Distortion vs. Frequency Figure 18. Open-Loop Gain and Phase Shift vs. Frequency Rev. G | Page 8 of 16 10k OP400 50 45 40 TA = 25C TA = 25C VS = 15V VS = 15V AV = +1 AV = +1 FALLING OVERSHOOT (%) 35 30 25 RISING 20 15 5 0 0 0.5 1.0 1.5 2.0 CAPACITIVE LOAD (nF) 2.5 5V 3.0 Figure 22. Overshoot vs. Capacitive Load Figure 25. Large Signal Transient Response TA = 25C TA = 25C VS = 15V VS = 15V AV = +1 32 SINKING 30 28 0 1 2 3 TIME (Minutes) 4 20mV 5s 5 Figure 23. Short Circuit vs. Time 00304-026 SOURCING 00304-023 SHORT-CIRCUIT CURRENT (mA) 34 100s 00304-025 000304-022 10 Figure 26. Small Signal Transient Response TA = 25C VS = 15V VIN = 20V p-p 130 TA = 25C VS = 15V AV = +1 120 110 90 10 100 1k FREQUENCY (Hz) 10k 20mV 5s 100k Figure 27. Small Signal Transient Response, CLOAD = 1 nF Figure 24. Channel Separation vs. Frequency Rev. G | Page 9 of 16 00304-027 100 00304-024 CHANNEL SEPARATION (dB) 140 OP400 SATURATION VOLTAGE (mV) 10k V DD - V OH 1k V OL - V SS 100 0.001 0.01 0.1 1 10 20 OUTPUT CURRENT (mA) 00304-035 OP400 VSY = 15V TA = 25C Figure 28. Saturation Voltage vs. Output Current 100 10k - - eOUT ( nV ~ ) 2 x en ( nV ) x 101 Hz = Hz Figure 29. Noise Test Schematic -18V 14 13 12 11 10 9 8 V- 4 - - + + + 3 + 1- 2 V+ 1 2 3 4 5 6 7 GND 00304-029 1/4 OP400 + OP400 + 1/4 OP400 + - - 1/4 eOUT OP400 + TO SPECTRUM ANALYZER 1/4 +18V Figure 30. Burn-In Circuit Rev. E | Page 10 of 16 00304-028 - OP400 APPLICATIONS Total supply current can be reduced by connecting the inputs of an unused amplifier to V-. This turns the amplifier off, lowering the total supply current. DUAL LOW POWER INSTRUMENTATION AMPLIFIER Table 6. Gain Bandwidth Gain 5 10 100 1000 Bandwidth 150 kHz 67 kHz 7.5 kHz 500 Hz + + VIN + - A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 31. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (G = 1000). Offset voltage drift is typically 0.4 V/C over the military temperature range, which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low power instrumentation amplifier is a function of gain and is shown in Table 6. The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from -10 V to +10 V if required. VOUT 1/4 OP400A - 1/4 OP400A - REFERENCE 5k 5k 20k 20k VOUT RG VIN + + VIN =5+ 1/4 40,000 RG VOUT OP400A + - - 1/4 OP400A - REFERENCE 5k 5k 20k 20k RG Figure 31. Dual Low Power Instrumentation Amplifier Rev. G | Page 11 of 16 00304-030 The OP400 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load-driving capability of the OP400. OP400 DIFFERENTIAL OUTPUT INSTRUMENTATION AMPLIFIER BIPOLAR CURRENT TRANSMITTER In the circuit of Figure 32, which is an extension of the standard three op amp instrumentation amplifier, the output current is proportional to the differential input voltage. Maximum output current is 5 mA, with voltage compliance equal to 10 V when using 15 V supplies. Output impedance of the current transmitter exceeds 3 M, and linearity is better than 16 bits with gain set for a full-scale input of 100 V. + - The output voltage swing of a single-ended instrumentation amplifier is limited by the supplies, normally at 15 V, to a maximum of 24 V p-p. The differential output instrumentation amplifier shown in Figure 33 can provide an output voltage swing of 48 V p-p when operated with 15 V supplies. The extended output swing is due to the opposite polarity of the outputs. Both outputs swing 24 V p-p, but with opposite polarity, for a total output voltage swing of 48 V p-p. The reference input can be used to set a common-mode output voltage over the range 10 V. The PSRR of the amplifier is less than 1 V/V with CMRR (G = 1000) better than 115 dB. Offset voltage drift is typically 0.4 V/C over the military temperature range. 25k 1/4 25k OP400E - - VOUT 1/4 200 OP400E 25k IOUT 5mA + VIN RG 25k - 1/4 1/4 + OP400E - IOUT - VIN 200 00304-031 + 1 - 50,000 RG Figure 32. Bipolar Current Transmitter 22pF + - 1/4 OP400A 25k - 25k + 25k 1/4 OP400A RG VIN - 25k 22pF - + 25k 25k 1/4 OP400A 22pF + 25k 22pF 50k + R G = VOUT RG VIN 25k VOUT - 1/4 OP400A REFERENCE INPUT + Figure 33. Differential Output Instrumentation Amplifier Rev.( | Page 12 of 16 00304-032 + 25k 25k OP400E OP400 MULTIPLE OUTPUT TRACKING VOLTAGE REFERENCE under 25 V/mA. Line regulation is better than 15 V/V, and output voltage drift is under 20 V/C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 V p-p from the 10 V output and proportionately less from the 7.5 V, 5 V, and 2.5 V outputs. Figure 34 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V, and 2.5 V for use as a system voltage reference. Maximum output current from each reference is 5 mA with load regulation 10V 15V 10k 22k 1N4002 + 1/4 OP400A 1F 10k 2 REF 43 2.5V REFERENCE 6 10k 10k + 1/4 + OP400A 4 - 10k 2F 1/4 OP400A 10k 1/4 OP400A 2.5V - 00304-033 1F 5V - 10k + 7.5V - Figure 34. Multiple Output Tracking Voltage Reference Rev. G | Page 13 of 16 OP400 OUTLINE DIMENSIONS 0.005 (0.13) MIN 14 8 1 PIN 1 0.098 (2.49) MAX 0.310 (7.87) 0.220 (5.59) 7 0.100 (2.54) BSC 0.785 (19.94) MAX 0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 0.320 (8.13) 0.290 (7.37) 0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 15 0 0.015 (0.38) 0.008 (0.20) CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 35. 14-Lead Ceramic Dual In-Line Package [CERDIP] (Q-14) [Y-Suffix] Dimensions shown in inches and (millimeters) 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 14 8 1 7 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.100 (2.54) BSC 0.060 (1.52) MAX 0.210 (5.33) MAX 0.015 (0.38) MIN 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) SEATING PLANE 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) 0.015 (0.38) GAUGE PLANE 0.005 (0.13) MIN 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.430 (10.92) MAX COMPLIANT TO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 36. 14-Lead Plastic Dual In-Line Package [PDIP] (N-14) [P-Suffix] Dimensions shown in inches and (millimeters) Rev. G | Page 14 of 16 070606-A 0.070 (1.78) 0.050 (1.27) 0.045 (1.14) OP400 10.50 (0.4134) 10.10 (0.3976) 9 16 7.60 (0.2992) 7.40 (0.2913) 10.65 (0.4193) 10.00 (0.3937) 8 1.27 (0.0500) BSC 0.30 (0.0118) 0.10 (0.0039) COPLANARITY 0.10 0.75 (0.0295) 45 0.25 (0.0098) 2.65 (0.1043) 2.35 (0.0925) SEATING PLANE 0.51 (0.0201) 0.31 (0.0122) 8 0 0.33 (0.0130) 0.20 (0.0079) COMPLIANT TO JEDEC STANDARDS MS-013-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 1.27 (0.0500) 0.40 (0.0157) 03-27-2007-B 1 Figure 37. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16) [S-Suffix] Dimensions shown in millimeters and (inches) ORDERING GUIDE Model1 OP400AY OP400EY OP400FY OP400GP OP400GPZ OP400HP OP400HPZ OP400GS OP400GS-REEL OP400GSZ OP400GSZ-REEL OP400HS OP400HS-REEL OP400HSZ OP400HSZ-REEL OP400GBC 1 Temperature Range -55C to +125C -25C to +85C -25C to +85C 0C to +70C 0C to +70C -40C to +85C -40C to +85C 0C to +70C 0C to +70C 0C to +70C 0C to +70C -40C to +85C -40C to +85C -40C to +85C -40C to +85C Package Description 14-Lead CERDIP 14-Lead CERDIP 14-Lead CERDIP 14-Lead PDIP 14-Lead PDIP 14-Lead PDIP 14-Lead PDIP 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W Die Z = RoHS Compliant Part. SMD PARTS AND EQUIVALENTS SMD Part Number1 5962-8777101M3A 5962-8777101MCA 1 Analog Devices Equivalent OP400ATCMDA OP400AYMDA For military processed devices, please refer to the standard microcircuit drawing (SMD) available at the Defense Supply Center Columbus website. Rev. G | Page 15 of 16 Package Option Y-Suffix (Q-14) Y-Suffix (Q-14) Y-Suffix (Q-14) P-Suffix (N-14) P-Suffix (N-14) P-Suffix (N-14) P-Suffix (N-14) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) OP400 NOTES (c)2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00304-0-2/11(G) Rev. G | Page 16 of 16