TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 1Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IR Receiver Modules for Remote Control Systems
DESIGN SUPPORT TOOLS
MECHANICAL DATA
Pinning:
1 = GND, 2 = N.C., 3 = VS, 4 = OUT
ORDERING CODE
Taping:
TSOP36...TT - top view taped
TSOP36...TR - side view taped
FEATURES
Very low supply current
Photo detector and preamplifier in one package
Internal filter for PCM frequency
Supply voltage range: 2.5 V to 5.5 V
Improved immunity against modulated light
sources
Insensitive to supply voltage ripple and noise
Capable of side or top view
Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
DESCRIPTION
The TSOP36... series are miniaturized SMD IR receiver
modules for infrared remote control systems. A PIN diode
and a preamplifier are assembled on a leadframe, the epoxy
package contains an IR filter.
The demodulated output signal can be directly connected to
a microprocessor for decoding.
The TSOP364.. series devices are optimized to suppress
almost all spurious pulses from energy saving lamps like
CFLs. The AGC4 used in the TSOP364.. may suppress
some data signals. The TSOP362.. series are provided
primarily for compatibility with old AGC2 designs. New
designs should prefer the TSOP364.. series containing the
newer AGC4.
These components have not been qualified according to
automotive specifications.
16797
1234
click logo to get started
Available
Models
PARTS TABLE
AGC LEGACY, FOR
LONG BURST REMOTE CONTROLS (AGC2)
RECOMMENDED FOR
LONG BURST CODES (AGC4)
Carrier frequency
30 kHz TSOP36230 TSOP36430
33 kHz TSOP36233 TSOP36433
36 kHz TSOP36236 TSOP36436 (1)(2)(3)
38 kHz TSOP36238 TSOP36438 (4)(5)
40 kHz TSOP36240 TSOP36440
56 kHz TSOP36256 TSOP36456 (6)(7)
Package Panhead
Pinning 1 = GND, 2 = N.C., 3 = VS, 4 = OUT
Dimensions (mm) 7.5 W x 5.3 H x 4.0 D
Mounting SMD
Application Remote control
Best choice for (1) RC-5 (2) RC-6 (3) Panasonic (4) NEC (5) Sharp (6) r-step (7) Thomson RCA
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 2Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
BLOCK DIAGRAM APPLICATION CIRCUIT
Note
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability
30 kΩ
VS
OUT
Demo -
GND
pass
AGCInput
PIN
Band
dulator
Control circuit
3
4
1; 2
16839
C1
IR receiver
GND
Circuit
μC
R1
+ VS
GND
Transmitter
with
TSALxxxx VS
VO
17170-11
OUT
R1 and C1 recommended to reduce supply ripple for VS < 2.8 V
ABSOLUTE MAXIMUM RATINGS
PARAMETER TEST CONDITION SYMBOL VALUE UNIT
Supply voltage (pin 3) VS-0.3 to +6 V
Supply current (pin 3) IS3mA
Output voltage (pin 4) VO-0.3 to (VS + 0.3) V
Output current (pin 4) IO5mA
Junction temperature Tj100 °C
Storage temperature range Tstg -25 to +85 °C
Operating temperature range Tamb -25 to +85 °C
Power consumption Tamb 85 °C Ptot 10 mW
ELECTRICAL AND OPTICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)
PARAMETER TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT
Supply current Ev = 0, VS = 3.3 V ISD 0.27 0.35 0.45 mA
Ev = 40 klx, sunlight ISH -0.45- mA
Supply voltage VS2.5 - 5.5 V
Transmission distance
Ev = 0, test signal see Fig. 1,
IR diode TSAL6200,
IF = 50 mA
d-24-m
Output voltage low IOSL = 0.5 mA, Ee = 0.7 mW/m2,
test signal see Fig. 1 VOSL - - 100 mV
Minimum irradiance
Pulse width tolerance:
tpi - 5/fo < tpo < tpi + 6/fo,
test signal see Fig. 1
Ee min. - 0.12 0.25 mW/m2
Maximum irradiance tpi - 5/fo < tpo < tpi + 6/fo,
test signal see Fig. 1 Ee max. 30 - - W/m2
Directivity Angle of half transmission
distance ϕ1/2 50- °
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 3Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)
Fig. 1 - Output Active Low
Fig. 2 - Pulse Length and Sensitivity in Dark Ambient
Fig. 3 - Output Function
Fig. 4 - Output Pulse Diagram
Fig. 5 - Frequency Dependence of Responsivity
Fig. 6 - Sensitivity in Bright Ambient
16110
E
e
T
tpi *
t
* tpi 10/f0 is recommended for optimal function
VO
VOH
VOL t
Optical Test Signal
(IR diode TSAL6200, I
F
= 0.4 A, 30 pulses, f = f
0
, t = 10 ms)
Output Signal
td
1)
t
po 2)
1) 7/f0 < td < 15/f0
2) tpi - 5/f0 < tpo < tpi + 6/f0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.1 1 10 102103104105
E
e
- Irradiance (mW/m
2
)
t
po
- Output Pulse Width (ms)
20752
Input burst length
λ = 950 nm,
optical test signal, Fig. 1
Output pulse width
E
e
t
V
O
V
OH
V
OL
t
600 µs 600 µs
t = 60 ms
t
on
t
off
94 8134
Optical Test Signal
Output Signal, (see Fig. 4)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.1 1 10 100 1000 10 000
E
e
- Irradiance (mW/m
2
)
t
on
, t
off
- Output Pulse Width (ms)
20759
λ = 950 nm,
optical test signal, Fig. 3
t
on
t
off
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0.01 0.1 1 10 100
Ee - Ambient DC Irradiance (W/m2)
Ee min. - Threshold Irradiance (mW/m2)
Correlation with ambient light sources:
10 W/m2 = 1.4 klx (std. illum. A, T = 2855 K)
10 W/m2 = 8.2 klx (daylight, T = 5900 K)
Wavelength of ambient
illumination:
λ
= 950 nm
20757
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 4Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 7 - Sensitivity vs. Supply Voltage Disturbances
Fig. 8 - Maximum Envelope Duty Cycle vs. Burst Length
Fig. 9 - Sensitivity vs. Ambient Temperature
Fig. 10 - Relative Spectral Sensitivity vs. Wavelength
Fig. 11 - Horizontal Directivity
Fig. 12 - Sensitivity vs. Supply Voltage
0
0.5
1.0
1.5
2.0
2.5
3.0
1 10 100 1000
Ee min. - Threshold Irradiance (mW/m2)
ΔVS RMS - AC Voltage on DC Supply Voltage (mV)
f = f0
f = 30 kHz
f = 10 kHz
f = 100 Hz
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0 20 40 60 80 100 120
Burst Length (number of cycles/burst)
Max. Envelope Duty Cycle
f = 38 kHz, Ee = 2 mW/m²
TSOP364..
TSOP362..
0
0.05
0.10
0.15
0.20
0.25
0.30
-30 -10 10 30 50 70 90
Ee min. - Threshold Irradiance (mW/m2)
Tamb - Ambient Temperature (°C)
10
100
1000
10000
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
750 850 950 1050 1150
Axis Title
1st line
2nd line
2nd line
S(λ)rel. - Relative Spectral Sensitivity
λ - Wavelength (nm)
21425
16801
0.4 0.2 0 0.2 0.4 0.6
0.6
0.9
30°
10° 20°
40°
50°
60°
70°
80°
1.0
0.8
0.7
d
rel
- Relative Transmission Distance
0.00
0.05
0.10
0.15
0.20
0.25
0.30
1 2 3 4 5
E
e min.
- Sensitivity (mW/m
2
)
V
S
- Supply Voltage (V)
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 5Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
SUITABLE DATA FORMAT
This series is designed to suppress spurious output pulses
due to noise or disturbance signals. The devices can
distinguish data signals from noise due to differences in
frequency, burst length, and envelope duty cycle. The data
signal should be close to the device’s band-pass center
frequency (e.g. 38 kHz) and fulfill the conditions in the table
below.
When a data signal is applied to the product in the presence
of a disturbance, the sensitivity of the receiver is
automatically reduced by the AGC to insure that no spurious
pulses are present at the receiver’s output.
Some examples which are suppressed are:
DC light (e.g. from tungsten bulbs sunlight)
Continuous signals at any frequency
Strongly or weakly modulated noise from fluorescent
lamps with electronic ballasts (see Fig. 13 or Fig. 14)
Fig. 13 - IR Disturbance from Fluorescent Lamp
With Low Modulation
Fig. 14 - IR Disturbance from Fluorescent Lamp
With High Modulation
Notes
For data formats with short bursts please see the datasheet for TSOP361.., TSOP363.., TSOP365..
For Sony 12, 15, and 20 bit IR codes please see the datasheet of TSOP36S40F
16920
10
100
1000
10000
0
1
2
3
4
5
6
7
0 5 10 15 20
Axis Title
1st line
2nd line
2nd line
IR Signal Amplitude
Time (ms)
16921
10
100
1000
10000
-60
-40
-20
0
20
40
0 5 10 15 20
Axis Title
1st line
2nd line
2nd line
IR Signal Amplitude
Time (ms)
TSOP362.. TSOP364..
Minimum burst length 10 cycles/burst 10 cycles/burst
After each burst of length
a minimum gap time is required of
10 to 70 cycles
10 cycles
10 to 35 cycles
10 cycles
For bursts greater than
a minimum gap time in the data stream is needed of
70 cycles
> 4 x burst length
35 cycles
> 10 x burst length
Maximum number of continuous short bursts/second 1800 1500
NEC code Yes Preferred
RC5 / RC6 code Yes Preferred
Thomson 56 kHz code Yes Preferred
Sharp code Yes Preferred
Suppression of interference from fluorescent lamps
Mild disturbance patterns
are suppressed (example:
signal pattern of Fig. 13)
Complex and critical disturbance patterns
are suppressed (example: signal pattern
of Fig. 14 or highly dimmed LCDs)
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 6Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
PACKAGE DIMENSIONS in millimeters
ASSEMBLY INSTRUCTIONS
Reflow Soldering
Reflow soldering must be done within 72 h while stored
under a max. temperature of 30 °C, 60 % RH after
opening the dry pack envelope
Set the furnace temperatures for pre-heating and heating
in accordance with the reflow temperature profile as
shown in the diagram. Exercise extreme care to keep the
maximum temperature below 260 °C. The temperature
shown in the profile means the temperature at the device
surface. Since there is a temperature difference between
the component and the circuit board, it should be verified
that the temperature of the device is accurately being
measured
Handling after reflow should be done only after the work
surface has been cooled off
Manual Soldering
Use a soldering iron of 25 W or less. Adjust the
temperature of the soldering iron below 300 °C
Finish soldering within 3 s
Handle products only after the temperature has cooled off
2.35
R 1.7
5.51
0.5 ± 0.15
3 x 1.27 = 3.81
2.6
7.5
7.2
4x
1.27
5.3
2.9
4
2.2
Pick and place area. TR taping
2.2
3 x 1.27 = 3.81
1.27 0.9
2.8
specifications
according to DIN
technical drawings
Not indicated tolerances ± 0.3
Pick and place area. TT taping
Footprint
(1.5)
(1.4)
Issue: 8; 02.09.09
16776
Drawing-No.: 6.544-5341.01-4
A
A
0.1
0.1
0.3
0.4
14
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 7Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VISHAY LEAD (Pb)-FREE REFLOW SOLDER PROFILE
TAPING VERSION TSOP..TT DIMENSIONS in millimeters
max. 120 s max. 100 s
max. 20 s
Max. ramp up 3 °C/s
max. 260 °C
10
100
1000
10000
0
50
100
250
300
0 300
Axis Title
2nd line
Temperature (°C)
Time (s)
25020015010050
200
150
245 °C
217 °C
240 °C
255 °C
Max. ramp down 6 °C/s
Max. 2 cycles allowed
19800
16584
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 8Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TAPING VERSION TSOP..TR DIMENSIONS in millimeters
16585
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 9Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
REEL DIMENSIONS in millimeters
LEADER AND TRAILER DIMENSIONS in millimeters
COVER TAPE PEEL STRENGTH
According to DIN EN 60286-3
0.1 N to 1.3 N
300 mm/min. ± 10 mm/min.
165° to 180° peel angle
LABEL
Standard bar code labels for finished goods
The standard bar code labels are product labels and used
for identification of goods. The finished goods are packed in
final packing area. The standard packing units are labeled
with standard bar code labels before transported as finished
goods to warehouses. The labels are on each packing unit
and contain Vishay Semiconductor GmbH specific data.
16734
Trailer Leader
no devices
min. 200 min. 400
StartEnd
devices
96 11818
no devices
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 10 Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
DRY PACKING
The reel is packed in an anti-humidity bag to protect the
devices from absorbing moisture during transportation and
storage.
FINAL PACKING
The sealed reel is packed into a cardboard box.
RECOMMENDED METHOD OF STORAGE
Dry box storage is recommended as soon as the aluminum
bag has been opened to prevent moisture absorption. The
following conditions should be observed, if dry boxes are
not available:
Storage temperature 10 °C to 30 °C
Storage humidity 60 % RH max.
After more than 72 h under these conditions moisture
content will be too high for reflow soldering.
In case of moisture absorption, the devices will recover to
the former condition by drying under the following condition:
192 h at 40 °C + 5 °C / - 0 °C and < 5 % RH (dry air /
nitrogen) or
96 h at 60 °C + 5 °C and < 5 % RH for all device containers
or
24 h at 125 °C + 5 °C not suitable for reel or tubes.
An EIA JEDEC® standard J-STD-020 level 4 label is included
on all dry bags.
EIA JEDEC standard J-STD-020 level 4 label is included
on all dry bags
VISHAY SEMICONDUCTOR GmbH STANDARD BAR CODE PRODUCT LABEL (finished goods)
PLAIN WRITTING ABBREVIATION LENGTH
Item-description - 18
Item-number INO 8
Selection-code SEL 3
LOT-/serial-number BATCH 10
Data-code COD 3 (YWW)
Plant-code PTC 2
Quantity QTY 8
Accepted by ACC -
Packed by PCK -
Mixed code indicator MIXED CODE -
Origin xxxxxxx+ Company logo
LONG BAR CODE TOP TYPE LENGTH
Item-number N 8
Plant-code N 2
Sequence-number X 3
Quantity N 8
Total length - 21
SHORT BAR CODE BOTTOM TYPE LENGTH
Selection-code X 3
Data-code N 3
Batch-number X 10
Filter - 1
Total length - 17
Aluminum bag
Label
Reel
15973
CAUTION
This bag contains
MOISTURE-SENSITIVE DEVICES
1. Shelf life in sealed bag: 12 months at < 40 °C and < 90 % relative
humidity (RH)
2. After this bag is opened, devices that will be subjected to soldering
reflow or equivalent processing (peak package body temp. 260 °C)
must be
2a. Mounted within 72 hours at factory condition of < 30 °C/60 % RH or
2b. Stored at < 5 % RH
3. Devices require baking befor mounting if:
Humidity Indicator Card is > 10 % when read at 23 °C ± 5 °C or
2a. or 2b. are not met.
4. If baking is required, devices may be baked for:
192 hours at 40 °C + 5 °C/- 0 °C and < 5 % RH (dry air/nitrogen) or
96 hours at 60 °C ± 5 °C and < 5 % RH for all device containers or
24 hours at 125 °C ± 5 °C not suitable for reels or tubes
Bag Seal Date:
(If blank, see barcode label)
Note: Level and body temperature defined by EIA JEDEC Standard J-STD-020
4
LEVEL
22522
TSOP362.., TSOP364..
www.vishay.com Vishay Semiconductors
Rev. 1.8, 24-Sep-2018 11 Document Number: 82568
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
ESD PRECAUTION
Proper storage and handling procedures should be followed
to prevent ESD damage to the devices especially when they
are removed from the antistatic shielding bag. Electrostatic
sensitive devices warning labels are on the packaging.
VISHAY SEMICONDUCTORS STANDARD
BAR CODE LABELS
The Vishay Semiconductors standard bar code labels are
printed at final packing areas. The labels are on each
packing unit and contain Vishay Semiconductors specific
data.
22645
Legal Disclaimer Notice
www.vishay.com Vishay
Revision: 08-Feb-17 1Document Number: 91000
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a
particular product with the properties described in the product specification is suitable for use in a particular application.
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for
such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED