IRF3805S-7PPbF
IRF3805L-7PPbF
HEXFET® Power MOSFET
VDSS = 55V
RDS(on) = 2.6m
ID = 160A
HEXFET® is a registered trademark of International Rectifier.
Description
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.
S
D
G
Features
lAdvanced Process Technology
lUltra Low On-Resistance
l175°C Operating Temperature
lFast Switching
lRepetitive Avalanche Allowed up to Tjmax
lLead-Free
S (Pin 2, 3, 5, 6, 7)
G (Pin 1)
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) A
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9)
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM Pulsed Drain Current
c
PD @TC = 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
EAS Single Pulse Avalanche Energy (Thermally Limited)
d
mJ
EAS (tested) Single Pulse Avalanche Energy Tested Value
h
IAR Avalanche Current
c
A
EAR Repetitive Avalanche Energy
g
mJ
TJ Operating Junction and °C
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case
j
––– 0.50 °C/W
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––
RθJA Junction-to-Ambient
j
––– 62
RθJA Junction-to-Ambient (PCB Mount, steady state)
ij
––– 40
Max.
240
170
1000
160
10 lbf•in (1.1N•m)
300
2.0
± 20
440
680
See Fig.12a,12b,15,16
300 (1.6mm from case )
-55 to + 175
D2Pak 7 Pin
IRF3805S-7PPbF
TO-263CA 7 Pin
IRF3805L-7PPbF
1www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
2
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C,
L=0.043mH, RG = 25, IAS = 140A, VGS =10V.
Part not recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to 80%
VDSS.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is applied to D2Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
Rθ is measured at TJ of approximately 90°C.
Solder mounted on IMS substrate.
S
D
G
S
D
G
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. T
y
p. Max. Units
V(BR)DSS Drain-to-Source Breakdown Volta
g
e55V
∆ΒVDSS
/
TJ Breakdown Volta
g
e Temp. Coefficient ––– 0.05 –– VC
RDS(on) SMD Static Drain-to-Source On-Resistance –– 2.0 2.6 m
VGS(th) Gate Threshold Volta
g
e2.04.0V
g
fs Forward Transconductance 110 –– ––– S
IDSS Drain-to-Source Leaka
g
e Current ––– ––– 20
A
––– –– 250
IGSS Gate-to-Source Forward Leaka
g
e ––– –– 200 nA
Gate-to-Source Reverse Leaka
g
e ––– ––– -200
QgTotal Gate Char
g
e ––– 130 200 nC
Qgs Gate-to-Source Char
g
e ––– 53 ––
Qgd Gate-to-Drain ("Miller") Char
g
e –– 49 ––
td(on) Turn-On Dela
y
Time –23––ns
trRise Time ––– 130 –––
td(off) Turn-Off Dela
y
Time –80–
tfFall Time –52–
LDInternal Drain Inductance ––– 4.5 ––– nH Between lead,
6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 ––– from packa
g
e
and center of die contact
Ciss Input Capacitance ––– 7820 ––– pF
Coss Output Capacitance ––– 1260 –––
Crss Reverse Transfer Capacitance ––– 610 –––
Coss Output Capacitance ––– 4310 –––
Coss Output Capacitance –– 980 ––
Coss eff. Effective Output Capacitance –– 1540 –––
Diode Characteristics
Parameter Min. T
y
p. Max. Units
ISContinuous Source Current ––– ––– 240
(Body Diode) A
ISM Pulsed Source Current ––– ––– 1000
(Body Diode)
c
VSD Diode Forward Voltage ––– –– 1.3 V
trr Reverse Recovery Time 4568ns
Qrr Reverse Recover
y
Char
g
e –– 35 53 nC
VDS = VGS, ID = 250µA
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 140A
e
TJ = 25°C, IF = 140A, VDD = 28V
di/dt = 100A/
µ
s
e
TJ = 25°C, IS = 140A, VGS = 0V
e
showing the
integral reverse
p-n junction diode.
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 10V
d
MOSFET symbol
VGS = 0V
VDS = 25V
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Conditions
VGS = 0V, VDS = 0V to 44V
ƒ = 1.0MHz, See Fig. 5
RG = 2.4
ID = 140A
VDS = 25V, ID = 140A
VDD = 28V
ID = 140A
VGS = 20V
VGS = -20V
VDS = 44V
VGS = 10V
e
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
3
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
vs. Drain Current
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
4.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2 4 6 8 10
VGS, Gate-to-Source Voltage (V)
1.0
10
100
1000
ID, Drain-to-Source Current (Α)
TJ = 25°C
TJ = 175°C
VDS = 25V
60µs PULSE WIDTH
0 20 40 60 80 100 120
ID,Drain-to-Source Current (A)
0
50
100
150
200
250
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 10V
380µs PULSE WIDTH
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
4
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 50 100 150
QG Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
VGS, Gate-to-Source Voltage (V)
VDS= 64V
VDS= 40V
ID= 140A
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
10000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
1msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Normalized On-Resistance
vs. Temperature
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
50
100
150
200
250
ID, Drain Current (A)
Limited By Package
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 140A
VGS = 10V
1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.0794 0.000192
0.1474 0.000628
0.2737 0.014012
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
6
QG
QGS QGD
VG
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
500
1000
1500
2000
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 21A
37A
BOTTOM 140A
-75 -50 -25 025 50 75 100 125 150 175 200
TJ , Temperature ( °C )
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VGS(th) Gate threshold Voltage (V)
ID = 250µA
ID = 1.0mA
ID = 1.0A
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
7
Fig 15. Typical Avalanche Current vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 140A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
∆Τ j = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
Tj = 150°C and
Tstart =25°C (Single Pulse)
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
8
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* V
GS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width 1 µs
Duty Factor 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
9
D2Pak - 7 Pin Package Outline
Dimensions are shown in millimeters (inches)
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
10
14
D2Pak - 7 Pin Part Marking Information
D2Pak - 7 Pin Tape and Reel
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IRF3805S/L-7PPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 25, 2013
11
TO-263CA 7 Pin Long Leads Package Outline
Dimensions are shown in millimeters (inches)
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
Date Comments
10/25/2013
Remove the "Automotive MOSFET" on the header, on page 1.
Revision History