SGP10N60A
SGW10N60A
1 Rev. 2.4 Sep 08
Fast IGBT in NPT-technology
75% lower Eoff compared to previous generation
combined with low conduction losses
Short circuit withstand time – 10 µs
Designed for:
- Motor controls
- Inverter
NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
Qualified according to JEDEC1 for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE I
C VCE(sat) Tj Marking Package
SGP10N60A 600V 10A 2.3V
150°C G10N60A PG-TO-220-3-1
SGW10N60A 600V 10A 2.3V
150°C G10N60A PG-TO-247-3
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 600 V
DC collector current
TC = 25°C
TC = 100°C
IC
20
10.6
Pulsed collector current, tp limited by Tjmax ICpuls 40
Turn off safe operating area
VCE 600V, Tj 150°C
- 40
A
Gate-emitter voltage VGE ±20 V
Avalanche energy, single pulse
IC = 10 A, VCC = 50 V, RGE = 25 ,
start at Tj = 25°C
EAS 70 mJ
Short circuit withstand time2
VGE = 15V, VCC 600V, Tj 150°C
tSC 10
µs
Power dissipation
TC = 25°C
Ptot 92 W
Operating junction and storage temperature Tj , Tstg -55...+150
Soldering temperature,
wavesoldering, 1.6mm (0.063 in.) from case for 10s
Ts 260
°C
1 J-STD-020 and JESD-022
2 Allowed number of short circuits: <1000; time between short circuits: >1s.
G
C
E
PG-TO-247-3
PG-TO-220-3-1
http://store.iiic.cc/
SGP10N60A
SGW10N60A
2 Rev. 2.4 Sep 08
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
RthJC 1.35
Thermal resistance,
junction – ambient
RthJA PG-TO-220-3-1
PG-TO-247-3-21
62
40
K/W
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Value
Parameter Symbol Conditions
min. Typ. max.
Unit
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=500µA600 - -
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=10A
Tj=25°C
Tj=150°C
1.7
-
2
2.3
2.4
2.8
Gate-emitter threshold voltage VGE(th) IC=300µA,VCE=VGE 3 4 5
V
Zero gate voltage collector current
ICES VCE=600V,VGE=0V
Tj=25°C
Tj=150°C
-
-
-
-
40
1500
µA
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=10A - 6.7 - S
Dynamic Characteristic
Input capacitance Ciss - 550 660
Output capacitance Coss - 62 75
Reverse transfer capacitance Crss
VCE=25V,
VGE=0V,
f=1MHz - 42 51
pF
Gate charge QGate VCC=480V, IC=10A
VGE=15V
- 52 68 nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE PG-TO-220-3-1
PG-TO-247-3-21
-
-
7
13
-
-
nH
Short circuit collector current2) IC(SC) VGE=15V,tSC10µs
VCC 600V,
Tj 150°C
- 100 - A
2) Allowed number of short circuits: <1000; time between short circuits: >1s.
http://store.iiic.cc/
SGP10N60A
SGW10N60A
3 Rev. 2.4 Sep 08
Switching Characteristic, Inductive Load, at Tj=25 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 28 34
Rise time tr - 12 15
Turn-off delay time td(off) - 178 214
Fall time tf - 24 29
ns
Turn-on energy Eon - 0.15 0.173
Turn-off energy Eoff - 0.17 0.221
Total switching energy Ets
Tj=25°C,
VCC=400V,IC=10A,
VGE=0/15V,
RG=25,
L
σ
1)
=180nH,
C
σ
1)
=55pF
Energy losses include
“tail” and diode
reverse recovery. - 0.320 0.394
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Value
Parameter Symbol Conditions
min. typ. max.
Unit
IGBT Characteristic
Turn-on delay time td(on) - 28 34
Rise time tr - 12 15
Turn-off delay time td(off) - 198 238
Fall time tf - 26 32
ns
Turn-on energy Eon - 0.260 0.299
Turn-off energy Eoff - 0.280 0.364
Total switching energy Ets
Tj=150°C
VCC=400V,IC=10A,
VGE=0/15V,
RG=25
L
σ
1) =180nH,
C
σ
1) =55pF
Energy losses include
“tail” and diode
reverse recovery. - 0.540 0.663
mJ
1) Leakage inductance L
σ
and Stray capacity Cσ due to dynamic test circuit in Figure E.
http://store.iiic.cc/
SGP10N60A
SGW10N60A
4 Rev. 2.4 Sep 08
IC, COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
10A
20A
30A
40A
50A
TC=110°c
TC=80°c
IC, COLLECTOR CURRENT
1V 10V 100V 1000V
0,1A
1A
10A 15µs
DC
1ms
200µs
50µs
tp=5µs
f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 25)
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj 150°C)
Ptot, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C
0W
20W
40W
60W
80W
100W
120W
IC, COLLECTOR CURRENT
25°C 50°C 75°C 100°C 125°C
0A
5A
10A
15A
20A
25A
TC, CASE TEMPERATURE TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj 150°C)
Figure 4. Collector current as a function of
case temperature
(VGE 15V, Tj 150°C)
Ic
Ic
http://store.iiic.cc/
SGP10N60A
SGW10N60A
5 Rev. 2.4 Sep 08
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
5A
10A
15A
20A
25A
30A
35A
15V
13V
11V
9V
7V
5V
VGE=20V
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
5A
10A
15A
20A
25A
30A
35A
15V
13V
11V
9V
7V
5V
VGE=20V
VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
Figure 6. Typical output characteristics
(Tj = 150°C)
IC, COLLECTOR CURRENT
0V 2V 4V 6V 8V 10V
0A
5A
10A
15A
20A
25A
30A
35A
+150°C
Tj=+25°C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
0°C 50°C 100°C 150°C
1,5V
2,0V
2,5V
3,0V
3,5V
IC=20A
IC=10A
IC=5A
VGE, GATE-EMITTER VOLTAGE Tj, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(VCE = 10V)
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
http://store.iiic.cc/
SGP10N60A
SGW10N60A
6 Rev. 2.4 Sep 08
t, SWITCHING TIMES
0A 5A 10A 15A 20A 25A
10ns
100ns
tr
td(on)
tf
td(off)
t, SWITCHING TIMES
020406080
10ns
100ns
tr
td(on)
tf
td(off)
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 25,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 10A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
0°C 50°C 100°C 150°C
10ns
100ns
tr
td(on)
tf
td(off)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
-50°C C 50°C 100°C 150°C
1,0V
1,5V
2,0V
2,5V
3,0V
3,5V
4,0V
4,5V
5,0V
5,5V
typ.
min.
max.
Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 10A, RG = 25 ,
Dynamic test circuit in Figure E)
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.3mA)
http://store.iiic.cc/
SGP10N60A
SGW10N60A
7 Rev. 2.4 Sep 08
E, SWITCHING ENERGY LOSSES
0A 5A 10A 15A 20A 25A
0,0mJ
0,2mJ
0,4mJ
0,6mJ
0,8mJ
1,0mJ
1,2mJ
1,4mJ
1,6mJ
Eon*
Eoff
Ets*
E, SWITCHING ENERGY LOSSES
020406080
0,2mJ
0,4mJ
0,6mJ
0,8mJ
1,0mJ
Ets*
Eon*
Eoff
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 25 ,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 10A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
0°C 50°C 100°C 150°C
0,0mJ
0,2mJ
0,4mJ
0,6mJ
0,8mJ
Ets*
Eon*
Eoff
ZthJC, TRANSIENT THERMAL IMPEDANCE
1µs 10µs 100µs 1ms 10ms 100ms 1s
10-3K/W
10-2K/W
10-1K/W
100K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
Tj, JUNCTION TEMPERATURE tp, PULSE WIDTH
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 10A, RG = 25 ,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
C1=
τ
1/R1
R1R2
C2=
τ
2/R2
R,(K/W)
τ
, (s)
0.4287 0.0358
0.4830 4.3*10-3
0.4383 3.46*10-4
http://store.iiic.cc/
SGP10N60A
SGW10N60A
8 Rev. 2.4 Sep 08
VGE, GATE-EMITTER VOLTAGE
0nC 25nC 50nC 75nC
0V
5V
10V
15V
20V
25V
480V
120V
C, CAPACITANCE
0V 10V 20V 30V
10pF
100pF
1nF
Crss
Coss
Ciss
QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(IC = 10A)
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
tsc, SHORT CIRCUIT WITHSTAND TIME
10V 11V 12V 13V 14V 15V
0µs
5µs
10µs
15µs
20µs
25
µ
s
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
10V 12V 14V 16V 18V 20V
0A
50A
100A
150A
200A
VGE, GATE-EMITTER VOLTAGE VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE 600V, Tj = 150°C)
http://store.iiic.cc/
SGP10N60A
SGW10N60A
9 Rev. 2.4 Sep 08
PG-TO220-3-1
http://store.iiic.cc/
SGP10N60A
SGW10N60A
10 Rev. 2.4 Sep 08
5.44
0.55
6.04
5.49
1.68
3.68
4.17
20.82
16.25
15.70
1.05
3.50
19.80
13.10
3
MIN
1.90
4.90
2.27
1.07
1.85
1.90
0.238
0.216
0.066
0.145
0.164
0.075
0.820
0.640
0.618
0.022
0.193
0.089
0.042
0.073
0.041
0.075
0.138
0.780
0.516
0.68
6.30
6.00
17.65
2.60
5.10
14.15
3.70
21.10
16.03
20.31
1.35
4.47
2.41
5.16
2.53
1.33
2.11
MAX
2.16
0.027
0.214
3
0.248
0.236
0.695
0.557
0.102
0.201
0.831
0.631
0.053
0.146
0.799
0.176
MIN MAX
0.095
0.203
0.099
0.052
0.083
0.085
0
7.5mm
55
0
17-12-2007
03
Z8B00003327
2.87
2.87
0.113
0.113
3.38
3.13
0.133
0.123
M
M
PG-TO247-3
http://store.iiic.cc/
SGP10N60A
SGW10N60A
11 Rev. 2.4 Sep 08
Figure A. Definition of switching times
Figure B. Definition of switching losses
p(t)
12 n
T(t)
j
τ
1
1
τ
2
2
n
n
τ
T
C
rr
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L
σ
=180nH
and Stray capacity Cσ =55pF.
http://store.iiic.cc/
SGP10N60A
SGW10N60A
12 Rev. 2.4 Sep 08
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
http://store.iiic.cc/