Publication Number 21526 Revision DAmendment 6Issue Date August 3, 2009
Am29F200B
Am29F200 B Cover S heet
Data Sheet
The following document contains information on Spansion memory products.
Continuity of Specifications
There is no change to this data sheet as a result of offering the device as a Spansion product. Any changes that have been
made are the result of normal data sheet improvement and are noted in the document revision summary.
For More Information
Please contact your local sales office for additional information about Spansion memory solutions.
2 Am29F200B 21526_D6 August 3, 2009
Data Sheet (Retired Product)
This page left intentionally blank.
DATA SHEET
This Data Sheet states AMD’s current technical specifications regarding the Products described herein. This Data
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.
Publication# 21526 Rev: DAmendment: 6
Issue Date: August 3, 2009
Am29F200B
2 Megabit (256 K x 8-Bit/128 K x 16-Bit)
CMOS 5.0 Volt-only, Boot Sector Flash Memory
DISTINCTIVE CHARACTERISTICS
5.0 V for read and write operations
Minimizes system level power requirements
Manufactured on 0.32 µm process technology
Compatible with 0.5 µm Am29F200A device
High performance
Access times as fast as 45 ns
Low power consumption
20 mA typical active read current (byte mode)
28 mA typical active read current for
(word mode)
30 mA typical program/erase current
1 µA typical standby current
Sector erase architecture
One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and
three 64 Kbyte sectors (byte mode)
One 8 Kword, two 4 Kword, one 16 Kword, and
three 32 Kword sectors (word mode)
Supports full chip erase
Sector Protection features:
A hardware method of locking a sector to
prevent any program or erase operations within
that sector
Sectors can be locked via programming equipment
Temporary Sector Unprotect feature allows code
changes in previously locked sectors
Top or bottom boot block configurations available
Embedded Algorithms
Embedded Erase algorithm automatically
preprograms and erases the entire chip or any
combination of designated sectors
Embedded Program algorithm automatically
writes and verifies data at specified addresses
Minimum 1,000,000 write/erase cycles guaranteed
20-year data retention at 125°C
Reliable operation for the life of the system
Package options
44-pin SO
48-pin TSOP
Known Good Die (KGD)
(see publication number 21257)
Compatible with JEDEC standards
Pinout and software compatible with
single-power-supply flash
Superior inadvertent write protection
Data# Polling and Toggle Bit
Detects program or erase cycle completion
Ready/Busy# output (RY/BY#)
Hardware method for detection of program or
erase cycle completion
Erase Suspend/Erase Resume
Supports reading data from a sector not
being erased
Hardware RESET# pin
Resets internal state machine to the reading
array data
2 Am29F200B 21526D6 August 3, 2009
DATA SHEET
GENERAL DESCRIPTION
The Am29F200B is a 2 Mbit, 5.0 Volt-only Flash
memory organized as 262,144 bytes or 131,072 words.
The 8 bits of data appear on DQ0–DQ7; the 16 bits on
DQ0–DQ15. The Am29F200B is offered in 44-pin SO
and 48-pin TSOP packages. The device is also avail-
able in Known Good Die (KGD) form. For more
information, refer to publication number 21257. This
device is designed to be programmed in-system with
the standard system 5.0 volt VCC supply. A 12.0 volt
VPP is not required for program or erase operations.
The device can also be reprogrammed in standard
EPROM programmers.
This device is manufactured using AMD’s 0.32 µm
process technology, and offers all the features and ben-
efits of the Am29F200A, which was manufactured
using 0.5 µm process technology.
The standard device offers access times of 45, 50, 55,
70, 90, and 120 ns, allowing operation of high-speed
microprocessors without wait states. To eliminate bus
contention the device has separate chip enable (CE#),
write enable (WE#) and output enable (OE#) controls.
The device requires only a single 5.0 volt power
supply for both read and write functions. Internally
generated and regulated voltages are provided for the
program and erase operations.
The device is entirely command set compatible with the
JEDEC single-power-supply Flash standard. Com-
mands are written to the command register using
standard microprocessor write timings. Register con-
tents serve as input to an internal state-machine that
controls the erase and programming circuitry. Write
cycles also internally latch addresses and data needed
for the programming and erase operations. Reading
data out of the device is similar to reading from other
Flash or EPROM devices.
Device programming occurs by executing the program
command sequence. This initiates the Embedded
Program algorithm—an internal algorithm that auto-
matically times the program pulse widths and verifies
proper cell margin.
Device erasure occurs by executing the erase
command sequence. This initiates the Embedded
Erase algorithm—an internal algorithm that automati-
cally preprograms the array (if it is not already
programmed) before executing the erase operation.
During erase, the device automatically times the erase
pulse widths and verifies proper cell margin.
The host system can detect whether a program or
erase operation is complete by observing the RY/BY#
pin, or by reading the DQ7 (Data# Polling) and
DQ6/DQ2 (toggle) status bits. After a program or
erase cycle has been completed, the device is ready to
read array data or accept another command.
The sector erase architecture allows memory sectors
to be erased and reprogrammed without affecting the
data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection measures include a low
VCC detector that automatically inhibits write opera-
tions during power transitions. The hardware sector
protection feature disables both program and erase
operations in any combination of the sectors of memory.
This can be achieved via programming equipment.
The Erase Suspend feature enables the user to put
erase on hold for any period of time to read data from,
or program data to, any sector that is not selected for
erasure. True background erase can thus be achieved.
The hardware RESET# pin terminates any operation
in progress and resets the internal state machine to
reading array data. The RESET# pin may be tied to the
system reset circuitry. A system reset would thus also
reset the device, enabling the system microprocessor
to read the boot-up firmware from the Flash memory.
The system can place the device into the standby
mode. Power consumption is greatly reduced in this mode.
AMD’s Flash technology combines years of Flash
memory manufacturing experience to produce the
highest levels of quality, reliability and cost effective-
ness. The device electrically erases all bits within a
sector simultaneously via Fowler-Nordheim tunneling.
The data is programmed using hot electron injection.
August 3, 2009 21526D6 Am29F200B 3
DATA SHEET
TABLE OF CONTENTS
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 4
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 5
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 7
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . 8
Table 1. Am29F200B Device Bus Operations ..................................8
Word/Byte Configuration .......................................................... 8
Requirements for Reading Array Data ..................................... 8
Writing Commands/Command Sequences .............................. 8
Program and Erase Operation Status ...................................... 9
Standby Mode .......................................................................... 9
RESET#: Hardware Reset Pin ................................................. 9
Output Disable Mode ................................................................ 9
Table 2. Am29F200T Top Boot Block Sector Address Table .........10
Table 3. Am29F200B Bottom Boot Block Sector Address Table ....10
Autoselect Mode ..................................................................... 10
Table 4. Am29F200B Autoselect Codes (High Voltage Method) ....11
Sector Protection/Unprotection ............................................... 11
Temporary Sector Unprotect .................................................. 11
Figure 1. Temporary Sector Unprotect Operation........................... 11
Hardware Data Protection ...................................................... 11
Low VCC Write Inhibit ......................................................................12
Write Pulse “Glitch” Protection ........................................................12
Logical Inhibit ..................................................................................12
Power-Up Write Inhibit ....................................................................12
Command Definitions . . . . . . . . . . . . . . . . . . . . . 12
Reading Array Data ................................................................ 12
Reset Command ..................................................................... 12
Autoselect Command Sequence ............................................ 12
Word/Byte Program Command Sequence ............................. 13
Figure 2. Program Operation .......................................................... 13
Chip Erase Command Sequence ........................................... 13
Sector Erase Command Sequence ........................................ 14
Erase Suspend/Erase Resume Commands ........................... 14
Figure 3. Erase Operation............................................................... 15
Command Definitions ............................................................. 16
Table 5. Am29F200B Command Definitions ...................................16
DQ7: Data# Polling ................................................................. 17
Figure 4. Data# Polling Algorithm ................................................... 17
RY/BY#: Ready/Busy# ........................................................... 18
DQ6: Toggle Bit I .................................................................... 18
DQ2: Toggle Bit II ................................................................... 18
Reading Toggle Bits DQ6/DQ2 ............................................... 18
DQ5: Exceeded Timing Limits ................................................ 19
DQ3: Sector Erase Timer ....................................................... 19
Figure 5. Toggle Bit Algorithm........................................................ 19
Table 6. Write Operation Status ..................................................... 20
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . 21
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 21
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 22
TTL/NMOS Compatible .......................................................... 22
CMOS Compatible .................................................................. 23
Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 8. Test Setup....................................................................... 24
Table 7. Test Specifications ........................................................... 24
Key to Switching Waveforms. . . . . . . . . . . . . . . . 24
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 25
Read Operations .................................................................... 25
Figure 9. Read Operations Timings ............................................... 25
Hardware Reset (RESET#) .................................................... 26
Figure 10. RESET# Timings .......................................................... 26
Word/Byte Configuration (BYTE#) ...................................... 27
Figure 11. BYTE# Timings for Read Operations............................ 27
Figure 12. BYTE# Timings for Write Operations............................ 27
Erase/Program Operations ..................................................... 28
Figure 13. Program Operation Timings.......................................... 29
Figure 14. Chip/Sector Erase Operation Timings .......................... 30
Figure 15. Data# Polling Timings (During Embedded Algorithms). 31
Figure 16. Toggle Bit Timings (During Embedded Algorithms)...... 31
Figure 17. DQ2 vs. DQ6................................................................. 32
Temporary Sector Unprotect .................................................. 32
Figure 18. Temporary Sector Unprotect Timing Diagram .............. 32
Alternate CE# Controlled Erase/Program Operations ............ 33
Figure 19. Alternate CE# Controlled Write Operation Timings ...... 34
Erase and Programming Performance . . . . . . . . 35
Latchup Characteristics . . . . . . . . . . . . . . . . . . . . 35
TSOP and SO Pin Capacitance . . . . . . . . . . . . . . 35
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 36
SO 044—44-Pin Small Outline Package ................................ 36
TS 048—48-Pin Standard Thin Small Outline Package ......... 37
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 38
4 Am29F200B 21526D6 August 3, 2009
DATA SHEET
PRODUCT SELECTOR GUIDE
BLOCK DIAGRAM
Family Part Number Am29F200B
Speed Option
VCC = 5.0 V ± 5% -45 -50
VCC = 5.0 V ± 10% -55 -70 -90 -120
Max access time, ns (tACC) 4550557090120
Max CE# access time, ns (tCE) 4550557090120
Max OE# access time, ns (tOE) 303030303550
Erase Voltage
Generator
Input/Output
Buffers
Data
Latch
Y-Gating
Cell MatrixX-Decoder
Y-Decoder
Address Latch
Chip Enable
Output Enable
Logic
PGM Voltage
Generator
Timer
VCC Detector
State
Control
Command
Register
WE#
CE#
OE#
A0–A16
STB
STB
DQ0–DQ15
RY/BY#
Buffer RY/BY#
BYTE#
RESET#
A-1
VCC
VSS
August 3, 2009 21526D6 Am29F200B 5
DATA SHEET
CONNECTION DIAGRAMS
This device is also available in Known Good Die (KGD) form. Refer to publication number 21257 for
more information.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
NC
RY/BY#
NC
A7
A6
A5
A4
A3
A2
A1
A0
CE#
VSS
OE#
DQ0
DQ8
DQ1
DQ9
DQ2
DQ10
DQ3
DQ11
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
RESET#
WE#
A8
A9
A10
A11
A12
A13
A14
A15
A16
BYTE#
VSS
DQ15/A-1
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VCC
SO
6 Am29F200B 21526D6 August 3, 2009
DATA SHEET
CONNECTION DIAGRAMS
This device is also available in Known Good Die (KGD) form. Refer to publication number 21257 for
more information.
PIN CONFIGURATION
A0–A16 = 17 addresses
DQ0–DQ14 = 15 data inputs/outputs
DQ15/A-1 = DQ15 (data input/output, word mode),
A-1 (LSB address input, byte mode)
BYTE# = Selects 8-bit or 16-bit mode
CE# = Chip enable
OE# = Output enable
WE# = Write enable
RESET# = Hardware reset pin, active low
RY/BY# = Ready/Busy output
VCC = +5.0 V single power supply
(see Product Selector Guide for
device speed ratings and voltage
supply tolerances)
VSS = Device ground
NC = Pin not connected internally
LOGIC SYMBOL
1
16
2
3
4
5
6
7
8
17
18
19
20
21
22
23
24
9
10
11
12
13
14
15
A16
DQ2
BYTE#
VSS
DQ15/A-1
DQ7
DQ14
DQ6
DQ13
DQ9
DQ1
DQ8
DQ0
OE#
VSS
CE#
A0
DQ5
DQ12
DQ4
VCC
DQ11
DQ3
DQ10
48
33
47
46
45
44
43
42
41
40
39
38
37
36
35
34
25
32
31
30
29
28
27
26
A15
NC
A14
A13
A12
A11
A10
A9
A8
NC
NC
WE#
RESET#
NC
NC
RY/BY#
A1
NC
A7
A6
A5
A4
A3
A2
Standard TSOP
17
16 or 8
DQ0–DQ15
(A-1)
A0–A16
CE#
OE#
WE#
RESET#
BYTE# RY/BY#
August 3, 2009 21526D6 Am29F200B 7
DATA SHEET
ORDERING INFORMATION
Standard Products
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed
by a combination of the following:
Valid Combinations
Valid Combinations list configurations planned to be sup-
ported in volume for this device. Consult the local AMD sales
office to confirm availability of specific valid combinations and
to check on newly released combinations.
Am29F200B T -45 E C
TEMPERATURE RANGE
C = Commercial (0°C to +70°C)
D = Commercial (0°C to +70°C) with Pb-free package
I = Industrial (–40°C to +85°C)
F = Industrial (–40°C to +85°C) with Pb-free package
E = Extended (–55°C to +125°C)
K = Extended (–55°C to +125°C) with Pb-free package
PACKAGE TYPE
E = 48-Pin Thin Small Outline Package (TSOP) Standard Pinout (TS 048)
S = 44-Pin Small Outline Package (SO 044)
This device is also available in Known Good Die (KGD) form. See publication number
21257 for more information.
SPEED OPTION
See Product Selector Guide and Valid Combinations
BOOT CODE SECTOR ARCHITECTURE
T = Top sector
B = Bottom sector
DEVICE NUMBER/DESCRIPTION
Am29F200B
2 Megabit (256 K x 8-Bit/128 K x 16-Bit) CMOS Flash Memory
5.0 Volt-only Program and Erase
Valid Combinations VCC Voltage
AM29F200BT-45,
AM29F200BB-45
EC, EI, SC, SI
ED, EF, SD, SF 5.0 V ± 5%
AM29F200BT-50,
AM29F200BB-50
EC, EI, EE, ED, EF, EK
SC, SI, SE, SD, SF, SK
AM29F200BT-55,
AM29F200BB-55
5.0 V ± 10%
AM29F200BT-70,
AM29F200BB-70
AM29F200BT-90,
AM29F200BB-90
AM29F200BT-120,
AM29F200BB-120
8 Am29F200B 21526D6 August 3, 2009
DATA SHEET
DEVICE BUS OPERATIONS
This section describes the requirements and use of the
device bus operations, which are initiated through the
internal command register. The command register
itself does not occupy any addressable memory loca-
tion. The register is composed of latches that store the
commands, along with the address and data informa-
tion needed to execute the command. The contents of
the register serve as inputs to the internal state
machine. The state machine outputs dictate the func-
tion of the device. The appropriate device bus
operations table lists the inputs and control levels
required, and the resulting output. The following sub-
sections describe each of these operations in further
detail.
Table 1. Am29F200B Device Bus Operations
Legend:
L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 ± 0.5 V, X = Don’t Care, DIN = Data In, DOUT = Data Out, AIN = Address In
Note: See the sections Sector Group Protection and Temporary Sector Unprotect for more information.
Word/Byte Configuration
The BYTE# pin controls whether the device data I/O
pins DQ15–DQ0 operate in the byte or word configura-
tion. If the BYTE# pin is set at logic ‘1’, the device is in
word configuration, DQ15–DQ0 are active and con-
trolled by CE# and OE#.
If the BYTE# pin is set at logic ‘0’, the device is in byte
configuration, and only data I/O pins DQ0–DQ7 are
active and controlled by CE# and OE#. The data I/O
pins DQ8–DQ14 are tri-stated, and the DQ15 pin is
used as an input for the LSB (A-1) address function.
Requirements for Reading Array Data
To read array data from the outputs, the system must
drive the CE# and OE# pins to VIL. CE# is the power
control and selects the device. OE# is the output
control and gates array data to the output pins. WE#
should remain at VIH. On x16 (word-wide) devices, the
BYTE# pin determines whether the device outputs
array data in words or bytes.
The internal state machine is set for reading array data
upon device power-up, or after a hardware reset. This
ensures that no spurious alteration of the memory
content occurs during the power transition. No
command is necessary in this mode to obtain array
data. Standard microprocessor read cycles that assert
valid addresses on the device address inputs produce
valid data on the device data outputs. The device
remains enabled for read access until the command
register contents are altered.
See “Reading Array Data” for more information. Refer
to the AC Read Operations table for timing specifica-
tions and to the Read Operations Timings diagram for
the timing waveforms. ICC1 in the DC Characteristics
table represents the active current specification for
reading array data.
Writing Commands/Command Sequences
To write a command or command sequence (which
includes programming data to the device and erasing
sectors of memory), the system must drive WE# and
CE# to VIL, and OE# to VIH.
On x16 (word-wide) devices, for program operations,
the BYTE# pin determines whether the device accepts
program data in bytes or words. Refer to “Word/Byte
Configuration” for more information.
Operation CE# OE# WE# RESET# A0–A16 DQ0–DQ7
DQ8–DQ15
BYTE#
= VIH
BYTE#
= VIL
Read L L H H AIN DOUT DOUT High-Z
Write L H L H AIN DIN DIN High-Z
CMOS Standby VCC ± 0.5 V X X VCC ± 0.5 V X High-Z High-Z High-Z
TTL Standby H X X H X High-Z High-Z High-Z
Output Disable L H H H X High-Z High-Z High-Z
Hardware Reset X X X L X High-Z High-Z High-Z
Temporary Sector Unprotect
(See Note) XXX V
ID AIN DIN DIN X
August 3, 2009 21526D6 Am29F200B 9
DATA SHEET
An erase operation can erase one sector, multiple sec-
tors, or the entire device. The Sector Address Tables
indicate the address space that each sector occupies.
A “sector address” consists of the address bits required
to uniquely select a sector. See the “Command Defini-
tions” section for details on erasing a sector or the
entire chip, or suspending/resuming the erase
operation.
After the system writes the autoselect command
sequence, the device enters the autoselect mode. The
system can then read autoselect codes from the
internal register (which is separate from the memory
array) on DQ7–DQ0. Standard read cycle timings apply
in this mode. Refer to the “Autoselect Mode” and
“Autoselect Command Sequence” sections for more
information.
ICC2 in the DC Characteristics table represents the
active current specification for the write mode. The “AC
Characteristics” section contains timing specification
tables and timing diagrams for write operations.
Program and Erase Operation Status
During an erase or program operation, the system may
check the status of the operation by reading the status
bits on DQ7–DQ0. Standard read cycle timings and ICC
read specifications apply. Refer to “Write Operation
Status” for more information, and to each AC Charac-
teristics section in the appropriate data sheet for timing
diagrams.
Standby Mode
When the system is not reading or writing to the device,
it can place the device in the standby mode. In this
mode, current consumption is greatly reduced, and the
outputs are placed in the high impedance state, inde-
pendent of the OE# input.
The device enters the CMOS standby mode when CE#
and RESET# pins are both held at VCC ± 0.5 V. (Note
that this is a more restricted voltage range than VIH.)
The device enters the TTL standby mode when CE#
and RESET# pins are both held at VIH. The device
requires standard access time (tCE) for read access
when the device is in either of these standby modes,
before it is ready to read data.
The device also enters the standby mode when the
RESET# pin is driven low. Refer to the next section,
“RESET#: Hardware Reset Pin”.
If the device is deselected during erasure or program-
ming, the device draws active current until the
operation is completed.
In the DC Characteristics tables, ICC3 represents the
standby current specification.
RESET#: Hardware Reset Pin
The RESET# pin provides a hardware method of reset-
ting the device to reading array data. When the system
drives the RESET# pin low for at least a period of tRP
,
the device immediately terminates any operation in
progress, tristates all data output pins, and ignores all
read/write attempts for the duration of the RESET#
pulse. The device also resets the internal state
machine to reading array data. The operation that was
interrupted should be reinitiated once the device is
ready to accept another command sequence, to
ensure data integrity.
Current is reduced for the duration of the RESET#
pulse. When RESET# is held at VIL, the device enters
the TTL standby mode; if RESET# is held at VSS ±
0.5 V, the device enters the CMOS standby mode.
The RESET# pin may be tied to the system reset cir-
cuitry. A system reset would thus also reset the Flash
memory, enabling the system to read the boot-up firm-
ware from the Flash memory.
If RESET# is asserted during a program or erase oper-
ation, the RY/BY# pin remains a “0” (busy) until the
internal reset operation is complete, which requires a
time of tREADY (during Embedded Algorithms). The
system can thus monitor RY/BY# to determine whether
the reset operation is complete. If RESET# is asserted
when a program or erase operation is not executing
(RY/BY# pin is “1”), the reset operation is completed
within a time of tREADY (not during Embedded Algo-
rithms). The system can read data tRH after the
RESET# pin returns to VIH.
Refer to the AC Characteristics tables for RESET#
parameters and timing diagram.
Output Disable Mode
When the OE# input is at VIH, output from the device is
disabled. The output pins are placed in the high imped-
ance state.
10 Am29F200B 21526D6 August 3, 2009
DATA SHEET
Table 2. Am29F200T Top Boot Block Sector Address Table
Table 3. Am29F200B Bottom Boot Block Sector Address Table
Note for Tables 2 and 3: Address range is A16:A-1 in byte mode and A16:A0 in word mode. See the “Word/Byte Configuration”
sectionfor more information.
Autoselect Mode
The autoselect mode provides manufacturer and
device identification, and sector protection verification,
through identifier codes output on DQ7–DQ0. This
mode is primarily intended for programming equipment
to automatically match a device to be programmed with
its corresponding programming algorithm. However,
the autoselect codes can also be accessed in-system
through the command register.
When using programming equipment, the autoselect
mode requires VID (11.5 V to 12.5 V) on address pin
A9. Address pins A6, A1, and A0 must be as shown in
Autoselect Codes (High Voltage Method) table. In addi-
tion, when verifying sector protection, the sector
address must appear on the appropriate highest order
address bits. Refer to the corresponding Sector
Address Tables. The Command Definitions table
shows the remaining address bits that are don’t care.
When all necessary bits have been set as required, the
programming equipment may then read the corre-
sponding identifier code on DQ7–DQ0.
To access the autoselect codes in-system, the host
system can issue the autoselect command via the
command register, as shown in the Command Defini-
tions table. This method does not require VID. See
“Autoselect Command Sequence” for details on using
the autoselect mode.
Sector A16 A15 A14 A13 A12
Sector Size
(Kbytes/
Kwords)
Address Range (in hexadecimal)
(x8)
Address Range
(x16)
Address Range
SA0 0 0 X X X 64/32 00000h–0FFFFh 00000h–07FFFh
SA1 0 1 X X X 64/32 10000h–1FFFFh 08000h–0FFFFh
SA2 1 0 X X X 64/32 20000h–2FFFFh 10000h–17FFFh
SA3 1 1 0 X X 32/16 30000h–37FFFh 18000h–1BFFFh
SA411100 8/4 38000h–39FFFh 1C000h–1CFFFh
SA511101 8/4 3A000h3BFFFh1D000h–1DFFFh
SA61111X 16/8 3C000h–3FFFFh 1E000h–1FFFFh
Sector A16 A15 A14 A13 A12
Sector Size
(Kbytes/
Kwords)
Address Range (in hexadecimal)
(x8)
Address Range
(x16)
Address Range
SA00000X 16/8 00000h–03FFFh 00000h–01FFFh
SA100010 8/4 04000h–05FFFh 02000h–02FFFh
SA200011 8/4 06000h–07FFFh 03000h–03FFFh
SA3 0 0 1 X X 32/16 08000h–0FFFFh 04000h–07FFFh
SA4 0 1 X X X 64/32 10000h–1FFFFh 08000h–0FFFFh
SA5 1 0 X X X 64/32 20000h–2FFFFh 10000h–17FFFh
SA6 1 1 X X X 64/32 30000h–3FFFFh 18000h–1FFFFh
August 3, 2009 21526D6 Am29F200B 11
DATA SHEET
Table 4. Am29F200B Autoselect Codes (High Voltage Method)
L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.
Sector Protection/Unprotection
The hardware sector protection feature disables both
program and erase operations in any sector. The hard-
ware sector unprotection feature re-enables both
program and erase operations in previously protected
sectors.
Sector protection/unprotection must be implemented
using programming equipment. The procedure
requires a high voltage (VID) on address pin A9 and the
control pins. Details on this method are provided in a
supplement, publication number 20551. Contact an
AMD representative to obtain a copy of the appropriate
document.
The device is shipped with all sectors unprotected.
AMD offers the option of programming and protecting
sectors at its factory prior to shipping the device
through AMD’s ExpressFlash™ Service. Contact an
AMD representative for details.
It is possible to determine whether a sector is protected
or unprotected. See “Autoselect Mode” for details.
Temporary Sector Unprotect
This feature allows temporary unprotection of previ-
ously protected sectors to change data in-system. The
Sector Unprotect mode is activated by setting the
RESET# pin to VID. During this mode, formerly pro-
tected sectors can be programmed or erased by
selecting the sector addresses. Once VID is removed
from the RESET# pin, all the previously protected
sectors are protected again. Figure 1 shows the algo-
rithm, and the Temporary Sector Unprotect diagram
(Figure 18) shows the timing waveforms, for this
feature.
Figure 1. Temporary Sector Unprotect Operation
Hardware Data Protection
The command sequence requirement of unlock cycles
for programming or erasing provides data protection
against inadvertent writes (refer to the Command Defi-
nitions table). In addition, the following hardware data
protection measures prevent accidental erasure or pro-
Description Mode CE# OE# WE#
A16
to
A12
A11
to
A10 A9
A8
to
A7 A6
A5
to
A2 A1 A0
DQ8
to
DQ15
DQ7
to
DQ0
Manufacturer ID: AMD L L H X X VID XLXLL X 01h
Device ID:
Am29F200B
(Top Boot Block)
Word L L H
XXV
ID XLXLH
22h 51h
Byte L L H X 51h
Device ID:
Am29F200B
(Bottom Boot Block)
Word L L H
XXV
ID XLXLH
22h 57h
Byte L L H X 57h
Sector Protection Verification L L H SA X VID XLXHL
X01h
(protected)
X00h
(unprotected)
START
Perform Erase or
Program Operations
RESET# = VIH
Temporary Sector
Unprotect
Completed (Note 2)
RESET# = VID
(Note 1)
Notes:
1. All protected sectors unprotected.
2. All previously protected sectors are protected once
again.
12 Am29F200B 21526D6 August 3, 2009
DATA SHEET
gramming, which might otherwise be caused by
spurious system level signals during VCC power-up and
power-down transitions, or from system noise.
Low VCC Write Inhibit
When VCC is less than VLKO, the device does not
accept any write cycles. This protects data during VCC
power-up and power-down. The command register and
all internal program/erase circuits are disabled, and the
device resets. Subsequent writes are ignored until VCC
is greater than VLKO. The system must provide the
proper signals to the control pins to prevent uninten-
tional writes when VCC is greater than VLKO.
Write Pulse “Glitch” Protection
Noise pulses of less than 5 ns (typical) on OE#, CE# or
WE# do not initiate a write cycle.
Logical Inhibit
Write cycles are inhibited by holding any one of OE# =
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,
CE# and WE# must be a logical zero while OE# is a
logical one.
Power-Up Write Inhibit
If WE# = CE# = VIL and OE# = VIH during power up, the
device does not accept commands on the rising edge
of WE#. The internal state machine is automatically
reset to reading array data on power-up.
COMMAND DEFINITIONS
Writing specific address and data commands or
sequences into the command register initiates device
operations. The Command Definitions table defines the
valid register command sequences. Writing incorrect
address and data values or writing them in the
improper sequence resets the device to reading array
data.
All addresses are latched on the falling edge of WE# or
CE#, whichever happens later. All data is latched on
the rising edge of WE# or CE#, whichever happens
first. Refer to the appropriate timing diagrams in the
“AC Characteristics” section.
Reading Array Data
The device is automatically set to reading array data
after device power-up. No commands are required to
retrieve data. The device is also ready to read array
data after completing an Embedded Program or
Embedded Erase algorithm.
After the device accepts an Erase Suspend command,
the device enters the Erase Suspend mode. The
system can read array data using the standard read
timings, except that if it reads at an address within
erase-suspended sectors, the device outputs status
data. After completing a programming operation in the
Erase Suspend mode, the system may once again
read array data with the same exception. See “Erase
Suspend/Erase Resume Commands” for more infor-
mation on this mode.
The system must issue the reset command to re-
enable the device for reading array data if DQ5 goes
high, or while in the autoselect mode. See the “Reset
Command” section, next.
See also “Requirements for Reading Array Data” in the
“Device Bus Operations” section for more information.
The Read Operations table provides the read parame-
ters, and Read Operation Timings diagram shows the
timing diagram.
Reset Command
Writing the reset command to the device resets the
device to reading array data. Address bits are don’t
care for this command.
The reset command may be written between the
sequence cycles in an erase command sequence
before erasing begins. This resets the device to reading
array data. Once erasure begins, however, the device
ignores reset commands until the operation is
complete.
The reset command may be written between the
sequence cycles in a program command sequence
before programming begins. This resets the device to
reading array data (also applies to programming in
Erase Suspend mode). Once programming begins,
however, the device ignores reset commands until the
operation is complete.
The reset command may be written between the
sequence cycles in an autoselect command sequence.
Once in the autoselect mode, the reset command must
be written to return to reading array data (also applies
to autoselect during Erase Suspend).
If DQ5 goes high during a program or erase operation,
writing the reset command returns the device to
reading array data (also applies during Erase
Suspend).
Autoselect Command Sequence
The autoselect command sequence allows the host
system to access the manufacturer and devices codes,
and determine whether or not a sector is protected.
The Command Definitions table shows the address
and data requirements. This method is an alternative to
that shown in the Autoselect Codes (High Voltage
August 3, 2009 21526D6 Am29F200B 13
DATA SHEET
Method) table, which is intended for PROM program-
mers and requires VID on address bit A9.
The autoselect command sequence is initiated by
writing two unlock cycles, followed by the autoselect
command. The device then enters the autoselect
mode, and the system may read at any address any
number of times, without initiating another command
sequence.
A read cycle at address XX00h retrieves the manufac-
turer code. A read cycle at address XX01h in word
mode (or 02h in byte mode) returns the device code. A
read cycle containing a sector address (SA) and the
address 02h in word mode (or 04h in byte mode)
returns 01h if that sector is protected, or 00h if it is
unprotected. Refer to the Sector Address tables for
valid sector addresses.
The system must write the reset command to exit the
autoselect mode and return to reading array data.
Word/Byte Program Command Sequence
The system may program the device by byte or word,
on depending on the state of the BYTE# pin. Program-
ming is a four-bus-cycle operation. The program
command sequence is initiated by writing two unlock
write cycles, followed by the program set-up command.
The program address and data are written next, which
in turn initiate the Embedded Program algorithm. The
system is not required to provide further controls or tim-
ings. The device automatically provides internally
generated program pulses and verify the programmed
cell margin. The Command Definitions take shows the
address and data requirements for the byte program
command sequence.
When the Embedded Program algorithm is complete,
the device then returns to reading array data and
addresses are no longer latched. The system can
determine the status of the program operation by using
DQ7, DQ6, or RY/BY#. See “Write Operation Status”
for information on these status bits.
Any commands written to the device during the
Embedded Program Algorithm are ignored. Note that a
hardware reset immediately terminates the program-
ming operation. The program command sequence
should be reinitiated once the device has reset to
reading array data, to ensure data integrity.
Programming is allowed in any sequence and across
sector boundaries. A bit cannot be programmed
from a “0” back to a “1”. Attempting to do so may halt
the operation and set DQ5 to “1”, or cause the Data#
Polling algorithm to indicate the operation was suc-
cessful. However, a succeeding read will show that the
data is still “0”. Only erase operations can convert a “0”
to a “1”.
Note: See the appropriate Command Definitions table for
program command sequence.
Figure 2. Program Operation
Chip Erase Command Sequence
Chip erase is a six-bus-cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip erase
command, which in turn invokes the Embedded Erase
algorithm. The device does not require the system to
preprogram prior to erase. The Embedded Erase algo-
rithm automatically preprograms and verifies the entire
memory for an all zero data pattern prior to electrical
erase. The system is not required to provide any con-
trols or timings during these operations. The Command
Definitions table shows the address and data require-
ments for the chip erase command sequence.
Any commands written to the chip during the
Embedded Erase algorithm are ignored. Note that a
hardware reset during the chip erase operation imme-
diately terminates the operation. The Chip Erase
command sequence should be reinitiated once the
device has returned to reading array data, to ensure
data integrity.
START
Write Program
Command Sequence
Data Poll
from System
Verify Data? No
Yes
Last Address?
No
Yes
Programming
Completed
Increment Address
Embedded
Program
algorithm
in progress
14 Am29F200B 21526D6 August 3, 2009
DATA SHEET
The system can determine the status of the erase oper-
ation by using DQ7, DQ6, DQ2, or RY/BY#. See “Write
Operation Status” for information on these status bits.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are
no longer latched.
Figure 3 illustrates the algorithm for the erase opera-
tion. See the Erase/Program Operations tables in “AC
Characteristics” for parameters, and to the Chip/Sector
Erase Operation Timings for timing waveforms.
Sector Erase Command Sequence
Sector erase is a six bus cycle operation. The sector
erase command sequence is initiated by writing two
unlock cycles, followed by a set-up command. Two
additional unlock write cycles are then followed by the
address of the sector to be erased, and the sector
erase command. The Command Definitions table
shows the address and data requirements for the
sector erase command sequence.
The device does not require the system to preprogram
the memory prior to erase. The Embedded Erase algo-
rithm automatically programs and verifies the sector for
an all zero data pattern prior to electrical erase. The
system is not required to provide any controls or
timings during these operations.
After the command sequence is written, a sector erase
time-out of 50 µs begins. During the time-out period,
additional sector addresses and sector erase com-
mands may be written. Loading the sector erase buffer
may be done in any sequence, and the number of
sectors may be from one sector to all sectors. The time
between these additional cycles must be less than 50
µs, otherwise the last address and command might not
be accepted, and erasure may begin. It is recom-
mended that processor interrupts be disabled during
this time to ensure all commands are accepted. The
interrupts can be re-enabled after the last Sector Erase
command is written. If the time between additional
sector erase commands can be assumed to be less
than 50 µs, the system need not monitor DQ3. Any
command other than Sector Erase or Erase
Suspend during the time-out period resets the
device to reading array data. The system must
rewrite the command sequence and any additional
sector addresses and commands.
The system can monitor DQ3 to determine if the sector
erase timer has timed out. (See the “DQ3: Sector Erase
Timer” section.) The time-out begins from the rising
edge of the final WE# pulse in the command sequence.
Once the sector erase operation has begun, only the
Erase Suspend command is valid. All other commands
are ignored. Note that a hardware reset during the
sector erase operation immediately terminates the
operation. The Sector Erase command sequence
should be reinitiated once the device has returned to
reading array data, to ensure data integrity.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are
no longer latched. The system can determine the
status of the erase operation by using DQ7, DQ6, DQ2,
or RY/BY#. Refer to “Write Operation Status” for infor-
mation on these status bits.
Figure 3 illustrates the algorithm for the erase opera-
tion. Refer to the Erase/Program Operations tables in
the “AC Characteristics” section for parameters, and to
the Sector Erase Operations Timing diagram for timing
waveforms.
Erase Suspend/Erase Resume Commands
The Erase Suspend command allows the system to
interrupt a sector erase operation and then read data
from, or program data to, any sector not selected for
erasure. This command is valid only during the sector
erase operation, including the 50 µs time-out period
during the sector erase command sequence. The
Erase Suspend command is ignored if written during
the chip erase operation or Embedded Program algo-
rithm. Writing the Erase Suspend command during the
Sector Erase time-out immediately terminates the
time-out period and suspends the erase operation.
Addresses are “don’t-cares” when writing the Erase
Suspend command.
When the Erase Suspend command is written during a
sector erase operation, the device requires a maximum
of 20 µs to suspend the erase operation. However,
when the Erase Suspend command is written during
the sector erase time-out, the device immediately ter-
minates the time-out period and suspends the erase
operation.
After the erase operation has been suspended, the
system can read array data from or program data to
any sector not selected for erasure. (The device “erase
suspends” all sectors selected for erasure.) Normal
read and write timings and command definitions apply.
Reading at any address within erase-suspended
sectors produces status data on DQ7–DQ0. The
system can use DQ7, or DQ6 and DQ2 together, to
determine if a sector is actively erasing or is erase-sus-
pended. See “Write Operation Status” for information
on these status bits.
After an erase-suspended program operation is com-
plete, the system can once again read array data within
non-suspended sectors. The system can determine
the status of the program operation using the DQ7 or
DQ6 status bits, just as in the standard program oper-
ation. See “Write Operation Status” for more
information.
The system may also write the autoselect command
sequence when the device is in the Erase Suspend
August 3, 2009 21526D6 Am29F200B 15
DATA SHEET
mode. The device allows reading autoselect codes
even at addresses within erasing sectors, since the
codes are not stored in the memory array. When the
device exits the autoselect mode, the device reverts to
the Erase Suspend mode, and is ready for another
valid operation. See “Autoselect Command Sequence”
for more information.
The system must write the Erase Resume command
(address bits are “don’t care”) to exit the erase suspend
mode and continue the sector erase operation. Further
writes of the Resume command are ignored. Another
Erase Suspend command can be written after the
device has resumed erasing.
Notes:
1. See the appropriate Command Definitions table for erase
command sequence.
2. See “DQ3: Sector Erase Timer” for more information.
Figure 3. Erase Operation
START
Write Erase
Command Sequence
Data Poll
from System
Data = FFh?
No
Yes
Erasure Completed
Embedded
Erase
algorithm
in progress
16 Am29F200B 21526D6 August 3, 2009
DATA SHEET
Command Definitions
Table 5. Am29F200B Command Definitions
Legend:
X = Don’t care
RA = Address of the memory location to be read.
RD = Data read from location RA during read operation.
PA = Address of the memory location to be programmed.
Addresses latch on the falling edge of the WE# or CE# pulse,
whichever happens later.
PD = Data to be programmed at location PA. Data latches on the
rising edge of WE# or CE# pulse, whichever happens first.
SA = Address of the sector to be verified (in autoselect mode) or
erased. Address bits A16–A12 uniquely select any sector.
Notes:
1. See Table 1 for description of bus operations.
2. All values are in hexadecimal.
3. Except when reading array or autoselect data, all bus cycles
are write operations.
4. Data bits DQ15–DQ8 are don’t cares for unlock and
command cycles.
5. Address bits A16–A11 are don’t cares for unlock and
command cycles, unless SA or PA required.
6. No unlock or command cycles required when reading array
data.
7. The Reset command is required to return to reading array
data when device is in the autoselect mode, or if DQ5 goes
high (while the device is providing status data).
8. The fourth cycle of the autoselect command sequence is a
read cycle.
9. The data is 00h for an unprotected sector and 01h for a
protected sector. See “Autoselect Command Sequence” for
more information.
10. The system may read and program in non-erasing sectors, or
enter the autoselect mode, when in the Erase Suspend
mode. The Erase Suspend command is valid only during a
sector erase operation.
11. The Erase Resume command is valid only during the Erase
Suspend mode.
Command
Sequence
(Note 1)
Bus Cycles (Notes 2–5)
First Second Third Fourth Fifth Sixth
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
Read (Note 6) 1 RA RD
Reset (Note 7) 1 XXX F0
Manufacturer ID Word 4555 AA 2AA 55 555 90 X00 01
Byte AAA 555 AAA
Device ID,
Top Boot Block
Word 4555 AA 2AA 55 555 90 X01 2251
Byte AAA 555 AAA X02 51
Device ID,
Bottom Boot Block
Word 4555 AA 2AA 55 555 90 X01 2257
Byte AAA 555 AAA X02 57
Sector Protect Verify
(Note 9)
Word
4
555
AA
2AA
55
555
90
(SA)
X02
XX00
XX01
Byte AAA 555 AAA (SA)
X04
00
01
Program Word 4555 AA 2AA 55 555 A0 PA PD
Byte AAA 555 AAA
Chip Erase Word 6555 AA 2AA 55 555 80 555 AA 2AA 55 555 10
Byte AAA 555 AAA AAA 555 AAA
Sector Erase Word 6555 AA 2AA 55 555 80 555 AA 2AA 55 SA 30
Byte AAA 555 AAA AAA 555
Erase Suspend (Note 10) 1 XXX B0
Erase Resume (Note 11) 1 XXX 30
Cycles
Autoselect (Note 8)
August 3, 2009 21526D6 Am29F200B 17
DATA SHEET
WRITE OPERATION STATUS
The device provides several bits to determine the
status of a write operation: DQ2, DQ3, DQ5, DQ6,
DQ7, and RY/BY#. Table 6 and the following subsec-
tions describe the functions of these bits. DQ7,
RY/BY#, and DQ6 each offer a method for determining
whether a program or erase operation is complete or in
progress. These three bits are discussed first.
DQ7: Data# Polling
The Data# Polling bit, DQ7, indicates to the host
system whether an Embedded Algorithm is in progress
or completed, or whether the device is in Erase Sus-
pend. Data# Polling is valid after the rising edge of the
final WE# pulse in the program or erase command
sequence.
During the Embedded Program algorithm, the device
outputs on DQ7 the complement of the datum pro-
grammed to DQ7. This DQ7 status also applies to
programming during Erase Suspend. When the
Embedded Program algorithm is complete, the device
outputs the datum programmed to DQ7. The system
must provide the program address to read valid status
information on DQ7. If a program address falls within a
protected sector, Data# Polling on DQ7 is active for
approximately 2 μs, then the device returns to reading
array data.
During the Embedded Erase algorithm, Data# Polling
produces a “0” on DQ7. When the Embedded Erase
algorithm is complete, or if the device enters the Erase
Suspend mode, Data# Polling produces a “1” on DQ7.
This is analogous to the complement/true datum output
described for the Embedded Program algorithm: the
erase function changes all the bits in a sector to “1”;
prior to this, the device outputs the “complement,” or
“0.” The system must provide an address within any of
the sectors selected for erasure to read valid status
information on DQ7.
After an erase command sequence is written, if all
sectors selected for erasing are protected, Data#
Polling on DQ7 is active for approximately 100 μs, then
the device returns to reading array data. If not all
selected sectors are protected, the Embedded Erase
algorithm erases the unprotected sectors, and ignores
the selected sectors that are protected.
When the system detects DQ7 has changed from the
complement to true data, it can read valid data at DQ7–
DQ0 on the following read cycles. This is because DQ7
may change asynchronously with DQ0–DQ6 while
Output Enable (OE#) is asserted low. The Data#
Polling Timings (During Embedded Algorithms) figure
in the “AC Characteristics” section illustrates this.
Table 6 shows the outputs for Data# Polling on DQ7.
Figure 4 shows the Data# Polling algorithm.
DQ7 = Data? Yes
No
No
DQ5 = 1?
No
Yes
Yes
FAIL PASS
Read DQ7–DQ0
Addr = VA
Read DQ7–DQ0
Addr = VA
DQ7 = Data?
START
Notes:
1. VA = Valid address for programming. During a sector
erase operation, a valid address is an address within any
sector selected for erasure. During chip erase, a valid
address is any non-protected sector address.
2. DQ7 should be rechecked even if DQ5 = “1” because
DQ7 may change simultaneously with DQ5.
Figure 4. Data# Polling Algorithm
18 Am29F200B 21526D6 August 3, 2009
DATA SHEET
RY/BY#: Ready/Busy#
The RY/BY# is a dedicated, open-drain output pin that
indicates whether an Embedded Algorithm is in
progress or complete. The RY/BY# status is valid after
the rising edge of the final WE# pulse in the command
sequence. Since RY/BY# is an open-drain output,
several RY/BY# pins can be tied together in parallel
with a pull-up resistor to VCC.
If the output is low (Busy), the device is actively erasing
or programming. (This includes programming in the
Erase Suspend mode.) If the output is high (Ready),
the device is ready to read array data (including during
the Erase Suspend mode), or is in the standby mode.
Table 6 shows the outputs for RY/BY#. The timing dia-
grams for read, reset, program, and erase shows the
relationship of RY/BY# to other signals.
DQ6: Toggle Bit I
Toggle Bit I on DQ6 indicates whether an Embedded
Program or Erase algorithm is in progress or complete,
or whether the device has entered the Erase Suspend
mode. Toggle Bit I may be read at any address, and is
valid after the rising edge of the final WE# pulse in the
command sequence (prior to the program or erase
operation), and during the sector erase time-out.
During an Embedded Program or Erase algorithm
operation, successive read cycles to any address
cause DQ6 to toggle. (The system may use either OE#
or CE# to control the read cycles.) When the operation
is complete, DQ6 stops toggling.
After an erase command sequence is written, if all
sectors selected for erasing are protected, DQ6 toggles
for approximately 100 μs, then returns to reading array
data. If not all selected sectors are protected, the
Embedded Erase algorithm erases the unprotected
sectors, and ignores the selected sectors that are
protected.
The system can use DQ6 and DQ2 together to deter-
mine whether a sector is actively erasing or is erase-
suspended. When the device is actively erasing (that is,
the Embedded Erase algorithm is in progress), DQ6
toggles. When the device enters the Erase Suspend
mode, DQ6 stops toggling. However, the system must
also use DQ2 to determine which sectors are erasing
or erase-suspended. Alternatively, the system can use
DQ7 (see the subsection on “DQ7: Data# Polling”).
If a program address falls within a protected sector,
DQ6 toggles for approximately 2 μs after the program
command sequence is written, then returns to reading
array data.
DQ6 also toggles during the erase-suspend-program
mode, and stops toggling once the Embedded
Program algorithm is complete.
The Write Operation Status table shows the outputs for
Toggle Bit I on DQ6. Refer to Figure 5 for the toggle bit
algorithm, and to the Toggle Bit Timings figure in the
“AC Characteristics” section for the timing diagram.
The DQ2 vs. DQ6 figure shows the differences
between DQ2 and DQ6 in graphical form. See also the
subsection on “DQ2: Toggle Bit II”.
DQ2: Toggle Bit II
The “Toggle Bit II” on DQ2, when used with DQ6, indi-
cates whether a particular sector is actively erasing
(that is, the Embedded Erase algorithm is in progress),
or whether that sector is erase-suspended. Toggle Bit
II is valid after the rising edge of the final WE# pulse in
the command sequence.
DQ2 toggles when the system reads at addresses
within those sectors that have been selected for era-
sure. (The system may use either OE# or CE# to
control the read cycles.) But DQ2 cannot distinguish
whether the sector is actively erasing or is erase-sus-
pended. DQ6, by comparison, indicates whether the
device is actively erasing, or is in Erase Suspend, but
cannot distinguish which sectors are selected for era-
sure. Thus, both status bits are required for sector and
mode information. Refer to Table 6 to compare outputs
for DQ2 and DQ6.
Figure 5 shows the toggle bit algorithm in flowchart
form, and the section “DQ2: Toggle Bit II” explains the
algorithm. See also the “DQ6: Toggle Bit I” subsection.
Refer to the Toggle Bit Timings figure for the toggle bit
timing diagram. The DQ2 vs. DQ6 figure shows the dif-
ferences between DQ2 and DQ6 in graphical form.
Reading Toggle Bits DQ6/DQ2
Refer to Figure 5 for the following discussion. When-
ever the system initially begins reading toggle bit
status, it must read DQ7–DQ0 at least twice in a row to
determine whether a toggle bit is toggling. Typically, a
system would note and store the value of the toggle bit
after the first read. After the second read, the system
would compare the new value of the toggle bit with the
first. If the toggle bit is not toggling, the device has com-
pleted the program or erase operation. The system can
read array data on DQ7–DQ0 on the following read
cycle.
However, if after the initial two read cycles, the system
determines that the toggle bit is still toggling, the
system also should note whether the value of DQ5 is
high (see the section on DQ5). If it is, the system
should then determine again whether the toggle bit is
toggling, since the toggle bit may have stopped tog-
gling just as DQ5 went high. If the toggle bit is no longer
toggling, the device has successfully completed the
program or erase operation. If it is still toggling, the
device did not complete the operation successfully, and
August 3, 2009 21526D6 Am29F200B 19
DATA SHEET
the system must write the reset command to return to
reading array data.
The remaining scenario is that the system initially
determines that the toggle bit is toggling and DQ5 has
not gone high. The system may continue to monitor the
toggle bit and DQ5 through successive read cycles,
determining the status as described in the previous
paragraph. Alternatively, it may choose to perform
other system tasks. In this case, the system must start
at the beginning of the algorithm when it returns to
determine the status of the operation (top of Figure 5).
DQ5: Exceeded Timing Limits
DQ5 indicates whether the program or erase time has
exceeded a specified internal pulse count limit. Under
these conditions DQ5 produces a “1.” This is a failure
condition that indicates the program or erase cycle was
not successfully completed.
The DQ5 failure condition may appear if the system
tries to program a “1” to a location that is previously pro-
grammed to “0.Only an erase operation can change
a “0” back to a “1. Under this condition, the device
halts the operation, and when the operation has
exceeded the timing limits, DQ5 produces a “1.
Under both these conditions, the system must issue the
reset command to return the device to reading array
data.
DQ3: Sector Erase Timer
After writing a sector erase command sequence, the
system may read DQ3 to determine whether or not an
erase operation has begun. (The sector erase timer
does not apply to the chip erase command.) If addi-
tional sectors are selected for erasure, the entire time-
out also applies after each additional sector erase com-
mand. When the time-out is complete, DQ3 switches
from “0” to “1.” The system may ignore DQ3 if the
system can guarantee that the time between additional
sector erase commands will always be less than 50 μs.
See also the “Sector Erase Command Sequence”
section.
After the sector erase command sequence is written,
the system should read the status on DQ7 (Data#
Polling) or DQ6 (Toggle Bit I) to ensure the device has
accepted the command sequence, and then read DQ3.
If DQ3 is “1”, the internally controlled erase cycle has
begun; all further commands (other than Erase Sus-
pend) are ignored until the erase operation is complete.
If DQ3 is “0”, the device will accept additional sector
erase commands. To ensure the command has been
accepted, the system software should check the status
of DQ3 prior to and following each subsequent sector
erase command. If DQ3 is high on the second status
check, the last command might not have been
accepted. Table 6 shows the outputs for DQ3.
START
No
Yes
Yes
DQ5 = 1?
No
Yes
Toggle Bit
= Toggle?
No
Program/Erase
Operation Not
Complete, Write
Reset Command
Program/Erase
Operation Complete
Read DQ7–DQ0
Toggle Bit
= Toggle?
Read DQ7–DQ0
Twice
Read DQ7–DQ0
Notes:
1. Read toggle bit twice to determine whether or not it is
toggling. See text.
2. Recheck toggle bit because it may stop toggling as DQ5
changes to “1”. See text.
Figure 5. Toggle Bit Algorithm
(Notes
1, 2)
(Note 1)
20 Am29F200B 21526D6 August 3, 2009
DATA SHEET
Table 6. Write Operation Status
Notes:
1. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
2. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.
See “DQ5: Exceeded Timing Limits” for more information.
Operation
DQ7
(Note 1) DQ6
DQ5
(Note 2) DQ3
DQ2
(Note 1) RY/BY#
Standard
Mode
Embedded Program Algorithm DQ7# Toggle 0 N/A No toggle 0
Embedded Erase Algorithm 0 Toggle 0 1 Toggle 0
Erase
Suspend
Mode
Reading within Erase
Suspended Sector 1 No toggle 0 N/A Toggle 1
Reading within Non-Erase
Suspended Sector Data Data Data Data Data 1
Erase-Suspend-Program DQ7# Toggle 0 N/A N/A 0
August 3, 2009 21526D6 Am29F200B 21
DATA SHEET
ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C
Ambient Temperature
with Power Applied. . . . . . . . . . . . . . –55°C to +125°C
Voltage with Respect to Ground
VCC (Note 1) . . . . . . . . . . . . . . . .2.0 V to +7.0 V
A9, OE#, and
RESET# (Note 2). . . . . . . . . . . .–2.0 V to +12.5 V
All other pins (Note 1) . . . . . . . . . –0.5 V to +7.0 V
Output Short Circuit Current (Note 3) . . . . . . 200 mA
Notes:
1. Minimum DC voltage on input or I/O pins is –0.5 V. During
voltage transitions, input or I/O pins may overshoot VSS to
–2.0 V for periods of up to 20 ns. See Figure 6. Maximum
DC voltage on input or I/O pins is VCC +0.5 V. During
voltage transitions, input or I/O pins may overshoot to VCC
+2.0 V for periods up to 20 ns. See Figure 7.
2. Minimum DC input voltage on pins A9, OE#, and RESET#
is –0.5 V. During voltage transitions, A9, OE#, and
RESET# may overshoot VSS to –2.0 V for periods of up to
20 ns. See Figure 6. Maximum DC input voltage on pin A9
is +12.5 V which may overshoot to +13.5 V for periods up
to 20 ns.
3. No more than one output may be shorted to ground at a
time. Duration of the short circuit should not be greater
than one second.
Note: Stresses above those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only; functional operation of the device at
these or any other conditions above those indicated in the op-
erational sections of this data sheet is not implied. Exposure
of the device to absolute maximum rating conditions for ex-
tended periods may affect device reliability.
OPERATING RANGES
Commercial (C) Devices
Ambient Temperature (TA) . . . . . . . . . . . 0°C to +70°C
Industrial (I) Devices
Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C
Extended (E) Devices
Ambient Temperature (TA) . . . . . . . .55°C to +125°C
VCC Supply Voltages
VCC for ± 5% devices . . . . . . . . . . .+4.75 V to +5.25 V
VCC for± 10% devices . . . . . . . . . . . .+4.5 V to +5.5 V
Note: Operating ranges define those limits between which
the functionality of the device is guaranteed.
20 ns
20 ns
+0.8 V
–0.5 V
20 ns
–2.0 V
Figure 6. Maximum Negative
Overshoot Waveform
20 ns
20 ns
VCC
+2.0 V
VCC
+0.5 V
20 ns
2.0 V
Figure 7. Maximum Positive
Overshoot Waveform
22 Am29F200B 21526D6 August 3, 2009
DATA SHEET
DC CHARACTERISTICS
TTL/NMOS Compatible
Notes:
1. The ICC current is typically less than 2 mA/MHz, with OE# at VIH.
2. Maximum ICC specifications are tested with VCC = VCCmax.
3. ICC active while Embedded Program or Erase Algorithm is in progress.
4. Not 100% tested.
Parameter
Symbol Parameter Description Test Conditions Min Max Unit
ILI Input Load Current VIN = VSS to VCC, VCC = VCC Max ±1.0 µA
ILIT
A9, OE#, RESET# Input Load
Current
VCC = VCC Max,
A9, OE#, RESET# = 12.5 V 50 µA
ILO Output Leakage Current VOUT = VSS to VCC, VCC = VCC Max ±1.0 µA
ICC1 VCC Active Read Current (Notes 1, 2) CE# = VIL, OE# = VIH
Byte 40
mA
Word 50
ICC2
VCC Active Program/Erase Current
(Notes 2, 3, 4) CE# = VIL, OE# = VIH 60 mA
ICC3 VCC Standby Current (Note 2) VCC = VCC Max, CE# = VIH, OE# = VIH 1.0 mA
VIL Input Low Voltage –0.5 0.8 V
VIH Input High Voltage 2.0 VCC + 0.5 V
VID
Voltage for Autoselect and Temporary
Sector Unprotect VCC = 5.0 V 11.5 12.5 V
VOL Output Low Voltage IOL = 5.8 mA, VCC = VCC Min 0.45 V
VOH Output High Voltage IOH = –2.5 mA, VCC = VCC Min 2.4 V
VLKO Low VCC Lock-Out Voltage 3.2 4.2 V
August 3, 2009 21526D6 Am29F200B 23
DATA SHEET
DC CHARACTERISTICS (Continued)
CMOS Compatible
Notes:
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH.
2. Maximum ICC specifications are tested with VCC = VCCmax.
3. ICC active while Embedded Program or Erase Algorithm is in progress.
4. Not 100% tested.
5. ICC3 for extended temperature is 20 µA max (>+85°C).
Parameter
Symbol Parameter Description Test Conditions Min Typ Max Unit
ILI Input Load Current VIN = VSS to VCC, VCC = VCC Max ±1.0 µA
ILIT
A9, OE#, RESET# Input
Load Current
VCC = VCC Max;
A9, OE#, RESET# = 12.5 V 50 µA
ILO Output Leakage Current VOUT = VSS to VCC, VCC = VCC Max ±1.0 µA
ICC1
VCC Active Read Current
(Notes 1, 2) CE# = VIL, OE# = VIH
Byte 20 40
mA
Word 28 50
ICC2
VCC Active Program/Erase
Current (Notes 2, 3, 4) CE# = VIL, OE# = VIH 30 50 mA
ICC3
VCC Standby Current
Note (Note 5) CE# = VCC ± 0.5 V, OE# = VIH 15µA
VIL Input Low Voltage –0.5 0.8 V
VIH Input High Voltage 0.7 x VCC VCC + 0.3 V
VID
Voltage for Autoselect and
Temporary Sector Unprotect V