In order to enable this light load efficiency
enhancement mode in analog operation, the voltage
at the En/FCCM pin needs to be kept above 4V. In
digital mode, a MFR_SPECIFIC PMBus command
(MFR_FCCM) can be used to enable AOT operation
at light load.
Shortly after the reference voltage has finished
ramping up, an internal circuit which is called the
“calibration circuit” starts operation. It samples the
Comp voltage (output of the error amplifier), digitizes
it and stores it in a register. There is a DAC which
converts the value of this register to an analog
voltage which is equal to the sampled Comp voltage.
At this time, the regulator is ready to enter AOT
mode if the load condition is appropriate. If the load
is so low that the inductor current becomes negative
before the next SW pulse, the operation can be
switched to AOT mode. The condition to enter AOT
is the occurrence of 8 consecutive inductor current
zero crossings in eight consecutive switching cycles.
If this happens, operation is switched to AOT mode
as shown in Figure 25. The inductor current is
sensed using the RDS_ON of the Sync-FET and no
direct inductor current measuring is required. In AOT
mode, just like COT operation, pulses with constant
width are generated and diode emulation is utilized.
This means that a pulse is generated and LDrv is
held on until the inductor current becomes zero.
Then both HDrv and LDrv remain off until the
voltage of the sense pin comes down and reaches
the reference voltage. At this moment the next pulse
is generated. The sense pin is connected to the
output voltage by a resistor divider which has the
same ratio as the voltage divider which is connected
to the feedback pin (Fb).
HDrv
0
0
LDrv
0
SW
0
IL
Ton
0
Vout ...
...
... ...
...
...
...
...
1/Fs Reduced Switching
Frequency
8/Fs delay
Diode
Emulation
Figure 25: Timing Diagram for Reduced
Switching Frequency and Diode Emulation in
Light Load Condition (AOT mode)
When the load increases beyond a certain value, the
control is switched back to PWM through either of
the following two mechanisms:
- If due to the increase in load, the output voltage
drops to 95% of the reference voltage.
-If Vsense remains below the reference voltage for
3 consecutive inductor current zero-cross events
It is worth mentioning that in AOT mode, when
Vsense comes down to reference voltage level, a
new pulse in generated only if the inductor current is
already zero. If at this time the inductor current
(sensed on the Sync-FET) is still positive, the new
pulse generation is postponed till the current decays
to zero. The second condition mentioned above
usually happens when the load is gradually
increased.
It should be noted that in tracking mode, AOT
operation is disabled and the IR38063 can only
operate in continuous conduction mode even at light
loads.
In digital mode, if the output voltage and hence the
reference voltage is commanded to a different
voltage, AOT is disabled during the transition. It is
enabled only after reference voltage finishes its
ramp (up or down) and the calibration circuit has
sampled and held the new Comp voltage.
In general, AOT operation is more jittery and noisier
than FCCM operation, where the switching
frequency may vary from cycle to cycle, giving
increased Vout ripple. Therefore, it is recommended
to use FCCM mode of operation as far as possible.
OUTPUT VOLTAGE TRACKING AND
SEQUENCING
IR38063 can accommodate user programmable
tracking and/or sequencing options using Vp,
Track_En¯¯¯¯¯¯¯¯¯ , Enable, and Power Good pins. The
error-amplifier (E/A) has two non-inverting inputs.
Ideally, the input with the lowest voltage is used for