February 2005 1 LMC7101
LMC7101 Micrel, Inc.
LMC7101
Low-Power Operational Amplifier
Final Information
General Description
The LMC7101 is a high-performance, low-power, operational
amplifier which is pin-for-pin compatible with the National
Semiconductor LMC7101. It features rail-to-rail input and
output performance in Micrel’s IttyBitty SOT-23-5 package.
The LMC7101 is a 500kHz gain bandwidth amplifier de-
signed to operate from 2.7V to 12V single-ended power
supplies with guaranteed performance at supply voltages of
2.7V, 3V, 5V, and 12V.
This op amp’s input common-mode range includes ground
and extends 300mV beyond the supply rails. For example,
the common-mode range is –0.3V to +5.3V with a 5V supply.
Functional Configuration
OUTV+
IN–
IN+
13
45
2
V–
SOT-23-5 (M5)
Pin Description
Pin Number Pin Name Pin Function
1OUT Amplifier Output
2V+Positive Supply
3IN+ Noninverting Input
4IN– Inverting Input
5VNegative Supply: Negative supply for split supply application or ground for
single supply application.
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
Pin Configuration
OUTV+
IN–
IN+
13
45
2
V–
A12A
Part
Identification
Ordering Information
Standard Pb-Free
Part Number Marking Part Number Marking* Grade Temp Range Package
LMC7101AIM5 A12A LMC7101AYM5 A12A Prime –40°C to +85°CSOT-23-5
LMC7101BIM5 A12 LMC7101BYM5 A12 Standard –40°C to +85°CSOT-23-5
*Under bar symbol (_) may not be to scale.
Features
Small footprint SOT-23-5 package
Guaranteed 2.7V, 3V, 5V, and 12V performance
500kHz gain-bandwidth
•0.01% total harmonic distortion at 10kHz (5V, 2k)
•0.5mA typical supply current at 5V
Applications
Mobile communications, cellular phones, pagers
Battery-powered instrumentation
PCMCIA, USB
Portable computers and PDAs
LMC7101 Micrel, Inc.
LMC7101 2 February 2005
Electrical Characteristics (2.7V)
V+ = +2.7V, V– = 0V, VCM = VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted
LMC7101A LMC7101B
Symbol Parameter Condition Typ Min Max Min Max Units
VOS Input Offset Voltage 0.11 6 9 mV
TCVOS Input Offset Voltage Average Drift 1.0 µV/°C
IBInput Bias Current 1.0 64 64 pA
IOS Input Offset Current 0.5 32 32 pA
RIN Input Resistance >1 T
CMRR Common-Mode Rejection Ratio 0V VCM 2.7V, Note 6 70 50 50 dB
VCM Input Common-Mode Voltage input low, CMRR 50dB –0.3 0.0 0.0 V
input high, CMRR 50dB 3.0 2.7 2.7 V
PSRR Power Supply Rejection Ratio V+ = 1.35V to 1.65V, V– = 60 50 45 dB
–1.35V to –1.65V, VCM = 0
CIN Common-Mode Input Capacitance 3 pF
VOOutput Swing output high, RL = 10k 2.699 2.64 2.64 V
output low, RL = 10k 0.001 0.06 0.06 V
output high, RL = 2k 2.692 2.6 2.6 V
output low, RL = 2k 0.008 0.1 0.1 V
ISSupply Current VOUT = V+/2 0.5 0.81 0.81 mA
0.95 0.95 mA
SR Slew Rate 0.4 V/µs
GBW Gain-Bandwidth Product 0.5 MHz
Electrical Characteristics (3.0V)
V+ = +3.0V, V– = 0V, VCM = VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted
LMC7101A LMC7101B
Symbol Parameter Condition Typ Min Max Min Max Units
VOS Input Offset Voltage 0.11 4 7 mV
69mV
TCVOS Input Offset Voltage Average Drift 1.0 µV/°C
IBInput Bias Current 1.0 64 64 pA
IOS Input Offset Current 0.5 32 32 pA
RIN Input Resistance >1 T
Absolute Maximum Ratings (Note 1)
Supply Voltage (VV+ – VV–) ........................................... 15V
Differential Input Voltage (VIN+ – VIN–) ........... ±(VV+ – VV–)
I/O Pin Voltage (VIN, VOUT), Note 2
............................................. VV+ + 0.3V to VV– – 0.3V
Junction Temperature (TJ) ...................................... +150°C
Storage Temperature ............................... –65°C to +150°C
Lead Temperature (soldering, 10 sec.) ..................... 260°C
ESD, Note 5 .................................................................. 2kV
Operating Ratings (Note 1)
Supply Voltage (VV+ – VV–).............................. 2.7V to 12V
Ambient Temperature (TA) ......................... –40°C to +85°C
Junction Temperature (TJ) ....................... –40°C to +125°C
Max. Junction Temperature (TJ(max)), Note 3 ......... +125°C
Package Thermal Resistance (θJA), Note 4.......... 325°C/W
Max. Power Dissipation............................................ Note 3
February 2005 3 LMC7101
LMC7101 Micrel, Inc.
Electrical Characteristics—DC (5V)
V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted
LMC7101A LMC7101B
Symbol Parameter Condition Typ Min Max Min Max Units
VOS Input Offset Voltage 0.11 3 7 mV
59mV
TCVOS Input Offset Voltage Average Drift 1.0 µV/°C
IBInput Bias Current 1.0 64 64 pA
IOS Input Offset Current 0.5 32 32 pA
RIN Input Resistance >1 T
CMRR Common-Mode Rejection Ratio 0V VCM 5V, Note 6 82 60 60 dB
55 55 dB
VCM Input Common-Mode Voltage input low, CMRR 50dB –0.3 –0.20 –0.20 V
0.00 0.00 V
input high, CMRR 50dB 5.3 5.20 5.20 V
5.00 5.00 V
+PSRR Positive Power Supply V+ = 5V to 12V, 82 70 65 dB
Rejection Ratio V– = 0V, VOUT = 1.5V 65 62 dB
–PSRR Negative Power Supply V+ = 0V, V– = –5V to –12V, 82 70 65 dB
Rejection Ratio VOUT = –1.5V 65 62 dB
CIN Common-Mode Input Capacitance 3 pF
VOUT Output Swing output high, RL = 2k 4.989 4.9 4.9 V
4.85 4.85 V
output low, RL = 2k 0.011 0.1 0.1 V
0.15 0.15 V
output high, RL = 6004.963 4.9 4.9 V
4.8 4.8 V
output low, RL = 6000.037 0.1 0.1 V
0.2 0.2 V
ISC Output Short Circuit Current sourcing (VOUT = 0V) or 200 120 120 mA
Note 7 sinking (VOUT = 5V) 80 80 mA
ISSupply Current VOUT = V+/2 0.5 0.85 0.85 mA
1.0 1.0 mA
LMC7101A LMC7101B
Symbol Parameter Condition Typ Min Max Min Max Units
CMRR Common-Mode Rejection Ratio 0V VCM 3.0V, Note 6 74 60 60 dB
VCM Input Common-Mode Voltage input low, CMRR 50dB –0.3 0 0 V
input high, CMRR 50dB 3.3 3.0 3.0 V
PSRR Power Supply Rejection Ratio V+ = 1.5V to 6.0V, V– = 80 68 60 dB
–1.5V to –6.0V, VCM = 0
CIN Common-Mode Input Capacitance 3 pF
VOUT Output Swing output high, RL = 2k 2.992 2.9 2.9 V
output low, RL = 2k 0.008 0.1 0.1 V
output high, RL = 6002.973 2.85 2.85 V
output low, RL = 6000.027 0.15 0.15 V
ISSupply Current 0.5 0.81 0.81 mA
0.95 0.95 mA
LMC7101 Micrel, Inc.
LMC7101 4 February 2005
Electrical Characteristics—DC (12V)
V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted
LMC7101A LMC7101B
Symbol Parameter Condition Typ Min Max Min Max Units
VOS Input Offset Voltage 0.11 6 9 mV
TCVOS Input Offset Voltage Average Drift 1.0 µV/°C
IBInput Bias Current 1.0 64 64 pA
IOS Input Offset Current 0.5 32 32 pA
RIN Input Resistance >1 T
CMRR Common-Mode Rejection Ratio 0V VCM 12V, Note 6 82 65 65 dB
60 60 dB
VCM Input Common-Mode Voltage input low, V+ = 12V, –0.3 –0.20 –0.20 V
CMRR 50dB 0.00 0.00 V
input high, V+ = 12V, 12.3 12.2 12.2 V
CMRR 50dB 12.0 12.0 V
+PSRR Positive Power Supply V+ = 5V to 12V, 82 70 65 dB
Rejection Ratio V– = 0V, VOUT = 1.5V 65 62 dB
–PSRR Negative Power Supply V+ = 0V, V– = –5V to 82 70 65 dB
Rejection Ratio –12V, VOUT = –1.5V 65 62 dB
AVLarge Signal Voltage Gain sourcing or sinking, 340 80 80 V/mV
RL = 2k, Note 9 40 40 V/mV
sourcing or sinking, 300 15 15 V/mV
RL = 600, Note 9 10 10 V/mV
CIN Common-Mode Input Capacitance 3 pF
VOUT Output Swing output high, V+ = 12V, 11.98 11.9 11.9 V
RL = 2k 11.87 11.87 V
output low, V+ = 12V, 0.02 0.10 0.10 V
RL = 2k, 0.13 0.13 V
output high, V+ = 12V, 11.93 11.73 11.73 V
RL = 60011.65 11.65 V
output low, V+ = 12V, 0.07 0.27 0.27 V
RL = 6000.35 0.35 V
ISC Output Short Circuit Current sourcing (VOUT = 0V) or 300 200 200 mA
sinking (VOUT = 12V), 120 120 mA
Notes 7, 8
ISSupply Current VOUT = V+/2 0.8 1.5 1.5 mA
1.71 1.71 mA
February 2005 5 LMC7101
LMC7101 Micrel, Inc.
Electrical Characteristics—AC (5V)
V+ = 5V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted
LMC7101A LMC7101B
Symbol Parameter Condition Typ Min Max Min Max Units
THD Total Harmonic Distortion f = 10kHz, AV = –2, 0.01 %
RL = 2k, VOUT = 4.0 VPP
SR Slew Rate 0.3 V/µs
GBW Gain-Bandwidth Product 0.5 MHz
Electrical Characteristics—AC (12V)
V+ = 12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted
LMC7101A LMC7101B
Symbol Parameter Condition Typ Min Max Min Max Units
THD Total Harmonic Distortion f = 10kHz, AV = –2, 0.01 %
RL = 2k, VOUT = 8.5 VPP
SR Slew Rate V+ = 12V, Note 10 0.3 0.19 0.19 V/µs
0.15 0.15 V/µs
GBW Gain-Bandwidth Product 0.5 MHz
φmPhase Margin 45 °
GmGain Margin 10 dB
enInput-Referred Voltage Noise f = 1kHz, VCM = 1V 37
nV/ Hz
inInput-Referred Current Noise f = 1kHz 1.5
fA/ Hz
General Notes: Devices are ESD protected; however, handling precautions are recommended. All limits guaranteed by testing on statistical analysis.
Note 1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when
operating the device outside its recommended operating ratings.
Note 2. I/O Pin Voltage is any external voltage to which an input or output is referenced.
Note 3. The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max); the junction-to-ambient thermal
resistance, θJA; and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using:
PD = (TJ(max) – TA) ÷ θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature.
Note 4. Thermal resistance, θJA, applies to a part soldered on a printed-circuit board.
Note 5. Human body model, 1.5k in series with 100pF.
Note 6. Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails.
Note 7. Continuous short circuit may exceed absolute maximum TJ under some conditions.
Note 8. Shorting OUT to V+ when V+ > 12V may damage the device.
Note 9. RL connected to 5.0V. Sourcing: 5V VOUT 12V. Sinking: 2.5V VOUT 5V.
Note 10. Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew rate, whichever is slower.
LMC7101 Micrel, Inc.
LMC7101 6 February 2005
0
200
400
600
800
1000
024681012
SUPPLY CURRENT (µA)
SUPPLY VOLTAGE (V)
Supply Current
vs. Supply Voltage
–40°C
25°C
85°C
1
10
100
1000
10000
-40 0 40 80 120 160
INPUT CURRENT (pA)
JUNCTION TEMPERATURE (°C)
Input Current vs.
Junction Temperature
-20
0
20
40
60
80
100
1x10
1
1x10
2
1x10
3
1x10
4
1x10
5
-PSRR (dB)
FREQUENCY (Hz)
PSRR
vs. Fre
q
uenc
y
5V
12V
2.7V
T
A
= 25°C
0
20
40
60
80
100
120
1x1011x1021x1031x1041x105
+PSRR (dB)
FREQUENCY (Hz)
+PSRR
vs. Fre
q
uenc
y
2.7V
5V
12V
TA = 25°C
0.01
0.1
1
10
100
1000
0.001 0.01 0.1 1 10
CURRENT SINK / SOURCE (mA)
OUTPUT VOLTAGE (V)
Sink / Source Currents
vs. Output Voltage
T
A
= 25°C
Typical Characteristics
0
20
40
60
80
100
120
140
1x10
1
1x10
2
1x10
3
1x10
4
1x10
5
CMRR (dB)
FREQUENCY (Hz)
CMRR
vs. Fre
q
uenc
y
2.7V
12V
5V
T
A
= 25°C
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
024681012
SLEW RATE (V/µs)
SUPPLY VOLTAGE (V)
Falling Slew Rate vs.
vs. Su
pp
l
y
Volta
g
e
+85°C
+25°C
-40°C
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
024681012
SLEW RATE (V/µs)
SUPPLY VOLTAGE (V)
Rising Slew Rate vs.
vs. Su
pp
l
y
Volta
g
e
+85°C
-40°C
+25°C
0
200
400
600
800
024681012
OFFSET VOLTAGE (µV)
SUPPLY VOLTAGE (V)
Offset Voltage
vs. Su
pp
l
y
Volta
g
e
25°C
-40°C
85°C
0
20
40
60
80
100
100 1000
PHASE MARGIN (°)
LOAD CAPACITANCE (pF)
Phase Margin
vs. Ca
p
acitive Load
TA = 25°C
AV = 1
12V
5V
3V
2.7V
200 300 500
February 2005 7 LMC7101
LMC7101 Micrel, Inc.
0
20
40
60
80
1x10
2
1x10
3
1x10
4
1x10
5
GAIN (dB)
FREQUENCY (Hz)
5V Open-Loop
Fre
q
uenc
y
Res
p
onse
T
A
= 25°C
1M
600
2k
-20
0
20
40
60
80
100
-60
-30
0
30
60
90
120
1x1021x1031x1041x1051x106
OFFSET VOLTAGE (µV)
PHASE (°)
COMMON-MODE VOLTAGE (V)
5V Open-Loop
Gain and Phase
100pF (°)
500pF (°)
1000pF (°)
100pF (dB)
500pF (dB)
1000pF (dB)
TA = 25°C
RL = 1M
0
20
40
60
80
100
1x1021x1031x1041x105
GAIN (dB)
FREQUENCY (Hz)
2.7V Open-Loop
Fre
q
uenc
y
Res
p
onse
RL = 1M
RL = 2k
TA = 25°C
-25
0
25
50
75
100
-90
-45
0
45
90
135
1x10
2
1x10
3
1x10
4
1x10
5
1x10
6
GAIN (dB)
PHASE (°)
FREQUENCY (Hz)
2.7V Open-Loop Gain
and Phase
100pF (dB)
500pF
100pF (°)
500pF (°)
T
A
= 25°C(dB)
R
L
= 1M
0
20
40
60
80
1x10
2
1x10
3
1x10
4
1x10
5
GAIN (dB)
FREQUENCY (Hz)
12V Open-Loop
Fre
q
uenc
y
Res
p
onse
1M
600
2k
T
A
= 25°C
-20
0
20
40
60
80
100
120
-60
-30
0
30
60
90
120
150
1x10
2
1x10
3
1x10
4
1x10
5
1x10
6
GAIN (dB)
PHASE (°)
FREQUENCY (Hz)
12V Open-Loop Gain
and Phase
100pF (°)
500pF (°)
1000pF (°)
100pF (dB)
500pF (dB)
1000pF (dB)
T
A
= 25°C
R
L
= 1M
LMC7101 Micrel, Inc.
LMC7101 8 February 2005
Inverting Small-Signal
Pulse Response
OUTPUT
INPUT
Inverting Large-Signal
Pulse Response
OUTPUT
INPUT
Noninverting Small-Signal
Pulse Response
OUTPUT
INPUT
Noninverting Large-Signal
Pulse Response
OUTPUT
INPUT
Input Voltage Noise vs. Frequency
Functional Characteristics
February 2005 9 LMC7101
LMC7101 Micrel, Inc.
Application Information
Input Common-Mode Voltage
Some amplifiers exhibit undesirable or unpredictable perfor-
mance when the inputs are driven beyond the common-mode
voltage range, for example, phase inversion of the output
signal. The LMC7101 tolerates input overdrive by at least
200mV beyond either rail without producing phase inversion.
If the absolute maximum input voltage (700mV beyond either
rail) is exceeded, the input current should be limited to ±5mA
maximum to prevent reducing reliability. A 10k series input
resistor, used as a current limiter, will protect the input
structure from voltages as large as 50V above the supply or
below ground. See Figure 1.
V
IN
V
OUT
10k
R
IN
Figure 1. Input Current-Limit Protection
Output Voltage Swing
Sink and source output resistances of the LMC7101 are
equal. Maximum output voltage swing is determined by the
load and the approximate output resistance. The output
resistance is:
R
V
I
OUT DROP
LOAD
=
VDROP is the voltage dropped within the amplifier output
stage. VDROP and ILOAD can be determined from the VO
(output swing) portion of the appropriate Electrical Character-
istics table. ILOAD is equal to the typical output high voltage
minus V+/2 and divided by RLOAD. For example, using the
Electrical Characteristics DC (5V) table, the typical output
high voltage using a 2k load (connected to V+/2) is 4.989V,
which produces an ILOAD of
1245 4989 2 5
21245...
.mA V – V
k mA
=
.
Voltage drop in the amplifier output stage is:
VDROP = 5.0V – 4.989V
VDROP = 0.011V
Because of output stage symmetry, the corresponding typical
output low voltage (0.011V) also equals VDROP. Then:
R V
A 9
OUT ==≈Ω
0011
0001245 88
.
..
Driving Capacitive Loads
Driving a capacitive load introduces phase-lag into the output
signal, and this in turn reduces op-amp system phase margin.
The application that is least forgiving of reduced phase
margin is a unity gain amplifier. The LMC7101 can typically
drive a 100pF capacitive load connected directly to the output
when configured as a unity-gain amplifier.
Using Large-Value Feedback Resistors
A large-value feedback resistor (> 500k) can reduce the
phase margin of a system. This occurs when the feedback
resistor acts in conjunction with input capacitance to create
phase lag in the fedback signal. Input capacitance is usually
a combination of input circuit components and other parasitic
capacitance, such as amplifier input capacitance and stray
printed circuit board capacitance.
Figure 2 illustrates a method of compensating phase lag
caused by using a large-value feedback resistor. Feedback
capacitor CFB introduces sufficient phase lead to overcome
the phase lag caused by feedback resistor RFB and input
capacitance CIN. The value of CFB is determined by first
estimating CIN and then applying the following formula:
R C R C
IN IN FB FB
××
Figure 2. Cancelling Feedback Phase Lag
Since a significant percentage of CIN may be caused by board
layout, it is important to note that the correct value of CFB may
change when changing from a breadboard to the final circuit
layout.
LMC7101 Micrel, Inc.
LMC7101 10 February 2005
Typical Circuits
Some single-supply, rail-to-rail applications for which the
LMC7101 is well suited are shown in the circuit diagrams of
Figures 3 through 7.
R2
900k
R1
100k
VOUT
0V to V+
V+
VIN
2
5
1
3
4
LMC7101
0V to V+
A
V
Figure 3a. Noninverting Amplifier
0
100
0100
VOUT (V)
VIN (V)
V+
A = 1 +
R2
R 10
V
1
Figure 3b. Noninverting Amplifier Behavior
VOUT
0V to V+
V+
VIN
0V to V+
2
5
1
3
4
LMC7101
VOUT = VIN
Figure 4. Voltage Follower
V
OUT
0V to V+
V+
V
IN
0V to 2V
2
5
1
3
4
LMC7101
R
S
10
1
2
W
Load
V
S
0.5V to Q1 V
CEO(sus)
I
OUT
Q1
2N3904 V
CEO
= 40V
I
C(max)
= 200mA
{
Change Q1 and R
S
for higher current
and/or different gain.
IV
R100mA/V as shown
OUT IN
S
==
Figure 5. Voltage-Controlled Current Sink
V+
0V
R4
100k
R4
100k
R3
100k
VOUT
V+
2
5
1
4
3
LMC7101
C1
0.001µF
R2
100k
V+
Figure 6. Square Wave Oscillator
R3
330k
R1
33k
0V
R2
330k
R4
330k
C1
1µF
V
OUT
V+
2
5
1
4
3
LMC7101
C
IN
V+
C
OUT
R
L
AR2
R1
330k
33k 10
V===
Figure 7. AC-Coupled Inverting Amplifier
February 2005 11 LMC7101
LMC7101 Micrel, Inc.
Package Information
0.20 (0.008)
0.09 (0.004)
0.60 (0.024)
0.10 (0.004)
3.02 (0.119)
2.80 (0.110) 10°
0°
3.00 (0.118)
2.60 (0.102)
1.75 (0.069)
1.50 (0.059)
0.95 (0.037) REF
1.30 (0.051)
0.90 (0.035)
0.15 (0.006)
0.00 (0.000)
DIMENSIONS:
MM (INCH)
0.50 (0.020)
0.35 (0.014)
1.90 (0.075) REF
SOT-23-5 (M5)
LMC7101 Micrel, Inc.
LMC7101 12 February 2005
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 1999 Micrel Incorporated