Quad Low Offset, Low Power
Operational Amplifier
OP400
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
FEATURES
Low input offset voltage: 150 µV maximum
Low offset voltage drift over 55°C to +125°C: 1.2 pV/°C
maximum
Low supply current (per amplifier): 725 µA maximum
High open-loop gain: 5000 V/mV minimum
Input bias current: 3 nA maximum
Low noise voltage density: 11 nV/√Hz at 1 kHz
Stable with large capacitive loads: 10 nF typical
Pin-compatible to LM148, HA4741, RM4156, and LT1014,
with improved performance
Available in die form
FUNCTIONAL BLOCK DIAGRAMS
OUT A 1
–IN A 2
+IN A 3
V+ 4
OUT D
–IN D
+IN D
V–
14
13
12
11
+IN B 5
–IN B 6
OUT B 7
+IN C
–IN C
OUT C
10
9
8
00304-001
OP400
+
+
+
+
OUTA
1
–IN A
2
+IN A
3
V+
4
OUT D
–IN D
+IN D
V–
16
15
14
13
+IN B
5
–IN B
6
OUT B
7
+IN C
–IN C
OUT C
12
11
10
NC
8
NC
9
00304-002
OP400
NC = NO CONNECT
+
+
+
+
Figure 1. 14-Pin Ceramic DIP (Y-
Suffix)
and 14-Pin Plastic DIP (P-Suffix)
Figure 2. 16-Pin SOIC (S-Suffix)
GENERAL DESCRIPTION
The OP400 is the first monolithic quad operational amplifier
that features OP77-type performance. Precision performance is
not sacrificed with the OP400 to obtain the space and cost
savings offered by quad amplifiers.
The OP400 features an extremely low input offset voltage of less
than 150 µV with a drift of less than 1.2 µV/°C, guaranteed over
the full military temperature range. Open-loop gain of the
OP400 is more than 5 million into a 10 kload, input bias
current is less than 3 nA, CMR is more than 120 dB, and PSRR
is less than 1.8 µV/V. On-chip Zener zap trimming is used to
achieve the low input offset voltage of the OP400 and eliminates
the need for offset nulling. The OP400 conforms to the industry-
standard quad pinout, which does not have null terminals.
The OP400 features low power consumption, drawing less than
725 µA per amplifier. The total current drawn by this quad
amplifier is less than that of a single OP07, yet the OP400 offers
significant improvements over this industry-standard op amp.
Voltage noise density of the OP400 is a low 11 nV/Hz at
10 Hz, half that of most competitive devices.
The OP400 is pin-compatible with the LM148, HA4741,
RM4156, and LT1014 operational amplifiers and can be used to
upgrade systems having these devices. The OP400 is an ideal
choice for applications requiring multiple precision operational
amplifiers and where low power consumption is critical.
VOLTAGE
LIMITING
NETWORK
+IN –IN
V–
OUT
V+
BIAS
00304-003
Figure 3. Simplified Schematic (One of Four Amplifiers Is Shown)
OP400
Rev. G | Page 2 of 16
TABLE OF CONTENTS
Features .............................................................................................. 1
Functional Block Diagrams ............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution .................................................................................. 5
Typical Performance Characteristics ..............................................6
Applications ..................................................................................... 11
Dual Low Power Instrumentation Amplifier ......................... 11
Bipolar Current Transmitter ..................................................... 12
Differential Output Instrumentation Amplifier .................... 12
Multiple Output Tracking Voltage Reference ......................... 13
Outline Dimensions ....................................................................... 14
Ordering Guide .......................................................................... 15
SMD Parts and Equivalents ...................................................... 15
REVISION HISTORY
2/11Rev. F to Rev. G
Added S Package to Storage Temperature Range in Table 4 ....... 5
Updated Outline Dimensions ....................................................... 15
12/08Rev. E to Rev. F
Added New Figure 28, Renumbered Sequentially ..................... 10
Updated Outline Dimensions ....................................................... 15
1/07—Rev. D to Rev. E
Updated Format .................................................................. Universal
Changes to Figure 1 and Figure 2 ................................................... 1
Removed Figure 4 ............................................................................. 4
Changes to Table 3 ............................................................................ 4
Changes to Figure 16 through Figure 19, Figure 21..................... 8
Changes to Figure 27 ........................................................................ 9
Changes to Figure 28 ...................................................................... 10
Changes to Figure 33 ...................................................................... 13
Updated Outline Dimensions ....................................................... 14
3/06—Rev. C to Rev. D
Updated Format .................................................................. Universal
Deleted Wafer Test Limits Table ..................................................... 4
New Package Drawing: R-14 ......................................................... 15
Updated Outline Dimensions ....................................................... 15
Changes to Ordering Guide .......................................................... 16
6/03Rev. B to Rev. C
Edits to Specifications ....................................................................... 2
10/02Rev. A to Rev. B
Addition of Absolute Maximum Ratings ....................................... 5
Edits to Outline Dimensions......................................................... 12
4/02Rev. 0 to Rev. A
Edits to Features................................................................................. 1
Edits to Ordering Information ........................................................ 1
Edits to Pin Connections .................................................................. 1
Edits to General Descriptions ..................................................... 1, 2
Edits to Package Type ....................................................................... 2
OP400
Rev. G | Page 3 of 16
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
@ VS = ±15 V, TA = +25°C, unless otherwise noted.
Table 1.
OP400A/E OP400F OP400G/H
Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit
INPUT CHARACTERISTICS
Input Offset Voltage VOS 40 150 60 230 80 300 µV
Long-Term Input
Voltage Stability
0.1 0.1 0.1 µV/mo
Input Offset Current IOS VCM = 0 V 0.1 1.0 0.1 2.0 0.1 3.5 nA
Input Bias Current I
B
V
= 0 V 0.75 3.0 0.75 6.0 0.75 7.0 nA
Input Noise Voltage en p-p 0.1 Hz to 10 Hz 0.5 0.5 0.5 µV p-p
Input Resistance
Differential Mode
RIN 10 10 10 M
Input Resistance
Common Mode
RINCM 200 200 200 G
Large Signal Voltage
Gain
AVO VO = ±10 V
RL = 10 k 5000 12,000 3000 7000 3000 7000 V/mV
RL = 2 k 2000 3500 1500 3000 1500 3000 V/mV
Input Voltage Range1IVR ±12 ±13 ±12 ±13 ±12 ±13 V
Common-Mode
Rejection
CMR VCM = 12 V 120 140 115 140 110 135 dB
Input Capacitance CIN 3.2 3.2 3.2 pF
OUTPUT
CHARACTERISTICS
Output Voltage Swing VO RL = 10 k ±12 ±12.6 ±12 ±12.6 ±12 ±12.6 V
POWER SUPPLY
Power Supply Rejection
Ratio
PSRR VS = 3 V to 18 V 0.1 1.8 0.1 3.2 0.2 5.6 µV/V
Supply Current per
Amplifier
ISY No load 600 725 600 725 600 725 µA
DYNAMIC PERFORMANCE
Slew Rate SR 0.1 0.15 0.1 0.15 0.1 0.15 V/µs
Gain Bandwidth
Product
GBWP AV = 1 500 500 500 kHz
Channel Separation CS VO = 20 V p-p, 123 135 123 135 123 135 dB
fO = 10 Hz2
Capacitive Load
Stability
AV = 1,
no oscillations
10 10 10 nF
NOISE PERFORMANCE
Input Noise Voltage en fO = 10 Hz3 22 36 22 36 22 nV/√Hz
Density3 fO = 1000 Hz3 11 18 11 18 11 nV/√Hz
Input Noise Current i
n p-p
0.1 Hz to 10 Hz 15 15 15 pA p-p
Input Noise Current
Density
in fO = 10 Hz 0.6 0.6 0.6 pA/ √Hz
1 Guaranteed by CMR test.
2 Guaranteed but not 100% tested.
3 Sample tested.
OP400
Rev. G | Page 4 of 16
@ VS = ±15 V, 55°C ≤ TA ≤ +125°C for OP400A, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Input Offset Voltage VOS 70 270 µV
Average Input Offset Voltage Drift TCVOS 0.3 1.2 µV/°C
Input Offset Current IOS VCM = 0 V 0.1 2.5 nA
Input Bias Current IB VCM = 0 V 1.3 5.0 nA
Large Signal Voltage Gain AVO VO = ±10 V, RL = 10 k 3000 9000 V/mV
RL = 2 k 1000 2300
Input Voltage Range1 IVR ±12 ±12.5 V
Common-Mode Rejection CMR VCM = ±12 V 115 130 dB
OUTPUT CHARACTERISTICS
Output Voltage Swing V
O
R
L
= 10 k ±12 ±12.4
POWER SUPPLY
Power Supply Rejection Ratio PSRR VO = 3 V to 18 V 0.2 3.2 µV/V
Supply Current per Amplifier ISY No load 600 775 µA
DYNAMIC PERFORMANCE
Capacitive Load Stability A
V
= 1, no oscillations 8 nF
1 Guaranteed by CMR test.
@ VS = ±15 V, −25°C TA +85°C for OP400E/F, 0°C TA 70°C for OP400G, −40°C TA +85°C for OP400H, unless otherwise noted.
Table 3.
OP400E OP400F OP400G/H
Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit
INPUT CHARACTERISTICS
Input Offset Voltage VOS 60 220 80 350 110 400 µV
Average Input Offset
Voltage Drift
TCVOS 0.3 1.2 0.3 2.0 0.6 2.5 µV/°C
Input Offset Current IOS VCM = 0 V
E, F, G grades 0.1 2.5 0.1 3.5 0.2 6.0 nA
H grade 0.2 12.0 nA
Input Bias Current IB VCM = 0 V
E, F, G grades 0.9 5.0 0.9 10.0 1.0 12.0 nA
H grade 1.0 20.0 nA
Large-Signal Voltage Gain AVO VCM = 0 V
RL = 10 k 3000 10,000 2000 5000 2000 5000 V/mV
RL = 2 k 1500 2700 1000 2000 1000 2000 V/mV
Input Voltage Range1 IVR ±12 ±12.5 ±12 ±12.5 ±12 ±12.5 V
Common-Mode Rejection CMR VCM = ±12 V 115 135 110 135 105 130 dB
OUTPUT CHARACTERISTICS
Output Voltage Swing V
O
R
L
= 10 k ±12 ±12.4 ±12 ±12.4 ±12 ±12.6 V
RL = 2 k ±11 ±12 ±11 ±12 ±11 ±12.2 V
POWER SUPPLY
Power Supply Rejection
Ratio
PSRR VS = ±3 V to
±18 V
0.15 3.2 0.15 5.6 0.3 10.0 µV/V
Supply Current per
Amplifier
ISY No load 600 775 600 775 600 775 µA
DYNAMIC PERFORMANCE
Capacitive Load Stability No oscillations 10 10 10 nF
1 Guaranteed by CMR test.
OP400
Rev. G | Page 5 of 16
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Rating
Supply Voltage ±20 V
Differential Input Voltage ±30 V
Input Voltage Supply voltage
Output Short-Circuit Duration Continuous
Storage Temperature Range
P, Y, S Packages 65°C to +150°C
Lead Temperature (Soldering 60 sec) 300°C
Junction Temperature (TJ) Range 65°C to +150°C
Operating Temperature Range
OP400A −55°C to +125°C
OP400E, OP400F −25°C to +85°C
OP400G 0°C to 70°C
OP400H −40°C to +85°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Absolute maximum ratings apply to both dice and packaged
parts, unless otherwise noted.
THERMAL RESISTANCE
θJA is specified for worst-case mounting conditions, that is, θJA is
specified for device in socket for CERDIP and PDIP packages;
θJA is specified for device soldered to printed circuit board for
SOIC package.
Table 5. Thermal Resistance
Package Type θJA θJC Unit
14-Pin Ceramic DIP (Y) 94 10 °C/W
14-Pin Plastic DIP (P) 76 33 °C/W
16-Pin SOIC (S) 88 23 °C/W
ESD CAUTION
OP400
Rev. G | Page 6 of 16
TYPICAL PERFORMANCE CHARACTERISTICS
3
2
1
00 1 2 3 54
00304-004
CHANGE IN OFFSET VOLTAGE (μV)
TIME (Mi n u tes)
TA = 25° C
VS = ±15V
Figure 4. Warmup Drift
70
60
50
40
30
20
10
–75 1251007550250–25–50
00304-005
INPUT OFFSET VOLTAGE (μV)
TEMPERATURE (°C)
VS = ±15V
Figure 5. Input Offset Voltage vs. Temperature
2.0
0
0.4
0.8
1.2
1.6
–75 1251007550250–25–50
00304-006
INP UT BIAS CURRE NT (n A)
TEMPERATURE (°C)
VS = ±15V
Figure 6. Input Bias Current vs. Temperature
120
80
90
100
110
–75 1251007550250–25–50
00304-007
INP UT OF FSET CURRENT ( pA)
TEMPERATURE (°C)
VS = ±15V
Figure 7. Input Offset Current vs. Temperature
1.1
0.6
0.7
0.8
0.9
1.0
–15 15105–5 0–10
00304-008
INP UT BIAS CURRE NT (n A)
COMMON-MODE VOLT AGE (V)
Figure 8. Input Bias Current vs. Common-Mode Voltage
140
0
20
40
60
80
100
120
1100k10k100 1k10
00304-009
COM M ON-MO DE RE JE CTION (d B)
FRE QUENCY (Hz )
TA = 25°C
VS = ±15V
Figure 9. Common-Mode Rejection vs. Frequency
OP400
Rev. G | Page 7 of 16
100
10 11k10010
00304-010
NOISE VOL T AGE DENSITY (n V/ Hz)
FRE QUENCY (Hz )
Figure 10. Noise Voltage Density vs. Frequency
1k
0
200
400
600
800
11k10010
00304-011
CURRENT NOISE DE NS ITY ( f A/ Hz)
FRE QUENCY (Hz )
TA = 25°C
VS = ±15V
Figure 11. Current Noise Density vs. Frequency
0104 6 82
00304-012
TIME (Seconds)
Figure 12. 0.1 Hz to 10 Hz Noise
2.5
2.1
2.2
2.3
2.4
±2 ±6 ±10 ±14 ±18±4 ±8 ±12 ±16 ±20
00304-013
TOTAL S UP P LY CURRENT (mA)
SUPPLY VOLT AGE (V)
FOUR AMPLIFIERS
TA = 25° C
Figure 13. Total Supply Current vs. Supply Voltage
2.5
2.1
2.2
2.3
2.4
–75 –50 –25 025 50 75 100 125 150
00304-014
TOTAL S UP P LY CURRENT (mA)
TEMPERATURE (°C)
FOUR AMPLIFIERS
VS = ±15V
Figure 14. Total Supply Current vs. Temperature
140
0
20
40
60
80
100
120
0.1 100k10k1k100101
00304-015
POWER SUPPLY REJECTION (dB)
FRE QUENCY (Hz )
NEGATIVE
SUPPLY
POSITIVE
SUPPLY
Figure 15. Power Supply Rejection vs. Frequency
OP400
Rev. G | Page 8 of 16
TEMPERATURE (°C)
POWER SUPPLY REJECTION (dB)
144
142
138
140
136
134
–75 1501251007550250–25–50
00304-016
VS= ±15V
Figure 16. Power Supply Rejection vs. Temperature
TEMPERATURE (°C)
OPEN-LOO P G AIN (V/mV)
5k
4k
2k
3k
1k
0
–75 1501251007550250–25–50
00304-017
VS = ±15V
RL = 2kΩ
Figure 17. Open-Loop Gain vs. Temperature
FRE QUENCY (Hz )
OPEN-LOOP GAIN (dB)
120
40
20
100
80
60
0
10 1M10k 100k1k100
00304-018
PHASE S HIFT ( Degrees)
90
0
45
135
180
GAIN
PHASE
T
A
= 25° C
V
S
= ±15V
Figure 18. Open-Loop Gain and Phase Shift vs. Frequency
FRE QUENCY (Hz )
GAIN (dB)
60
80
40
0
20
110 1k100 100k10k 1M
00304-019
T
A
= 25° C
V
S
= ±15V
A
V
= 1000
A
V
= 100
A
V
= 10
A
V
= 1000
Figure 19. Closed-Loop Gain vs. Frequency
FRE QUENCY (Hz )
OUTPUT SWING (V p-p AT 1% Distortion)
20
25
15
5
10
10 100 1k 10k 100k
00304-020
T
A
= 25° C
V
S
= ±15V
Figure 20. Maximum Output Swing Frequency
FRE QUENCY (Hz )
DISTORTION (%)
10
0.1
1
0.01
0.001
100 1k 10k
000304-021
T
A
= 25° C
V
S
= ±15V
V
OUT
= 10V p - p
R
L
= 2kΩ A
V
= 100
A
V
= 10
A
V
= 1
Figure 21. Total Harmonic Distortion vs. Frequency
OP400
Rev. G | Page 9 of 16
CAPACITIVE LOAD (nF)
OVERSHOOT (%)
45
50
40
25
35
0
5
10
15
20
30
00.5 1.0 2.0 2.51.5 3.0
000304-022
TA = 25° C
VS = ±15V
AV = +1 FALLING
RISING
Figure 22. Overshoot vs. Capacitive Load
TIME (Mi n u tes)
SHO RT-CIRCUIT CURRE NT (mA)
34
32
30
28 0 1 2 3 4 5
00304-023
SOURCING
SINKING
TA = 25° C
VS = ±15V
Figure 23. Short Circuit vs. Time
FRE QUENCY (Hz )
CHANNEL S E P ARATIO N ( dB)
140
130
120
110
100
9010 100 1k 10k 100k
00304-024
TA = 25° C
VS = ±15V
VIN = 20V p-p
Figure 24. Channel Separation vs. Frequency
00304-025
5V 100μs
TA = 25° C
VS = ±15V
AV = +1
Figure 25. Large Signal Transient Response
00304-026
20mV 5μs
TA = 25° C
VS = ±15V
AV = +1
Figure 26. Small Signal Transient Response
00304-027
20mV 5μs
TA = 25° C
VS = ±15V
AV = +1
Figure 27. Small Signal Transient Response, CLOAD = 1 nF
OP400
Rev. E | Page 10 of 16
00304-035
OUTPUT CURRE NT (mA)
SATURATION VOLTAGE (mV)
100
1k
10k
0.001 0.01 0.1 110
OP400
V
SY
= ±15V
T
A
= 25° C
V
DD
– V
OH
V
OL
– V
SS
20
Figure 28. Saturation Voltage vs. Output Current
100Ω 10kΩ
eOUT
TO SPECTRUM ANAL Y ZER
00304-028
1/4
OP400
+
1/4
OP400
+
1/4
OP400
+
1/4
OP400
+
e
OUT nV
Hz
( )
2 × ennV
Hz
( )
× 101
~
=
Figure 29. Noise Test Schematic
14 13 12 11 10 9 8
1234567
GND
+18V
–18V
+
+
+
+
4
1
3
2
00304-029
V–
V+
Figure 30. Burn-In Circuit
OP400
Rev. G | Page 11 of 16
APPLICATIONS
The OP400 is inherently stable at all gains and is capable of
driving large capacitive loads without oscillating. Nonetheless,
good supply decoupling is highly recommended. Proper supply
decoupling reduces problems caused by supply line noise and
improves the capacitive load-driving capability of the OP400.
Total supply current can be reduced by connecting the inputs of
an unused amplifier to V−. This turns the amplifier off,
lowering the total supply current.
DUAL LOW POWER INSTRUMENTATION
AMPLIFIER
A dual instrumentation amplifier that consumes less than
33 mW of power per channel is shown in Figure 31. The linear-
ity of the instrumentation amplifier exceeds 16 bits in gains of 5 to
200 and is better than 14 bits in gains from 200 to 1000. CMRR
is above 115 dB (G = 1000). Offset voltage drift is typically
0.4 μV/°C over the military temperature range, which is
comparable to the best monolithic instrumentation amplifiers.
The bandwidth of the low power instrumentation amplifier is
a function of gain and is shown in Table 6.
The output signal is specified with respect to the reference
input, which is normally connected to analog ground. The
reference input can be used to offset the output from −10 V to
+10 V if required.
Table 6. Gain Bandwidth
Gain Bandwidth
5 150 kHz
10 67 kHz
100 7.5 kHz
1000 500 Hz
+
20kΩ5kΩ5kΩ
20kΩ
REFERENCE
V
IN
V
IN
R
G
R
G
V
OUT
V
OUT
+
20kΩ5kΩ5kΩ
20kΩ
REFERENCE
V
IN
R
G
V
OUT
40,000
= 5 +
00304-030
1/4
OP400A
+
1/4
OP400A
+
1/4
OP400A
+
1/4
OP400A
+
Figure 31. Dual Low Power Instrumentation Amplifier
OP400
Rev.( | Page 12 of 16
BIPOLAR CURRENT TRANSMITTER
In the circuit of Figure 32, which is an extension of the standard
three op amp instrumentation amplifier, the output current is
proportional to the differential input voltage. Maximum output
current is ±5 mA, with voltage compliance equal to ±10 V when
using ±15 V supplies. Output impedance of the current
transmitter exceeds 3 MΩ, and linearity is better than 16 bits
with gain set for a full-scale input of ±100 µV.
DIFFERENTIAL OUTPUT INSTRUMENTATION
AMPLIFIER
The output voltage swing of a single-ended instrumentation
amplifier is limited by the supplies, normally at ±15 V, to
a maximum of 24 V p-p. The differential output instrumenta-
tion amplifier shown in Figure 33 can provide an output voltage
swing of 48 V p-p when operated with ±15 V supplies. The
extended output swing is due to the opposite polarity of the
outputs. Both outputs swing 24 V p-p, but with opposite
polarity, for a total output voltage swing of 48 V p-p. The reference
input can be used to set a common-mode output voltage over the
range ±10 V. The PSRR of the amplifier is less than 1 µV/V with
CMRR (G = 1000) better than 115 dB. Offset voltage drift is
typically 0.4 µV/°C over the military temperature range.
00304-031
+
V
OUT
I
OUT
5mA
I
OUT
V
IN
50,000
200Ω
200Ω
R
G
25kΩ
25kΩ
25kΩ 25kΩ
25kΩ 25kΩ
R
G
1
VIN
1/4
OP400E
+
1/4
OP400E
+
1/4
OP400E
+
1/4
OP400E
+
Figure 32. Bipolar Current Transmitter
+
00304-032
V
OUT
V
IN
R
G
25kΩ
25kΩ
25kΩ
25kΩ
25kΩ
22pF
22pF
22pF
22pF
25kΩ
25kΩ
25kΩ
V
OUT
V
IN =
50kΩ + R
G
R
G
REFERENCE
INPUT
1/4
OP400A
+
1/4
OP400A
+
1/4
OP400A
+
1/4
OP400A
+
Figure 33. Differential Output Instrumentation Amplifier
OP400
Rev. G | Page 13 of 16
MULTIPLE OUTPUT TRACKING VOLTAGE
REFERENCE
Figure 34 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V,
and 2.5 V for use as a system voltage reference. Maximum
output current from each reference is 5 mA with load regulation
under 25 µV/mA. Line regulation is better than 15 µV/V,
and output voltage drift is under 20 µV/°C. Output voltage
noise from 0.1 Hz to 10 Hz is typically 75 µV p-p from the
10 V output and proportionately less from the 7.5 V, 5 V, and
2.5 V outputs.
7.5V
10V
5V
2.5V
10kΩ
10kΩ
10kΩ
10kΩ
15V
22kΩ
10kΩ
1N4002
10kΩ
10kΩ
2μF
1μF
1μF
4
2
6
00304-033
REF 43
2.5V
REFERENCE
1/4
OP400A
+
1/4
OP400A
+
1/4
OP400A
+
1/4
OP400A
+
Figure 34. Multiple Output Tracking Voltage Reference
OP400
Rev. G | Page 14 of 16
OUTLINE DIMENSIONS
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
0.310 (7.87)
0.220 (5.59)
0.005 (0.13) MIN 0.098 (2.49) MAX
0.100 (2.54) BSC
15°
0.320 (8.13)
0.290 (7.37)
0.015 (0.38)
0.008 (0.20)
SEATING
PLANE
0.200 (5.08)
MAX
0.785 (19.94) MAX
0.150
(3.81)
MIN
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36) 0.070 (1.78)
0.030 (0.76)
0.060 (1.52)
0.015 (0.38)
PIN 1
17
8
14
Figure 35. 14-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-14)
[Y-Suffix]
Dimensions shown in inches and (millimeters)
COM PLIANT TO JEDE C S TANDARDS MS-001
CONT ROLL ING DIMENSIONS ARE I N INCHES; M ILLIM ETER DI M E NSIONS
(IN PARENTHESES ) ARE RO UNDED- OFF INCH EQUIVALE NT S FO R
REFERENCE ONLY AND ARE NO T AP P ROPRI ATE FOR USE IN DESI GN.
CORNER L E ADS MAY BE CONF IGURED AS WHOL E OR HALF LEADS.
070606-A
0.022 ( 0 .56)
0.018 ( 0 .46)
0.014 ( 0 .36)
0.150 (3.81)
0.130 (3.30)
0.110 (2. 79)
0.070 (1.78)
0.050 (1.27)
0.045 (1.14)
14
17
8
0.100 ( 2 .54)
BSC
0.775 (19.69)
0.750 (19.05)
0.735 (18.67)
0.060 ( 1.52)
MAX
0.430 ( 10.92)
MAX
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.325 ( 8.26)
0.310 ( 7.87)
0.300 ( 7.62)
0.015 ( 0 .38)
GAUGE
PLANE
0.210 ( 5.33)
MAX
SEATING
PLANE
0.015
(0.38)
MIN
0.005 ( 0 .13)
MIN
0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
0.195 (4.95)
0.130 (3.30)
0.115 (2. 92)
Figure 36. 14-Lead Plastic Dual In-Line Package [PDIP]
(N-14)
[P-Suffix]
Dimensions shown in inches and (millimeters)
OP400
Rev. G | Page 15 of 16
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENT
HESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-013-AA
10.50 (0.4134)
10.10 (0.3976)
0.30 (0.0118)
0.10 (0.0039)
2.65 (0.1043)
2.35 (0.0925)
10.65 (0.4193)
10.00 (0.3937)
7.60 (0.2992)
7.40 (0.2913)
0.75 (0.0295)
0.25 (0.0098)
45°
1.27 (0.0500)
0.40 (0.0157)
COPLANARITY
0.10 0.33 (0.0130)
0.20 (0.0079)
0.51 (0.0201)
0.31 (0.0122)
SEATING
PLANE
16 9
8
1
1.27 (0.0500)
BSC
03-27-2007-B
Figure 37. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body (RW-16)
[S-Suffix]
Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
OP400AY 55°C to +125°C 14-Lead CERDIP Y-Suffix (Q-14)
OP400EY 25°C to +85°C 14-Lead CERDIP Y-Suffix (Q-14)
OP400FY 25°C to +85°C 14-Lead CERDIP Y-Suffix (Q-14)
OP400GP C to +70°C 14-Lead PDIP P-Suffix (N-14)
OP400GPZ C to +70°C 14-Lead PDIP P-Suffix (N-14)
OP400HP 40°C to +85°C 14-Lead PDIP P-Suffix (N-14)
OP400HPZ 40°C to +85°C 14-Lead PDIP P-Suffix (N-14)
OP400GS C to +70°C 16-Lead SOIC_W S-Suffix (RW-16)
OP400GS-REEL C to +70°C 16-Lead SOIC_W S-Suffix (RW-16)
OP400GSZ C to +70°C 16-Lead SOIC_W S-Suffix (RW-16)
OP400GSZ-REEL C to +70°C 16-Lead SOIC_W S-Suffix (RW-16)
OP400HS 40°C to +85°C 16-Lead SOIC_W S-Suffix (RW-16)
OP400HS-REEL 40°C to +85°C 16-Lead SOIC_W S-Suffix (RW-16)
OP400HSZ 40°C to +85°C 16-Lead SOIC_W S-Suffix (RW-16)
OP400HSZ-REEL 40°C to +85°C 16-Lead SOIC_W S-Suffix (RW-16)
OP400GBC Die
1 Z = RoHS Compliant Part.
SMD PARTS AND EQUIVALENTS
SMD Part Number1 Analog Devices Equivalent
5962-8777101M3A OP400ATCMDA
5962-8777101MCA OP400AYMDA
1 For military processed devices, please refer to the standard microcircuit
drawing (SMD) available at the Defense Supply Center Columbus website.
OP400
Rev. G | Page 16 of 16
©2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00304-0-2/11(G)
NOTES