austriamicrosystems AG
is now
ams AG
The technical content of this austriamicrosystems datasheet is still valid.
Contact information:
Headquarters:
ams AG
Tobelbaderstrasse 30
8141 Unterpremstaetten, Austria
Tel: +43 (0) 3136 500 0
e-Mail: ams_sales@ams.com
Please visit our website at www.ams.com
AS3658
Power and Audio Management Unit for Portable Devices
Data Sheet Confidential
www.austriamicrosystems.com Revision 1v13 1 - 157
1 General Description
The AS3658 is highly integrated power and audio
management unit. The AS3658 is designed to include
sophisticated audio features like high performance
audio DAC and ADC. It has several analog and digital
audio interface which are explained in detail in the
following sections. The AS3658 is an integrated solution
for power supply generation and monitoring, battery
management including charging.
2 Key Features
System Control
- Serial Control Interface
- On/Of f Control Module wit h Boot-ROM / GPIO
- Reset Generation for system controller
- Programmable Interrupt Controller and Watchdog
- Low power off mode (9µA; 2.5V LDO on)
- 88 bit unique ID or Boot fuse array
- Reset with long ON-Keypress (SW-Interuptable)
- Touchscreen Interface (10 bit, interrupt)
Supply Voltage Generation
- 2 RF Programmable Low Noise LDOs (250mA) (1
LDO can be a current controlled switch for hotplug
(200mA ± 40%))
- 1 RF Programmable Low Noise LDO (400mA)
- 4 Programmable Dig. Low Power LDOs(200mA)
- 2 General Purpose PWM DC/DC step up converter
with three programmable current sinks (e.g. for-
white led); for current mode feedback is automati-
cally slected (DCDC_CURR1,2,3)
- 3 General Purpose high efficiency DC/DC step
down converter (DCDC 1 support DVM)
- 1 Low noise charge pump with 5V output voltage
- 1 Ultra Low Power 2.5V LDO (always on)
Current sinks
- 4 programmable(8-bit) from 0.15mA to 38.25mA
(±5% ) optional useable as GPIOs
- 3 programmable high voltage (15V) (8-bit) from
0.15mA to 38.25mA (±5% )
- internal PWM generator (extended time ra nge)
(can control DCDC_CURR1,2,3)
10-bit 40µs Successive Approximation ADC
- Two external Inputs (ADC_IN1, ADC_IN2)
Battery Management
- Full featured chemistry independent step down
charger with Gas Gauge and Current limitation
- High Current (1.0A) Linear Ch arger with external
pass transistor (no step down charger)
-0.1 Ω Battery switch for start-up and trickle charge
- Integrated USB charger up to 880mA (can be used
as wall adapter charger); current accuracy 440-
500mA for USB specification, in-circuit trimmable
(±1.2% trimsteps)
- Autonomous Battery Temperature Supervision
(0ºC-45ºC or 0ºC- 50ºC) for 10k and 100k NTC
- Charging Timeout (1h-8h in 30min ste ps)
- Charging in S tanby mode
- Completely Autonomous (no SW)
Power Management Features
- Wide Battery Supply Range 3.0…5.5V
- On-Chip Bandgap Tuning for High Accuracy (±1%)
- Thermal and Current Protection (int. sensor)
- Standby Mode exit by interrupt e.g. Onkey/RTC
Audio
- 94dB Audio DAC, 16-48kHz sampling rate
- Two Digital Audio Inputs (2 x I2S interface)
- 2.9V low Noise LDO for Audio DAC
- Two Headphone Amplifier Output with GND
separation
- Two I2S Inputs and one I2S Output
- I2S master mode with programmable sample rate
(control l ed by in terna l PLL)
- GND Buffer for Headphone Amplifier
- Line/ Headphone outputs with GND separation
- Audio ADC, 82dB SNR with 16ksps
- Microphone Bias Supply and Amplifier (mono)
- 5 Band Adjustable Audio Equalizer (± 12dB in 3dB
gain steps)
- SPDIF Output
- Audio Mixer and Gain Stag es
- PCM Interface
Real Time Clock (RTC)
- Alarm and Time function
- Repeated Wakeup (every second or minute)
- 32kHz output
- Backup Battery Charger and Switchover
Programmable System clock
- 1.6 MHz to 2.3 MHz with 100 kHz steps
Package
- BGA124 8x8mm, 0.5mm pitch (can be assembled
without micro via boards)
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 2 - 157
AS3658
Data Sheet Confidential - Applications
3 Applications
The AS3658 is ideal for PDA, PMP, GPS-Navigation Systems and 1 Cell Li+ or 3 Cell NiMH powered devices.
Figure 1. Blockdiagram AS3658




















































 





















  

























































 
















ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 3 - 157
AS3658
Data Sheet Confidential - Applications
Figure 2. Application Diagram
AS3658
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 4 - 157
AS3658
Data Sheet Confidential - Applications
Table of Contents
1 General Description ..............................................................................................................................1
2 Key Features .........................................................................................................................................1
3 Applications ...........................................................................................................................................2
4 Pin Assignments ...................................................................................................................................6
4.1 Pin Description ...............................................................................................................................................7
5 Absolute Maximum ratings ..................................................................................................................12
6 Electrical Characteristics .....................................................................................................................13
7 Typical Operating Characteristics .......................................................................................................14
8 Detailed Description-Power Management Functions ..........................................................................15
8.1 Step Up DC/DC Converters .........................................................................................................................15
8.2 Current Sinks ...............................................................................................................................................25
8.3 General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4) .......................................................30
8.4 Backup Battery Charger ..............................................................................................................................38
8.5 Smooth switchover Power Management Overview .....................................................................................41
8.6 Battery switch SINT (Vsupply, Battery) ........................................................................................................42
8.7 External Step Down/Linear Charger ............................................................................................................44
8.8 USB Charger ...............................................................................................................................................48
8.9 Battery Charge Controller ............................................................................................................................51
8.10 Charger supervision functions ...................................................................................................................63
8.11 Step Down DC/DC Converters ...................................................................................................................67
8.12 Low Dropout Regulators (LDO) .................................................................................................................78
8.13 5V Charge Pump .......................................................................................................................................85
9 Detailed Description- Audio Functions ................................................................................................87
9.1 Audio Paths .................................................................................................................................................87
9.2 Common mode voltage generation of HP_CM, LINE_CM ...........................................................................89
9.3 Audio Setup Registers .................................................................................................................................90
9.4 ADC, DAC and Digital Audio Input ...............................................................................................................91
9.5 I2S master mode and PCM Mode ...............................................................................................................95
9.6 Line Input .....................................................................................................................................................98
9.7 Five Band Equalizer ....................................................................................................................................99
9.8 Microphone Input ......................................................................................................................................105
9.9 Audio Output Mixer ....................................................................................................................................108
9.10 Line Output .............................................................................................................................................109
9.11 Headphone Output ...................................................................................................................................112
9.12 SPDIF output ...........................................................................................................................................115
10 Detailed Description - System Functions ........................................................................................116
10.1 2C Serial Interface ...................................................................................................................................116
10.2 Reset generator and XON-Key ................................................................................................................118
10.3 Interrupt Controller ...................................................................................................................................124
10.4 Startup ......................................................................................................................................................129
10.5 Protection Functions ................................................................................................................................134
10.6 Watchdog ................................................................................................................................................135
10.7 General Purpose 10 Bit ADC ...................................................................................................................136
10.8 Internal References (V, I, fclk) ..................................................................................................................139
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 5 - 157
AS3658
Data Sheet Confidential - Applications
10.9 Real-Time Clock (RTC) Module ...............................................................................................................140
10.10 Touchpen Interface ................................................................................................................................143
11 Register map ...................................................................................................................................148
12 Package Drawings and Marking .....................................................................................................154
12.1 Pinout Drawing (Top view) CTBGA 8x8mm .............................................................................................155
13 Ordering Information .......................................................................................................................156
Document Revision History
Table 1. Revision History
Chapter Rev Description of Changes Date Author
1v00 -23.3.2009 pkm
9.1; 12 1v10 - updated package drawings
- updated audio p ath drawings 15.4.2009 pkm
12,13 1v11 - updated packagemarkings and ord ering information 23.9.2009 pkm
12,13 1v12 - updated packagemarkings and ordering information 23.10.2009 pkm
1v13 - typo corrections 23.9.2010 pkm
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 6 - 157
AS3658
Data Sheet Confidential - Pin Assignments
4 Pin Assignments
1234567891011121314
ANC/
VSS
_CP LRC
LK1 SCL
K3 VI2S SDO
1VCP
_N VCP
_P VCP
_OU
T
VDI
G34
_IN
VDI
G1_I
NLOU
T_R LINE
_CM HPL
1NC/
BV
SS
BSDI2 SCLK1 SDI1 SDA VSS_C
PVCP_I
NVDIG_
2VDIG2
_IN VDIG_
1LOUT_
LHP_C
MHPR
2
CQ32k SCLK2 HPR1 HPL2
DDCDC
_SENS
E_P1
MCLK
2SDO3 SCL VDIG_
4VDIG_
3MCLK
1LRCLK
2ALVD
D
HP_
CM_
PWR
EVSUP
PLY_4
DCDC
_SENS
E_N1
LRCLK
3BVSS AVDD LINR
FVSUP
PLY_3
DCDC
_GATE
1SPDIF XRES
ET XINT MICS VDAC LINL
GLX3 DCDC
_GATE
2
DCDC
_SENS
E_N2
DCDC
_SENS
E_P2 VSSA MICN VSUP
PLY_6
VSU
P_S
W12
HPGND
3PGND
2DCDC
_FB1 FB3 VSSA MICP VBAT_
SW12
VSU
P_S
W12
JLX2 VSS_C
HDCDC
_FB2 FB2 VSSA VREF BAT_S
W
VBAT
_SW
12
KVSUP
PLY_1 VSUP
PLY_2 FB1 AGND ISENS
NISEN
SP
LLX1 VOFF_
B
CURR
4_GPI
O4
DCDC
_CUR
R1
DCDC
_CUR
R3
GND_
SW RPRO
GRAM CREF GND_
SENS
E
RBIA
S
MPGND
1VGAT
EV_BAT VBA
CK
NPGAT
E1 VSUP
PLY_5 XON CURR
1_GPI
O1
CURR
3_GPI
O3
DCDC
_CUR
R2
ADC_I
N1 ADC_I
N2 VRF_2 VCHA
RGER V2_5 XOU
T32
PNC/
VSSA
CH_S
ENSE_
P
CH_S
ENSE_
N
VCUR
R_GPI
O
VSS_C
URR
CURR
2_GPI
O2
VSUP_
USB V_USB VRF1_
IN VRF_1 VRF23
_IN VRF_3 XIN32 NC/
VSS
A
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 7 - 157
AS3658
Data Sheet Confidential - Pin Assignments
4.1 Pin Description
Table 2. Pin list CTBGA124, 8x8MM (AS3658)
Pin Name Pin
Number Pin
Type Supply Description
Charger
V_USB P8 P USB voltage supply input
VSUP_USB P7 P Supply output of USB charger (connect to Vsupply)
VCHARGER N11 P High voltage input coming from the charger; if the charger is
used connect a ceramic capacitor of 1µF
VGATE M2 A Switch ON control pin for the external PMOS Fet transistor of
the charger step down converter
VOFF_B L2 A Switch OFF control pin for the external PMOS Fet transistor of
the charger step down Buck converter
VSS_CH J2 P Ground pad of Step down Charger
VBAT_SW12 H13 P VBAT Battery switch input1 (battery side)
VBAT_SW12 J14 P VBAT Battery switch input2 (battery side)
VSUP_SW12 G14 P VSUPPLY Battery switch input1 (supply side)
VSUP_SW12 H14 P VSUPPLY Battery switch input2 (supply side)
BAT_SW J13 A Battery switch output for external PMOS
CH_SENSE_N P3 A VSUPPLY Charger step down converter, external shunt resistor negative
connection
CH_SENSE_P P2 A VSUPPLY Charge r ste p do w n converter, ex ternal shunt resistor positive
connection
ISENSP K14 A V2_5 Positive sensing input voltage for the external charging current
shunt resistor
ISENSN K13 A V2_5 Negative sensing input voltage for the external charging
current shunt resistor
Serial Interface
SCL D6 DI VSUPPLY SCL input in I2C mode
SDA B5 DIO VSUPPLY SDA input / output in I2C mode
Control Interfaces
XRESET F7 OD VSUPPLY Bidirectional Reset Pin – add an external pull-up resistor to the
digital supply
XINT F8 OD VSUPPLY Interrupt Pin - add an external pull-up resistor to the digital
supply
XON N4 IPU V2_5 Input pin to startup the system (power on), internal pull-up,
apply zenerzap-programming volt age here
RTC
Q32K C1 OD VSUPPLY 32kHz oscillator digital output
XIN32 P13 A V2_5 32kHz crystal oscillator input
XOUT32 N14 A V2_5 32kHz crystal oscillator output
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 8 - 157
AS3658
Data Sheet Confidential - Pin Assignments
Internal Refs
VSUPPLY_5 N3 P Supply for voltage Measurement, always connect to
VSUPPLY
V_BAT M13 P VBAT Battery supply for Reference blocks.
RPROGRAM L9 A V2_5 Select register setup at startup.
V2_5 N12 P Internal regulator analogue output
CREF L10 A V2_5 Reference voltage bypass capacitor connection
RBIAS L14 A V2_5 Internal Bias Reference Resistor (conne ct 220kΩ resistor)
GND_SENSE L13 P VSSA GND reference for analog blocks (connect to GND plane
separate)
ADC_IN1 N8 A V2_5 Analog input1 for ADC10
ADC_IN2 N9 A V2_5 Analog input2 for ADC10
VBACK M14 A Backup battery connection
Current Sinks
CURR1_GPIO1 N5 A VCURR_
GPIO Current sink 1, or GPIO1
CURR2_GPIO2 P6 A VCURR_
GPIO Current sink 2, or GPIO2
CURR3_GPIO3 N6 A VCURR_
GPIO Current sink 3, or GPIO3
CURR4_GPIO4 L5 A VCURR_
GPIO Current sink 4, or GPIO4
DCDC_CURR1 L6 A VCURR_
GPIO Step up DC/DC converter2 current source 1
DCDC_CURR2 N7 A VCURR_
GPIO Step up DC/DC converter2 current source 2
DCDC_CURR3 L7 A VCURR_
GPIO Step up DC/DC converter2 current source 3
VCURR_GPIO P4 A Supply voltage of GPIOs and current sinks
VSS_CURR_GPIO P5 A VCURR_
GPIO Ground pad of Current sink / GPIO pads
General Purpose DC/DC Step up Converter 1 and 2
VSUPPLY_4 E1 P Supply for DCDC step up and control interface, always
connect to VSUPPLY
DCDC_FB1 H4 A VSUPPLY Step up DC/DC converter1 feedback input
DCDC_GATE1 F2 A VSUPPLY Step up DC/DC converter1 control for external mosfet
DCDC_SENSE_P1 D1 A VSUPPLY Step up DC/DC converter1 external shunt resistor positive
connection
DCDC_SENSE_P2 G6 A VSUPPLY Step up DC/DC converter2 external shunt resistor positive
connection
DCDC_SENSE_N1 E2 A VSUPPLY Step up DC/DC converter1 external shunt resistor negative
connection
DCDC_SENSE_N2 G4 A VSUPPLY Step up DC/DC converter2 external shunt resistor negative
connection
Table 2. Pin list CTBGA124, 8x8MM (AS3658)
Pin Name Pin
Number Pin
Type Supply Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 9 - 157
AS3658
Data Sheet Confidential - Pin Assignments
DCDC_GATE2 G2 A VSUPPLY Step up DC/DC converter2 control for external mosfet
DCDC_FB2 J4 A VSUPPLY Step up DC/DC converter2 feedback input
Linear Regulators (LDOs)
VRF1_IN P9 P VSUPPLY Supply Pad for RF1 LDO (VRF_1), always connect to
Supply>3.0V
VRF_1 P10 A VRF1_IN Output voltage of one of the RF LDO’s; can be used as High-
Side Switch, if used as LDO connect a ceramic capacitor of
1µF (±20%) or 2.2µF (+100%/-50%)
VRF23_IN P11 P VSUPPLY Supply Pad for RF2 and RF3 LDO (VRF_2, VRF_3), always
connect to Supply>3.0V
VRF_2 N10 A VRF23_IN Output voltage of one of the RF LDO’ s; ca n be use d as High-
Side Switch, if used as LDO connect a ceramic capacitor of
1µF (±20%) or 2.2µF (+100%/-50%)
VRF_3 P12 A VRF23_IN Output voltage of one of the RF LDO’s; can be used as High-
Side Switch, if used as LDO connect a ceramic capacitor of
1µF (±20%) or 2.2µF (+100%/-50%)
VDIG1_IN A10 P VSUPPLY Supply Pad for DIG1 LDO (VDIG_1)
VDIG_1 B10 A VDIG1_IN Output voltage of one of the DIG LDO’s. Connect a ceramic
capacitor of 1µF (±20%) or 2.2µF (+100%/-50%)
VDIG2_IN B9 P VSUPPLY Supply Pad for DIG2 LDO (VDIG_2)
VDIG_2 B8 A VDIG2_IN Output voltage of one of the DIG LDO’s. Connect a ceramic
capacitor of 1µF (±20%) or 2.2µF (+100%/-50%)
VDIG34_IN A9 P VSUPPLY Supply Pad for DIG3 and DIG4 LDO (VDIG_3, VDIG_4)
VDIG_3 D8 A VDIG3_IN Output voltage of one of the DIG LDO’s. Connect a ceramic
capacitor of 1µF (±20%) or 2.2µF (+100%/-50%)
VDIG_4 D7 A VDIG4_IN Output voltage of one of the DIG LDO’s. Connect a ceramic
capacitor of 1µF (±20%) or 2.2µF (+100%/-50%)
Charge Pump
VCP_IN B7 P VSUPPLY Supply Pad for Charge Pump, always connect to
Supply>3.0V
VCP_N A6 A VSUPPLY HVS charge pump flying capacitor positive side
VCP_P A7 A HVS charge pump flying capacitor negative side
VCP_OUT A8 A Charge pump output, connect a ceramic capacitor of 2.2µF
(+100%/-50%)
VSS_CP B6 A VSUPPLY Ground pad of charge pump
DCDC Step Down Converters
PGATE1 N1 A VSUPPLY Gate output for external PMOS.(DCDC step down controller 1)
VSUPPLY_1 K1 P Supply Pad for DCDC_S tep down converter1, always connect
to VSUPPLY
LX1 L1 A VSUPPLY DC/DC step down converte r1 output
FB1 K4 A VSUPPLY DC/DC step down converter1 feedback
PGND1 M1 A VSUPPLY Power Ground of DCDC step down converter1
Table 2. Pin list CTBGA124, 8x8MM (AS3658)
Pin Name Pin
Number Pin
Type Supply Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 10 - 157
AS3658
Data Sheet Confidential - Pin Assignments
VSUPPLY_2 K2 P Supply Pad for DCDC_S tep down converter2, always connect
to VSUPPLY
LX2 J1 A VSUPPLY DC/DC step down converter2 output
FB2 J7 A VSUPPLY DC/DC step down converter2 feedback
PGND2 H2 A VSUPPLY Power Ground of DCDC step down converter2
VSUPPLY_3 F1 P Supply Pad for DCDC_Step down converter3, always connect
to VSUPPLY
LX3 G1 A VSUPPLY DC/DC step down converter3 output
FB3 H6 A VSUPPLY DC/DC step down converter3 feedback
PGND3 H1 A VSUPPLY Power Ground of DCDC step down converter3
Audio
VSUPPLY_6 G13 P Supply for VI2S Regulator
VI2S A4 P Supply Pad for I2S Interface, Connect to VDAC Supply
SDI1 B4 I VI2S I2S_1 Data input to DAC
SDO1 A5 O VI2S I2S_1 Data output from ADC
SCLK1 B3 I/O VI2S I2S_1 Shift clock input or output
LRCLK1 A2 I/O VI2S I2S_1 Left/Right clock input or output
MCLK1 D9 I/O VI2S Master clock input or output for I2S1: DAC (128*Fsdac or 256
*Fsdac)
SDI2 B1 I VI2S I2S_2 Data input to DAC
SCLK2 C2 I VI2S I2S_2 Shift clock
LRCLK2 D10 I VI2S I2S_2 Left/Right cl ock
MCLK2 D2 I VI2S Maste r clock input for I2S2: DAC (128*Fsdac or 256 *Fsdac)
SDO3(X-) D5 I/O VI2S I2S_3 Data output (if touchpen interface disabled)
Touchpen Interface X- Input/Output (if touchpen interface
enabled)
SCLK3(X+) A3 I/O VI2S I2S_3 Shift clock output (if touchpen interface disabled)
Touchpen Interface X+ Input/Output (if touchpen interface
enabled)
LRCLK3(Y-) E4 I/O VI2S I2S_3 Left/Right clock output (if touchp en interface disabled)
Touchpen Interface Y- Input/Output (if touchpen interface
enabled)
SPDIF(Y+) F4 I/O VI2S SPDIF digital output (if touchpen interface disabled)
Touchpen Interface Y+ Input/Output (if touchpen interface
enabled)
AGND K11 A VDAC CM volt age byp ass capacitor connection (1.45V)
VREF J11 A VDAC VDAC voltage bypass capacitor connection (2.9V)
LINL F14 A VDAC Line input left channel.
LINR E14 A VDAC Line input right channel
GND_SW L8 O VSUPPLY Digital output for controlling the external NMOS
Table 2. Pin list CTBGA124, 8x8MM (AS3658)
Pin Name Pin
Number Pin
Type Supply Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 11 - 157
AS3658
Data Sheet Confidential - Pin Assignments
Note: The following are the Pin Types
I: Digital Input Pin
IPD: Digital Input Pin with internal pull-down resistor
IPU: Digital Input Pin with internal pull-up resistor
IODPU: Digital Input / Open Drain Output Pin with internal pull-up resistor
O: Digital Output Pin
OD: Digital Open Drain Output Pin; requires external pull-up resistor
IO: Digital Input / Output Pin
A: Analog Pin
P: Power Pin
VDAC F13 A VDAC 2.9V Outpu t voltage of one of DAC LDO; Connect a ceramic
capacitor of 1µF (±20%) or 2.2µF (+100%/-50%)
HP_CM B12 A AVDD Bypass capacitor connection of common mode voltage of
Audio headphone amplifier (AVDD/2)
HP_CM_PWR D14 A AVDD Buffered voltage of HP_CM
LINE_CM A12 A ALVDD Bypass capacitor connection of common mode voltage of
Audio line out amplifier (ALVDD/2)
LOUT_L B11 A ALVDD Line out output Left channel
LOUT_R A11 A ALVDD Line out output Right channel
ALVDD D13 P Supply pad of Line out amplifier
AVDD E13 P Supply pad of headphone amplifier
HPL1 A13 A AVDD Headphone output1 left channel
HPR1 C13 A AVDD Headphone output1 right channel
HPL2 C14 A AVDD Headphone output2 le ft chann el
HPR2 B14 A AVDD Headphone output2 right channel
MICN G11 A VDAC Microphone Input N
MICP H11 A VDAC Microphone Input P
MICS F11 A VSUPPLY Microphone Supply (2.95V) / Remote Input
VSS
BVSS E11 P AVDD Power ground of headphone amplifier
VSSA G9 VSS Analog Ground Pad
VSSA H9 VSS Analog Ground Pad
VSSA J8 VSS Analog Ground Pad
NC/VSS_CP A1 VSS Analog Ground Pad
NC/VSSA P1 VSS Analog Grou nd Pad
NC/VSSA P14 VSS Anal og Ground Pad
NC/BVSS A14 VSS Power grou nd of headphone amplifie r
Table 2. Pin list CTBGA124, 8x8MM (AS3658)
Pin Name Pin
Number Pin
Type Supply Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 12 - 157
AS3658
Data Sheet Confidential - Absolute Maximum ratings
5 Absolute Maximum ratings
Stresses beyond tho se li sted in Table 3 may cause permanent damage to the device. These are stress ratings only,
and functional operation of the device at these or any other conditions beyond those indicated in Section 6 Electrical
Characteristics on page 13 is not implied. Exposure to absolute maximum rating conditions for extended periods may
affect device reliability.
Tabl e 3. Absolute Maximum Ratings
Parameter Min Max Unit Note
High voltage pins (VIN_HV) -0.3 17.0 V Applicable for high voltage pins1
1. HV pins
VCHARGER, VGATE, VOFF_B, DCDC_CURR1, DCDC_CURR2, DCDC_CURR3
5V pins (VIN_MV) -0.3 7.0 V Applicable for pins 5V-pins2
2. 5V pins are
V_USB, CH_SENSE_N, CH_SENSE_P, VSUP_SW1, VSUP_SW2, VBAT_SW1, VBAT_SW2, V_BAT, SCL,
SDA, XRESET, XINT, VSUPPLY_3, CURR1_GPIO1…CURR4_GPIO4, DCDC_GATE1 , DCDC_ GATE2,
DCDC_SENSE_P1, DCDCSENSE_P2, DCDC_SENSE_N1, DCDC_SENSE_N2, DCDC_FB1, DCDC_FB2,
VCL, VCP_OUT, VCP_N, VCP_P, VCP_IN, VCP_IN, VRF1, VREF1_IN, VRF2, VRF23_IN, VRF3, VDIG1,
VDIG1_IN, VDIG2, VDIG2_IN, VDIG34_IN, VDIG_3, VDIG_4, PGATE1 VSUPPLY_1, VSUPPL Y_2, LX1, LX2,
GND_SW, VSUPPLY_4, LINE_CM, HP_CM_PWR, HP_CM, HPLx, HPRx, ALVDD, AVDD, LSP_R, BVSS,
LSP_L, AVDD, VSUPPLY_5, VSUPPLY_6
3.3V pins (VIN_LV) -0.3 5.0 V Applicable for 3.3V -Pins3
3. 3.3V pins are
ISENSEP, ISENSEN, ADC_INx, RPROGRAM, V2_5, CREF, ON, VI2S, SDIx, SCLKx, MCLKx, LRCLKx,
SDOx, SPDIF, AGND, VREF, LINL,LINR, VDAC, Q32K, XIN32, XOUT32, VBACK, MICS, MICN, MICP
Input pin current (IIN) -25 +25 mA At 25 ºC, Norm: Jedec 78
Storage Temperature Range
(Tstrg) -55 125 ºC
Humidity 5 85 % Noncondens
Electrostatic discharge 1kV (VESD) -1000 1000 V Norm: MIL 88 3 E Method 3015; Setup4
Applicable for pins: all
4. The following pins are connected to ESD setup:
VSUPPLY_1...VSUPPLY_6, VCP_IN, VRF1_IN, VRF2_IN, VCURR connected together
VDIG1_IN, VDIG2_IN, VDIG34_IN connected together
AVDD, ALVDD conne cted together
VBAT_SW1 and VBAT_SW2 connected together
VSUP_SW1 and VSUP_SW2 connected together
All VSS connected together
Total Power Dissipation 1W TA = 70ºC
0.72 W TA = 84ºC
Package Body Temperature 260 °C IPC/JEDEC J-STD-020C, reflects moisture
sensitivity level only
The lead finish for Pb-free leaded packages is
matte tin (100% Sn).
Solder Profile5
5. austriamicrosystems strongly recommends to use underfill.
235 245 °CTPEAK
30 45 s DWell, above 217 °C
Moisture Sensitive Level 3 1 Represents a max. floor live time of 168h
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 13 - 157
AS3658
Data Sheet Confidential - Electrical Characteristics
6 Electrical Characteristics
Table 4. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Units
Operating Condition s
VHV High Voltage VCHARGER, VGATE,
DCDC_CURR1,DCDC_CURR2,
DCDC_CURR3 0.0 15.0 V
VBAT,
VSUPPLY,
VCURR_GPIO Battery, Supply V oltage
For pins V_BAT, VSUPPLY1-6
(always connect all VSUPPLY1-6
pins together), VSUP_SW1-2,
VBA T_SW1-2, VRF1_IN, VRF2_IN,
VCP_IN, AVDD, ALVDD
3.0 3.6 5.5 V
V2_5 Voltage on Pin V2_5 Internally generated 2.4 2.5 2.6 V
VCP_OUT Output Voltage charge pump Voltage generated by charge pump 4.9 5.2 5.6 V
TAMB Ambient Temperature -40 25 85 ºC
ILOWPOWER Low power mode current
consumption
Current consumption in low power
mode with step down charger on1
1. With register bit low _power_on = 1, only Rf1=3.3V,Vout2=1.2V, Battery 3.6V,Vcharger=6.0V, no additional
external loads
7mA
With step down charger off2
2. With register bit low_power_on = 0, All regulators switched off, no additional external loads
280 µA
IPOWEROFF Power Off mode current
consumption Current consumption in power off
mode3
3. After setting register bit xon_enable=1 and power_off=1; only V2_5 is active in Power Off mode
4. During startup from the AC/DC adapter, the battery voltage can be below 3.0V
10 µA
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 14 - 157
AS3658
Data Sheet Confidential - Typical Operating Characteristics
7 Typical Operating Characteristics
see individual block description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 15 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8 Detailed Description-Power Management Functions
The power management function consist of the DCDC Step up converters, Current Sink, GPIOs, general purpose 10
bit ADC, backup battery charger, main battery charger and power path management (consisting of the battery switch,
external step down/linear charger, USB charger and battery charge controller), step down dc/dc converters, low
dropout regulators (LDOs) and 5V charge pump.
8.1 Step Up DC/DC Converters
Figure 3. DC/DC step-up Converter 1








 !

 
!"
#$
%&
''(%& !)(
!
*
+,!
,
+
)( 
!)( "
"
","
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 16 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 4. DC/DC step-up Converter 2
Table 5. DC/DC Conver ter paramete rs
Symbol Parameter Min Typ Max Unit Note
IVDD Quiescent C urrent 140 µA Pulse skippin g mo de
VFB1 Feedback voltage for external
resistor divider: 1.20 1.25 1.30 V for constant voltage control
VFB2 Feedback voltage for current
sink regulation 0.5 V DCDC_CURR1, DCDC_CURR2
or DCDC_CURR3
IDCDC_FB
Additional tuning current at
DCDC_FB 031µA
adjustable by software in 1µA
steps
Accuracy of feedback current -5 5 % @ full scale
Vrsense_max Current limit voltage at Rsense 100 mV E.g.: 0.65A for 0.15Ω sense
resistor
RSW switch resistance 1 ΩON-resis tance of external
switching transistor
Iload Load current 0 50 mA at 15V outpu t voltage
fIN Switching frequency fclk_int/
2MHz internal CLK frequency/2
Programmable: 0.8 to 1.15 MHz







 !"


##$

##%
#&'
#
()
*%+
,
$
%$
#&-
).
. /
%$
%$$%/+
"%
&0'/
122!3
#&'%
4

%$%%%#
%%
%$%%
#/#
##/$
##%

!
005/677
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 17 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
The DC/DC Step Up converter is a high efficiency current mode PWM regulator, which provides an output voltage
dependent on the maximum VDS voltage of the external transistor, and maximum load current selectable by the
external shunt resistor.
For Example:
5V,500mA @ 1.1Mhz
25V,50mA @ 1.1MHz
40V,20mA @ 550kHz
A constant switching frequency results in a low noise on supply and output voltage.
8.1.1 Feedback selection
For step up DCDC 1, the feedback is always DCDC_FB1.
For step up DCDC 2 following feedback selections are possible:
Stpup2_fb selects the type of feedback for the DCDC_step_up2 converter:
DCDC_CURR1, DCDC_CURR2, DCDC_CURR3 or DCDC_FB2 fe edback (see Figure 5)
Setting stpup2_fb to 00b enables the feedb ack on DCDC_FB2, stpup2_fb to 01b enables feedback at pin
DCDC_CURR1, setting step_up_fb to 10b enables feedback at pin DCDC_CURR2 and setting step_up_fb to 11b
enables feedback at pin DCDC_CURR3. The Step-up converter is re gulated such that the required current at the
feedback path can be supported.
Always choose the path with the higher voltage drop as feedback to guarantee adeq uate supply for the other,
unregulated path.
To protect the DCDC output voltage against overvoltage, if a LED string is broken, set stpup2_prot=1. In this mode the
output voltage will be limited by limiting the DCDC_FB voltage to 1.25V (select the external resistor network to adjust
this limitation voltage).
Cout Output capacitor 2.2 µF ceramic, ±20%
L Inductor 10 µH Use inductors with small Cparasitic
(<100pF) to get high efficiency
tMIN_ON Minimum on time 130 ns
MDC Maximum duty cycle 91 %
Table 5. DC/DC Conver ter paramete rs
Symbol Parameter Min Typ Max Unit Note
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 18 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 5. DC/DC step up 2 converter with regulation of LED string on pin DCDC_CURR1,2 or 3
,"8





8




 !
"

#$%



&'
$
()*+),
-./)
(00(
12

!##3
!+)"
)(/&456
!
!
)0+07
!
)00
)08-
(50
#9
:
%()
7)
!7+)
)08)*
""
7+
77(:)
6+5(
8)),-("))
;<<==&>
)08-(+
,,+?@
'!
4!
7)/50
)(
7)/
0+)"0
0+0"7
0+0
+)))
<<&
!##3
0(.)*+),
8<<&(
))),!
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 19 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 6. DC/ DC step up 1 converter w it h re gu l at ed output voltage of 5V. Feedback is at pin DCDC_FB1
Voltage Feedback: (see Figure 6)
For S tep UP DCDC 1 voltage feedback is always selected on pin DCDC_FB1. For Step-up UP DCDC 2 set step2_fb to
00 to enable volt age feedback at pin DCDC_FB2.
Bit stepX_res (X = 1 or 2) should be set to 1 in voltage feedback mode using two resistors.
The output voltage is regulated to a constant value, given by:
1
2
21
__
25.1 RI
RRR
VFBDCDC
Ioutstepup +
+
=
If R2 is not used, the output voltage is:
Vstepup_out: Step up regulator output voltage
R1 Feedback resistor R1
R2 Feedback resistor R2
IVturning: Tuning current on DCDC_F B pin: stpupX_v (0µA to 15µA (1µA steps)) (X= 1 or 2)




 !"
#$

%
&&'

%()
&&

&
#*

+,,-
#).(
#((#
#((#
#/

"0,#+,#1
23,
4%
5!
)20
10
1#!+0 
"0,#06
%7
'7 !'
1#!+

10"8!3,
02
10"8
,+"0#"',
",+,#!'# 1
",+,#
+0 "0 "0
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 20 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Example:
Table 6. Step Up Output Voltage (Voltage mode or protection voltage)
Ivtuning Vstepup_out Vstepup_out
µA R1=1M Ω,R2 not used R1=500k Ω,R2=64k Ω
Note: The voltage on pin DCDC_CURR1, DCDC_CURR2 and DCDC_CURR3 must never exceed 15V
0-11
1-11.5
2-12
3 - 12.5
4-13
5 6.25 13.5
67.2514
7 8.25 14.5
89.2515
9 10.25 15.5
10 11.25 16
11 12.25 16.5
12 13.25 17
13 14.25 17.5
14 15.25 18
15 16.25 18.5
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 21 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 7. DC/DC step up converter 1 with regulated output voltage (15V), and switch off function of output
voltage, to reduce shutdown current
As the output voltage is always on, an additional output transistor can be added to reduce shutdown current through
R1, R2 and the connected output circuit.
Note: A similar circuit can be used for step up converter 2.
8.1.2 StepUp1 Load Detection and Overcurrent Protection Circuit
This circuit protects the DCDC step up1 converter during short circuit and startup, by regulation of the output current.
An additional feature is the detection of a minimum output load of the Step-up converter. It is also possible to use this
circuit without the DCDC step up converter, by using the sense resistor only:
Detection circuit: If the voltage on Rsense exceeds VDETECT for more than 1msecond, or the DCDC Step up
converter is not in Pulseskip for more than 1 millisecond, the stepup1_det bit will be set.
Overcurrent protection: If the Overcurrent voltage VOVCURRENT has been exceeded by more than 5 msec the Bit
stpup1_oc will be set and can only reset, by switching off and on the Protection circuit by writing Stpup1_shortprot
0 – 1. If stepup1_oc is set the load will be disconnected, if Stpup1_oc_timeout=1
Table 7. StepUp1 protection/detection circuit parameters
Symbol Parameter Min Typ Max Unit Note
VDETECT Detection Threshold 2 12.5 25 mV For Rsense=0.150Ω =>
83mA typ.
VOVCURRENT Overcurrent Threshold
rising 150 180 215 mV For Rsense=0.150Ω =>
1.2A typ.
VOVhysteresis Overcurrent Hysteresis 50 mV
tOV_timeout Overcurrent timeout 5 ms Interrupt and/or external PMOS
switching off after timeout
fclk_int = 2.2M Hz
tdetect Detection denounce
time 1ms
fclk_int = 2.2M Hz





!"
#$
%
&%

'()*
#
#

+
!,
#
$-..
$''/
$''/
"##
0&
!*1)
!))!'
!))!
!#0
$
2.!-.!3
45.
'6(
7
*42
32
$3!-2
2.!28
(9
%9 %
3!-
$
32 :5.
24
32 :
.- 2! %.
.-.!%!3
.-.!
-2 2 2
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 22 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 8. StepUp 1 Load Detection and Overcurrent Protection Application Circuit


















 !""#$%&'$((
!"#)

*+
,"+
&-%)%.%
/.0/.0
$(%%1.2+ 
%$%&))
#$30
.+$
#$30
.+$
%$ 
%$0
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 23 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.1.3 Step Up DCDC Converter Registers
Table 8. Step Up DC/DC Bit definitions
Addr: 30 Step Up DC/DC control
This register controls the different modes of the step up DCDC converter
Bit Bit Name Default Access Description
Table 9. Step Up DC/DC Bit definitions
Addr: 32 Step Up DC/DC control
This register controls the different modes of the step up DCDC converter
Bit Bit Name Default Access Description
5 stpup1_on ROM R/W On/Off control of the step up dc/dc converter1
6 stpup2_on ROM R/W On/Off control of the step up dc/dc converter2
0 stpup2_clkinv 00h R/W
Invert input clock of step up2 converter
0 Use positive edge of internal clk
1 Use negative edge of internal clk
1 stpup1_freq 00h R/W Defines the clock frequency of the step up1 dc/d c
converter;
0fclk_int/2 (0.8 to 1.15 MHz)
1fclk_int/4 (0.4 to 0.575 MHz)
2 - 00h n/a Always set to 0
3 stpup1_res 00h R/W
Gain selection for DCDC step_up1:
0Select 0 if DCDC is used with current feedback
(DCDC_CURR1,DCDC_CURR2,DCDC_CURR3)
or if DCDC_FB is used with current feedback only
(Only R1,C1 connected; (see Figure 6))
1Select 1 if DCDC_FB1 or DCDC_FB2 is used with
external resistor divider (2 resistors)
4 stpup2_fb_auto 00h RW
0 step_up_fb select the feedback of the DCDC
converter
1
The feedback is automatically chosen within the
current sinks DCDC_CURR1,DCDC_ CURR2 and
DCDC_CURR3 (never DCDC_FB). Only those are
used for this selection, which are enabled and
connected to the step up converter
(currX_ctrl must be 10)
5 stpup2_freq 00h R/W
Defines the clock frequency of the step up2 dc/d c
converter
0fclk_int/2 (0.8 to 1.15 MHz)
1fclk_int/4 (0.4 to 0.575 MHz)
6 - 00h n/a Always set to 0
7 stpup2_res 00h R/W
Gain selection for DCDC step_up2:
0Select 0 if DCDC is used with current feedback
(DCDC_CURR1,DCDC_CURR2,DCDC_CURR3)
or if DCDC_FB is used with current feedback only
(Only R1,C1 connected; (see Figure 6))
1Select 1 if DCDC_FB1 or DCDC_FB2 is used with
external resistor divider (2 resistors)
ams AG
Technical content still valid
Table 10. Step Up DC/DC Bit definitions
Addr: 33 Step Up1 DC/DC control
This register controls the different modes of the step up1 DCDC
converter
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 24 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
4:0 stpup1_v 00h R/W
Defines the tuning current at DCDC_fb1 pin;
00000 0 µA
00001 1 µA
.....
11111 31 µA
5 stpup1_clkinv 00h R/W
Invert input clock of step up1 converter;
0 Use positive edge of internal clk
1 Use negative edge of internal clk
6 stpup1_shortprot 00h RW
Enables Protection and Detection circuit for DCDC step
up1
0 No protection and load detection
1 Short protection and load detection enabled
7 stpup1_oc_timeout 00h RW
Controls GPI O1 switch of f, af ter overcurrent timeout (5ms)
for DCDC step up1
0 disabled
1 enabled
Table 11. Step Up DC/DC Bit definitions
Addr: 34 Step Up2 DC/DC control
This register controls the different modes of the step up2 DCDC
converter
Bit Bit Name Default Access Description
4:0 stpup2_v 00h R/W
Defines the tuning current at DCDC_fb2 pin;
00000 0 µA
00001 1 µA
.....
11111 31 µA
6:5 stpup2_fb 00h R/W
Controls the feedback source
00 DCDC_FB enabled (external resistor divider)
01 DCDC_CURR1 feedback enabled (feedback
through white LEDs)
10 DCDC_CURR2 feedback enabled (feedback
through white LEDs)
11 DCDC_CURR3 feedback enabled (feedback
through white LEDs)
ams AG
Technical content still valid
Tabl e 12. stpup1_det and stpup1_oc Bit definitions
Addr: 53 Low voltage status bit definitions
This register shows the status of the overcurrent protection of the
stepup1dcdc
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 25 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.2 Current Sinks
These are general-purpose current sinks intended to control the backlight(s), buzzer and vibrator. The low voltage
current sink has an integrated protection against over voltage and can therefore also drive inductive loads (VPROTECT).
DCDC_CURR1 and DCDC_CURR 2, DCDC_CURR3 are high voltage (15V) current sinks, e.g. for series of white
LEDs
CURR1_GPIO, CURR2_GPIO, CURR3_GPIO, CURR4_GPIO are four 5V, 38.25mA current sinks, e.g. for buzzer ,
vibrator, LEDs
CURR1_GPIO, CURR2_GPIO, CURR3_GPIO, CURR4_GPIO can be used as general propose Input/Output (GPIO)
functions optional (described in section General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4)).
7 stpup2_prot 00h RW
DCDC converter 2 overvoltage protection to prevent
damage of external NFET, if DCDC_CURR1 or
DCDC_CURR2 or DCDC_CURR3 feedback selected, and
no LED string connected:
0 Overvoltage protection disabled
1Switch off DCDC step up 2 if the voltage on
DCDC_FB2 exceeds 1.25V
6 stpup1_oc NA R
Step up overcurrent status bit
0VRsense < VOVCURRENT
1VRsense > VOVCURRENT for more than 5 msec (latched
state)
7 stpup1_det NA R
Step up detection status register
0VRsense < VDETECT for more than 1msecond, and
DCDC S tep up converter is in Pulseskip for more than
1 millisecond
1VRsense > VDETECT for more than 1msecond, or the
DCDC Step up converter is not in Pulseskip for more
than 1 millisecond
Table 11. Step Up DC/DC Bit definitions
Addr: 34 Step Up2 DC/DC control
This register controls the different modes of the step up2 DCDC
converter
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 26 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.2.1 High voltage Current Sinks (DCDC_CURR1, DCDC_CURR2 and DCDC_CURR3)
Current sinks DCDC_CURR3, DCDC_CURR1 and DCDC_CURR2 can be controlled individually. The step-up DCDC
converter may supply them with voltages up to 15V. If any of these current sinks is used, connected VCURR_GPIO to
a supply with at least 3.0V
Table 13. Current Sinks Characteristics
Symbol Parameter Min Typ Max Unit Note
.
Table 14. DCDC_CURR1 Current sink current bit definition
Addr: 39 DCDC_CURR1 Value
This register controls the current value of the dcdc_curr1 current sink
Bit Bit Name Default Access Description
Table 15. DCDC_CURR2 Curre nt sink current bit definition
Addr: 40 DCDC_CURR2 Value
This register controls the current value of the dcdc_curr2 current sink
Bit Bit Name Default Access Description
IDCDC_Curr1,2,3 DCDC_CURR1,2 and
DCDC_CURR3
current, 00h-3Fh 0 38.25 mA For V(DCDC_CURRx) > 0.45V
resolution = 0.15mA
IDCDC_protect Current sink protection
Current A
Protection Current if stpup2_on=1
and dcdc_currx_current=00 h
Δabsolute Accuracy -5 +5 % All Current sinks
VDCDC_CURR1,
VDCDC_CURR2,
VDCDC_CURR3 Voltage compliance 0.45 15 V during normal operation
7:0 dcdc_curr1_current 00h R/W
Defines the current into DCDC_CURR1 if enabled by
dcdc_curr1_ctrl
00h power down (default state)
01h 0.15mA (LSB)
....
FFh 38.25mA
7:0 dcdc_curr2_current 00h R/W
Defines the current into DCDC_CURR2 if enabled by
dcdc_curr2_ctrl
00h power down (default state)
01h 0.15mA (LSB)
....
FFh 38.25mA
ams AG
Technical content still valid
Table 16. DCDC_CURR3 Curre nt sink current bit definition
Addr: 45 DCDC_CURR3 Value
This register controls the current value of the dcdc_curr3 current sink
Bit Bit Name Default Access Description
Table 17. Current sink control bit definition
Addr: 58 CURR control
This register controls the mode of the DCDC current sinks
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 27 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
7:0 dcdc_curr3_current 00h R/W
Defines the current into DCDC_CURR3 if enabled by
dcdc_curr3_ctrl
00h power down (default state)
01h 0.15mA (LSB)
....
FFh 38.25mA
1:0 dcdc_curr1_ctrl 00b R/W
On/Off control of the pad DCDC_ CURR1
00 Current sink is turned off
01 Current sink is active
10 Current sink is active and LED string connected to
stpup2. Required fo r automatic feedback selection
11 Controlled by PWM generator (do not set pwm_div)
3:2 dcdc_curr2_ctrl 00b R/W
On/Off control of the pa d DCDC_CURR2
00 Current sink is turned off
01 Current sink is active
10 Current sink is active and LED string connected to
stpup2. Required fo r automatic feedback selection
11 Controlled by PWM generator (do not set pwm_div)
5:4 dcdc_curr3_ctrl 00b R/W
On/Off control of the pad DCDC_CURR3
00 Current sink is turned off
01 Current sink is active
10 Current sink is active and LED string connected to
stpup2. Required fo r automatic feedback selection
11 Controlled by PWM generator (do not set pwm_div)
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 28 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.2.2 Low voltage Current Sink (CURR1_GPIO1 … CURR4_GPIO4)
CURR1_GPIO1 … CURR4_GPIO4 can be controlled individually. Each one can sink up to 38.25mA. The voltage on
the current sinks must not exceed the supply VCURR_GPIO (can be connected e.g. to VSUPPLY).
The low voltage current sinks and the gpio pins share the same pins (see General Purpose Input / Output
(CURR1_GPIO1 … CURR4_GPIO4) on page 30) for enabling/disabling of the current sinks / gpio functions.
Table 18. Current Sinks Characteristics
Symbol Parameter Min Typ Max Unit Note
Table 19. CURR1 Current sink current Bit definition
Addr: 41 CURR1 control
This register controls the mod e of the curr1 current sinks
Bit Bit Name Default Access Description
Table 20. CURR2 Current sink current Bit definition
Addr: 42 CURR2 control
This register controls the mode of the curr2 current sinks
Bit Bit Name Default Access Description
ICURR1,2,3,4 CURR1_GPIO1....
CURR4_GPIO4
current, 00h-1Fh 0 38.25 mA For V(CURRx_GPIOx) > 0.2V
resolution = 0.15mA,
each current sink
Δabsolute Accuracy -5 +5 % All Current sinks
VCurr1,2,3,4 Voltage compliance 0.2 V(VCU
RR) V during normal operation
7:0 curr1_current (00)h R/W
Defines the current into CURR1_GPIO1 if GPIO1_Mode =
011b and output enabled (e.g. GPIO1 =1)
00h power down (default state)
01h 0.15mA (LSB)
....
FFh 38.25mA
7:0 curr2_current (00)h R/W
Defines the current into CURR2_GPIO2 if GPIO2_Mode =
011b and output enabled (e.g. GPIO2=1)
00h power down (default state)
01h 0.15mA (LSB)
....
FFh 38.25mA
ams AG
Technical content still valid
Table 21. CURR3 Current sink current Bit definition
Addr: 43 CURR3 control
This register controls the mode of the curr3 current sinks
Bit Bit Name Default Access Description
Table 22. CURR4 Current sink current Bit definition
Addr: 44 CURR4 control
This register controls the mode of the curr4 current sinks
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 29 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
7:0 curr3_current (00)h R/W
Defines the current into CURR3_GPIO3 if GPIO3_Mode =
011b and output enabled (e.g. GPIO3=1)
00h power down (default state)
01h 0.15mA (LSB)
....
FFh 38.25mA
7:0 curr4_current (00)h R/W
Defines the current into CURR4_GPIO3 if GPIO4_Mode =
011b and output enabled (e.g. GPIO4=1)
00h power down (default state)
01h 0.15mA (LSB)
....
FFh 38.25mA
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 30 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.3 General Purpose Input / Output (CURR1_GPIO1 … CURR4_GPIO4)
Figure 9. CURR1_GPIO1 … CURR4_GPIO4 block diagram
The device contains 4 high current GPIO pins, which share the same pins as the low voltage current sinks and are
capable of sinking 100mA from VCURR_GPIO voltage. Each of the pins can be configured as open drain NMOS or
push-pull output with VCURR_GPIO high l evels, as high impedance output or as digital input. When configured as
output the output source can be a re gister bit, or the PWM generator, furthermore the output signal can be inverted.
Integrated active clamp circuits can be enabled for the open drain NMOS output mode by setting GPIOxPulls=11b,
thus allowing to use the high current GPIO pins for driving inductive loads. A pull-up resistor to VCURR_GPIO can be
enabled for the open drain NMOS output mode by setting GPIOxPulls=10b. When configured as digital input the logic
level (GPIOxInvert=’0’) or the inverted logic level (GPIOxInvert=’1’) of the pin is reflected by bit GPIOxBit in the GPIO
Bit register.












 !




"





#$

!!
!#
 
 !%!
 $&!
 !
 '#$''
 '"

'(
'!)
**+




,'"
-,'"- --
.,'". ..
/,'"/ //
01$2
)'(

03%&%%
&))
45).&/6
1
!# $ !#  !# 
)"
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 31 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Moreover, a special function can be selected for each digital input pin and a pull-up resistor to VCURR_GPIO or a pull-
down resistor can be enabled.
Table 23. High Current GPIO Pin Characteristics (VCURR1_GPIO1 … VCURR4_GPIO4)
VVSUPPLY=3.0 to 5.5V; Tamb= –20 to +70°C; unless otherwise specified
Symbol Parameter Min Typ Max Unit Note
VGPIOMAX
Maximum voltage
on
CURR1...4_GPIO
1…4 pins
VCURR_GPIO+
0.3 VPin VCURR_GPIO is used as supply for
the GPIO pins
VOLH Low level output
voltage switch
mode –0.3 +0.35 V IOL=+100mA; digital output
(GPIOxMode=100b and
currX_current=3Fh)
VOL Low level output
voltage –0.3 +0.4 V IOL=+1mA; dig ital output
(GPIOxMode=000b ... 010b)
VOH High level output
voltage 0.8·VCURR_G
PIO. VCURR_GPIO VIOH=–1mA; digital push-pull output
VIL Low level input
voltage –0.3 0.4 V digital input
VIH High level input
voltage 1.3 VCURR_GPIO V digital input
ILEAKAGE Leakage current 10 µA high impedance
Rpull-up Pull-up resistance 78 kΩGPIOxMode=x0b; GPIOxPulls=10b;
VCURR_GPIO=3.6V
Rpull-down Pull-down
resistance 161 kΩdigital input; GPIOxPulls=01b;
VCURR_GPIO=3.6V
Table 24. CURR1_GPIO1 Bit definition
Addr: 18 GPIO1
This register controls the mode of the CURR1_GPIO1 Pin
Bit Bit Name Default Access Description
2…0 GPIO1Mode ROM R/W
000b digital open drain NMOS output
(only NMOS enabled)
001b digital push-pull output
(NMOS & PMOS enabled, no PWM out possible)
010b digital input
(NMOS & PMOS disabled, digital input logic
enabled)
011b digita l open drain current sink operation Current
defined by curr1_current
100b digital open drain switch operation On resistance
defined by curr1_current
101b
to
111b
high impedance (or SD1 in DCDC step
down external controller mode
(sd1_1A_mode = 1 100b)).NMOS & PMOS disabled,
digital input logic disabled)
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 32 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
4…3 GPIO1IOSF ROM R/W
00b input / output signal is written to or set by GPIO1Bit
in the GPIO Bit register
01b PWM (O) / WDOG (I)
if used for PWM, pwm_h_time and pwm_l_time
define the high and low time of this output and only
allowed for GPIO1Mode=011b,100b
10b Protection of DCDC stepUp1 GPIO 1 (O)
11b Battery charging EOC indication output GPIO 1 (O)
If EOC=1 then GPIO1=1. DCDC_CURR3 is used as
output, if CURR_GPIO1 is used for external DCDC
controller
5 GPIO1Invert ROM R/W 0 normal polarity of input / output signal
1inverted polarity of input / output signal
(not possible for PWM out)
7…6 GPIO1Pulls ROM R/W
00b no pull-up or pull-down resisto r is ena bled in all
modes
01b pull-down resistor is enabled in digital input mode
(clamp disabled)
10b pull-up resistor is enabled for
GPIO1Mode=000b,010b,011b,100b (clamp
disabled)
11b enable active cl amp circuit for
GPIO1Mode=000b,010b,011b,100b (pull-up/down
disabled)
Table 25. CURR2_GPIO2 Bit definition
Addr: 19 GPIO2
This register controls the mode of the CURR1_GPIO2 Pin
Bit Bit Name Default Access Description
2…0 GPIO2Mode ROM R/W
000b digital open drain NMOS output
001b digital push-pull output (no PWM out possible)
010b digital input
011b digital open drain current sink operation Current
defined by curr2_current
100b digital open drain switch operation On resistance
defined by curr2_current
101b
to
111b high impedance
Table 24. CURR1_GPIO1 Bit definition
Addr: 18 GPIO1
This register controls the mode of the CURR1_GPIO1 Pin
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 33 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
4…3 GPIO2IOSF ROM R/W
00b input / output signal is written to or set by GPIO2Bit in
the GPIO Bit register
01b PWM (O) / WDOG (I)
if used for PWM, pwm_h_time and pwm_l_time
define the high and low time of this output and only
allowed for GPIO2Mode=011b,100b
10b Battery charging active indication output GPIO2 (O)
If Battery charging = 1 then GPIO2=1
11b NA
5 GPIO2Invert ROM R/W 0 normal polarity of input / output signal
1inverted polarity of input / output signal
(not possible for PWM out)
7…6 GPIO2Pulls ROM R/W
00b no pull-up or pull-down resistor is enabled in all
modes
01b pull-down resistor is enabled in digital input mode
(clamp disabled)
10b pull-up resistor is enabled for
GPIO2Mode=000b,010b,011b,100b (clamp disabled)
11b enable active clamp circuit for
GPIO2Mode=000b,010b,011b,100b (pull-up/down
disabled)
Table 26. CURR3_GPIO3 Bit definition
Addr: 20 GPIO3
This register controls the mode of the CURR3_GPIO3 Pin
Bit Bit Name Default Access Description
2…0 GPIO3Mode ROM R/W
000b digital open drain NMOS output
001b digital push-pull output (no PWM out possib le)
010b digital input
011b digita l open drain current sink operation Current
defined by curr3_current
100b digital open drain switch operation On resistance
defined by curr3_current
101b
to
111b high impedance
4…3 GPIO3IOSF ROM R/W
00b input / output signal is written to or set by GPIO3Bit
in the GPIO Bit register
01b PWM (O) / WDOG (I)
if used for PWM, pwm_h_time and pwm_l_time
define the high and low time of this output and only
allowed for GPIO2Mode=011b,100b
10b GPIO3 control of regulators if regX_gpio = 1 and
regX_on = 1
11b Touchpen ADC wait input
Table 25. CURR2_GPIO2 Bit definition
Addr: 19 GPIO2
This register controls the mode of the CURR1_GPIO2 Pin
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 34 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
5 GPIO3Invert ROM R/W 0 normal polarity of input / output signal
1inverted polarity of input / output signal
(not possible for PWM out)
7…6 GPIO3Pulls ROM R/W
00b no pull-up or pull-down resisto r is ena bled in all
modes
01b pull-down resistor is enabled in digital input mode
(clamp disabled)
10b pull-up resistor is enabled for
GPIO3Mode=000b,010b,011b,100b (clamp
disabled)
11b enable active cl amp circuit for
GPIO3Mode=000b,010b,011b,100b (pull-up/down
disabled)
Table 27. CURR4_GPIO4 Bit definition
Addr: 21 GPIO4
This register controls the mode of the CURR4_GPIO4 Pin
Bit Bit Name Default Access Description
2…0 GPIO4Mode ROM R/W
000b digital open drain NMOS output
001b digital push-pull output (no PWM out possib le)
010b digital input
011b digita l open drain current sink operation Current
defined by curr4_current
100b digital open drain switch operation On resistance
defined by curr4_current
101b
to
111b high impedance
4…3 GPIO4IOSF ROM R/W
00b input / output signal is written to or set by GPIO4Bit
in the GPIO Bit register
01b PWM (O) / WDOG (I)
if used for PWM, pwm_h_time and pwm_l_time
define the high and low time of this output and only
allowed for GPIO4Mode=011b,100b
10b GPIO4 control of regulators if regX_gpio = 1 and
regX_on = 0
11b Touchpen dedicated interrupt ou tput
5 GPIO4Invert ROM R/W 0 normal polarity of input / output signal
1inverted polarity of input / output signal
(not possible for PWM out)
Table 26. CURR3_GPIO3 Bit definition
Addr: 20 GPIO3
This register controls the mode of the CURR3_GPIO3 Pin
Bit Bit Name Default Access Description
ams AG
Technical content still valid
Table 28. GPIO Signal Bit definition
Addr: 55 GPIO Signal
This register controls th e GPIO state / status
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 35 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
7…6 GPIO4Pulls ROM R/W
00b no pull-up or pull-down resisto r is ena bled in all
modes
01b pull-down resistor is enabled in digital input mode
(clamp disabled)
10b pull-up resistor is enabled for
GPIO4Mode=000b,010b,011b,100b (clamp
disabled)
11b enable active cl amp circuit for
GPIO4Mode=000b,010b,011b,100b (pull-up/down
disabled)
0 GPIO1 0 R/W This bit determines the output signal of the GPIO1 pin when
selected as output source
1 GPIO2 0 R/W This bit determines the output signal of the GPIO2 pin when
selected as output source
2 GPIO3 0 R/W This bit determines the output signal of the GPIO3 pin when
selected as output source
3 GPIO4 0 R/W This bit determines the output signal of the GPIO4 pin when
selected as output source
4GPIO1_inNAR
This bit reflects the logic level of the GPIO1 pin when
configured as digital input pin
5GPIO2_inNAR
This bit reflects the logic level of the GPIO2 pin when
configured as digital input pin
6GPIO3_inNAR
This bit reflects the logic level of the GPIO3 pin when
configured as digital input pin
7GPIO4_inNAR
This bit reflects the logic level of the GPIO4 pin when
configured as digital input pin
Table 27. CURR4_GPIO4 Bit definition
Addr: 21 GPIO4
This register controls the mode of the CURR4_GPIO4 Pin
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 36 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
The gpio block includes an internal programmable PWM generator (can be connected to any of the GPIO1_CURR1 …
GPIO4_CURR4 outputs). Its timing is defined by the following tables:
Table 29. PWM Frequency Control High Time Registers
Addr: 56 PWM Frequency Control High Time Registers
This register controls the PWM high time
Bit Bit Name Default Access Description
Table 30. PWM Frequen cy Control Low Time Registers
Addr: 57 PWM Frequenc y Control Low Time Registers
This regis ter controls the PWM Low time
Bit Bit Name Default Access Description
Table 31. PWM Divider Registers bits
Addr: 58 CURR control
This register controls the PWM divider
Bit Bit Name Default Access Description
All Step Down DCDC converters and several LDOs can be directly on/off controlled by CURR3_GPIO3 or
CURR4_GPIO4. The CURR3_GPIO3 and/or CURR4_GPIO4 pin should be set to digital input mode (GPIO3Mode =
010b, GPIO4Mode = 010b) and the following register should be set accordingly:
7:0 pwm_h_time 00h R/W
This bit defines the high time of the pwm generator in
2/fclk_int units
0 pwm_div * 2/ fclk_int
1 pwm_div * 4/ fclk_int
2 pwm_div * 6/ fclk_int
....
FFh pwm_div * 512/ fclk_int
7:0 pwm_l_time 00h R/W
This bit defines the high time of the pwm generator in
2/fclk_int units
0 pwm_div * 2/ fclk_int
1 pwm_div * 4/ fclk_int
2 pwm_div * 6/ fclk_int
....
FFh pwm_div * 512/ fclk_int
7:6 pwm_div 00h R/W
This bit defines the divider ratio of the prescaler for the
PWM generator
00 Divide by 1
01 Divide by 2
10 Divide by 4
11 Divide by 16
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 37 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Note: The original digital interface on/off signal is used to switch between CURR3_GPIO3 and CURR4_GPIO4; e.g.
if ldo_rf1_gpio is set, ldo_rf1_on is (re-)used to selected either CURR3_GPIO3 (ldo_rf1_on=1) or
CURR4_GPIO4 (ldo_rf1_on=0) as inp ut.
Table 32. Regula to r GPIO Control Registe r s
Addr: 31 Reg GPIO Ctrl
This register enables/disables GPIO control of the regulators
Bit Bit Name Default Access Description
0 ldo_rf1_gpio 0 R/W
ldo_rf1 on/off control
0 Controlled by software (ldo_rf1_on)
1
Controlled by CURR3_GPIO3, if ldo_rf1_on=1 and
GPIO3IOSF=10b
Controlled by CURR4_GPIO4, if ldo_rf1_on=0 and
GPIO4IOSF=10b
1 ldo_rf2_gpio 0 R/W
ldo_rf2 on/off control
0 Controlled by software (ldo_rf2_on)
1Controlled by CURR3_GPIO3, if ldo_rf2_on=1 and
GPIO3IOSF=10b
Controlled by CURR4_GPIO4, if ldo_rf2_on=0 and
GPIO4IOSF=10b
2 ldo_dig1_gpio 0 R/W
ldo_dig1 on/of f control
0 Controlled by software (ldo_dig1_ on)
1
Controlled by CURR3_GPIO3, if ldo_dig1_on=1 and
GPIO3IOSF=10b
Controlled by CURR4_GPIO4, if ldo_dig1_on=0 and
GPIO4IOSF=10b;
do not set ldo_dig1_gpio if DCDC SD1 is in external
controller mode (sd1_1A_mode = 1100b)
3 ldo_dig2_gpio 0 R/W
ldo_dig2 on/of f control
0 Controlled by software (ldo_dig2_on)
1
Controlled by CURR3_GPIO3, if ldo_dig2_on=1 and
GPIO3IOSF=10b
Controlled by CURR4_GPIO4, if ldo_dig2_on=0 and
GPIO4IOSF=10b
do not set ldo_dig2_gpio if DCDC SD1 is in external
controller mode (sd1_1A_mode = 1100b)
4 sd1_gpio 0 R/W
sd1 on/off control
0 Controlled by software (sd1_on)
1Controlled by CURR3_GPIO3, if sd1_on=1 and
GPIO3IOSF=10b
Controlled by CURR4_GPIO4, if sd1_on=0 and
GPIO4IOSF=10b
5 sd2_gpio 0 R/W
sd2 on/off control (or sd2 on/off control in 1A mode)
0 Controlled by software (sd2_on)
1Controlled by CURR3_GPIO3, if sd2_on=1 and
GPIO3IOSF=10b
Controlled by CURR4_GPIO4, if sd2_on=0 and
GPIO4IOSF=10b
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 38 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.4 Backup Battery Charger
The backup battery charger operates as a programmable voltage limited current source with a selectable output
resistor . It is enabled by setting BBCMode in the Backup Battery Charger register to a value other than ‘00’b and of fers
the following features:
Backup battery presence detection
Selectable output resistor (RBBCOUT) to reduce the current at higher voltages
Programmable charge current IBBC
programmable maximum charging voltage VBBC
Reverse current protection turns of f backup battery charger automatically if VSUPPLY<VVBACK; as soon as VSUPPLY
exceeds VVBACK charging is started again automatically
Charging is stopped automatically as soon as the backup battery is fully charged; if the voltage on pin VBACK
drops charging is started again automatically
In case the main supply voltage VSUPPLY is larger than VVBACK charging of the backup battery is possible in state
“Off” as well; the device will check VVBACK every minute to determine if chargin g is required.
6 sd3_gpio 0 R/W
Sd3 on/off control
0 Controlled by software (sd3_on)
1Controlled by CURR3_GPIO3, if sd3_on=1 and
GPIO3IOSF=10b
Controlled by CURR4_GPIO4, if sd3_on=0 and
GPIO4IOSF=10b
7 ldo_dig3_gpio 0 R/W
ldo_dig3 on/of f control
0 Controlled by software (ldo_dig3_on)
1Controlled by CURR3_GPIO3, if ldo_dig3_on=1 and
GPIO3IOSF=10b
Controlled by CURR4_GPIO4, if ldo_dig3_on=0 and
GPIO4IOSF=10b
Table 32. Regula to r GPIO Control Registe r s
Addr: 31 Reg GPIO Ctrl
This register enables/disables GPIO control of the regulators
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 39 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 10. Backup Battery Charger Block Diagram
Table 33. Backup Battery Charger Characteristics
symbol Parameter Min Typ Max Unit Note
VSUPPLY Supply voltage range 3.0 5.5 VBBCVolt=’0’
3.3 5.5 BBCVolt=’1’
VBBC Maximum charging
voltage 2.4 2.5 2.6 VBBCVolt=’0’
2.9 3.0 3.1 BBCVolt=’1’
IBBC Charge current -30% BBCCur +30% A Value is set by BBCCur in the
Backup Battery Charger register
VDELTA Delta voltage for
resistive mode 160 220 300 mV BBCResOff=’0’
IVSUPPLY Supply current
20
µA
BBCResOff=’0’
30 BBCResOff=’1’
0.5 BBCPwrSave=’1’; backup battery
full.
Table 34. Backup Battery Charger Register
Addr: 38 Backup Battery Charger
This register controls the Backup battery charger mode
Bit Bit Name Default Access Description
1:0 BBCMode 00b R/W
00b Backup battery charger is disabled
01b Backup battery charger is enabled in states “Power
Off mode”, “standby mode” and “Active mode”.
(32kHz OSC has to be enabled in that mode
rtcmode=01b or 10b)
1Xb Backup battery charger is enabled in state “Active
mode” and “standby mode”. (32kHz OSC has to be
enabled in that mode rtcmode=01b or 10b)
2 BBCResOff 0 R/W 0 Enable output resistor
1 Bypass output resistor
4:3 BBCCur 00b R/W
This value determines the charge current IBBC.
00b IBBC=50µA
10b IBBC=200µA
01b IBBC=100µA
11b IBBC=400µA
Digital
Control
VSUPPLY Rb VBACK
Voltage limited
Current source
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 40 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 11. Backup Battery Charger Characteristics
5 BBCVolt 0 R/W
This value determines the maximum charging volt age
VBBC.
0VBBC=2.5V
1VBBC=3.0V
6 BBCPwrSave 1 R/W 0 Normal operation of the backup battery charger
1
The backup battery charger checks if it is actually
charging the battery (bit BUChAct=’1’) and it is
disabled if it is not. Every 10s (every 64s in state
“Off”) the voltage of the backup battery is checked
again to determine if charging is required. This
practically reduces the current consumption to 0 if
the backup battery is full.
7- - reserved
Table 34. Backup Battery Charger Register
Addr: 38 Backup Battery Charger
This register controls the Backup battery charger mode
Bit Bit Name Default Access Description
IBACK
400µA
200µA
100µA
50µA
Vback_lim-VDelta Vback_lim
VBACK
Rb=0FF
Rb=0N
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 41 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.5 Smooth switchover Power Management Overview
Figure 12. Power Source Management Architecture
The power source management architecture handles the smooth transitions betwee n the two chargers (USB Charger
on VBUS, DCDC Step Down charger or Linear Charger on VCHARGER) and the battery. It takes care about the
system power supply VSUPPLY and its power requirements.
There are following operating conditions possible
1. No Charger connected
The internal switch SINT and the (optional) external switch MBATSW are closed and VSUPPLY is directly supplied by
VBAT. Because of the very low impedance of the switches the energy losses are minimized.
2. The active charger can deliver more current than the system requires
The system is directly supplied by the charger and the remaining energy can be used to charge the battery (CC/CV
charger). In case of deeply discharged batteries, the system is always immediately started and the internal current
source between VSUPPLY and VBAT delivers the trickle current to the battery.
3. The current limited (e.g. for USB with 500mA) charger cannot deliv er the current, the system requires
In this case, the ideal diode starts conducting and delivers the remaining current to the system
The transitions betwe en the different po wer states ar e done autonomously by the AS3658 allowing an uninterrupted
operation of the system.
The blocks are described in more detail in the following sections.












A








ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 42 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.6 Battery switch SINT (Vsupply, Battery)
Figure 13. Battery Switch Diagram
The internal Battery switch enables normal operation of the System during trickle charging of a deeply discharged
battery.
The Switch provides the following functions:
Trickle charging, if VBAT is smaller than ResVolt. The current is defined in TrickleCurrent[1:0]
PMOS is switched on if VBAT is greater then ResVolt.
Constant current charging, if the external charger is in linear operation, or the USB charger is used. the current is
defined by co nstant_current[2:0].
Current limitation during tricklecharge, to avoid inrush current: Itrickle_Ilimit
Current limitation during Constant current charging to avoid inrush current: ICC_Ilimit
Undervoltage protection of Vsupply during trickle charge or constant current charge with linear charger. The
charging current is regulated down, if Vsupply drops below Vsupply_min
Ideal diode operation in Isolate Battery mode and disable charging mode, during charger is unplugged. This
operation is for the internal battery switch only. External battery switch is open in that mode. Regulation will start, if
the VSUPPLY voltage drops by more then VDiode below the VBAT voltage. After three milliseconds debounce time,
if no charger is recognized, the internal and external battery switch (if enabled) is closed to have a low Ω ic
connection betwee n VBAT and VSUPPLY.
Table 35. Battery switch parameters
Symbol Parameter Min Typ Max Unit Note
VSupply Input voltage 3.0 5.5 V PIN VSUP_SW1,VSUP_SW2
Itrickle_limit Trickle current limit 400 mA
ICC_limit Constant current
current limit 800 mA
Current Limit in constant current
mode (Linear charger mode or USB
charger only)
Note: applies only fo r the battery
switch alone





 !
"
#
$%&'
#
((()
*(+
,-.--,
/0/
/0/0
1.










 !"#!#"#$%
$!&"!"!"#!
'("! #!#)'#*$%
+

",
-
+
.)$//
012.314.3.3.5
 #$%#$
'("! #!#)'
$% .6778
",#9$:!#)
!##$#.$%
 #)&#$//#0!%#!$"#;5
;#!%#&$ "<=">
""?#:")
""&#="&#$/#=""?#&:")
="<&:<$!###="<&:<$%#####;,"$!
############################@#############&:")#$,!
##########################################!"#&!
#########################################&:")# $&%
%&<="<&:<",<,$"
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 43 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
VDiode Ideal Diode start
voltage 50 mV
Vsupply_min
Vsupply level fo r
charging current
regulation (redu ction),
to avoid voltage drop
on vsupply
-6%
3.9
3% V Trickle current (or cons tant curren t in
linear mode) will be regulated down,
if vsupply drops below this level
3.6
4.2
4.5
RSW SINT P-Switch ON
resistance 0.10 ΩVSUP_SW=3.6V
Tabl e 36. USB-Charger Bit definitions
Addr: 10 USB Charger Control
This register controls the mode of the USB charger, and the charger state
machine
Bit Bit Name Default Access Description
5 dis_batsw_tmp_prot ROM R/W 0Over temperature protection of batter y switch
enabled. (If battery switch is in current source mode,
charging is stopped if chip temperature exceeds
110º)
1Over temperature protection of battery swi tch
disabled
7 ext_batsw_en ROM R/W
0External battery switch disabled (Pin BAT_SW =
max(VSUPPLY,VBAT))
1External battery switch enabled (Pin BAT_SW=0V, if
status bits batsw_on=1 and batsw_mode=1. These
bits are controlled by the charger state machine)
Table 37. Battery switch status Bit definitions
Addr: 100 Charger status_usb
These bits show the status of the battery switch
Bit Bit Name Default Access Description
2 batsw_mode NA R 0Trickle charging (or constant current charging in
linear mode), if batsw_on=1. External PMOS switch
disabled
1Switch on Battery switch, if batsw_on=1. External
PMOS switch enabled
3 batsw_on NA R 0 Battery switch off
1 Battery switch on (Mode defined by batsw_mode)
Table 35. Battery switch parameters
Symbol Parameter Min Typ Max Unit Note
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 44 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.7 External Step Down/Linear Charger
The inductive dcdc step down charger (or the external linear charger) converts the input voltage from VCHARGER to
VSUPPLY. The system (DCDC converters, LDOs…) are connected directly to VSUPPLY; the ideal diode and the internal
battery switch SINT (together with the external battery switch MBATSW) connect VSUPPLY to VBAT to allow charging of
the battery.
Figure 14. Step Down Charger Application Diagram with optional reverse polarity and short protection
If the input voltage can be up to 50V additional three transistors and a simple voltage regulator with a zener diode are
required. These circuit ‘isolates’ the AS3658 from the high input voltage and keep the pins VCHARGER, VOFF_B and
VGATE within its operating limits (<15V). The actual circuit is shown in the following figure:







 





 !

 !
"#
"
$"#
$"
$"
%$
$
&

''
(


(

)*+*
*,


!%
# !
!%#
-.
!%
-.
%
%
!(
(&
'&
%
#
.
/
!'0
/$"
!'0
!!$
'
/
!'0 $
$
$
&
'
/#


.
'#
$ #1
/
!'2#



'
-0
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 45 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 15. Charger Block Diagram for voltages >15V (Protection up to 50V; minimum Vcharger voltage 8V)
Instead of using an inductive DCDC step down charger, th e AS3658 supports external linear charging mode with an
PMOS transistor. The operating mode is selected by connecting the pin VOFF_B to GND (for 5.5V limited chargers,
the USB charger can be used alternati ve ly):
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 46 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 16. External Linear Charger Application Diagram (VOFF_B connected to GND)
Table 38. Charger External Components
Symbol Component Value Note
MCHARGER,
MBATSW,
MREVPOL P-channel MOSFET Si1403, FDC642P or FDC5614P similar
MCHRGPU P-channel MOSFET BSS84 or FDG312P or similar
RCHRGPU1 Pull-up resistor1 2kΩ ± 5%
RCHRGPU2 Pull-up resistor2 100Ω ± 5% for MCHRGPU =BSS84
50Ω ± 5% for MCHRGPU=FDG312P
LCHARGER Inductor for charging 10µH 5V or 6V Vcharger input
22µH 12V Vcharger input
DCHARGER Diode MBRS130 or PMEG2010
DCHRGPROT Zener Diode 5.6V Zener Diode
RCHSHUNT Current sense resistor
charger 70mΩ ± 5%, 125mW e.g. Vishay Dale WSL0805
series
RSENSE Current sense resistor 50mΩ ± 1%, 125mW for IVBAT,DC<1.5A e.g. Vishay Dale WSL0805
series
RFILTER1,2 Filter resistor 4.7kΩ ± 1% Can be omitted if fuel gauge
and charger functionality is
not used
CFILTER Fi lter capacitor 1µF ± 20% , X5R or X7R dielectric
CCHARGER Bypass capacitor on
charger pin 1µF ± 20%, X5R or X7R diel ectric +
22µF ± 20%, Tantal dielectric














 !

 !
"#
"
$"#
$"
$"
%$
$
&


-

23
-

4565
5A


!%
# !
!%#
78
!%
78
%
%
!-
-&
2&
%
#
8
9
!2
9$"
!2
!!$

9
$
$
$
&
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 47 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 17. Step down charger Efficiency (Measured) VSupply=4.4V
8.7.1 External Step Down/Linear Charger Characteristics
The battery charge controller controls the exte rnal Step Down/ Linear charger.
During Trickle charge of the deeply discharged battery the step down/Linear converter regulates the Vsupply to Vchlimit.
In step down char ger mode, If the VBAT voltage exceeds ResVoltRise , th e interna l battery switch is switched on, the
Vsupply voltage drops down to VBAT immediately, and the step down converter operates as controlled current source
to Vsupply. The battery current is regulated to the value defined in ConstantCurrent register.
In linear charger mode, the Vsupply is still regulated to Vchlimit, if the VBAT voltage exceeds ResVoltRise. The current is
regulated by the battery switch to the value defined in the constant current register.
In EOC operation (see Battery Charge Controller on page 51), the operation of the charger depends on the bit
isolate_battery:
If isolate_battery = 1 and EOC the output is regulated to Vchlimit.
If isolate_battery = 0 and EOC the output is not allowed to drop belo w VEOC (3.6V).
CVSUPPLY Minimum total
capacit a nce parallel to
Vsupply
22µF± 20%, X5R or X7R dielectric 10 µH inductor
47µF± 20%, X5R or X7R dielectric 22 µH inductor
Table 39. Step down Charger parameters
Symbol Parameter Min Typ Max Unit Note
Vrsense_max Current limit voltage at
Rsense 70 100 130 mV e.g.: 1.4A for 0.07O sense
resistor typ.
Cout_10 Output capacitor with 10µH
inductor 20 60 µF X7R ceramic
Table 38. Charger External Components
Symbol Component Value Note
Step down charger
0
10
20
30
40
50
60
70
80
90
100
0,0000 0,2000 0,4000 0,6000 0,8000 1,0000 1,2000
Output cu rre nt (A)
Efficiency (%)
V charger= 5V , f= 550k Hz
V charger= 6V , f= 550k Hz
V charger= 12V , f= 550k Hz
V charger= 5V , f= 275k Hz
V charger= 6V , f= 275k Hz
V charger= 12V , f= 275k Hz
ams AG
Technical content still valid
Table 40. Step down Charger Bit definitions
Addr: 37 Step Down charger control
These bits configures the step down charger
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 48 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.8 USB Charger
Figure 18. USB Charger Block Diagram
Cout_22 Output capacitor with 22µH
inductor 40 60 µF X7R ceramic
Cout_Linear Output capacitor in linear
mode 20 60 µF X7R ceramic
L Inductor 10/22 µH (see Table 38)
Itrickle_limit Trickle current limit 400 mA
0 sdc_frequ 0 R/W 0 fclk_int/4 (use as default, if Vcharger>6V)
1 fclk_int/8 (use as default, if Vcharger<6V)
1 sdc_pon 1 R/W 0 Disable 100% PMOS on mode for step down charger
1Enable 100% PMOS on mode to reduce voltage drop
in low dropout regulation
2 sdc_pass_mode 0 R/W
0 Normal mode of step down charger mode
1step down charger in pass through mode. Use this
mode with max. 5.5V charger only.
Vsupply=Vcharger in that mode, if no_charging=1.
Table 39. Step down Charger parameters
Symbol Parameter Min Typ Max Unit Note
.



 








 
!
"

#$%#
&'()*(+
#

"
,-.
"
&-,)'-+
/0112$%0
#$%"/
"30
4151"
5(15#1#
,($
3%#

"3
"
21!
#$%"4"4
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 49 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
The AS3658 serves an integrated USB charger for Li+ batte ries. The USB Charge r is a current and voltage limited
charger, which can be used to charge Li+ batteries directly from the USB supply. The VBAT voltage limit is set by the
register ChVoltEOC (3.9V – 4.25V in 50mV steps; identical for USB charger and step down charger) and the current
limit is set by the register usb_current (94mA to 881mA). The Vsupply voltage limit is set to Vchlimit during trickle and
constant current charging.
For USB charging, it is recommended to start with a current limit of 94mA and after negotiates via the USB bus (this
has to be done by e.g. the uProcessor directly) a different current setting can be set to speed up charging (e.g.
470mA).
If Bit usb_chgEn=1 in the Boot ROM is set, VSUPPLY can start up with USB supply allowing startup from the USB
supply.
If ChEn=1 and chdet=1 (extern al charger enabled and connected) the usb_charger will be deactivated automatically.
(The Battery charger overrides the USB charger). It's not possible to use the internal and the external charger in
parallel.
End of charge of the USB charger is reached, if the current through the battery falls below the value set in the
Tricklecurrent [1:0] register.
Table 41. USB-Charger Bit definitions
Addr: 10 USB Charger control
This register controls the mode of the USB charger, and the charger state
machine
Bit Bit Name Default Access Description
3:0 usb_Current ROM R/W
Sets the USB input current limit.
(0000)b 94mA (USB low current)
(0001)b 141mA
(0010)b 189mA
(0011)b 237mA
(0100)b 285mA
(0101)b 332mA
(0110)b 380mA
(0111)b 428mA
(1000)b 470mA (USB high current)
(1001)b 517mA
(1010)b 598mA
(1011)b 668mA
(1100)b 759mA
(1101)b 881mA
(1110)b 881mA (do not us e)
(1111)b 8 81 mA (d o not use)
4 usb_chgEn ROM R/W
ON/OFF control of USB charger
0 USB charger disabled.
1 USB charger enabled.
ams AG
Technical content still valid
Table 42. Charger status Bit definitions
Addr:100 Charger status_usb
These bits show the statu s of the USB charger
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 50 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Charger Detection:
The Charger will be detected by comparison of the V_USB voltage with the Vsupply voltage.
If V_USB is 50mV higher than VSupply voltage or V_USB > 4.3V or the USB_ChDet is set to 1.
Table 43. USB Charger Characteristics,VU SB= 4.3…5.5V; Tamb=–20…+85°C; unless otherwise specified.
Symbol Parameter Min Typ Min Unit Note
5 dis_batsw_tmp_prot ROM R/W 0Overtemperature protection of battery switch
enabled. (If battery switch is in current
source mode, charging is stopped if chip
temperature exceeds 110ºC)
1Overtemperature protection of battery switch
disabled
6 no_charging ROM R/W
0Normal battery charger operati on (usb
charger and/or step down charger)
1USB and Step down charger is supplying
VSUPPLY, but battery switch is open.
USB charger or external charger regulate to
Vchlimit
7 ext_batsw_en ROM R/W
0External battery switch disabled (Pin
BAT_SW= VSUPPLY,VBAT)
1External battery switch enabled (Pin
BAT_SW=0V, if status bits batsw_on=1 and
batsw_mode=1. These bits are controlled by
the charger state machine)
0 U SB_ChDet NA R set to 1 if charger is detected
1 USB_Chact NA R Set to 1 if charger is active
4 Ch_overvoltage NA R Set to 1 if overvoltage on pin VCHARGER is applied
Iusbcurrent500mA USBcurrent for 500mA
selection 440 470 500 mA Resistor on pin RBias to ground of
220kΩ
Iusbcurrent100A USBcurrent for 100mA
selection 84 95 104 mA Resistor on pin RBias to ground of
220kΩ
Table 41. USB-Charger Bit definitions
Addr: 10 USB Charger control
This register controls the mode of the USB charger, and the charger state
machine
Bit Bit Name Default Access Description
ams AG
Technical content still valid
Table 44. USB-Charger additional trimming
Addr:130 USB Current control
This register adds or subtracts current limit
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 51 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.9 Battery Charge Controller
The AS3658 device serves as a standalone battery charge controller supporting recharg eable lithium ion (Li+) and
nickel metal hybrid (NiMH) batteries. Requiring only a few external compone nts, a full-featured battery charger with a
high degree of flexibility can easily be real ized. The main features of the controller are:
Charge adapter detection
Charging of deeply discharged batteries
Low current (trickle) charging
Real constant current charging by regulation of the battery current instead of the charge current
2 different top-off charging modes: Pulse charging and constant voltage charging
Fuel gauge enables highly accurate remaining capacity estimation of the battery
Overvoltage protection for charge adapter input and main battery
Battery presence indication
Operation without battery
Reverse polarity and short protection
Charging timout timer
Battery NTC supervision
8.9.1 Charge Controller Operating Modes and Building Blocks
Linear Step down Charger detection
The charging circuit automatically detects, if a step down charger or a linear charger is connected externally, by
measuring the voltage on the pin VOFF_B. If this pin is tied to GND, the circuit detects a linear charger. Otherwise the
step down charger is detected
Charge adapter detection
The charge controller uses an integrated detection circuit to determine if an external charge adapter has been applied
to the VCHARGER or V_USB pin. If the adapter voltage exceeds the supply voltage at pin V_SUPPLY5 by VCHDET the
ChDet or USB_CHDet bit in the Charger S t atus register will be set. The detection circuit will reset the charge controller
(ChDet or USB_CHDet is cleared) as soon as the voltage at the VCHARGER or USB_CHDet pin drops to only VCHMIN
2:0 usb_add_trim_current 00h R/W
Increase or decrease The USB current limit for additional in
system trimming:
100 usbcurrent-5.1%
101 usbcurrent-3.8%
110 usbcurrent-2.5%
111 usbcurrent-1.2%
000 usbcurrent+0%
001 usbcurrent+1.2%
010 usbcurrent+2.5%
011 usbcurrent+3.8%
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 52 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
above the battery voltage. In case the AS3658 device is reset the charge controller will also be reset, even if a charge
adapter is applied to the VCHARGER or V_USB pin .
Charging de e pl y di sc h arge d ba tt e ri es
To be able to charge even completely discharged batteries the AS3658 device contains an internal voltage regulator
that uses the voltage of the external charge adapte r at pin VCHARGER or V_USB to generate a boo tstrap voltage
V2_5V to supply the internal circuitry necessary for charging. As soon as the battery voltage exceeds 2.5V, the
bootstrap regulator is disabled and the battery voltage will be used to generate the internal supply voltage to supply the
charger circuitry.
Low current (trick le ) ch a r gi ng
Trickle charge mode is started when an external charge adapter has been detected and ChEn or usb_chgEn is set,
and the battery voltage at pin V_BAT is below the ResVoltRise threshold VRESRISE. The Battery switch is open in that
case (batsw_on=1 batsw_mode=0). Bits ChAct and/or USBChAct and Trickle will be set in the Charger Status
registers. In this mode the ch arg e current into the battery will be limited to TrickleCurrent (set in the Charger Current
register) by the battery switch to prevent undue stress on either the battery or any of the charger components in case
of deeply discharged batteries. if Vsupply drops below Vsupply_min threshold the trickle current is regulated down, to
keep the Vsupply voltage up, even with an current limited charger (e.g.:USB charger). Once VRESRISE has been
exceeded, the battery switch will be closed and the charge controller will proceed to constant current charge mode.
The Vsupply voltage of the step down charger will be set to Vcurr_preset to prevent und ervoltage on vsupply during
the transition between Trickle and constant current charging.
Constant current charging
Constant current charging is initiated by setting bit ChEn and/or USBChEn in the Charger Control register, and
resetting the No_charging bit. Note that ChEn and/or USBChEn shou ld be set by d efault to enable operation of the
device without a battery connected to the system. The ChAct and/or USBChAct bit is set when the charger has started,
and the charge current into the battery will be limi ted to ConstantCurrent (set in the Charger Current register) by the
battery charge controller. When the battery appro aches full charge, its instantaneous voltage will exceed the charge
termination threshold VCHOFF. VCHOFF depends on the ChVoltEOC.The top-off charge mode will be started (bit CVM
will be set).
Constant voltage charging
Constant voltage charge mode is initiated and the CVM bit will be set when the VCHOFF threshold has been exceeded
for the first time and bit Pulse is not set. In the following the charge controller will act to regulate the battery voltage to
a value set by ChVoltEOC in the Charger Config register.
The charge current is monitored during constant voltage charging. It will be decreasing from its initial value during
constant current charging and eventually drop below the value set by TrickleCurrent in the Charger Current register. If
the measured charge current is less than or equal to TrickleCurrent and the battery voltage is larger than VCHRES, the
charging cycle is terminated and EOC is set. Then the charge contro ller starts the EOC operation.
EOC operation
There are two possibilities:
1. If isolate_bat=1 the battery switch will be switch off and the battery charger regulates to its highest voltage Vchlimit..
The advantage of this mode is a longer lifetime of the Li+ battery, because there is no discharging after the EOC
condition. If autoresume=1 and the battery voltage drops below VCHRES the battery charger continues charging, by
checking in trickle charge mode, if there is a battery connected, and then starting with constant voltage.
2. If isolate_bat=0 the battery switch remains closed for step down charger or will be closed for linear and usb charger,
and the power to the system is supplied by the battery. The battery charger and the USB charger regulates to VEOC,
in case the battery is removed. If autoresume=1 and the battery voltage drops below VCHRES the battery charger
continues charging, by checking in trickle charge mode, if there is a battery connected, and then starting with
battery charging.
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 53 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Battery Detection and Restart of Charging:
In EOC state, If the battery voltage drops below VCHRES and the bit AutoResume is set, the battery detection is
started. The battery switch will be switched into current source mode and VSUPPLY will be regulated to Vchlimit (all
charger). The AS3658 measured the battery current with the fuel gauge in this mode. If there is no current, the AS3658
is kept in this state and the bit NoBat is set. Otherwise the bit NoBat is cleared and the charger and the AS3658
continues in battery charging mode. In addition, if the ntc_on<1:0>=01b (NTC temperature supervision is active) the
NoBat bit is cleared and charging is restarted, if a NTC resistor with normal or high temperature is detected.
Overvoltage protection for external linear charger:
During charg ing with the external linear charger the battery charge controller constantly monitors the voltage of the
charge adapter at pin VCHARGER. In case the charge adapter voltage exceeds VVCHIN,MAX rise for longer than
3mesec and bit ChOVDetEn in the Charger Control register is set to 1, charging is disabled immediately. If the voltage
on the pin VCHARGER drops below VVCHIN,MAX fall, the charger is re-enabled.
Figure 19. Typical charging cycle (step down charger)
VBAT = 2V
VSUPPLY = 4.4V
VCHARGER = 6V
VBAT = Vres_rise (e.g: 3.4V)
VSUPPLY = 4.4V (isolate_bat=1)
VSUPPLY = 4.2V (isolate_bat=0)
VBAT = 4.2V
IBAT = 0mA IBAT = TrickleCurrent (e.g 200mA)
IBAT = ConstantCurrent (e.g 700mA)
Constantvoltage
EOC
CH_DET = 0
CH_DET = 1
NO_CHARGING = 1
NO_CHARGING = 0
I2C Write
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 54 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 20. Typical charging cycle (External linear charger or USB charger)
Table 45. Charger Characteristics VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise specified
Symbol Parameter Min Typ Min Unit Note
Vchlimit V oltage limit of charger
(if not in current
limitation mode) -3% ch_volt
age 3% V Max. Vsupply voltage
VCHARGER VCHARGER operating
range 5.0 15.0 V
For input voltage higher than 15V see
above protection circuit; for chargers with
input voltages down to 4.5V see:
‘Application Note for DC/DC Step down
Charger for
Chargers Supplying 4.5V to 5.5V’
VCHDET Charge adapter
detection threshold 50 75 105 mV Hysteresis is > 40mV; for USB and step
down charger
VCHMIN 02035mV
VCHMIN_hold Charge adapter
detection hold voltage -5 -20 -40 mV
Vchdet falling threshold, if
VSUPPLY>4.35V for V_USB and
VCHARGER, and for V_USB, if
usb_hold_chdet=1. Warning:
Backcharging is possible if
usb_hold_chdet=1
Vchin,max
rise
Charger ad apter
overvoltage threshold
rising 6.0 6.5 7.0 V ChOVDetEn=’1’ for external linear
charger only
Vchin,max fall Charger ad apter
overvoltage threshold
falling 6.0 V ChOVDetEn=’1’ fo r external linear
charger only
VBAT = 2V
VSUPPLY = 4.4V..5.0V
VCHARGER = 6V
VBAT = Vres_rise (e.g: 3.4V)
VSUPPLY = 4.4V...5.0V (isolate_bat=1)
VSUPPLY = 4.2V (isolate_bat=0)
VBAT = 4.2V
IBAT = 0mA IBAT = TrickleCurrent (e.g 200mA)
IBAT = ConstantCurrent (e.g 700mA)
Constantvoltage
EOC
CH_DET = 0
CH_DET = 1
NO_CHARGING = 1
NO_CHARGING = 0
I2C Write
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 55 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
ISTARTmax Maximum load current
during startup on
Vsupply 5mA
VUVLO Undervoltage lockout
threshold –3% 2.7…
3.4 +3% V Value is set by ResVoltRise in the Battery
V o ltage Monitor register
VCHOFF Charge termination
threshold –0.06 3.90…
4.25 +0.06 V Li+ battery; value is set by ChVoltEOC in
the Charger Config register
VCHRES Charger resume
voltage 3.85…
4.20 VValue is set by ChVoltResume in the
Charger Config register. Do not set
VCHRES higher than VCHOFF!
Vcurr_preset Charger constant
current pre-set voltage
VRESRI
SE
+
100mV V
VEOC Charger EOC voltage 3.6 0 V If isolate_bat=0; to prevent a system reset
if the battery is removed in EOC operati on
Table 46. Charger status Bit definitions
Addr:99 Charger status
These bits show the status of the charger
Bit Bit Name Default Access Description
0ChDetNAR
Bit is set when external charge adapter has been
detected on pin VCHARGER
1ChActNAR
Bit is set when step down charger is operating
(independent of Reg. bit no_charging)
2ResumeNAR
Bit is set when battery voltage has dropped below resume
level
3 Trickle NA R Bit is set when charger is in trickle charge mode
4CVMNAR
Bit is set when charger is in top-off charge mode
(constant voltage mode)
5EOCNAR
Bit is set when charging has been te rminated. Bit is
cleared automatically when ChEn is cleared, no_charging
is set or charging is resumed.
6NoBatNAR
Bit is set when battery detection circuit indicates that no
battery is connected to the system. Detection is st arted
after EOC and if bit autoresume=1 only. Bit is cleared
automatically when a battery is connected, when DisBDet
is set and/or when ChEn is cleared.
7 ChLinear NA R Bit is set, if Linear charger is detected, and chDet=1. This
state is latched on the rising edge of chDet. Detected if
VOFF_B is connected to ground
Table 45. Charger Characteristics VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise specified
Symbol Parameter Min Typ Min Unit Note
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 56 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Table 47. Charger control Bit definitions
Addr:11 Charger Control1
These bits controls the charger
Bit Bit Name Default Access Description
0ChEnROMR/W
0Disable step down charger (Independent of bit
no_charging)
1Enable step down charger (defau lt) (Independent
of bit no_charging)
1 Ch_pwroff_en ROM R/W
0Startup of AS3658 if charger is connected in
power_off mode
1
Don't exit power off mode, if charger is already
connected before entering power off mode; no
autonomous charging upon static charger detect.
S t artup with rising edge of VCHARGER or V_USB,
RTC wakeup and XON pin only
2 CHOVDetEn ROM R/W
0Overvoltage detection with linear external charger
enabled
1Overvoltage detection with linear external charger
enabled. Battery charging disabled, if voltage
exceeded
3 AutoResume ROM R/W 0Charging does not restart automatically in EOC
when bit Resume is set.
1Charging will restart automatically in EOC when bit
Resume is set
4 usb_hold_chdet ROM R/W
0 Normal charge_detect operation
1Charger detect of USB charger will not be reset, if
VUSB=VBAT. (Allow Battery charging, with
V_USB<4.4V down to 3.3V); for this case, software
should detect the removal of the charger
5 charging_tmax ROM R/W 0Read: no timeout
reached
Write: reset charger timeout counter
1tCHARGING,MAX timeout reached and charging
stopped
6 Ch_det_500ms ROM R/W
Controls the charge detect debounce timer on pin
VCHARGER, if external charger is connected. (If the
charger is removed the debounce time is always 3msec)
0VCHARGER debounce timer is 3msec
1VCHARGER debounce timer is 500msec
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 57 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Tabl e 48. Battery, suppl y voltage Bit definitions
Addr:12 Battery voltage monitor
These bits controls the battery/Supply voltage monitor (Reset levels)
Bit Bit Name Default Access Description
2:0 ResVoltRise ROM
(101b) R/W
This value determi nes the reset level VRESRISE for rising
VBAT. It is recommended to set this value at least 200mV
higher than VRESFALL.
000b VRESRISE=2.7V
001b VRESRISE=2.8V
010b VRESRISE=2.9V
011b VRESRISE=3.0V
100b VRESRISE=3.1V
101b VRESRISE=3.2V
110b VRESRISE=3.3V
111b VRESRISE=3.4V
5:3 ResVoltFall ROM
(011b) R/W
This value determines the reset level VRESFALL for falling
VVBAT. It is recommended to set this value at least 200mV
lower than VRESRISE.
000b VRESFALL=2.7V
001b VRESFALL=2.8V
010b VRESFALL=2.9V
011b VRESFALL=3.0V
100b VRESFALL=3.1V
101b VRESFALL=3.2V
110b VRESFALL=3.3V
111b VRESFALL=3.4V
6 SupResEn ROM
(0b) R/W
0A reset is generated if Vsupply falls below 2.7V.
(If VVBAT falls below VRESFALL only an interrupt is
generated (if enabled) and the Processor can shut
down the system)
1A reset is generated if Vsupply fa lls below
VRESFALL
7 FastResEn ROM R/W 0 Vresetfall debounce time = 3msec
1 Vresetfall debounce time = 4µsec
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 58 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.9.2 Fuel Gauge
The fuel gauge circuit enables remaining capacity estimation of the battery by tracking the net current flow into and out
of the battery using a voltage-to-frequency converter.
Voltage-to-Frequency Converter
The voltage-to-frequency (VFC) converter constantly monitors the voltage drop across an external current sense
resistor Rsense connected in series between the negative battery terminal and ground. The use of an additional
external RC lowpass filter is highly recommended. Using two 4.7kΩ resistors (Rfilt1,2) and a 1µF ceramic capacitor
(Cfilt), the filter cut-off is approximately 16.9 Hz. This filter will capture the effect of most spikes, and will thus allow the
current accumulators to accurately reflect the total charge that has gone into or out of the battery.
Table 49. Charger Config Register
Addr:13 Charger Config
These bits configure the charger
Bit Bit Name Default Access Description
2:0 ChVoltEOC ROM
Sets the end-of-charge voltage level VCHOFF.
000b 3.90V
001b 3.95V
010b 4.00V
011b 4.05V
100b 4.10V
101b 4.15V
110b 4.20V
111b 4.25V
4:3 Vsupply_min ROM
Regulate down battery charging current on that level of
Vsupply during trickle charging and/or linear charging, to
prevent voltage drop on vsupply:
00b 3.90V
01b 3.60V
10b 4.20V
11b 4.50V
7:5 ChVoltResume ROM
Sets the resume voltage level V CHRES
000b 3.85V
001b 3.90V
010b 3.95V
011b 4.00V
100b 4.05V
101b 4.10V
110b 4.15V
111b 4.20V
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 59 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
The key building block of the VFC is an integrator. It will integrate the voltage VSNS across input pins ISENSP and
ISENSN. If VSNS is positive (battery is charged), the output voltage of the integrator increases; a negative input voltage
(battery is discharged) will cause the integrator output voltage to decrease.
Table 50. Fuel Gaug e parameters
Symbol Parameter Min Typ Max Unit Note
Charge Current Accumulator
The output signals of the charge count dividers are used as in puts for the charge current accumula tor that is realized
as a 15-bit up-down counter with separate inputs for incrementing and decrementing the counter . An additional sign bit
indicates the polarity of the counter value that is maintained in two’s complement format. The current accumulator is
updated at a rate equivalent to one count per 3.05µVh, which is equivalent to one count per 61.03µAh when using a
50mΩ current sense resistor. It will roll over beyond (7FFF)h when incremented and (0000)h when decremented, and
the value given by the counter will be ambiguous in that case. It is the responsibility of the host to read th e counter
before rollover occurs.
The content of the charge current accumulator will be transferred into the DeltaCharge register when the UpdReq bit in
the FuelGauge register has been set. The update of the register has to be synchronized to the sample clock fVFC and
can take up to 1.5 clock cycles (max. 2.5µs). After the registers have been updated successfully, the UpdReq bit is
cleared automatically and the charge current accumulator together with the sign bit will be reset.
Elapsed Time Counter
The sample clock fVFC of the fuel gauge circuit is fed to a 14-bit clock count divider. Its output signal is used as a
clocking signal for the 16-bit elapsed time counter, resulting in an equivalent rate of 1.1379 counts per second
(4096.60 counts = 1 hour). The elapsed time counter will rollover beyond (FFFF)h, and the value given by the counter
will be ambiguous in that case. It is the responsibility of the host to read the counter before rollover occurs.
The content of the elapsed time counter will be transferred into the ElapsedTime register when the UpdReq bit in the
FuelGauge register has been set. The update of the register has to be synchronized to the sample clock fVFC and can
take up to 1.5 clock cycles (max. 2.5µs). After the register s have been updated successfully, the UpdReq bit is cleared
automatically and the elapsed time counter will be reset.
Offset Calibration Mode
Although the VFC compensates for the offset of the integrator the fuel gauge features an additional offset calibration
mode to enhance the measurement accuracy even further. By setting the CalReq bit in the FuelGauge register the
integrator is reset and the offset calibration mode is activated. The charge count dividers are bypassed during offset
calibration to allow a faster calibration procedure with adequate resolution. The offset is accumulated during 16 clocks
of the elapsed time counter, the resulting offset calibration value FGOffCal has a resolution of 3.05µV and is
fCLK Internal reference
clock fclk_int/
2MHz internal CLK frequency/2
Programmable: 0.8 to 1.15 MHz
fVFC Sample frequency fCLK/59 Hz
VISENSP
VISENSN Input voltage -0.1 0.1 V
ZISENSP
ZISENSN Input impedance 4.67 MΩ
AVFC Discharge and Charge
gain 91.0 Hz / V fCLK = 1.1MHz
FRVFC Fundamental rate 3.05 µVh
VOFF Uncompensated offset
voltage -500 500 µV
VOFF,COMP Compensated offset
voltage -50 ±10 50
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 60 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
transferred to the DeltaCharge register. The CalReq bi t is cleared automatically after the calibration has completed
successfully and FGOffCal has been written to the register.
Please note that offset calibration is not possible while the charger is active. If the CalReq bit is set while the charger is
active the calibration will start automatically after the charger has been disabled by clearing the ChEn bit or if the
external charge adapter has been removed. If durin g an offset calibration procedure the charger is enabled the offset
calibration mode is terminated, the CalReq bit is cleared, the current value of the elapsed time counter is transferred to
the ElapsedTime register and the DeltaCharge register is loaded with (FFFF)h.
Calculation of Battery Status
The host system can calculate all the parameters necessary for estimating the remaining battery capacity by
evaluating ElapsedTime, DeltaCharge and FGOffCal.
Calculating Elapsed Time
The host system can evaluate the chang e in time Δt by setting the UpdReq bit in the FuelGauge register and reading
ElapsedTime af te r UpdReq has been automatically cleared. The change in time in seconds is given by:
Δ
t = ElapsedTime x 3600 / 4096.60 [s] (EQ 1)
Note that the absolute accuracy of Δt is directly related to the absolute accuracy of the internal reference oscillator. To
cancel the error associated with the accuracy of the oscillator, a correction factor CV can be introduced. CV can be
evaluated by comparing the change in time calculated by (1) with some reference value ΔtREF obt ained from a RTC or
measured during system calibration. CV is given by:
CV =
Δ
tREF /
Δ
t(EQ 2)
By multiplying Δt and CV the correct value for the change in time can be calculated:
Δ
tCORR = CV x
Δ
t [s] (EQ 3)
Calculating Average Current
The host system can calculate the average current during the last time period by setting the UpdReq bit in the
FuelGauge register and reading DeltaCharge and ElapsedTime after UpdReq has been automatically cleared.
Together with FGOffCal determined during offset calibration mode the average current is given by:
IAVG = DeltaCharge / (
Δ
t x AVFC x Rsense) – FGOffCal x 3.05µV / Rsense [A] (EQ 4)
Δt is the change in time in seconds calculated by (1), AVFC is the gain of the VFC in Hz/V, Rsense is the value of the
sense resist or in Ω and FGOffCal is the offset calibration value. As DeltaCharge and Δt both are proportional to the
oscillator frequency, no correction factor needs to be introduced in the formula.
Calculating Accumu lated Current
Accumulated current is used to calculate the absolute remaining capacity of the battery. It is given by:
IACC = IAVG x
Δ
tCORR [A] (EQ 5)
Calculating the Remaining Capacity
Remaining capacity is the entire goal of fuel gauging. It is given by:
RC = RC + IACC [As] (EQ 6)
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 61 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Calculating the Time to Empty
The time to empty is calculated from the average current IAVG given by (4). The longer the time period for which IAVG is
calculated, the more accurate the value for IAVG and therefore the estimated time to empty will be. It is given by:
TTE = RC / IAVG [s]
Table 51. Fuel Gaug e Bit definitions
Addr:15 Fuel Gauge
These bits configures the fuel gauge
Bit Bit Name Default Access Description
Table 52. Delta Charger MSB bit definitions
Addr:101 DeltaChargeMSB
These bits represent the MSB value of the fuel gauge Delta charge
register
Bit Bit Name Default Access Description
(EQ 7)
0 FGEn ROM R/W 0 Disable Fuel Gauge
1 Enable Fuel Gauge
1 UpdReq ROM R/W
This bit controls the update of the DeltaCharge and
ElapsedTime registers. When set, the bit is cleared
automatically after the registers have been updated
successfully. Bit should not be set to “0” by the host
0 Update of registers complete
1 Request up date of registers
2 CalReq ROM R/W
This bit controls the offset calibration. When set, the bit is
cleared automa tically after the calibration has completed
successfully.
0Calibration complete OR terminate offset
calibration
1 Request offset calibration
4:3 CalMod ROM R/W
Sets the mode for offset calibration
00 Connect inputs to ground internally
01 Use ISENSP and ISENSN (do not use)
10 do not use
11 do not use
6:0 DeltaChargeMSB (00)h R
The register is maintained in two’s complement format
with a resolution of 3.05µVh and a full-scale value of
±99.98mVh. When using a 50mΩ current sense resistor
this is equivalent to a resolution of 61.03µAh and a full-
scale value of 1.999Ah. Sign is set for negative values.
Register will be updated after setting bit UpdReq to “1”.
7 sign 0 R Sign bit of the delta charge register
ams AG
Technical content still valid
Tabl e 53. DeltaChargerLSB bit definitions
Addr:102 DeltaChargeLSB
These bits represent the LSB value of the fuel gauge Delta charge
register
Bit Bit Name Default Access Description
Table 54. ElapsedTimeMSB bit definitions
Addr:103 ElapsedTimeMSB
These bits represent the MSB value of the fuel gauge Elapsed Time
register
Bit Bit Name Default Access Description
Table 55. ElapsedTimeLSB bit definitions
Addr:104 ElapsedTimeLSB
These bits represent the LSB value of the fuel gauge Elapsed Time
register
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 62 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.9.3 Charger Operation
The charger controls the battery current through the internal tra nsistor between VSUP_SW1,2 and VBAT_SW1,2, the
step down charger and the battery switch between VSUPPLY and VBAT.
Charge Current Regulator
The regulator is programmed by setting TrickleCurrent and ConstantCurrent in the ChargerCurrent register and yi el d s
a resolution of 0.625mV or 12.5mA when using a sense resistor of 50mΩ.
Table 56. Charge Current Regulator parameters
Symbol Parameter Min Typ Max Unit Note
7:0 DeltaChargeLSB (00)h R
The register is maintained in two’s complement format
with a resolution of 3.05µVh and a full-scale value of
±99.98mVh. When using a 50mΩ current sense resistor
this is equivalent to a resolution of 61.03µAh and a full-
scale value of 1.999Ah. Sign is set for negative values.
Register will be updated after setting bit UpdReq to “1”.
6:0 ElapsedTimeMSB (00)h R The elapsed time count is stored in the register with a
resolution of 0.8788s and a full-scale value of 15.997 hours.
Register will be updated after setting bit UpdReq to “1”.
7 sign 0 R Sign bit of the elapsed time register
7:0 ElapsedTimeLSB (00)h R The elapsed time count is stored in the register with a
resolution of 0.8788s and a full-scale value of 15.997 hours.
Register will be updated after setting bit UpdReq to “1”.
tMEAS Measurement period 68.65 ms fclk_int = 2.2MHz
IMEAS,LSB 0.625 mV
ams AG
Technical content still valid
Table 57. Charger Curren t Bit definitions
Addr:16 Charger current
These bits define the battery charging current and voltage
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 63 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.10 Charger supervision functions
The charger supervision functions allow charging without processor control by continuously checking the NTC
temperature resistor within the battery pack using ADC_IN1 pin. The charging cycle is automatically paused, if the
NTC indicates a temperature range out of 0º to 45º (or 0º to 50º). If the temperature gets into this range again the
charging cycle is resumed.
In addition there is a charge timer that stops charging after a defined time, as additional security feature.
The timer will be reset at charger insertio n (charger detect) or at EOC state. The timer is counting during active
charging only (Trickle charging, Constant current charging, Constant voltage charging).
In case the battery voltage does not reach EOC voltage within tCHARGINGMAX after charging has been started,
charging_tmax interrupt will be generated and charging will be stopped. Charging can be started again by writing
charging_tmax=0 in the charger_control 1 register.
1:0 TrickleCurrent ROM R/W
Sets the trickle current. Default is (01)b = 2.5mV x Rsense-1.
00b 1.25mV x Rsense-1
01b 2.50mV x Rsense-1
10b 5.00mV x Rsense-1
11b 10.0mV x Rsense-1
4:2 ConstantCurrent ROM R/W
Sets the charging current in const ant current mode
from (0mV…35mV) x Rsense-1 in steps of 5mV x
Rsense-1.
000 0mV x Rsense-1
001 5mV x Rsense-1
....
111 35mV x Rsense-1
7:5 ch_voltage ROM R/W
Charger voltage after EOC and isolate_battery=1
000b 4.3V
001b 4.4V
010b 4.5V
011b 4.6V
100b 4.7V
101b 4.8V
110b 4.9V
111b 5.0V
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 64 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 21. Charger Supervision functi ons – internal circuit
Table 58. NTC Charge rsupervision Characteristics, VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise
specified.
Symbol Parameter Min Typ Max Unit Note
tsample Sample time for NTC
measurement high or
low temperature 33 ms Alternating measurement of the NTC
sensor for high temperature and low
temperature with two different
currents
Vcomp Comparator threshold
for high and low
temperature
measurement 1.8 V On pin ADC_IN1, if ntc_on<1:0>=1
IHightemp45deg_1
0k High temperature
current for 45 deg limit,
10k NTC
-7% 388 +7% µA ntc_type=0, ntc_high_temp=0,
@ 1.8V threshold
4.64 kΩ
IHightemp50deg_1
0k High temperature
current for 50 deg limit,
10k NTC
-7% 457 +7% µA ntc_type=0, ntc_high_temp=1,
@ 1.8V threshold
3.94 kΩ
IHightemp0deg_10k High temperature
current for 0 deg limit,
10k NTC
60.5 µA ntc_type=0
@ 1.8V threshold
29.7 kΩ
IHightemp45deg_1
00k High temperature
current for 45 deg limit,
100k NTC
39.2 µA ntc_type=1, ntc_high_temp=0,
@ 1.8V threshold
4.59 kΩ
ILowtemp50deg_10
0k Low temperature
current for 50 deg limit,
100k NTC
46.8 µA ntc_type=1, ntc_high_temp=1,
@ 1.8V threshold
38.5 kΩ




 

 !"#$
%

&'
%$
(
(
) *+#
)%,%+#
-
"#
)+#
%,
..
%,/0
$
12*
%,,+3
%,+"
"
$ %+"
%,
4 5
67+.
"
%,,+3
 $,
 *%,,
8%,
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 65 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
ILowtemp0deg_100
kLow temperature
current for 0 deg limit,
100k NTC
6.32 µA ntc_type=1
@ 1.8V threshold
284 kΩ
Hystereses NTC Current
hystereses ±4% (approx. 1º .), ntc_hyst=0
±8% (approx. 2º .), nt c_ hyst=1
IHightempADC_10k Current for ADC
measurement High
temp range, 10k NTC -7% 234 +7% µA ntc_on<1:0>=2, ntc_type=0,
ntc_high_temp=0
IHightempADC_100
kCurrent for ADC
measurement High
temp range, 100k NTC 23.6 µA ntc_on<1:0>=2, ntc_type=1,
ntc_high_temp=0
ILowtempADC_10k Current for ADC
measurement Low
temp range, 10k NTC 36 µA ntc_on<1:0>=3, ntc_type=0,
ntc_high_temp=0
ILowtempADC_100
kCurrent for ADC
measurement Low
temp range, 100k NTC 3.7 µA ntc_on<1:0>=3, ntc_type=1,
ntc_high_temp=0
Table 59. Charger supervision bit definitions
Addr:14 Charger superv ision
These bits define charging timer and battery temp. supervision settings
Bit Bit Name Default Access Description
3:0 ch_timeout ROM R/W
Charging timeout timer
0000b Charging timeout disabled
0001b 1 hour
0010b 1.5 hour
0011b 2 hour
0100b 2.5 hour
0101b 3 hour
0110b 3.5 hour
0111b 4 hour
1000b 4.5 hour
1001b 5 hour
1010b 5.5 hour
1011b 6 hour
1100b 6.5 hour
1101b 7 hour
1110b 7.5 hour
1111b 8 hour
4 auto_shutdown ROM 0 (see Reset generator and XON-Key on page 118)
Table 58. NTC Charge rsupervision Characteristics, VVBAT=3.0…5.5V; Tamb=–20…+85°C; unless otherwise
specified.
Symbol Parameter Min Typ Max Unit Note
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 66 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
5 ntc_high_temp ROM R/W
Selects the high temp level:
0 45 º maximum temp
1 50º maximum temp
Low temp is always 0º
6 ntc_hyst ROM R/W
Selects the NTC temperature hysteresis
0 2º hyste resis
1 1º hysteresis
7 ntc_type ROM R/W
Select the NTC resistor type
010kΩ NTC resistor
1 100kΩ NTC resistor
Table 60. FuelGau ge
Addr:15 FuelGauge
This bit controls first startup out of power on reset
Bit Bit Name Default Access Description
7:6 ntc_on ROM R/W
00 Disable NTC supervision
01 Enable NTC supervision
10 Enable NTC for ADC measurement high temp
11 Enable NTC for ADC measurement low temp
Table 59. Charger supervision bit definitions
Addr:14 Charger superv ision
These bits define charging timer and battery temp. supervision settings
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 67 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.11 Step Down DC/DC Converters
8.11.1 Step Down DC/DC Converters Operating Modes
The step down dcdc converters have four operating modes to deliver different output currents for the applications. The
operating mode is selected by setting the register sd x_1A_mode (the default is set by the Boot ROM).
Figure 22. DC/DC step-down SD1, SD2, SD3 Normal Operating Mode; sdx_1A_mode = 0000b
Figure 23. DC/DC step-down SD1, SD2, SD3 1A Operating Mode; sdx_1A_mode = 1010b
77B










 !
""#

#
 !"
"
"
"
"



"
"
 !"
""#
"
#
 !









 !
""#

#
 !
 !
 !
 !










 !
""#

#
 !"
"
"
"

"
 !





 !

#
"


"
 !"
$#
"
#
 !
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 68 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
If one of the DCDC step down converters is not used for an application, connect it as follows:
Figure 24. DC/DC step-down SD3 (as example) not used
Figure 25. DC/DC step-down SD1, SD2, SD3 External Controller Operating Mode; sdx_1A_mode = 1100b
Note: VCURR_GPIO has to be connected to VSUPPLY if the external controler mode is used.
 !














34
55
6










 

!"#
$%&







#
#
#
 #
#
!"#
$%&

#
#
#

#

'
''
()*+ *
$%,
,
&*)
(('-
-'
./0'-
123
./45
.67
3462734
146248
%3
)*
!#
()*



&

ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 69 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 26. DC/DC step-down SD1, SD2, SD3 External Controller Operati ng Mode and SD2 in 1A mode;
sd1_1A_mode = 1101b
Note: The LDO VDIG2 and the Low voltage current source / GPIO pin CURR1_GPIO1 cannot be used in the
‘External Controller’ operating mode configuration.
VCURR_GPIO has to be connected to VSUPPLY if the external controler mode is used.



 

!"#
!%&












#


 !
"%,
,
&
-
-
./0-
123
./45
.67
3462734
146248
%3

!#


&




 
#
#
#
 #
#


!"#
%&






ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 70 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.11.2 Step Down DC/DC Converter Characteristics
Figure 27. Step Down DC/DC Converter Block diagram
Functional Description
The step-down converter is a high efficiency fixed frequency current mode regulator. By using low resist ance internal
PMOS and NMOS switches efficiency up to 95% can be achieved. The fast switching frequency allows using small
inductors, without increasing the current ripple. The unique feedback and regulation circuit guarantees op timum load
and line regulation over th e whole output voltage range, up to an output current of 500mA, with an output capacitor of
only 10µF. The implemented current limitation protects the DCDC and the coil during overload condition.
To allow optimized performance in different applications, there are bit settin gs po ssi b l e, to ge t th e be st comp ro mi se
between high efficiency and low input, output ripple:
Low ripple, low noise operation:
Bit settings:
sdX_dis_curmin=1
In this mode there is no minimum coil current necessary before switching off the PMOS. As result, the ON time of the
PMOS will be reduced down to tmin_on at no or light load conditions, even if the coil current is very small or the coil
current is inverted. This results in a very low ripple and noise, but decreased efficiency, at light loads, especially at low
input to output voltage differences. Because of the inverted coil current in that case the regulator will not operate in
pulse skip mode.








 !

"#!
$$%&


!'
'
"!
(
)
*+,-

(./

0
%
-'

()1
23
%
$
4$
-015657
"
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 71 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 28. sdX_dis_curmin=1 ope ration
1: LX voltage, 2:coil current (1mV=1mA) 3: Vout
High efficiency operation (default setting):
Bit settings:
sdX_dis_curmin=0
In this mode there is a minimum coil current necessary before switching off the PMOS. As result there are less pulses
at low output load necessary, and therefore the efficiency at low output load is increased. This results in higher ripple,
and noisy pulse skip operation up to a higher output current.
Figure 29. sdX_dis_curmin=0 ope ration
1: LX voltage, 2:coil current (1mV=1mA) 3: Vout
It’s also possible to switch between these two modes during operation:
For Example:
sdX_dis_curmin=0: System is in idle state. No audio, RF signal. Decreased supply current preferred. Increased ripple
doesn’t affect system performance.
sdX_dis_curmin=1: System is operating. Audio signal on and/or RF signal used. Decreased ripple and noise preferred.
Increased power supply current can be tolerated.
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 72 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
100% PMOS ON mode for lo w dropout regulation: For low input to output voltage difference the sdX_dis_pon bit
can be set, to allow 100% duty cycle of the PMOS transistor.
Low power mode: The sdX_lpo mode bit can be set all the time. This mode allows internal power down, of not used
blocks during pulseskip mode, which results in a better efficiency at light output loads.
Inductor setting: The step down regulator is optimized for 2.2µH at 2.2MHz and 4.7µH at 1.1MHz
Table 61. Step Down DC/DC Converter parameters
Symbol Parameter Min Typ Max Unit Note
VIN Input voltage 3.0 5.5 V PIN VSUPPLY_1,VSUPPLY_2,
VSUPPLY_3
VOUT Regulated output
voltage 0.6 3.3 V
VOUT_tol Output volt age
tolerance -50 +50 mV output voltage <2.0V
-100 +100 mV o utput voltage >2.0V
ILIMIT Current limit 800 mA
RPSW P-Switch ON
resistance 0.5 ΩV_SUPPLYx=3.0V
RNSW N-Switch ON
resistance 0.5 ΩV_SUPPLYx=3.0V
Iload Load current 0 500 mA
fSW Switching frequency 2.2 MHz sdX_frequ=0, fclk_int =2.2MHz
1.1 MHz sdX_frequ=1, fclk_int =2.2MHz
ηeff Efficiency 90 % Iout=10 0mA, Vout=2.3V, Vsup.=3 V
IVDD Current consumption
250
µA
Operating current without load
100 Low power mode current
0.1 Shutdown current
tMIN_ON Minimum on time 80 ns
tMIN_OFF Minimum off time 40 ns
External Components
CVSD1-3, CVSD1A Output capacitor 8.0 10 µF Ceramic X5R or X7R
CVSUPPLY1-3 Input capacitor
2.2 µF Ceramic X5R or X7R
4.7 µF Ceramic X5R or X7R; CVSUPPLY1
in external controller mode or 1A
operating mode
LSD1-SD3 Inductor
2.2
µH
sdX_frequ=0, ± 10% tolerance
4.7 sdX_frequ=1, ± 10% tolerance
2.2 SD1 external controller mode; use
sd1_freq=1 (1.1Mhz)
ams AG
Technical content still valid
Table 62. Step Down DC/DC Bit definitions
Addr:35 Step Down Control1
These bits configures the step down converters
Bit Bit Name Default Access Description
Table 63. Step Down DC/DC Bit definitions
Addr:36 Step Down Control2
These bits configures the step down con verters
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 73 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
0 sd1_psw_on 0 R/W Only if sd1_on = 0, switch on PSW (0.5Ω PMOS)
1-0n/a
2-0n/a
3 sd1_nsw_on 0 R/W Only if sd1_on = 0, switch on NSW (0.5Ω NMOS)
4 sd2_psw_on 0 R/W Only if sd2_on = 0, switch on PSW (0.5Ω PMOS)
5-0n/a
6-0n/a
7 sd2_nsw_on 0 R/W Only if sd2_on = 0, switch on NSW (0.5Ω NMOS)
0 sd3_psw_on 0 R/W Only if sd3_on = 0, switch on PSW (0.5Ω PMOS)
1-0n/a
2-0n/a
3 sd3_nsw_on 0 R/W Only if sd3_on = 0, switch on NSW (0.5Ω NMOS)
4 sdX_lpo 0 R/W
Step down low power mode:
0 Increased current consumption in pulseskip mode
1Decreased current consumption in pulseskip
mode
5 sd1_dis_pon 0 R/W
Step down pon fe ature control
0PON feature enabled: 100% duty cycle (pmos
always on) if output voltage drops more than 4%.
Increased output ripple in that operation.
1PON feature disabled: Maximum dutycycle=1-
(tmin_off*fsw)
6 sd2_dis_pon 0 R/W
Step down pon fe ature control
0 PON feature enabled: 100% duty cycle (pmos
always on) if output voltage drops more than 4%.
Increased output ripple in that operation.
1PON feature disabled: Maximum dutycycle=1-
(tmin_off*fsw)
7 sd3_dis_pon 0 R/W
Step down pon fe ature control
0 PON feature enabled: 100% duty cycle (pmos
always on) if output voltage drops more than 4%.
Increased output ripple in that operation.
1PON feature disabled: Maximum dutycycle=1-
(tmin_off*fsw)
ams AG
Technical content still valid
Table 64. Step Down DC/DC Bit definitions
Addr:37 St ep Down ch arge r control
These bits configures the step down con verters
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 74 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
3-0n/a
4 sd1_dis_curmin 0 R/W
Step down curmin featu r e co nt rol
0curmin feature enabled: Inductor current regulated
to min 170mA. Higher efficiency in low dropout
and low output current operation. Higher output
ripple and noise.
1curmin feature disabled: Decreased efficiency in
low dropout mode and at low output current. Small
output ripple and noise.
5 sd2_dis_curmin 0 R/W
Step down curmin featu r e co nt rol
0curmin feature enabled: Inductor current regulated
to min 170mA. Higher efficiency in low dropout
and low output current operation. Higher output
ripple and noise.
1curmin feature disabled: Decreased efficiency in
low dropout mode and at low output current. Small
output ripple and noise.
6 sd3_dis_curmin 0 R/W
Step down curmin featu r e co nt rol
0curmin feature enabled: Inductor current regulated
to min 170mA. Higher efficiency in low dropout
and low output current operation. Higher output
ripple and noise.
1curmin feature disabled: Decreased efficiency in
low dropout mode and at low output current. Small
output ripple and noise.
Table 65. Step Down DC/DC Reg Power1 ctrl Bit definitions
Addr:23 Reg Power1 Ctrl
These bits control the on/off function of the step down regulator
Bit Bit Name Default Access Description
4 sd1_on ROM R/W
Switch on/off the step down1 dc/dc converter; it is possible
to on/off control DCDC SD1 by CURR3_GPIO3 or
CURR4_GPIO4 (see General Purp ose Input / Output
(CURR1_GPIO1 … CURR4_GPIO4) on page 30)
0 Step Down DC/DC 1 off
1 Step Down DC/DC 1 on
5 sd2_on ROM R/W
Switch on/off the step down2 dc/dc converter; it is possible
to on/off control DCDC SD2 by CURR3_GPIO3 or
CURR4_GPIO4 (see General Purp ose Input / Output
(CURR1_GPIO1 … CURR4_GPIO4) on page 30)
0 Step Down DC/DC 2 off
1 Step Down DC/DC 2 on
ams AG
Technical content still valid
Table 66. Step Down Voltage1 Bit definitions
Addr:00 Step Down Voltage1
These bits control the step down regulator voltage, frequency, clk phase
Bit Bit Name Default Access Description
Table 67. Step Down Voltage2 Bit definitions
Addr:01 Step Down Voltage2
These bits control the step down regulator voltage, frequency, clk phase
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 75 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
6 sd3_on ROM R/W
Switch on/off the step down3 dc/dc converter; it is possible
to on/off control DCDC SD3 by CURR3_GPIO3 or
CURR4_GPIO4 (see General Purp ose Input / Output
(CURR1_GPIO1 … CURR4_GPIO4) on page 30)
0 Step Down DC/DC 3 off
1 Step Down DC/DC 3 on
5:0 step_down1_v ROM R/W
Control the voltage selection for the step down1 DC/DC
converter
000000 0.6 V
… (LSB=50mV)
111000 – 11111 3.4 V
6 sd1_frequ ROM R/W
Select the step down1 frequency
0 fclk_int (1.6MHz to 2.3 MHz)
1 fclk_int/2 (0.8MHz to 1.15 MHz)
7 sd1_clkinvert ROM R/W Inverts the input clock of the step down1 converter
5:0 step_down2_v ROM R/W
Control the voltage selection for the step down2 DC/DC
converter
000000 0.6 V
… (LSB=50mV)
111000 – 11111 3.4 V
6 sd2_frequ ROM R/W
Select the step down2 frequency
0 fclk_int (1.6MHz to 2.3 MHz)
1 fclk_int/2 (0.8MHz to 1.15 MHz)
7 sd2_clkinvert ROM R/W Inverts the input clock of the step down1 converter
Table 65. Step Down DC/DC Reg Power1 ctrl Bit definitions
Addr:23 Reg Power1 Ctrl
These bits control the on/off function of the step down regulator
Bit Bit Name Default Access Description
ams AG
Technical content still valid
Table 68. Step Down Voltage3 Bit definitions
Addr:02 Step Down Voltage3
These bits control the step down regulator voltage, frequency, clk phase
Bit Bit Name Default Access Description
Table 69. Step down1 high current and DVM definitions
Addr:17 Charge Pump Control
These bits control the step down high current mode and DVM step size
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 76 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
5:0 step_down3_v ROM R/W
Control the voltage selection for the step down3 DC/DC
converter
000000 0.6 V
… (LSB=50mV)
111000 – 11111 3.4 V
6 sd3_frequ ROM R/W
Select the step down3 frequency
0 fclk_int (1.6MHz to 2.3 MHz)
1 fclk_int/2 (0.8MHz to 1.15 MHz)
7 sd3_clkinvert ROM R/W Inverts the input clock of the step down1 converter
3:2 sd1_dvm_time ROM R/W
Time ste p of DVM voltage change of step down1
If voltage of step down1 (step_down1_v) is changed during
operation, voltage is decreased or increased by 25 mV
steps with the following time separation between steps:
00 0 µsec, immediate change (no DVM)
01 4 µsec
10 8 µsec
11 16 µsec
7:4 sdx_1A_mode ROM R/W
Select 1A mode of step down2 (combined operation of SD2
and SD3 with a single coil and up to 1A output current) and/
or controller mode of SD1
1010
1A mode selected Controlled by SD2 The
following pins have to be connected:
VSUPPLY2<->VSUPPLY3, LX2<->LX3, PGND2<-
>PGND3
Stepdown3 is not usab le in that mode
1100 External controller mode. LDO DIG1 and current
sink / GPIO CURR1_GPIO1 cannot be used. Set
ldo_dig1_on=0, GPIO1Mode=111b (tristate),
GPIO1Pulls=00b (no pull-up or pull-do wn)
1101
External controller mode SD1, and 1A mode
controlled by SD2
The following pins have to be connected:
VSUPPLY2<->VSUPPLY3, LX2<->LX3, PGND2<-
>PGND3
Stepdown3 is not usab le in that mode
all other codes (0000...1001,1011,1110...1111) normal
mode
ams AG
Technical content still valid
Table 70. Step Down DC/DC Bit definitions
Addr:133 Step Down Control3
Configurate the SD converters to reduce voltage drops on fast transient
high current load steps. Double the output capacitor size has to be used!
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 77 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.11.3 Typical Performance Characteristics
Figure 30. DC/DC step-down Efficiency (sdX_dis_curmin=0, sdX_lpo=0)
Figure 31. PCB Layout recommendation
0 sd1_uvlimit 0 R/W 0 Normal opera tion
1 Enable SD1 undervoltage limit.
1 sd2_uvlimit 0 R/W 0 Normal opera tion
1 Enable SD3 undervoltage limit.
2 sd3_uvlimit 0 R/W 0 Normal opera tion
1 Enable SD3 undervoltage limit.
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 78 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.12 Low Dropout Regulators (LDO)
The low dropout regulators are linear high performance regulators with programmable output voltage.
They are controlled by the followi ng registers:
Table 71. LDO_RF1 voltage bit definitions
Addr:03 LDO_RF1 voltage
These bits control the LDO_R F 1 voltage and mode
Bit Bit Name Default Access Description
Table 72. LDO_RF2 voltage bit definitions
Addr:04 LDO_RF2 voltage
These bits control the LDO_R F 2 voltage and mode
Bit Bit Name Default Access Description
Table 73. LDO_RF3 voltage bit definitions
Addr:05 LDO_RF3 voltage
These bits control the LDO_RF3voltage and mode
Bit Bit Name Default Access Description
4:0 ldo_rf1_v ROM R/W
Control the voltage selection for LDO VRF_1
00000 1.85V
… (LSB=50mV)
11111 3.40V
5 rf1_lcurr_en ROM R/W 0 current limitation = Ilimit
1 current limitation Ilimit=Ilimit/2
6 rf1_swprot_en ROM R/W If ‘1’ current limitation is enabled, if RF1-LDO is operating
as High side switch
4:0 ldo_rf2_v ROM R/W
Control the voltage selection for LDO VRF_2
00000 1.85V
… (LSB=50mV)
11111 3.40V
5 rf2_lcurr_en ROM R/W 0 current limitation = Ilimit
1 current limitation Ilimit=Ilimit/2
4:0 ldo_rf3_v ROM R/W
Control the voltage selection for LDO VRF_3
00000 1.85V
… (LSB=50mV)
11111 3.40V
5 rf3_lcurr_en ROM R/W 0 current limitation = Ilimit
1 current limitation Ilimit=Ilimit/2
6 rf3_hotplug_en ROM R/W 0normal mode
1200mA current limited switch, if bit rf3_sw=1
(rf3_lcurr_en=0)
ams AG
Technical content still valid
Table 74. LDO_DIG1 voltage bit definitions
Addr:06 LDO_DIG1 voltage
These bits control the LDO_DIG1 voltage
Bit Bit Name Default Access Description
Table 75. LDO_DIG2 voltage bit definitions
Addr:07 LDO_DIG2 voltage
These bits control the LDO_DIG2 voltage
Bit Bit Name Default Access Description
Table 76. LDO_DIG3 voltage bit definitions
Addr:08 LDO_DIG3 voltage
These bits control the LDO_DIG3 voltage
Bit Bit Name Default Access Description
Table 77. LDO_DIG4 voltage bit definitions
Addr:09 LDO_DIG4 voltage
These bits control the LDO_DIG4 voltage
Bit Bit Name Default Access Description
Table 78. LDOs Reg Power1 ctrl Bit definitions
Addr:23 Reg Power1 Ctrl
These bits control the on/off function of the ldo regulator
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 79 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
5:0 ldo_dig1_v ROM R/W Control the vo ltage selection for LDO DIG_1
(see Table 82)
5:0 ldo_dig2_v ROM R/W Control the voltage selection for LDO DIG_2(see Table 82)
5:0 ldo_dig3_v ROM R/W Control the voltage selection for LDO DIG_3(see Table 82)
5:0 ldo_dig4_v ROM R/W Control the voltage selection for LDO DIG_4(see Table 82)
0 ldo_rf1_on ROM R/W
Switch on control of RF1 LDO; Important: Set rf1_sw=0
before setting ldo_rf1_on=1; it is possible to on/off control
LDO RF_1 by CURR3_GPIO3 or CURR4_GPIO4 (see
General Purpose Input / Output (CURR1_GPIO1
CURR4_GPIO4) on page 30)
1 ldo_rf2_on ROM R/W
Switch on control of RF2 LDO; Important: Set rf2_sw=0
before setting ldo_rf2_on=1; it is possible to on/off control
LDO RF_2 by CURR3_GPIO3 or CURR4_GPIO4 (see
General Purpose Input / Output (CURR1_GPIO1
CURR4_GPIO4) on page 30)
2 ldo_dig1_on ROM R/W
Switch on control of DIG1 LDO;
it is possible to on/off control LDO DIG_1 by
CURR3_GPIO3 or CURR4_GPIO4 (see General Purpose
Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on
page 30)
3 ldo_dig2_on ROM R/W
Switch on control of DIG2 LDO. do not set if DCDC SD1 is
in external controller mode (if sd1_1A_mode = 1100b).
it is possible to on/off control LDO DIG_2 by
CURR3_GPIO3 or CURR4_GPIO4(see General Purpose
Input / Output (CURR1_GPIO1 … CURR4_GPIO4) on
page 30)
ams AG
Technical content still valid
Table 79. LDOs Reg Power2ctrl Bit definitions
Addr:30 Reg Power2 Ctrl
These bits control the on/off function of the ldo regulator
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 80 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.12.1 RF LDO’s (VRF_1, VRF_2, VRF_3)
These LDO’s are designed to supply sensitive analogue circuits like LNA’s, Transceivers, VCO’s and other critical RF
components of cellular radios. Another application is the supply of audio devices or as a reference for AD and DA
converters. The design is optimized to deliver the best compromise between quiescent current and regu lator
performance for battery powered devices .
S t ability is guaranteed with ceramic output capacitors of 1µF ±20% (X5R) or 2.2µF +100/-50% (Z5U) for RF2, RF3 and
2.2µF ±20% (X5R) or 4.7µF +100/-50% (Z5U) for RF1. The low ESR of these caps ensures low output impedance at
high frequencies. Regulation performance is excellent even under low dropout conditions, when the power transistor
has to operate in linear mode. Power supply rejection is high enough to suppress the PA-ripple on the battery in TDMA
systems at the output. The low noise performance allows direct connection of noise sensitive circuits without additional
filtering networks. The low impedance of the power device enables the device to deliver up to IOUT current even at
nearly discharged batteries without any decrease of performance.
With vrf2_lcurr_en=0 and vrf3_lcurr_en=0 the regulator VRF_2, VRF_3 can deliver up to 250mA
With vrf1_lcurr_en=0 the regulator VRF_1 can deliver up to 400mA
0 ldo_rf3_on ROM R/W Switch on control of RF3 LDO; Important: Set rf3_sw=0
before setting ldo_rf3_on=1
1 ldo_dig3_on ROM R/W Switch on control of DIG3 LDO; it is possible to on/off
control LDO DIG_3 by CURR3_GPIO3 or CURR4_GPIO4
(see General Purpose Input / Output (CURR1_GPIO1 …
CURR4_GPIO4) on page 30)
2 ldo_dig4_on ROM R/W Switch on control of DIG4 LDO
3 rf1_sw ROM R/W If ‘1’ RF1-LDO is opera ting as High side switch (Ron=1Ω),
valid if ldo_rf1_on=0
4 rf2_sw ROM R/W If ‘1’ RF2-LDO is opera ting as High side switch (Ron=1Ω),
valid if ldo_rf2_on=0
7 rf3_sw ROM R/W If ‘1’ RF3-LDO is opera ting as High side switch (Ron=1Ω),
valid if ldo_rf3_on=0
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 81 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Figure 32. Analog LDO Block diagram
Table 80. Analog LDO (VRF_1, VRF_2, VRF_3) Characteristics, Vx_IN=4V; ILOAD=150mA; Tamb=25ºC;
CLOAD =2.2µF (Ceramic); unless othe rwise specified
Symbol Parameter Min Typ Max Unit Note
Vx_IN Supply voltage rage 3 5.5 V
IOUT Output current1
0150
mA
VRF_2, rf2_lcurr_en=1
VRF_3, rf3_lcurr_en=1
0 200 VRF_1, rf1_lcurr_en=1
0250 VRF_2, rf2_lcurr_en=0
VRF_3, rf3_lcurr_en=0
0 400 VRF_1, rf1_lcurr_en=0
RON On resistance 0.5 ΩVRF_1
1ΩVRF_2, VRF_3
PSRR Power supply rejection
ratio 70 dB f=1kHz
40 f=100kHz
IOFF Shut down current 100 nA
IVDD Supply current 50 µA without load
Noise Output noise 50 µVrms 10Hz < f < 100kHz
tstart Startup time 200 µs VRF_1,2 ,3 are set to low current
during startup time
Vout Output voltage
1.85 2.85 V VRFX_IN>3.0V, VRF_1 @
Iout=300mA, VRF_2 and VRF_3 @
Iout=150mA (X=1,2)
1.85 3.4 V VRFX_IN>3.55V, VRF_1 @
Iout=300mA, VRF_2 and VRF_3@
Iout=150mA (X=1,2)
Vout_tol Output voltage
tolerance -50 50 mV
VLineReg Line regulation -1 1 mV Static
-10 10 Transient; Slope: tr=10µs









!"#
$
Ω
%

&
'
())
*
)
(
'+
),
-',,

μ
./.0
00
μ
./.
1)/
%

2
34
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 82 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.12.2 Digital LDO’s (VDIG_1, VDIG_2, VDIG_3, VDIG_4)
The Digital LDO’s can be used in any medium power system or subsystem where quiescent power consumption of the
regulator itself has to be minimized without sacrificing its performance. For its stability a cheap 1µF ceramic capacitor
is required. The 5V charge pump will be switched on automaticall y, if one of the digital LDO’s are switched on.
Figure 33. Digital LDO Block di agram
VLoadReg Load regulation -1 1 mV Static
-10 10 Transient; Slope: tr=10µs
ILIMIT_VRF1_HCUR
RCurrent limitation 800 mA VRF_1, rf1_lcurr_en=0
ILIMIT_VRF1_LCURR Current limitation 400 mA VRF_1, rf1_lcurr_en=1 and during
startup
ILIMIT_VRF2,3_L Current limitation
VRF_2,3 low current
limit 300 mA rf2_lcurr_en=1, rf3_lcurr_en=1
ILIMIT_VRF2,3_H Current limitation
VRF_2,3 high current
limit 500 mA rf2_lcurr_en=0, rf3_lcurr_en=0
CLOAD_RF1 Load capacitor 2 5 µF ceramic only (VRF_1)
CLOAD_RF2,3_L Load capacitor 1 5 µF ceramic only (VRF_2,3) for
rf1_lcurr_en=1 and rf2_lcu rr_en=1
CLOAD_RF2,3_H Load capacitor 2 5 µF ceramic onl y (VRF_2,3) for
rf1_lcurr_en=0 and rf2_lcu rr_en=0
1. Guaranteed by design and verified by laboratory evaluation and characterization; not production tested.
Table 81. Digital LDO (VDIG1, VDIG2, VDIG3, VDIG4) Characteristics,VSUPPLY=4V; ILOAD=200mA; Tamb=25ºC;
CLOAD =1µF (Ceramic); unless otherwise specified
Symbol Parameter Min Typ Max Unit Note
VDIGX_IN Supply voltage range 1 5.5 V
IOUT Output current10200mA Vout<2.2V;
VDIGX_IN>Vout+RON*IOUT
0100mA Vout<2.5V;
VDIGX_IN>Vout+RON*IOUT
RON On resistance 4 ΩVout<2.2V
Table 80. Analog LDO (VRF_1, VRF_2, VRF_3) Characteristics, Vx_IN=4V; ILOAD=150mA; Tamb=25ºC;
CLOAD =2.2µF (Ceramic); unless othe rwise specified
Symbol Parameter Min Typ Max Unit Note

μ










ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 83 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
PSRR Power supply rejection
ratio 60 dB f=1kHz
30 f=100kHz
IOFF Shut down current 100 nA
IVDD Supply current 20 µA without load
tstart Startup time 200 µs
Vout Output voltage 0.75 2.20 V Vsupply>3.0V, VCP=5.2V,
Iout<200mA
2.5 V Vsupply>3.0V, VCP=5.2V,
Iout<100mA
Vout_tol_lv Output voltage
tolerance -50 50 mV Vout<1.85V
Vout_tol_hv Output voltage
tolerance -60 60 mV Vout>1.85V
VLineReg Line regulation -10 10 mV Static
-50 50 Transient; Slope: tr=10µs
VLoadReg Load regulation -20 20 mV Static
-50 50 Transient; Slope: tr=10µs
ILIMIT Current li mitation 400 mA
1. Guaranteed by design and verified by laboratory evaluation and characterization; not production tested
Table 81. Digital LDO (VDIG1, VDIG2, VDIG3, VDIG4) Characteristics,VSUPPLY=4V; ILOAD=200mA; Tamb=25ºC;
CLOAD =1µF (Ceramic); unless otherwise specified
Symbol Parameter Min Typ Max Unit Note
ams AG
Technical content still valid
Table 82. Digital LDO (VDIG_1.4) Programming voltage table
Code (d) Code (b) VOUT(V) Code (d) Code (b) VOUT(V)
www.austriamicrosystems.com Revision 1v13 84 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Note: Full performance for Vout 2.20V; max. 100mA output current for V out 2.50V; do not use values V out>2.50V
8.12.3 Low power LDO (V2_5)
The Low power LDO V2_5 is needed to supply the chip core (analog and digital) of the device. It is designed to get the
lowest possible power consumption, and still offering reasonable regulation characteristics. The regulator has three
supply inputs selecting automatically the higher one. This gives the possibility to supply the chip core either with the
battery or with the charger depending on the conditions. Bulk switch comparators are used to avoid any parasitic
current flow. To ensure high PSRR and stability, a low-ESR ceramic capacitor of min. 1µF must be connected to the
output.
0 000000 0.75 22 010110 1.80
1 000001 0.80 23 010111 1.80
2 000010 0.85 24 011000 1.80
3 000011 0.90 25 011001 1.80
4 000100 0.95 26 011010 1.80
5 000101 1.00 27 011011 1.80
6 000110 1.05 28 011100 1.80
7 000111 1.10 29 011101 1.80
8 001000 1.15 30 011110 1.80
9 001001 1.20 31 011111 1.80
10 001010 1.25 32 100000 1.50 (do not use)
11 001011 1.30 33 100001 1.60 (do not use)
12 001100 1.35 34 100010 1.70 (do n0t use)
13 001101 1.40 35 100011 1.80 (do not use)
14 001110 1.45 36 100100 1.90
15 001111 1.50 37 100101 2.00
16 010000 1.55 38 100110 2.10
17 010001 1.60 39 100111 2.20
18 010010 1.65 40 101000 2.30
19 010011 1.70 41 101001 2.40
20 010100 1.75 42 101010 2.50
21 010101 1.80
Table 83. Low power LDO (V2 _5) Characteristics,VBAT=4V; ILOAD_ext=0; Tamb=25ºC; CLOAD =2.2 µF (Ceramic);
unless otherwise specified
Symbol Parameter Min Typ Max Unit Note
VBAT Supply voltage rage 2.8 5.5 V
VCHARGER 415
RON On resistance 50 ΩGuaranteed per design
PSRR Power supply rejection
ratio 60 dB f=1kHz
40 f=100kHz
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 85 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
8.13 5V Charge Pump
Figure 34. 5V Charge Pump Block diagram
The charge pump uses the pad VCP_IN as input, regulates and doubles its volt age with the help of the flying cap acitor
between CAPP and CAPN to its output VCP_OUT (the output is automatically limited not to exceed VCPOUT). If the bit
cp_pulseskip is set, the charge pump operates in pulse skip mode, and only starts cycles if its output voltage is below
this level. In this mode the suppl y current is reduced, but the output ripple is increased.
The charge pump requires the following external components:
Table 84. Charge Pump External Components
Symbol Parameter Min Typ Min Unit Note
IOFF Shut down current 100 nA
IVDD Supply current 3 µA Guaranteed per design, consider
chip internal load for measurements.
tstart Startup time 200 µs
Vout Output voltage 2.4 2.5 2.6 V
Vout_tol Output voltage
tolerance -50 50 mV
VLineReg Line regulation -10 10 mV Static
-50 50 Transient; Slope: tr=10s
VLoadReg Load regulation -10 10 mV Static
-50 50 Transient; Slope: tr=10s
CFLY External flying
capacitor 370 470 850 nF Ce ramic X5R or X7R low-ESR
capacitor between CAPP and CAPN
CSTORE External storage
capacitor 1.76 2.2 2.64 µF Ceramic X5R or X7R low-ESR
capacitor between VCP_OUT and
VSS
Dout Schottky Diode for
startup between
VCP_IN and
VCP_OUT 1 A Peak current of schottky Diode
Table 83. Low power LDO (V2 _5) Characteristics,VBAT=4V; ILOAD_ext=0; Tamb=25ºC; CLOAD =2.2 µF (Ceramic);
unless otherwise specified
Symbol Parameter Min Typ Max Unit Note
5
55
5
5







 !

"
#$
%


ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 86 - 157
AS3658
Data Sheet Confidential - Detailed Description-Power Management Functions
Make the connections of the external capacitors as short as possible.
Table 85. Charge Pump Characteristics
Symbol Parameter Min Typ Max Unit Note
Table 86. CP Power1 ctrl Bit definitions
Addr:23 Reg Power1 Ctrl
These bits control the on/off function of the ldo regulator
Bit Bit Name Default Access Description
Table 87. Charge Pump Bit definitions
Addr:17 Charge Pump Control
These bits control the Charge Pump
Bit Bit Name Default Access Description
VCPIN Charge Pump input
voltage 3.0 5.5 V
fIN Switching frequency 1.1 MHz cp_freq=0, fclk_int=2.2MHz
0.55 MHz cp_freq=1, fclk_int=2.2MHz
ICPOUT Output Current 0.0 100 mA VCP_IN = 3.2V, Clock = fclk_int/2;
cp_pulseskip=0; fin=1.1MHz
VCPOUT Output Voltage 4.9 5.2 5.6 V
VCPSKIP Output Voltage during
pulseskip 4.92 V Use with cp_frequ=1 only
ICP_noload Supply current without
load 2 mA 1.1MHz switching frequency
ICP_pulseskip Charge pump supply
current without load in
pulseskip mode 20 µA cp_pulseskip=1 and cp_frequ=1
7 cp_on ROM R/W Switch on of the charge pump bl ock, charge pump is
automatically activated if any of the following blocks are
active: VDIG_1, VDIG_2, VDIG_3, VDIG_4
0 cp_pulseskip ROM R/W
Switches on the pu l s e ski p mo de of th e charge pum p
0 Normal fixed frequency mode
1Pulse skip, low power mode (Set cp_frequ=1 in
this mode)
1 cp_freq ROM R/W
Defines the clock frequency of the step up dc/dc converter
0fclk_int/2 (0.8 to 1.15 MHz)
1fclk_int/4 (0.4 to 0.575 MHz)
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 87 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9 Detailed Description- Audio Functions
The audio functions consist of all the audio features of AS3658 as shown in the following block diagram:
Figure 35. AS3658 Audio Functions
9.1 Audio Paths
Following Audio paths are possible (only one configuration is po ssible at the same time):
Figure 36. AS3658 I2S I/O 1 or I2S I/O2 Playback
Note: As the touch screen interface is merged with I2S Output 3 and SPDIF Output 4 either the touch screen
interface or I2S Output 3 and SPDIF Output 4 can be used at the same time.
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 88 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
Figure 37. AS3658 Line In Recording
Figure 38. AS3658 Microphone Recording
It is also possible to use the Audio ADC and the Audio DAC at the same time. In this case, the sampling frequency of
the Audio DAC is either two or four times the sampling rate of the Audio ADC (ADC: max. 16ks / seconds). The
equalizer should not be used in this case:
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 89 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
Figure 39. AS3658 Microphone Recording and I2S I/O Playback (either I2S 1 or I2S 2/PCM)
Figure 40. AS3658 Recording of the Mixed output signal and parallel playback (either I2S 1 or I2S 2/PCM)
9.2 Common mode voltage generation of HP_CM, LINE_CM
The common mode voltage of the Headphone and Lineout is stored in the C_hpcm and C_linecm capacitor
(connected between HP_CM to VSS and LINE_CM to VSS). These capacitor are also responsible for the popless
startup, PSRR of the amplifiers and sense path of the GND cancellation circuit.
Startup and PSRR is defined by the value of the external capacitors. The RC limits the maximum achievable PSRR:
R=6MΩ typ, C=0.1...1µF:
Table 88. common mode voltage, Audio start-up and PSRR
Capacitor value for C_hpcm and
C_linecm Startup time (typ) Maximum achievab le PSRR
@ 1kHz (typ) @ 100Hz (typ)
µF msec dB dB
0.1 150 76 56
1 1500 90 76
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 90 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.3 Audio Setup Registers
Audio LDO has to be switched on first (aud_ldo_on =1), and enables all other functions.
Table 89. AudioSet1 Register
Addr:74 Audio Set1
These bits control the Audio functions
Bit Bit Name Default Access Description
0 lin_on 0 R/W 0 Line input disabled
1 Line input enabled
1 dac_on 0 R/W
Switch on control of AUDIO DAC
0 DAC disabled
1 DAC enabled (Switch on, if I2S signal vali d only)
2 mix_on 0 R/W 0 Mixer switched off
1 Mixer switched on
3 gnd_sw_on 0 R/W 0 GND switch of f 0V at pin GND_SW
1 GND switch on Vsupply at pin GND_SW
4 aud_ldo_on 0 R/W
Audio LDO ON control
0 Audio LDO off
1 Audio LDO on
5 mclk_invert 0 R/W
MCLK invert selection
0 Change of LRCLK at falling edge of MCLK
1 Change of LRCLK at rising edge of MCLK
6 mclk256 0 R/W 0 MCLK = LRCLK* 128
1 MCLK = LRCLK* 256
7 equ_on 0 R/W 0 Equalizer switched off (bypassed)
1 Equalizer switched on
Table 90. AudioSet2Re gister
Addr:75 Audio Set2
These bits control the Audio functions
Bit Bit Name Default Access Description
1,0 ibr_dac<1:0> 00b R/W
Bias current reduction settings for DAC:
00 default
01 Don't use
10 Don't use
11 Don't use
2 dith_on 0 R/W 1 add dither to the audio stream
0 no dither added
3 I2S_3_on 0 R/W 0 Switch off I2S_3 output
1 Switch on I2S_3 output
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 91 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.4 ADC, DAC and Digital Audio Input
9.4.1 General
Digital audio data can be fed into the AS3658 via the I2S interfa c e Th i s in pu t da ta is used by the 18-bit DAC to
generate the analog audio signal.
The stage is set to mute by default; If the DAC input is not enabled.
9.4.2 Signal Description
The digital audio interface uses the standard I2S format:
Left justified
MSB first
One additional leading bit
MCLK has to have a fixed ratio of 128 or 256 to LRCLK. With a LRCLK equal to 16, 32, 44.1 or 48kHz, the MCLK can
be generated by the on-chip PLL (do not use the internal PLL if there is jitter on the LRCLK1 or 2). For lower sample
rates the bit pll_mode has to be set (for sample rates between 8kHz and 12kHz).
The high going edge of MCLK has to have timing separation from LRCLK edges. If the clock generation is so that
LRCLK edges are at the same time as MCLK high going edges, the MCLK can be inverted to guarantee a proper DAC
function.
This audio input interfaces uses an I2S synchronizer to be able to handle audio sample length of 24bits or less.
5,4 ibr_hph<1:0> 0 R/W
Bias current reduction settings for headphone output
00 0%
01 17%
10 34%
11 50%
6 I2S_select 0 R/W 0 Select I2S_1 input
1 Select I2S_2 inp ut
7 I2S_mclk_en 0 R/W 0 Generation of the master clock by the internal PLL
1 Use Pin MCLK_1, MCLK_2 as masterclock input
Table 90. AudioSet2Re gister
Addr:75 Audio Set2
These bits control the Audio functions
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 92 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
Figure 41. I2S Control Diagram
Figure 42. I2S Timing Diagram
Table 91. PLL,MCLK Settings
I2S_mclk_en I2S_select mclk_invert Description
000 I2S_1 selected (PLL used)
Internal MCLK synchronized to external LRCLK
001 I2S_1 selected (PLL used)
Internal LRCLK used, synchronized to external SDI
010 I2S_2 selected (PLL used)
Internal MCLK synchronized to external LRCLK
011 I2S_2 selected (PLL used)
Internal LRCLK used, synchronized to external SDI
SDI1
SCLK1
LRCLK1
MCLK1
SDI2
SCLK2
LRCLK2
MCLK2
SDO3
SCLK3
LRCLK3
i2s_select
0
1
i2s_select
0
1
SDO1
i2s_select
0
1
i2s_select
0
1
i2s_master_on
0
1
MCLK divider
i2s_clk_divider<11:0>
PLL
rising edge only
for PCM
compatibility
pll_mode
18 B it DAC
m ono t o st ereo
conversion for
pcm_mode=1
SDO
SCLK
LRCLK
MCLK
14 Bit ADC
SDI
SCLK
LRCLK
MCLK
Equalizer
* 256
* 64
i2s_lrck_sclk_out_en
i2s_master_on
Fadc2 pcm_mode samle_rate
0 0 LRCLK / 2
1 0 LRCLK / 4
0 1 LRCLK
Sample r ate
sclk_invert
sclk_invert
LRCLK_out
i2s_lrck_sclk_out_en
i2s_master_on
*2
mclk256
ext_mclk
i2s_mclk_en
mclk_invert
0
1
0
1
mclk_invert
i2s_lrck_sclk_out_en
i2s_master_on
sdo_on_mclk1_en
SDO
sdo3_select
0
1
0
1
0
1
mclk_invert
i2s_mclk_out_en
i2s_master_on
i2s_3_on
SPDIF
spdif_ctrl<1:0>
Au d io left
Audi o right
Aud io l e ft
Audio ri ght
SPDIF
I2S_mclk_en
15 2 1 0
17 2 1 0
Left Channel
15 2 1 0
17 2 1 0
Right Channel
LRCK
SCLK
SDATA
16 bit
SDATA
18 bit
MCLK
64 cycles 64 cycles
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 93 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.4.3 Parameter
Table 92. Audio DAC/ADC Parameter
Parameter Min Typ Max Unit
Table 93. I2S Parameter
I2S Inputs and Outputs VI2S=2.9V Min Typ Max
Table 94. DAC_L Register
Addr:77 DAC_L
These bit s control the Audio DAC volume and functions
Bit Bit Name Default Access Description
1 0 0 I2S_1 selected, exte rnal MCLK on MCLK_1
1 0 1 I2S_1 selected, external MCLK on MCLK_1 (inverted)
1 1 0 I2S_2 selected, exte rnal MCLK on MCLK_2
1 1 1 I2S_2 selected, exte rnal MCLK on MCLK_2 (inverted)
Analog Performance
Programmable gain DAC input -43.43 1.07 dB
Programmable gain ADC input -34.5 12 dB
Gain step size 1.5 dB
DAC THD+Noise at FS -85 -75 dB
DAC SN/R (20Hz-20kHz, -60dBFS) A-weighted 90 94 dB
DAC Inter channel Mismatch 0.25 dB
ADC SN/R 82 dB
VIL SCLKx, LRCLKx, SDIx - - 0.42V
VIH SCLKx, LRCLKx, SDIx 1.02V - 3.3V
VOL SDOX,SCLK3,LRCLK3,SPDIF,SCLK1,LRCLK1,MCLK1 0V
VOH SDOX,SCLK3,LRCLK3,SPDIF,SCLK1,LRCLK1,MCLK1 VI2S
4:0 dal_vol 00000b R/W
volume settings for left DAC input, adjustable in 32 steps @
1.5dB
00000 -40.5 dB gain
00001 -39 dB gain
.....
11110 4.5 dB gain
11111 6 dB gain
5---
6 dac_mute_off 0 R/W 0 DAC input is set to mute
1 normal operation
Table 91. PLL,MCLK Settings
I2S_mclk_en I2S_select mclk_invert Description
ams AG
Technical content still valid
Table 95. DAC_R Register
Addr:78 DAC_R
These bits control the Audio DAC volume and functions
Bit Bit Name Default Access Description
Table 96. ADC_L Register
Addr:79 ADC_L
These bits control the Audio ADC volume and functions
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 94 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
4:0 dar_vol 00000b R/W
volume settings for right DAC input, adj ustable in 32 steps
@ 1.5dB
00000 -40.5 dB gain
00001 -39 dB gain
.....
11110 4.5 dB gain
11111 6 dB gain
4:0 adl_vol 00000b R/W
volume settings for left ADC input, adjustable in 32 steps @
1.5dB
00000 -34.5 dB gain
00001 -33 dB gain
.....
11110 10.5 dB gain
11111 12 dB gain
5 adc_on 0 R/W 0 ADC disabled
1 ADC enabled
6 adc_mute_off 0 R/W 0 ADC input is set to mute
1 normal operation
7 ad_fs2 0 R/W
Divider selection for ADC clock
0ADC sample clock is I2S LRCLK / 2; every ADC
sample is sent twice to the I2S ou tput (up-
sampling by 2)
1ADC sample clock is I2S LRCLK / 4; every ADC
sample is sent four times to the I2S output (up-
sampling by 4)
ams AG
Technical content still valid
Table 97. ADC_R Register
Addr:80 ADC_R
These bits control the Audio ADC volume and functions
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 95 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.5 I2S master mode and PCM Mode
The digital audio interface can also operate in master mode by using I2S1 inte rface.
The pin MCLK2 is used as clock input in that case. Any input clock between sampling rate and 24MHz may be used as
input clock.
In Master Mode operation SCLK1 as output has 32 clock cycles for each sample word.
SCLK = [MCLK / 4] = [LRCLK * 256 / 4] = LRCK * 64 (EQ 8)
Sample Rates
In Master Mode the i2smaster control allows programming various sample rates. The master clock is generated from
the MCLK2 input. Sampling frequencies from 8kHz to 48kHz can be selected. For certain division ratios between
master clock and sample ratio a certain deviation is system inherent.
4:0 adr_vol 00000b R/W
volume settings for right ADC input, adjust able in 32 steps
@ 1.5dB
00000 -34.5 dB gain
00001 -33 dB gain
.....
11110 10. 5 dB gain
11111 12 dB gain
5 adc2dac 0b R/W 0 normal mode
1use ADC output as DAC input (for testing
purposes, equalizer is byp a ssed)
7:6 adcmux 00b R/W
00 Microphone
01 Line In
10 reserved –do not use
11 Audio Sum (Output of Mixer)
Table 98. PLL,i2 s_clk_divider settings
Sample rate MCLK 2 input Divider i2s_clk_divider
<10:0>
Actual sample
rate Error
kHz kHz kHz %
2
1
*
2
1
*
2+
=RD
fLRCLK MCLK
48,000 12288 126,00 126 48,00 0,00
44,100 12288 137,32 137 44,20 0,23
32,000 12288 190,00 190 32,00 0,00
29,400 12288 206,98 207 29,40 -0,01
24,000 12288 254,00 254 24,00 0,00
22,050 12288 276,64 277 22,02 -0,13
12,000 12288 510,00 510 12,00 0,00
ams AG
Technical content still valid
Table 99. i2s master control1 Register
Addr:131 I2s master control1
This register controls the external cl oc k divider for i2s master mode
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 96 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
11,025 12288 555,28 555 11,03 0,05
8,000 12288 766,00 766 8,00 0,00
48,000 12000 123,00 123 48,00 0,00
44,100 12000 134,05 134 44,12 0,04
32,000 12000 185,50 186 31,91 -0,27
29,400 12000 202,08 202 29,41 0,04
24,000 12000 248,00 248 24,00 0,00
22,050 12000 270,11 270 22,06 0,04
12,000 12000 498,00 498 12,00 0,00
11,025 12000 542,22 542 11,03 0,04
8,000 12000 748,00 748 8,00 0,00
7:0 i2s_clk_divider<7:0> 00h R/W Bit 7:0 of divider for MCLK2 input pin
Table 100. i2s master control2 Register
Addr:132 I2s master control2
This register controls the external clock divider and modes for i2s master
mode
Bit Bit Name Default Access Description
2:0 i2s_clk_divi der<10:8> 000b R/W Bit 10:8 of di vider for MCLK2 inpu t pin
3 i2s_master_on 0b R/W 0 i2s master mode disabled
1 i2s master mode enabled
4 i2s_lrclk_sclk_out_en 0b R/W
0LRCLK1 and SCLK1 are used as input (slave
mode)
1 LRCLK1 and SCLK1 are used as output (master
mode).
Clock input for PLL is MCLK2
5 i2s_mclk_out_en 0b R/W
0 MCLK1 used as input (slave mode)
1MCLK1 used as output for master clock of an
external I2S. Clock input for PLL is MCLK2
(MCLK1=256*LRCLK, if bit mclk256=1;
MCLK=128*LRCLK, if bit mclk256=0)
6 sdo_on_ mclk1 0b R/W 0Normal ope ration of MCLK1 (input or output
according to bit is2_mclk_out_en bit)
1MCLK1 used as SDO output (e.g. for audio ADC).
May be used as data output (SDO) for I2S_2 port
Table 98. PLL,i2 s_clk_divider settings
Sample rate MCLK 2 input Divider i2s_clk_divider
<10:0>
Actual sample
rate Error
kHz kHz kHz %
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 97 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.5.1 PCM mode settings
Compatible with BlueCore3-ROM:
Figure 43. Short Frame Sync (shown with 16-bit Sample)
The following setup on PCM-Master side is needed:
AS3658 is slave only
PCM_SYNC is in short frame mode
PCM_SYNC rate is 8ksamples/s
PCM_CLK= 512kHz only (64 x PCM_SYNC)
16 Bit Linear coding of PCM_OUT and PCM_IN (MSB first, LSB last)
Mono (single channel) ope ration only. Only the right channel of the AS3658 is used. The left channel is same as
right channel (in the input direction of AS3658) and has to be ignored by PCM master (in output direction of
AS3658)
Note: Internally the right channel is copied to the right and left channel.
The following setup of AS3658 is needed:
Sclk_invert=1
i2s_mclk_en=0 and mclk_invert= 1 (internal PLL used for generation of internal LRCLK)
pcm_mode=1 and ad_fs2=0 (Necessary to allow unsymmetrical LRCLK and sample rate of 8kHz of ADC)
7 pcm_mode 0b R/W
0 Normal I2S mode
1
PCM mode selected. The following additional
settings are necessary to enable PCM mono
mode:
sclk_invert=1
i2s_mclk_en=0 and mclk_invert=1 (interna l PLL
used for generation of internal LRCLK)
Table 100. i2s master control2 Register
Addr:132 I2s master control2
This register controls the external clock divider and modes for i2s master
mode
Bit Bit Name Default Access Description
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
In short Frame Sync the falling edge of PCM_SYNC indicate the start of the PCM word. PCM_Sync is always one clock cycle long.
PCM_SYNC
PCM_CLK
PCM_OUT
Undefined Undefined
PCM_IN
LRCLK
SCLK
SDI
SDO
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 98 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.6 Line Input
9.6.1 General
AS3658 includes one stereo single ended inputs.
Figure 44. LineIn Block Diagram
Table 101. Line Inputs Parameter
Parameter Min Typ Max Unit
Analog Performance
Rin 50 kΩ
Table 102. LINE_IN_R Register
Addr:85 LINE_IN_R
These bits control the LINE_IN volume and functions
Bit Bit Name Default Access Description
4:0 lir_vol 00000b R/W
volume settings for right line input, adjustable in 32 steps
@ 1.5dB; gain from line input pin (LIN1R) to mixer input
00000 -34.5 dB gain
00001 -33 dB gain
.....
11110 10.5 dB gain
11111 12 dB gain
5 mute_off_inr 0 R/W
Control of MUTE switch
0 right line input is set to mute
1 normal operation
7:6 - - do not change









!"#


""$%"
"$%"
&
'(
&
'(

ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 99 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.7 Five Band Equalizer
The 5 Band equalizer is build of one low pass, one high pass and 3 band pass filter, and is optimized for 44.1kHz
sample frequency:
Low pass filter: 200Hz ( when programming negaitve gain values, this filter changes to a HP filter)
Band pass filter1: 340Hz / Q=1.0 (when programming negative gain values, this filter changes to a notch filter)
Band pass filter2: 1100Hz / Q=0.7 (when programming negative gain values, this filter changes to a notch filter)
Band pass filter3: 3375Hz / Q=1.0 (when programming negative gain values, this filter changes to a notch filter)
High pass filter: 5940Hz (when pragramming negative gain values, this filter changes to a LP filter)
The Q factors and the cut off frequency of the High and low pass filter are measured at 50% gain and are valid for
+6dB amplification of each band.
The attenuation or amplification of each band can be dynamically adjusted by the serial interface. Additional a pre-gain
stage can adjust the input level. This gain stage is after the 16 to 24 bit extension and therefore additional gain, which
is compensated with the equalizer filter itself (eq_lp_gain, eq_band1,2,3_gain, eq_hp_gain) will not cause clipping:
Figure 45. Equalizer Block Diagram
Table 103. LINE_IN_L Register
Addr:86 LINE_IN_L
These bits control the LINE_IN volume and functions
Bit Bit Name Default Access Description
4:0 lil_vol 00000 R/W
volume settings for right line input, adjustable in 32 steps @
1.5dB; gain from line input pin (LIN1L) to mixer input
00000 -34.5 dB gain
00001 -33 dB gain
.....
11110 10.5 dB gain
11111 12 dB gain
5 mute_off_inl 0 R/W
Control of MUTE switch
0 left line input is set to mute
1 normal operation
7:6 00 n/a do not change





 




 !
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 100 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
Figure 46. EQ Filter frequency response sum curve
Figure 47. EQ Filter frequency response +12dB/+6dB/+3dB
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 101 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
Figure 48. EQ Filter frequency response -3dB
Each band has a range from -12 to +12 dB with each increment equal to ±3dB.
For sample frequencies of the I2S stream different from 44.1kHz, the filter frequencies are shifted (ratiometric).
Table 104. EQ_LP Register
Addr: 90 EQ_LP
These bits control the gain of the low pass filter in dB
Bit Bit Name Default Access Description
3:0 eq_lp_gain 0000b R/W
EQ_LP filter gain (-12dB... +12dB)
0h 0dB
1h 3dB
2h 6dB
3h 9dB
4h 12dB
bh -3dB
ch -6dB
dh -9dB
eh -12dB
ams AG
Technical content still valid
Table 105. EQ_Band1 Register
Addr: 91 EQ_Band1
These bits control the gain of the Band pass filter1 in dB
Bit Bit Name Default Access Description
Table 106. EQ_Band2 Register
Addr: 92 EQ_Band2
These bits control the gain of the Band pass filter2 in dB
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 102 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
3:0 eq_band1_gain 0000b R/W
EQ_Band1 filter gain (-12dB... +12dB)
0h 0dB
1h 3dB
2h 6dB
3h 9dB
4h 12dB
bh -3dB
ch -6dB
dh -9dB
eh -12dB
3:0 eq_band2_gain 0000b R/W
EQ_Band2 filter gain (-12dB... +12dB)
0h 0dB
1h 3dB
2h 6dB
3h 9dB
4h 12dB
bh -3dB
ch -6dB
dh -9dB
eh -12dB
ams AG
Technical content still valid
Table 107. EQ_Band3 Register
Addr:93 EQ_Band3
These bits control the gain of the Band pass filter3 in dB
Bit Bit Name Default Access Description
Table 108. EQ_HP Registe r
Addr:94 EQ_HP
These bits control the gain of the High pass filter in dB
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 103 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
3:0 eq_band3_gain 0000b R/W
EQ_Band3 filter gain (-12dB... +12dB)
0h 0dB
1h 3dB
2h 6dB
3h 9dB
4h 12dB
bh -3dB
ch -6dB
dh -9dB
eh -12dB
3:0 eq_hp_gain 0000b R/W
EQ_HP filter gain (-12dB... +12dB)
0h 0dB
1h 3dB
2h 6dB
3h 9dB
4h 12dB
bh -3dB
ch -6dB
dh -9dB
eh -12dB
ams AG
Technical content still valid
Table 109. EQ_preamp Regi ster
Addr:95 EQ_preamp
These bits control the preamplifier of the EQ in dB
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 104 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
4:0 eq_pre_gain 00000b R/W
EQ_vol gain (-12dB ... +12dB with 1.5dB steps)
0h 0dB
01h -1.5dB
02h -3.0dB
03h -4.5dB
04h -6.0dB
05h -7.5dB
06h -9.0dB
07h -10.5dB
08h -12dB
09h 1.5dB
bh 3.0dB
ch 6.0dB
dh 7.5dB
eh 9.0dB
fh 10.5dB
10h 12dB
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 105 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.8 Microphone Input
General
The audio front-end offers one microphone inputs and a low noise microphone voltage supply (microphone bias), voice
activation, microphone connect detection and push button remote control.
Figure 49. Microphone Input Block diagram and External Circui t
Gain Stage & Limiter
The integrated pre-amplifier allows 3 preset gain settings. There is also a limiter which attenuates high input signals
from e.g. electret microphones signal to 1Vp. The AGC has 15 steps with a dynamic range of about 29dB. The AGC is
ON by default but can be disabled by a microphone register bit.
Apart from the microphone pre-amplifier the microphone input signal can further be amplified with 32 @1.5dB
programmable logarithmic gain step s and MUTE. All gains and MUTE are independently programmable. The gain can
be set from –40.5dB to +6dB.
The stage is set to mute by default. If the microphone input is not enabled, the volume settings are set to their default
values. Changing the volume and mute control can only be done after enabling the input.
Supply & Detection
The microphone input generates a supply voltage of 1.5V above AGND. The supply is designed for 2mA and has a
10mA current limit. In OFF mode the MICS terminal is pulled to AVDD with 30kΩ. A current of typically 50µA generates
an interrupt to inform the CPU, that a circuit is connected. When using the MICS terminal as ADC-10 input to monitor
external voltage the 30kΩ pull-up can be disabled.
Remote Control
Fast changes of the supply current of typically 500µA are detected as a remote button press, and an interrupt is
generated.
Voice Activation
Further a built-in voice activation comparator can actuate an interrupt if microphone input voltage of about 5mVRMS is
detected.










!

"#!$#
"!$#
%
&'()
*
)*+,
 "!
"-!..

/0
11
/0
12/
/0&

/03

/0&
&&/
/03
11/
/04
11/
/0
&&1/
/05
&&1/
31 )
!..
6"#.
17
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 106 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
Microphone Input Parameter
Table 110. Microphone Inputs Parameter, TA= 25oC unless othe rwise mentioned
Symbol Parameter Min Typ Max Unit Note
VMICIN0
Input Signal Level
40 mVPEAK AMICPRE = 28dB; AMIC = 0dB
VMICIN120 mVPEAK AMICPRE = 34dB; AMIC = 0dB
VMICIN210 mVPEAK AMICPRE = 40dB; AMIC = 0dB
RMICIN Input Impedance 15 kΩMICP, MICN to AGND
MICIN Input Impedance
Tolerance ±15 %
CMICIN Input Capacitance 5 pF
AMICPRE Microphone
Preamplifier Gain
28 dB Preamplifier has 3 selectable (fixed)
gain setti ngs
34
40
AMIC
Programmable Gain -40.5 +6 dB
Gain Steps 1.5 dB discrete logarithmic gain steps
Gain Step Precision ±0.25 dB
VMICLIMIT Limiter Activation Level 1 VPEAK
AMICLIMIT Limiter Gain Overdrive 15*2 dB
tATTACK Limiter Attack Time 50 µs/6dB
tDECAY Limiter Decay Time 120 ms/6dB
AMICMUTE Mute Attenuation 100 dB
VMICSUP Microphone Supply
Voltage 2.9 V
IMICMAX Max. Microphone
Supply Current 10 mA microphones nominally need a bias
current of 0.5mA-1mA
VNOISE Microphone Supply
Voltage Noise V
IMICDET Microphone Detection
Current 50 µA
IREMDET Max. Remote
Detection Current 500 µA
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 107 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
Register Description
Table 111. MIC_R Register
Addr:87 MIC_R
Right Microphone Input Register
Configures the gain from microphone amplifier output
Bit Bit Name Default Access Description
4:0 mr_vol 00000b R/W
volume settings for right microphone input, adjustable
in 32 steps @ 1.5dB; gain from microphone amplifier
00000 -40.5 dB gain
00001 -39 dB gain
.....
11110 4.5 dB gain
11111 6 dB gain
6:5 pre_gain 00 R/W
Sets the gain of the microphone preamplifier
00 gain set to 28 dB
01 gain set to 34 dB
10 gain set to 40 dB
11 reserved, do not use
7 mic_agc_off 0 R/W
Control of limiter AGC (automatic gain control). Limits
high dynamic range of electret/MEMS microphone
(e.g. user shouts or blows into microphone)
0 automatic gain control enabled
1 automatic gain control disabled
Table 112. MIC_L Register
Addr:88 MIC_L
Left Microphone Input Register
Configures the gain from microphone amplifier output
Bit Bit Name Default Access Description
4:0 ml_vol 00000 R/W
volume settings for left microphone input, adjustable in 32
steps @ 1.5dB; gain from microphone amplifier
00000 -40.5 dB gain
00001 -39 dB gain
.....
11110 4.5 dB gain
11111 6 dB gain
5 rdet_off 0 R/W
Disables the microphone detect function (30kΩ pull-up
from MICS to VDAC) to use the terminal as ADC-10
input
0 microphone detection enabled
1 microphone detection disabled
6 mute_off 0 R/W
Control of MUT E
0 microphone input set to mute
1 gain set to 34 dB
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 108 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.9 Audio Output Mixer
9.9.1 General
The mixer stage sums up the audio signals of the following stages
Microphone Input
Line Input
Digital Audio Input (DAC)
The mixing ratios have to be with the volume registers of the corresponding input stages. Please be sure that the input
signals of the mixer st age are not higher than 1Vp. If summing up several signals, each individual signal has of course
to be accordingly lower . This shall insure that the output signal is also not higher than 1Vp to get a proper signal for the
output amplifier.
This stage features an automatic gain control (AGC), which automatically avoids clipping.
9.9.2 Register Description
7 msup_off 0 R/W 0 microphone supply on if mic_on=1
1 microphone supply off
Table 113. AudioSet_3 Register
Addr:76 Audio_set3 register
Configures the mixer inputs and AGC
Bit Bit Name Default Access Description
0 pll_mode 0 R/W
Preset of PLL bias for the following sampling
frequencies
0 16-48kS
1 8-12kS
1 hp_pulld_en 0 R/W
Controls the pulldown of the HP1 if HP2is enabled and
HP2, if HP1 is enabled
0 Pulldown disabled if hp_on=1
1Pulldown of the not used HP1/2 output
enabled, if hp_on=1
2 voxm_on 0 R/W
Switches on the voice recognition
0OFF
1ON
3 mic_on 0 R/W
Switches on the microphone amplifier
0OFF
1ON
Table 112. MIC_L Register
Addr:88 MIC_L
Left Microphone Input Register
Configures the gain from microphone amplifier output
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 109 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.10 Line Output
9.10.1 General
The line output is designed to provide the audio signal on 600 Ω min.
This output stage has an independent gain regulation for left and right channel with 32 steps @ 1.5dB each. The gain
can be set from –40.5dB to +6dB.
9.10.2 No-Pop Function
To avoiding click and pop noise during power-up and shutdown, the output is automatically set to mute when the output
stage is disabled. Also the volume settings are set to their default values, and can’t be changed, as long the output
stage is not enabled.
LINE_CM pin, which needs a 0.1µF... 1µF capacitor out side gets charged on power-up with 1µA to ALVDD/2. After
start-up the DC level of the following pins are the same: LOUT_L=LOUT_R=LINE_CM= ALVDD/2. The Start-up time
before releasing mute is about 150ms with 0.1µF. To av oid pop-noise 150ms discharging time of LINE_CM after a
shutdown, have to be waited before starting up again.
9.10.3 Ground Noise Cancellation
The purpose of the ground cancellation circuit is to compensate noise (ground noise) between different grounds (e.g.
the ground where the AS3658 is soldered versus e.g. the ground of a car amplifier (see Figure 50)). This noise
between these different grounds can be caused e.g. by a high current devices like a motor-fan. The ground
cancellation circuit can be used for line and headphone amplifiers.
The circuit works as follows:
The ground noise gets added inside the AS3658 to the audio signal (input LINE_CM for the Line Out amplifier or
HP_CM for headphone amplifier) in a way that it cancels inside the car amplifier. The sense point is connected with
RGND_SEP (20Ω) to the battery ground.
4 agc_off 0 R/W
Switches the sign a l limit er OFF
0automatic gain control for summing stage
enabled
1automatic gain control for summing stage
disabled
5 dacmix_off 0 R/W
Input from DAC to R and L
0ON
1OFF
6 micmix_off 0 R/W
Input from microphone to R and L
0ON
1OFF
7 linmix_off 0 R/W
Input from line input to R and L
0ON
1OFF
Table 113. AudioSet_3 Register
Addr:76 Audio_set3 register
Configures the mixer inputs and AGC
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 110 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
The ground cancellation can be disabled by shorting the 20Ω resistor setting bit gnd_sw to ‘1’. This bit should be set if
e.g. a headphone instead of the car amplifier is connected to the output jack.
Note: A similar cicuit can be used for the headphone amplifi er.
Figure 50. Ground Noise Cancellation Application Schematic
9.10.4 Power Save Options
To save power, a reduction of the bias current can be selected.
Table 114. Line Power-Save Options
IBR_LINE IDD_LINE (typ.)
9.10.5 Parameter
02.2mA
11.5mA
Tabl e 115. Line out Block Characteristics
Parameter Min Typ Max Unit
Analog Performance
R_Load at LOUT_L and LOUT_R single ended 600 Ω
Gain Step Precision (RLmin-max,20Hz-20kHz) ±0.5 dB
SINAD no load, LineIn-> Line out, A-weighted -97 dB
THD @ 1kHz, no load -88 dB
THD @ 1kHz, 600Ω-80 dB
PSRR (200Hz-20kHz) 60 90 dB
IOUT_powerdown -20 20 µA
Tpower_up (C_LINECM=100nF) 150 ms
4











 !

"
## !$
%


&
'
(
(
%
")
")
*+,-
).(
&
'
&/001
(2
&
&/001
3&!
&


%/4(
%/4(
).(
''+-
%/4
*+,-
%/4
*+,-
")(.0
'+5
%/4
6785
%/4
6785
")(.0
-)97'
&
'#',-
")(:
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 111 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.10.6 Register Description
To get an interrupt on an over-current event, the corresponding bit in the Interrupt enable register has to be set. All
other Line/headphone driver settings are controlled by the following two registers.
Right Line Register
Table 116. LINE_OUT_R Register
Addr:83 LINE_OUT_R
These bits control the Line in volume and mode
Bit Bit Name Default Access Description
GND cancellation GND - AUDIO_GND to
LOUT_R, LOUT_L no load
100Hz 50
dB1kHz 50
10kHz 40
4:0 liner_vol 00000b R/W
volume settings for right Line output, adjustable in 32
steps @ 1.5dB
00000 -40.5 dB gain
00001 -39 dB gain
......
11110 4.5 dB gain
11111 6 dB gain
5 dac2line_on 0 R/W
0Line_out amplifier input connected to mixer
output
1Line_out amplifier input connected to Audio
DAC output gain stage (Mixer is bypassed in
this mode)
7:6 ibr_line<1:0> 00b R/W
Bias current reduction settings for line output:
00 0%
01 17%
10 34%
11 50%
Tabl e 115. Line out Block Characteristics
Parameter Min Typ Max Unit
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 112 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
Left Line Register
Table 117. LINE_OUT_L Register
Addr:84 LINE_OUT_L
These bits control the Line in volume and mode
Bit Bit Name Default Access Description
9.11 Headphone Output
The headphone output is designed to provide the audio signal with 2x40mW @ 16Ω or 2x20mW @32Ω, which are
typical values for headphones.
This output stage has an independent gain regulation for left and right channel with 32 steps @ 1.5dB each. The gain
can be set from –40.5dB to +6dB.
9.11.1 Phantom Ground
HP_CM_PWR pin is the buffered HP_CM output. It can be used to drive the common mode level with a load of 2kΩ.
The phantom ground can be switched off to save power if not needed.
9.11.2 No-Pop Function
To avoiding click and pop noise during power-up and shutdown, the output is automatically set to mute when the output
stage is disabled. Also the volume settings are set to their default values, and can’t be changed, as long the output
stage is not enabled.
HP_CM pin, which needs a 100nF to 1µF capacitor outside, gets charged on power-up with 1µA to AVDD/2. After start-
up the DC level of the following pins are the same: HPR=HPL=HP_CM=HP_CM_PWR=AVDD/2. The Start-up time
before releasing mute is about 150ms. To avoid pop-noise 150ms discharging time of HP_CM after a shutdown, have
to be waited before starting up again.
9.11.3 Over-current Protection
This output stage has an over-current protection, which disables the output for 256ms or 512ms. This value can be set
in the headphone registers. The over-current protection limit of HPR and HPL pin is about 260mA while HP_CM_PWR
pin has a 370mA limit.
4:0 liner_vol 00000b R/W
volume settings for left Line output, adjustable in 32
steps @ 1.5dB
00000 -40.5 dB gain
00001 -39 dB gain
......
11110 4.5 dB gain
11111 6 dB gain
5 - 0 reserved
6 line_on 0 R/W 0 Line stage not powered
1 power up Line stage
7 line_mute 0 R/W 0 normal operation
1Line output set to mute (mute is on during
power-up)
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 113 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.11.4 Power Save Options
To save power, especially when driving 32 Ω loads, a reductio n of the bias current can be selected.
Bias current reduction settings for he adphone outp ut:
00: 0%
01: 17%
10: 34%
11: 50%
9.11.5 Parameters
Table 118. Power Amplifier Parameter
Parameter Min Typ Max Unit
9.11.6 Register Description
To get an interrupt on an over-current event, the corresponding bit in the Interrupt enable register has to be set.
Changing the bias current or the output driver strength is done via AudioSet2 register. All other headphone driver
settings are controlled by the following two registers.
Analog Performance
R_Load at AOUTR and AOUTL single ended 16 Ω
Vout 1.13 Vp
Gain Step Precision (RLmin-max,20Hz-20kHz) ±0.5 dB
SINAD no load, LineIn-> HPH, A-weighted -97 dB
THD @ 1kHz, no load -88 dB
THD @ 1kHz, 32Ω, 10mW -80 dB
THD @ 1kHz, 32Ω, 20mW -74 -66 dB
THD @ 1kHz, 16Ω, 40mW -68 -60 dB
Channel Separation (32Ω, dc-coupled) 60 dB
PSRR (200Hz-20kHz) 60 90 dB
Shorted Protection Level 260 mA
Shorted Protection Level of common mode buffer 370 mA
IOUT_powerdown -20 20 µA
Tpower_up (HP_CM=0.1µF) 150 ms
GND cancellation GND - AUDIO_GND to
HP_R, HP_L no load
100Hz 50
dB1kHz 50
10kHz 40
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 114 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
Right Headphone Register
Table 119. HPH_OUT_R Register
Addr:81 HPH_OUT_R
These bits control the Right headphone ouput volume and mode
Bit Bit Name Default Access Description
Left Headphone Register
Table 120. HPH _OUT_L Register
Addr:82 HPH_OUT_L
These bits control the Left headphone ouput volume and mode
Bit Bit Name Default Access Description
4:0 hpr_vol 00000b
volume settings for right headphone output, adjust able
in 32 steps @ 1.5dB
00000 -40.5 dB gain
00001 -39 dB gain
......
11110 4.5 dB gain
11111 6 dB gain
5 hpcm_off
headphone phantom gro und disable
0 normal operation
1 disable common mode buffer
7:6 hp_ovc_to 00h
headphone over current time out:
speaker over current time out:
00 256 ms
01 128 ms
10 512 ms
11 0 ms
4:0 hpl_vol 00000b
volume settings for left headphone output, adjustable
in 32 steps @ 1.5dB
00000 -40.5 dB gain
00001 -39 dB gain
......
11110 4.5 dB gain
11111 6 dB gain
5 hp_mux 0 R/W 0 use HPL1, HPR1 as headphone output
1 use HPL2, HPR2 as headphone output
6 hp_on 0 R/W 0 headphone stage not powered
1 power up headphone stage
7 hp_mute 0 R/W 0 normal operation
1 headphone output set to mute (mute is on
during power-up)
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 115 - 157
AS3658
Data Sheet Confidential - Detailed Description- Audio Functions
9.12 SPDIF output
Enables and controls the SPDIF output pin. SPDIF functionality is enabled, if internal masterclock is used (internal
PLL), or the external masterclock = 256* LRCLK. (No SPDIF function if external masterclock= 128 *LRCLK)
Table 121. SPDIF Register
Addr:89 SPDIF
These bits control the SPDIF output
Bit Bit Name Default Access Description
1:0 spdif_cntr 00b R/W
ISPDIF output ON/OFF control and sample rate status
bits
00 SPDIF output OFF
01 SPDIF output ON
10 reserved (do not use)
11 reserved (do not use)
2 spdif_invalid 0 R/W
SPDIF sample status bit
0 sample valid
1 sample invalid
3 spdif_mclk_inv 0 R/W
SPDIF master clock control bit
0 master clock
1 master clock inverted
4 spdif_copy_ok 0 R/W
SPDIF copy control bit
0 copy not permitted
1 copy permitted
5 sdo3_select 0 R/W
Select source of SDO3 output
0 Select adc_output
1 Select Equalizer output
6 sclk_invert 0 R/W
Invert serial data clock of I2S1 and I2S2
0 Normal mode
1 Invert SCLK1 or SCLK2 input
7 audio_off 0 R/W
switch off audio functionality for low power
touchpannel detection
0 Normal mode
1 audio bias switched off to reduce power
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 116 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10 Detailed Description - System Functions
The system functions consist of the I2C interface, the reset controller, the interrupt controller, startup sequences and
programming, the watchdog, internal reference s, the ON-key detect and the real time clock module.
10.1 I2C Serial Interface
Table 122. I2C SDA,SCL Characteristics
Symbol Parameter Min Typ Max Unit Note
10.1.1 Feature List
Fast-mode capability (max. SCL-frequency is 400 kHzkHz)
7+1-bit addressing mode
60h x 8-bit data registers (word address 0x00 - 0x60)
Write formats: Single-Byte-Write, Page-Write
Read formats: Current-Address-Read, Random-Read, Seq uential-Read
SDA input delay and SCL spike filtering by integrated RC-components
10.1.2 Transfer Formats
Figure 51. I2C Byte-Write
AS3658 device address write (DW):80h = 10000000b
AS3658 device address read (DR): 81h = 10000001b
Figure 52. I2C Page-Write:
Byte-Write and Page-Write are used to write data to the slave.
VIL SCL,SDA Low Level
input voltage -0.3 0.4 V
VIH SCL,SDA High Level
input voltage 1.3 VSUPP
LY V
SDW AWA Areg_data A P
write register,
WA++
S STA R T c o nd itio n af ter S T O P
Sr repeated START
DW device address for write
DR device address for read
WA word address
Aacknowledge
N
no acknowledge
P stop co n dition
wh ite field slav e as receiver
grey field sla v e as tra ns mitter
WA+
+
increment word address internall
y
SDW AWA Areg _ da ta 1 AA reg_data 2
write register
WA++
PAreg_data n
write registe
r
WA++
w rite reg is te
r
WA++
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 117 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state
(the bus is free). The device-write address is followed by the word address. After the word address any number of data
bytes can be send to the slave. The word address is incriminated internally, in order to write subsequent data bytes on
subsequent address locations.
For reading data from the slave device, the master has to change the transfer direction. This can be done either with a
repeated START condition followed by the device-read address, or simply with a new transmission START followed by
the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register
byte transmitted from the slave. In Read-Mode any number of subsequent register bytes can be read from the slave.
The word address is incriminated internally.
The diagrams below show various read formats available:
Figure 53. I2C Random-Read:
Random-Read and Sequentia l-Read are combined formats. The repeated START condition is used to change the
direction after the data transfer from the master.
The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START
condition is followed by the device-write address and the word address.
In order to change the data direction a repeated ST AR T condition is issued on the 1st SCL pulse after the acknowledge
bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In
this st ate the slave tr ansmit s register dat a located by the previous received word address vector . The master responds
to the data byte with a not-acknowledge, and issues a STOP condition on the bus.
Figure 54. I2C Sequential-Read:
Sequential-Read is the extended form of Random-Read, as more than one register-data bytes are transferred
subsequently. In difference to the Random-Read, for a sequential read the transferred register-data bytes are
responded by an acknowledge from the ma ster. The number of data bytes transferred in one sequence is unlimited
(consider the behavior of the word-address counter). To terminate the transmission the master has to send a not-
acknowledge following the last data byte and generate the STOP condition subsequen tly.
AS DW AWA Adata NP
read register
WA++
Sr DR
WA++
AS DW AWA Adata 1
NP
Sr DR
WA++
data 2
data n
A
A
read register
WA++
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 118 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
Figure 55. I2C Current-Addre ss-Read:
To keep the access time as small as possible, this format allows a read access without the word address tra nsfer in
advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Rea d
address. Analogous to Random-Read, a single byte transfer is terminated with a not-acknowledge after the 1st register
byte. Analogous to Sequential-Read an unlimited number of data bytes can be transferred, where the data bytes has to
be responded with an acknowledge fro m the master. For termination of the transmission the master sends a not-
acknowledge following the last data byte and a subsequent STOP condition.
10.2 Reset generator and XON-Key
XRESET is a low active bi-directional pin. An external pull-up to the periphery supply has to be added.
During each reset cycle the following states are controlled by the AS3658:
Pin XRESET is forced to GND
Programmable Power-off function
Programmable Power-on sequence and regulator voltages
Programmable reset timer
All registers are set to their default values after power-on, except the reset control- and status-registers.
Note: Programming is controlled by the internal Mask-PROM and the external resistor RPROGRAM
Table 123. XRESET,XON Characteristics
Symbol Parameter Min Typ Max Unit Note
10.2.1 Reset Conditions
Reset can be activated from 7 different sources:
Power on (battery or charger insertion)
Low Battery
Software forced reset
Power off mode
External triggered through the pin RESET
Overtemperature
Watchdog
VXRESET_IL XRESET Low Level
input voltage -0.3 0.4 V
VXRESET_IH XRESET High Level
input voltage 1.3 VSUPP
LY V
VXON_IL XON Low Level input
voltage -0.3 0.3*V2
_5
VXON_IH XON High Level input 0.7*V2
_5 V2_5
IXON_PUP XON Pull up current 12 µA
Adata 1
read register
WA++
SDR data 2A
read register
WA++
NP
WA++
data n
A
read register
WA++
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 119 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
Voltage detection:
There are two types of voltage dependent resets: VPOR and VXRESET. VPOR monitors the voltage on V2_5 and
VXRESET monitors the voltage on VSUPPLY. The linear regulator for V2_5 is always on and uses the voltage
VCHARGER, VBAT or V_USB as its source.
The pin RESET is only released if V2_5 is above VPOR and VSUPPLY is above VXRESETRISE.
Table 124. Reset Levels
Symbol Parameter Min Typ Max Unit Note
VRESETFALLING is only accepted if the reset condition is longer than VRESETMASK. This guard time is used to avoid a
complete reset of the system in case of short drops of VBAT.
Power off:
To put the chip into ultra low power mode, write ‘1’ into xon_enable and ‘1’ into power_off. The chip stays in power off
mode until the external pin XON is pulled low, the charger is inserted or the level VPOR is touched to start a complete
reset cycle. The bit power_off is automatically cleared by this reset cycle. During power_off state all circuit s are shut-off
except the Low Power LDO (V2_5). Thus the current consumption of AS3658 is reduced to less than 15 µA. The digital
part is supplied by V2_5, all other circuits are turned off in this mode, including references and oscillator. Except the
reset control registers all other registers are set to their default value after power-on.
Software forced reset
Writing ‘1’ into the register bit force_reset immediately st arts a reset cycle. The bit force_reset is automatically cleared
by this reset.
External triggered reset:
If the pin XRESET is pulled from high to low by an external source (e.g. microprocessor or button) a reset cycle is
started as well.
Overtemperature reset:
The reset cycle can be started by overtemperature conditions. (see Protection Functions on page 134)
Watchdog reset:
If the watchdog is armed (register bit wtdg_on = 1 and wtdg_res_on = 1) and the timer expires it causes a reset. (see
Watchdog on page 135).
VPOR Overall power on reset 1.5 2.0 2.3 V Monitor voltage on V2_5; power on
reset for all internal fun c tions
VXRESETRISE Reset level for Vsupply
rising ResVol
trise VMonitor voltage on Vsupply; rising
level
VXRESETFALLING Reset level for Vsupply
falling
2.7 V Monitor voltage on VSupply; falling
level
ResVol
tfall V if SupResEn=1 only
VRESETMASK Mask time for
VXRESETFALLING 2.0 2.5 3.0 ms Duration for VBAT<VXRESETFALLING
until a reset cycle is started1
1. VRESET signal is debounced with the specified mask time for rising- and falling slope of V BAT.
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 120 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.2.2 Reset Control Bits
Table 125. Reset Timer Register
Addr:22 Reset Timer
These bits control the reset timer and XON enable register
Bit Bit Name Default Access Description
2:0 res_timer ROM R/W
Set RESTIME
000 RESTIME=10ms
001 RESTIME=20ms
010 RESTIME=35ms
011 RESTIME=50ms
100 RESTIME=65ms
101 RESTIME=80ms
110 RESTIME=95ms
111 RESTIME=110ms
3 xon_enable ROM R/W
This flag enables the XON pad and sets the power on
state of the ASIC
0XON pad disabled. Startup of chip; if
VBAT>VRESETRISING
1XON pad enabled. Startup of chip; if
VBAT>VRESETRISING and XON=0
Table 126. Reset Control Regi ster
Addr:105 Reset Control
These bits control the power off mode and reset timer
Bit Bit Name Default Access Description
0 force_reset 0b R/W Setting to ‘1’ starts a complete reset cycle
1 power_off 0b R/W Setting to ‘1’ starts a reset cycle, but waits after the
Reg_off state for a falling edge on the pin XON or until
the charger is detected
2 xon_input NA R/W Read:This flag represents the state of the XON pad
directly
Write: Setting to '1' reset s the 5 sec. Onkey reset timer
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 121 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
6:3 reset_reason NA R
Flags to indicate to the soft ware the reason for the last
reset
0000 VPOR has been reached (battery or charger
insertion from scratch)
0001 VRESETFALLING was reached (battery voltage
drop below 2.75V)
0010 software forced by force_reset
0011 software forced by power_off and XON was
pulled low
0100 software forced by power_off and charger was
detected
0101 external triggered through the pin RESET
0110 reset caused by overtemperature T140
0111 reset caused by watchdo g
1000 reset caused by 5 seconds on press
1001 reset caused by rtc_alarm register
1010 reset caused by rtc repeated wakeup
1011 reset caused by interrupt in standby mode
1100 reset caused by XON pulled low in standby
mode
7 Onkey_reset_5s 1 R/W 0 Reset after 5 seconds ON pressed disabled
1 Reset after 5 seconds ON pressed enabled
Table 127. Internal re ferences Bit definitions
Addr:59 Internal references Bit definitions
These bits control the internal reference mode and intern al clk
frequency
Bit Bit Name Default Access Description
4 standby_mode_on 0 W
Setting to ‘1’ sets the AS3658 into standby mode. All
regulators defined in reg.17h “Reg Power1 Ctrl” and
reg.1Eh “Reg Power2 Ctrl are disabled except those
regulators enabled by reg.81h “Reg standby mode”.
XRESET will be pulled to low. A normal startup of all
regulators will be done with any interrupt (has to be
enabled before entering standby mode). During this
startup, regulators defined by Reg standby mode
register are continuously on.
5 Clk_div2 0 R/W
Divide internal clock oscillator by 2 to reduce
quiescent current for low power operation
0 Normal mode
1
Internal clock frequency divided by two. All
timings are increased by two. Switchi ng
frequency of all DCDC converters are divided
by two. Reduced transient performance of
DCDC converters.
Table 126. Reset Control Regi ster
Addr:105 Reset Control
These bits control the power off mode and reset timer
Bit Bit Name Default Access Description
ams AG
Technical content still valid
Table 128. Reg standby mode Bit definitions
Addr:129 Reg standby mode
These bits control the on/off function of the regulators during standby
mode
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 122 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
6 Reg_low_bias_mode 0 R/W
0 Normal mode
1
The quiescent current of the following
regulators is divided by approx. two: SD1,
SD2, SD3, RF1, RF2, RF3. The current
capability and performance is also reduce in
that mode. (E.g. Use this bit only to reduce
quiescent current, if system and processor is
in a low power mode )
0 ldo_rf1_stby_on 0 R/W 0 RF1 LDO is disabled in standby mode
1 RF1 LDO is enabled in standby mode
1 ldo_rf2_stby_on 0 R/W 0 RF2 LDO is disabled in standby mode
1 RF2 LDO is enabled in standby mode
2 ldo_dig1_stby_on 0 R/W 0 DIG1 LDO is disabled in standby mode
1 DIG1 LDO is enabled in standby mode
3 ldo_dig2_stby_on 0 R/W 0 DIG2 LDO is disabled in standby mode
1 DIG2 LDO is enabled in standby mode
4 sd1_stby_on 0 R/W 0 Step down 1 is disabled in standby mode
1 Step down 1 is enabled in standby mode
5 sd2_stby_on 0 R/W 0 Step down 2 is disabled in standby mode
1 Step down 2 is enabled in standby mode
6 sd3_stby_on 0 R/W 0 Step down 3 is disabled in standby mode
1 Step down 3 is enabled in standby mode
7 cp_stby_on 0 R/W 0 Charge pump is disabled in standby mode
1 Charge pump is enabled in standby mode
Table 127. Internal re ferences Bit definitions
Addr:59 Internal references Bit definitions
These bits control the internal reference mode and intern al clk
frequency
Bit Bit Name Default Access Description
ams AG
Technical content still valid
Table 129. Charger supervision
Addr:14 Fuel Gauge
This bit controls first startup out of power on reset
Bit Bit Name Default Access Description
Table 130. Fuel Gauge
Addr:15 Fuel Gauge
This bit controls first startup out of power on reset
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 123 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.2.3 Reset Cycle
During a reset cycle the pin XRESET is forced to low for at least RESTIME and all registers are set to their default
values (except the registers marked green in theTable 186 on page 148). During the reset time a normal st artup
happens (see Startup on p age 129), the reset is active until the reset timer (set by register bits res_timer<2:0>) expires.
Then the voltage on the pin XRESET is pulled high by the external resistor and the whole system is leaving the reset
state.
10.2.4 Reset Control: res_con
Reset is internally generated from a power supply supervisor and provided to internal logic as well as externally
through the open-drain pad XRESET. At this point, it could be al so forced externally from an external power supply
supervisor. Additionally Reset can be forced by software.
4 auto_shutdown Boot
ROM R/W
Switch on Power off mode at first startup(e .g. First
battery insertion or first charger insertion)
0Startup of all regulators if battery is inserted,
charger insertion, onkey pressed or rtc alarm.
1
Startup of all regulators only if onkey is
pressed or rtc alarm (no startup on battery
insertion; no startup if charger detected, if
no_charging=0). xon_ena ble has to be set in
bootrom.
If a charger is detected and the bit
no_charging=0 (defined by BootROM) and
ch_pwroff_en=0 the AS3658 will start
charging without regulators startup (fully
autonomous charging).
If the bit no_charging=1 and a charger is
detected, the regulators are started and the
charging can be enabled with software
control.
5 power_off_at_v_suplow Boot
ROM R/W
Switch on Power off mode if low Vsupply is detected
during active or standby mode (Pin XON= high and bit
xon_enable=0)
0If low battery is detected, continuously monitor
battery voltage and startup if battery voltage is
above ResVoltrise
1If low battery is detected, enter power off
mode
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 124 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.3 Interrupt Controller
The interrupt controller generates an interrupt request for the host controller as soon as one or more of the bits in the
Interrupt 1…3 register is set by pulling low pin XINT. All the interrupt sources can be enabled in the Interrupt Mask 1…3
register. The Interrupt 1…3 registers are cleared automatically after the host controller has read them. To prevent the
AS3658 device from losing an interrupt event, the register that is read is captured before it is transmitted to the host
controller via the serial interface. As soon as the transmission of the captured value is complete a logical AND
operation with the bit wise inverted captured value is applied to the register to clear all interrupt bits that have already
been transmitted. Clearing the read interrupt bits takes 2 clock cycles, a read access to the same register before the
clearing process has completed will yield a value of ‘0’. Note that an interrupt that has been present at the previous
read access will be cleared as well in case it occurs aga in before the clearing process has completed.
During a read access to one of the interrupt registers the XINT pin will be released. As soon as the transferred bits of
the interrupt register have been cleared the XINT pin will be pu lled low in case a new interrupt has occurred in the
meantime. By doing so the interrupt controller will work correctly with host controllers that are edge- and level-sensitive
on their interrupt request input. Multiple byte read access is recommended to avoid readin g the Interrupt 1 register
over and over again in response to a new interrupt that has occurred in th e same register (and thus pulling low pin
XINT) before the Interrupt 2,3 register has been read.
Table 131. Interrupt Status 1 Register
Addr:50 Interrupt Status1
These bits show the status of the interrupts
register is reset at power-on-reset and after each read access
Bit Bit Name Default Access Description
0 chstate_i NA R Bit is set when the following status bits are set or reset:
Trickle, CVM, NoBat
1 cheoc_i NA R Bit is set when the EOC status bits are set or reset:
2 charging_tmax_i NA R Bit is set when charge timeout ( tricke, CV, CC) has
been expired
3 usb_chdet_i NA R Bit is set when the USB_ChDet Bit is set or reset.
4 chdet_i NA R Bit is set when the ChDet Bit is set or reset.
5 Onkey_i NA R Bit is set when status XON bit is set or reset.
6 ovtmp_i NA R Bit is set when the lower temperature threshold
Temp110 of the temperature sensor is exceeded for
longer than tRESMASK.
7 Lowsup NA R Bit is set when the main supply voltage VSUPPLY has
dropped below VRESFALL for longer than tRESMASK.
Table 132. Interrupt Status 2 Register
Addr:51 Interrupt Status2
These bits show the status of the interrupts
register is reset at power-on-reset and after each read access
Bit Bit Name Default Access Description
0 sd1_lv_i NA R Bit is set when voltage of step down1 drops below low
voltage threshold (1msec debounce timer)
1 sd2_lv_i NA R Bit is set when voltage of step down2 drops below low
voltage threshold
(1msec debounce timer)
2 sd3_lv_i NA R Bit is set when voltage of step down3 drops below low
voltage threshold
(1msec debounce timer)
ams AG
Technical content still valid
Table 133. Interrupt Status 3 Register
Addr:52 Interrupt Status3
These bits show the status of the interrupts
register is reset at power-on-reset and after each read access
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 125 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
3 dig1_lv_i NA R Bit is set when voltage of LdoDig1 drops below low
voltage threshold
(1msec debounce timer)
4 dig2_lv_i NA R Bit is set when voltage of LdoDig2 drops below low
voltage threshold
(1msec debounce timer)
5 hphcurr_i NA R Bit is set when output stage of headphone amplifier
exceeds overcurrent limit.
6 bat_temp_i NA R Bit is set when bit bat_hightemp or bat_lowtemp is set
or reset
7 stpup1_i NA R Bit is set when stpup1_oc or stpup1_det is set.
0 dig3_lv_i NA R Bit is set when voltage of LdoDig3 drops below low
voltage threshold
(1msec debounce timer)
1 dig4_lv_i NA R Bit is set when voltage of LdoDig4 drops below low
voltage threshold
(1msec debounce timer)
2 rtc_alarm_i NA R Bit is set by the RTC, if alarm registers=rtc registers
3 rtc_rep_i NA R Bit is set by the RTC every second (Bit irq_min=0) or
minute (Bit irq_min=1)
4 mic_con_i NA R Bit is set if a microphone is detected on MIC input
5 mic_rem_i NA R Bit is set, if th e microphon e supply is increased
(remote key press detected) -> measure MICS supply
current
6 vox m_i NA R Bit is set, if voice is detected on MIC input
7 tpen_i NA R Bit is set, if the touchpen pendown is detected
Table 134. Interrupt mask 1 Register
Addr:47 Interrupt Mask1
These bits mask the interrupt
Bit Bit Name Default Access Description
0 chstate_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
1 cheoc_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
Table 132. Interrupt Status 2 Register
Addr:51 Interrupt Status2
These bits show the status of the interrupts
register is reset at power-on-reset and after each read access
Bit Bit Name Default Access Description
ams AG
Technical content still valid
Table 135. Interrupt mask 2 Register
Addr:48 Interrupt Mask2
These bits mask the interrupt
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 126 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
2 charging_tmax_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
3 usb_chdet_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
4 chdet_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
5 onkey_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
6 ovtmp_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
7 LowSup_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
0 sd1_lv_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
1 sd2_lv_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
2 sd3_lv_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
3 dig1_lv_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
4 dig2_lv_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
5 hphcurr_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
6 bat_temp_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
7 stpup1_int_mask 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
Table 134. Interrupt mask 1 Register
Addr:47 Interrupt Mask1
These bits mask the interrupt
Bit Bit Name Default Access Description
ams AG
Technical content still valid
Table 136. Interrupt mask 3 Register
Addr:49 Interrupt Mask3
These bits mask the interrupt
Bit Bit Name Default Access Description
Table 137. Low voltage status1 Register1
Addr:53 Low voltage status1
These bits show the low voltage status of the step down and digital
regulators
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 127 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
0 dig3_lv_int_m 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
1 dig4_lv_int_m 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
2 rtc_alarm_int_m 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
3 rtc_rep_int_m 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
4 mic_con_int_m 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
5 mic_rem_int_m 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
6 voxm_intm 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
7 tpen_i_m 1b R/W 0 Interrupt is enabled
1 Interrupt is disabled
0 sd1_lv NA R Step down1 low voltage status bit (-10% voltage drop)
1sd2_lv NA R Step down2 low voltage status bit (-10% voltage drop)
2 sd3_lv NA R Step down3 low voltage status bit (-10% voltage drop)
3 dig1_lv NA R Ldo Dig1 low voltage status bit (-50mV voltage drop)
4 dig2_lv NA R Ldo Dig2 low voltage status bit (-50mV voltage drop)
5--- -
6 stpup1_oc NA R Bit is set by analog part, if overcurrent of DCDC
StepUp1 occurs for more than 5msec (latched state)
7 stpup1_det NA R Current Detection signal of step up 1
Table 138. Low voltage status2 Register1
Addr:54 Low voltage status2
These bits show the low voltage status of the step down and digital
regulators
Bit Bit Name Default Access Description
0 dig3_lv 0b R Ldo Dig3 low voltage status bit (-50mV voltage drop)
1 dig4_lv 0b R Ldo Dig4 low voltage status bit (-50mV voltage drop)
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 128 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
2 dcdc_curr1_lv 0b R Indicates low voltage on dcdc_curr1
3 dcdc_curr2_lv 0b R Indicates low voltage on dcdc_curr2
4 dcdc_curr3_lv 0b R Indicates low voltage on dcdc_curr3
5 bat_lowtemp 0b R Indicates NTC temperature of battery below 0º
6 bat_hightemp 0b R Indicates NTC temperature of batter above 45º (50º)
Table 138. Low voltage status2 Register1
Addr:54 Low voltage status2
These bits show the low voltage status of the step down and digital
regulators
Bit Bit Name Default Access Description
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 129 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.4 Startup
Figure 56. Startup flow cha r t
10.4.1 Normal Startup
During a normal reset cycle (e.g. after the battery or a charger is ins erted; (see Reset generator and XON-Key on p age
118)), after V2_5 is above VPOR and Vsupply is above VRESETRISE a normal startup happens:
The external cap acitor on CREF is charged to 1.8V
The 3bit A/D conversion is performed to measure the external resistor value RPROGRAM
Startup State machine reads out the internal Bo ot-ROM (address defined by boot_ctrl), Start sequence of Step-
Down Converter and LDO’s controlled by the Boot-ROM
Reset-Timer is set by the Boot-ROM
The reset is released when the Reset Timer expires (external pin XRESET)
Power o n reset
xon_enable=0
xon_enable=1 and
(chdet=0 or
USBChdet=0)
NO
Charger
detected ?
NO
YES
XON pin pulled
to GND
NO
YES
batsw_on=0
batsw_mode=0
VBAT>VResVolt?YES
NO
USB Sup.
detected and
ChDet=0?
NO
batsw_on=1
batsw_mode=1
Switch on
Battery switch
ChEn=1
USB_ChEn=1
YES
YES
Startup Device
VSUPPLY>VResVolt?
NO
YES
Active state
power_off=1
YES
batsw_on=0
batsw_mode=0
force_reset=1
NO
YES
trickle
Switch on
Switch off
batsw_mode batsw_on
0
0
1
11
X
NO
VSUPPLY<VResVolt?
NO
YES
YES
batsw_on=0
batsw_mode=0
Reset registers
except
xon_enable
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 130 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.4.2 Startup from Charger
If the voltage on pin VCHARGER is within VSTARTCHARGER, the AS3658 is started (even with VBAT = 0V). This
allows the battery to be charged (even from deeply discharged batteries) and finally a normal startup to happen.
Table 139. Charger Startup Conditions
Symbol Parameter Min Typ Max unit Note
10.4.3 Programmable Startup Sequences—Boot ROM
The startup- and reset sequences of the device are highly co nfigurable. The configuration of these sequences is
defined by the ratio of the internal trimmed bias resistors and RPROGRAM. At the beginning of each reset cycle a 3 bit
AD-conversion is performed. The resu lt of this conversion is used to select 1 of 8 possible address-ranges of an
internal mask-programmable ROM. The information that is stored in this ROM defines the following parameters:
Voltage levels for all regulators and step down dcdc converters
power-on sequence of RF_1, RF_2, DIG_1, DIG_2, SD1, SD2 and SD3
duration of the reset cycle
several other configuration bits (e.g. charger)
The following values of RPROGRAM are used to select the 8 possible address ranges (8 different startup voltage /
sequences settings can be used):
000: open
001: 320kΩ
010: 160kΩ
011: 80kΩ
100: 40kΩ
101: 20kΩ
110: 10kΩ
111: 0Ω
Note: For detailed startup sequences see austriamicrosystems AG document AS3658_BootROM_*.
VSTARTCHARGER Voltage on
VCHARGER for
system to start 4.0 5.0 15 V on Pin VCHA RG ER
Table 140. Boot ROM Bits definitions
Addr:107 Boot_status
These bits show the boot status
Bit Bit Name Default Access Description
2:0 rom_adr NA R Boot-ROM address
3 rom_valid 1 R If ‘1’ Boot-ROM address is valid
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 131 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.4.4 Additional Startup Settings
Table 141. Boot ROM Bits definitions
Addr:4 LDO_RF2_Voltage
These bits defines the startup sequence
Bit Bit Name Default Access Description
10.4.5 Programmable Startup Sequences with fuse registers—Boot OTP
Its possible to program some startup registers, by using the fuse block:
Table 142. ROMF Bit definitions
Addr:196 FUSE4
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
Table 143. ROMF Bit definitions
Addr:197 addrf0
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
Table 144. ROMF Bit definitions
Addr:198 addrf0
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
7double_reset ROM R/W
0 Normal reset pulse
1Apply double reset pulse after the normal rest
pulse that is define by res_timer. (pulse on
XRESET with 2msec high time and 2msec
low time
6slow_startup ROM R/W 0Normal startup of LDOs defined in boot rom
with a separation of 1 milliseconds
1S t artup of all LDOs defined by boot rom with a
time separation of 4 milliseconds
7 romf_en 0 R 0 Fusible startup rom disabled
1Feasible startup of rom enabled
(UniqueID0.UniqueID10) used for startup
7:0 addrf<7:0> 0 R
Each bit represent s a register address of the bootrom
table (0....31)
0Use data of ROM table during startup for the
according address (0....31)
1Use data of fuse register during startup for the
according address, starting with data of
register romf0 (up to register romf6 max.)
7:0 addrf<15:8> 0 R
Each bit represent s a register address of the bootrom
table (0....31)
0Use data of ROM table during startup for the
according address (0....31)
1Use data of fuse register during startup for the
according address, starting with data of
register romf0 (up to register romf6 max.)
ams AG
Technical content still valid
Table 145. ROMF Bit definitions
Addr:199 addrf2
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
Table 146. ROMF Bit definitions
Addr:200 addrf3
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
Table 147. ROMF Bit definitions
Addr:201 romf0
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
Table 148. ROMF Bit definitions
Addr:202 romf1
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
Table 149. ROMF Bit definitions
Addr:203 romf2
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 132 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
7:0 addrf<23:16> 0 R
Each bit represent s a register address of the bootrom
table (0....31)
0Use data of ROM table during startup for the
according address (0....31)
1Use data of fuse register during startup for the
according address, starting with data of
register romf0 (up to register romf6 max.)
7:0 addrf<31:24> 0 R
Each bit represent s a register address of the bootrom
table (0....31)
0Use data of ROM table during startup for the
according address (0....31)
1Use data of fuse register during startup for the
according address, starting with data of
register romf0 (up to register romf6 max.)
7:0 romf0 00h R Data for startup register (used for the first “1” in the
addrf<31:0> register
7:0 romf1 00h R Dat a for startup register (used for the second “1” in the
addrf<31:0> register
7:0 romf2 00h R Data for startup register (used for the third “1” in the
addrf<31:0> register
ams AG
Technical content still valid
Table 150. ROMF Bit definitions
Addr:204 romf3
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
Table 151. ROMF Bit definitions
Addr:205 romf4
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
Table 152. ROMF Bit definitions
Addr:206 romf5
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
Table 153. ROMF Bit definitions
Addr:207 romf6
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 133 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
7:0 romf3 00h R Data for startup register (used for the fourth “1” in the
addrf<31:0> register
7:0 romf4 00h R Data for startup register (used for the fifth “1” in the
addrf<31:0> register
7:0 romf5 00h R Data for startup regist er (used for the sixth “1” in the
addrf<31:0> register
7:0 romf6 00h R Data for startup register (used for the seventh “1” in
the addrf<31:0> register
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 134 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.5 Protection Functions
All LDO’s, the DCDC step ups and DCDC step downs have an integrated overcurrent protection. An overtemperature
protection of the chip is also integrated which can be switched on with the serial interface signal temp_pmc_on
(enabled by default; it is not recommended to disable the overtemperture protection). The chip has two signals for the
serial interface: ov_temp_110 and ov_temp_140. Th e flag ov_temp_110 is automatically reset if the overtemperature
condition is removed, whereas ov_temp_140 has to be reset by the serial interface with the signal rst_ov_temp_140.
If the flag ov_temp_140 is set, an automatic reset of the complete chip is initiated. The flag ov_temp_140 is not
affected by this reset cycle allowing the software to detect the reason for this unexpected shutdown.
Table 154. Overtemperature Detection
Symbol Parameter Min Typ Max Unit Note
Table 155. Overtermperature detection Bit definition
Addr:106 Overtemperature Control
These bits control the startup and are set by factory test
Bit Bit Name Default Access Description
10.5.1 Temperature Supervision
A temperature sensor is implemented to provide over-temperature protection of the chip. It generates two flags linked
to the two temperature threshold s (110 degrees, 140 degrees). Both thresholds have an hysteresis to prevent
oscillation effects.
First threshold (110 degrees) sets the flag ov_temp_110, signalling the serial interface part and software the 110
degrees overtemperature condition. If enabled (ovtmp_int_mask=0), an interrupt can be send (interrupt ‘ovtmp’). Thus
software can react and can shutdown power consuming functions to decrease temperature.
The second threshold (140 degrees) initiates a reset cycle and sets ov_temp_140: this sets all regulators into power-
down mode and stops charging, and performs the reset cycle of the AS3658.
rst_ov_temp_140 flag
In case of overtemperature and an activated reset (temp_pmc_on=1), the system loses any information about the error
which activated the reset state. Therefore, a fl ag is implemented, which indicates that the reset was caused by
overtemperature activation (ov_temp_140 is set). This flag is only resetable by writing ‘1’ to rst_ovtemp_140.
T110 ov_temp_110 rising
threshold 95 110 125 ºC
T140 ov_temp_140 rising
threshold 125 140 155 ºC
Thyst ov_temp_110 and
ov_temp_140
hysteresis C
0 temp_pmc_on 1 R/W Switch on / off of temperature supervision; default: on
– all other bits are only valid if set to ‘1’
Leave at 1, do not di sable
1 ov_temp_110 NA R Flag that the overtemperature threshold 1 (T110) has
been reached
2 ov_temp_140 NA R Flag that the overtemperatu r e threshold 2 (T140) has
been reached – this flag is not reset by a
overtemperature caused reset and has to be reset by
rst_ov_temp_140
3 rst_ov_temp_140 0 W If the overtemperature threshold 2 has been reached,
the flag ov_temp_140 is set and a reset cycle is
started. ov_temp_140 should be reset by writing 1 and
afterward 0 to rst_ov_temp_140
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 135 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.6 Watchdog
The purpose of the watchdog is to detect a deadlock of the software. If the watchdog is active, it must receive a
continuous trigger signal within a programmable time window. If there is no signal anymore for a certain time period
from a defined pad or special serial interface bit, it start s either a complete reset cycle or changes the state of an output
pin, which can be used e.g. as an interrupt to the processor.
The watchdog is highly configurable by the following register bits:
The complete block can be switched on by wtdg_on = 1 and off by wtdg_on = 0.
The watchdog time window is defined by the register wtdg_min_timer and wtdg_max_timer.
The trigger signal can be configured by register wtdg_trigger and wtdg_gpio_input. (Pin CURR1-CURR4 (GPIO1-
GPIO4) or register bit)
If the watchdog expires, the system can start automatically a reset cycle if wtdg_reset_on = 1
Table 156. Watchdog Register definitions
Addr:60 Watchdog contro l
These bits control the watchdog functions
Bit Bit Name Default Access Description
Table 157. Watchdog minimum timer definitions
Addr:61 Watchdog_min timer
These bits set the watchdog minimum timer
Bit Bit Name Default Access Description
Table 158. Watchdog max timer definitions
Addr:62 Watchdog_max timer
These bits set the watchdog maximum timer
Bit Bit Name Default Access Description
Any of the general purpose input / outputs can be configured to output the watchdog signal. The W atchdog delivers
a signal “wtdg_alarm”, which is normal ‘0’ and goes to ‘1’ in the case of a timer-overflow . This signal can be used as
e.g. a reset or interrupt for a processor.
0 wtdg_on 0 R/W
Switches on the complete watchdog
0 watchdog of f
1 watchdog enabled
1 wtdg_res_on 1 R/W If the watchdog expires and wtdg_res_on = 1 a reset
cycle will be started
2 wtdg_trigger 0 R/W
0Use the register bit wtdg_sw_signal as trigger
signal for the watchdog
1
Use one of the GPIO pins CURR1_GPIO1 …
CURR4_GPIO4 as trigger input for the
watchdog; the actual pin is selected by setting
GPIOXIOSF to 01b(watchdog mode) and
GPIOXMode=010b (GPIO digital input)
(X=1...4)
7:0 Wtdg_min_timer 00h R/W Defines th e minimum watchdog trigger time
(LSB=7.5ms, range: 0 – 1.9s)
7:0 Wtdg_max_timer FFh R/W Defines the maximum watchdog trigger time
(LSB=7.5ms, range: 7.5ms – 1.9s), do not set to (00)h
ams AG
Technical content still valid
Table 159. Watchdog software signal definitions
Addr:63 Watchdog sof tware signal
This bit sets the watchdog software trigger
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 136 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
Figure 57. Watchdog timing diagram
10.7 General Purpose 10 Bit ADC
Table 160. ADC Characteristics
Symbol Parameter Min Typ Max Unit Note
0 wtdg_sw_sign al 0 R/W Trigger input by the serial interface if wtdg_trigger = 0
Resolution 10 Bit
Input Voltage
Range Vin 0 1.8 V
Differential
Nonlinearity DNL ± 0.25 LSB 1LSB 1.76mV (depending on
selected channel)
Integral
Nonlinearity INL ± 0.5 LSB
Input Offset
Voltage Vos 2 LSB
Input Impedance Rin 100 MΩ
Input Capacitance Cin 9 pF
Power Supply
Current Idd 500 µA During conversion only
Power Down
Current Idd 100 nA
Transient Parameters (25°C)
Conversion Time Tc 40 µs
Clock Frequency fc fclk_int/
8kHz internal CLK frequency/8
Programmable:
0.2 to 0.2875 MHz
Settling time of
S&H ts 1 µs
ADC_IN1 pull up
current 14.25 15 15.75 µA Pull up current for ADC_IN1, if
adc_idc=1111b
tmin tmax
tmin tmax
wtdg_trigger
ams AG
Technical content still valid
Table 161. ADC control Registers bits
Addr:96 ADC_control
This register controls the 10 Bit ADC
Bit Bit Name Default Access Description
Table 162. ADC MSB result register
Addr:97 ADC_MSB result
This register shows the MSB result of the ADC conversion
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 137 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
3:0 adc_select 0000b R/W
Selects an ADC channel
0000 ADC1_IN (LSB = 1.76mV)
0001 ADC2_IN (LSB = 1.76mV)
0010 VBAT Battery voltage (LSB=5.27mV)
0011 VCHARGER (LSB=17. 6mV) clamping at 10V
0100 V_USB Voltage (LSB=5.27mV)
0101 not used
0110 temperature sensor:
DIE temperature [°C] = adc_result * 0.866 –
274
0111 ADC test channel – do not use
1000 check voltage on MICS for remote control or
external voltage measurement (LSB=3.52mV)
1001 VBACK voltage (LSB=3.52mV)
4 adc_slow 0b R/W
select ADC sampling frequency
0 275kHz (conversion time: 60µ s)
1 70kHz (conversion time: 240µs)
5 - - - reserved (do not use)
6 adc_on 0b R/W
Writing a 1 into this bit continuously activates the ADC
S/H and the input multiplexer. The ADC and the MUX
are also activated for a conver sion period when
start_conversion is set to ‘1’ – useful for high
impedance input sources on ADC1_IN or ADC2_IN
7 start_conversion 0b R/W Writing a 1 into this bit starts one ADC conversion.
0 D3 NA R ADC result register
1D4 NA R ADC result register
2 D5 NA R ADC result register
3 D6 NA R ADC result register
4 D7 NA R ADC result register
5 D8 NA R ADC result register
6 D9 NA R ADC result register
7 result_not_ready NA R
Indicates end of conversion
0 result is ready
1 conversion is running
ams AG
Technical content still valid
Table 163. ADC LSB result register
Addr:98 ADC_LSB result
This register shows the LSB result of the ADC conversion
Bit Bit Name Default Access Description
Table 164. ADC IDAC register
Addr:46 ADC idac
This register controls the current sink on pin ADC_IN1
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 138 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
Figure 58. ADC Timing-diagram
0 D0 NA R ADC result register
1 D1 NA R ADC result register
2 D2 NA R ADC result register
7:3 - - - reserved (do not use)
0 adc_idac 000b R/W
Current source at ADC_IN1 input
Set to 0000 if battery temperature supervision
is enabled.
0000 0µA (current sink disabled)
0001 1µA
...
1111 15 µA
I2C Bus
ADC_ON
Sample
275kHz
start_conversion=1
result_not ready
D<9:0> old_Data Data not valid Data ready
start_adc
123 1213
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 139 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.8 Internal References (V, I, fclk)
The internal reference circuits needs the following external components:
Table 165. Reference External Components
Symbol Parameter Min Typ Max Unit Note
Table 166. Refe rences Parameters
Symbol Parameter Min Typ Max Unit Note
To reduce the current consumption of the chip, the circuit can be set into a special low po wer mode with the serial
interface bit ‘low_power_on’. All specification parameters except the noise parameters are still valid for this mode.
Table 167. Internal re ferences Bit definitions
Addr:59 Internal references Bit definitions
These bits control the internal reference mode and intern al clk
frequency
Bit Bit Name Default Access Description
10.8.1 Low Power Mode
Use bit low_power_on (reg. References Control (see Table 167)) to activate the Low Power Mode. In this mode the
on-chip voltage reference and the temperature supervision comparators are operating in pulsed mode. This reduces
the quiescent current of the AS3658 by 45uA (typ.). Because of the pulsed function some specifications are not fulfilled
in this mode (e.g. increased noise), but still the full functionality is available.
Note: Low power mode can be controlled by the serial interface.
CEXT External filter capacitor -10% 100 +10% nF Ceramic low-ESR capacitor
between CREF and VSS
RBIAS External bias current
set resistor -1% 220 +1% kΩBias Current set resistor between
RBIAS and VSS
VCEXT Reference Voltage -1% 1.8 +1% V Low noise trimmed voltage
reference – connected to Pad
CREF; do not load
fCLK Accuracy of Internal
reference clock -10 fCLK +10 % Adjustable by serial interface
register clk_int
0 low_power_on 0b R/W 0 Standard mode
1Low power mode – all specification except
noise parameters are still valid
3:1 clk_int 110b R/W
Sets the internal CLK frequency fCLK used for fuel
gauge, DCDCs, PWM, charge pump.
All frequencies, timings and delays in this datasheet
are based on 2.2MHz clk_int
000b 1.6 MHz
001b 1.7 MHz
010b 1.8 MHz
011b 1.9 MHz
100b 2.0 MHz
101b 2.1 MHz
110b 2.2 MHz (default)
111b 2.3 MHz
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 140 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.9 Real-Time Clock (RTC) Module
The RTC module provides time information to the system. It is implemented as a 6-bit coun ter that is incremented
every second - with the 32kHz oscillator delivering the necessary accurate time base – and is reset to 0 each time the
counter value is 60. An additional 24-bit minute counter is incriminated each time the 6-bit counter is reset to 0. Both
counters are set to 0 at a power-on-reset. The host controller can set the counter to any value by setting the RTC 1…4
registers.
To prevent ambiguous time information because of the 30-bit value being incremented before all of the 4 registers
have been read or written, a 30-bit parallel shadow register is implemented. Every time a write/read access via the
serial interface occurs the parallel shadow register is updated with the current value of the 30-bit counter. Any write
access to the RTC 1 register will disable the update of the parallel register and set the value of the appropriate byte of
the parallel register. Any subsequent write access to the RTC 4 register will transfer the current value of the 30-bit
parallel register to the RTC 1…4 registers and the update of the parallel register is enabled again. Similarly, any read
access to the RTC 1 register will freeze the current value of the parallel register and submit the appropriate byte to the
host controller via the serial interface. Any subsequent read access to the RTC 4 register will enable the update of the
parallel register again. This mechanism makes sure that the maximum error of the value that is written to or read from
the registers is 1 second.
The startup state after power on reset:RTCSecond=3F, RTCMinute1=FF, RTCMinute2=FF, RTCMinute3=FF
To start the RTC, rtc_mode bits have to be set to a non zero value, and the RTC registers have to be set.
The RTC stops automatically at its highest value (3F,FF,FF,FF) to prevent overrun.
Table 168. RTC Second Register
Addr:64 RTCSecond
These bits represents the actual RTC second register
register is reset at power-on-reset only
Bit Bit Name Default Access Description
Tabl e 169. RTC Minute1 Register
Addr:65 RTCMinute1
These bits represents the actual RTC Minute1 register
register is reset at power-on-reset only
Bit Bit Name Default Access Description
Tabl e 170. RTC Minute2 Register
Addr:66 RTCMinute2
These bits represents the actual RTC Minute2 register
register is reset at power-on-reset only
Bit Bit Name Default Access Description
Tabl e 171. RTC Minute3 Register
Addr:67 RTCMinute3
These bits represents the actual RTC Minute3 register
register is reset at power-on-reset only
Bit Bit Name Default Access Description
5:0 RTCSecond 00h R/W Bits 5:0 of the 6-bit RTC second counter
7:6 - - reserved
7:0 RTCMinute1 00h R/W Bits 7…0 of the 24-bit RTC minute counter
7:0 RTCMinute2 00h R/W Bits 15:8 of the 24-bit RTC minute counter
7:0 RTCMinute3 00h R/W Bits 23:16 of the 24-bit RTC minute counter
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 141 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
The RTC module includes an alarm function. When the content of the RT C 1…4 registers equals the content of the
RTC Alarm 1…4 registers bit RTCAlarm will be set in the In terrupt 1 register. Furthermore the RTC module can
generate an interrupt every second (RTC1Sec will be set) and every minute (RTC1min will be set every time the 6-bit
second counter is reset to 0). For further details on interrupt generation please refer to Interrupt Co ntroller on page
124.
To avoid ambiguous behavior during write access to the RTC Alarm 1…4 registers any write access to the RTC Alarm
1 register will disable the alarm function; any subsequent write access to the RTC Alarm 4 will enable the alarm
function again.
Table 172. RTC Alarm second Register
Addr:68 RTC AlarmSecond
These bits set the RTC Alarm Seconds
register is reset at power-on-reset only
Bit Bit Name Default Access Description
Table 173. RTC Alarm minute1 Register
Addr:69 RTC AlarmMinute1
These bits set the RTC Alarm Minute1
register is reset at power-on-reset only
Bit Bit Name Default Access Description
Table 174. RTC Alarm minute2 Register
Addr:70 RTC AlarmMinute2
These bits set the RTC Alarm Minute2
register is reset at power-on-reset only
Bit Bit Name Default Access Description
Tabl e 175. RTC Alarm minute3Register
Addr:71 RTC AlarmMinute3
These bits set the RTC Alarm Minute3
register is reset at power-on-reset only
Bit Bit Name Default Access Description
5:0 RTCAlarmSecond 3Fh R/W Bits 5…0 of 6-bit RTC secon d alarm value
7:0 RTCAlarmMinute1 FFh Bits 7:0 of the 24-bit RTC minute alarm value
7:0 RTCAlarmMinute2 FFh Bits 15:8 of the 24-bit RTC minute alarm value
7:0 RTCAlarmMinute3 FFh Bits 23:16 of the 24-bit RT C minute alarm value
ams AG
Technical content still valid
Table 176. RTCT Register
Addr:72 RTCT
These bits set the RTC correction and RTC interrupt mode
register is reset at power-on-reset only
Bit Bit Name Default Access Description
Table 177. Reset Timer Register
Addr:22 Reset Timer
These bits set RTC modes
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 142 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
6:0 RTC_TBC<6:0> 0000000 R/W
These bits are used to correct the inaccu racy of the
used 32kHz crystal. Correction is done all 8 seconds
by removing or adding two clock cycles.
Trimming register for RTC, 128 steps @ 7.6ppm
100000 - 480.4ppm
100001 -472.8ppm
111111 -7.6ppm
000000 0ppm(default)
000001 7.6ppm
011110 472.8ppm
011111 480.4ppm
7 rtc_irq_mode 0 R/W
0 generate an interrupt every second
1generate an interrupt every minute
The interrupt has to be enabled by
rtc_rep_int_m=0
4 rtc_alarm_wakeup_en ROM R/W 0Disables R TC alarm wakeup in power off
mode
1 E nable R TC alarm wakeup in power of f mode
5 rtc_rep_wakeup_en ROM R/W 0Disables RTC repeated wakeup in power off
mode
1Enable RTC repeated wakeup in power off
mode
7:6 rtc_mode ROM R/W
00 32kHz oscilla tor off
01 32kHz oscillator enabled
10 32kHz oscillator enabled, Pin Q32k enabled
11 reserved (do not use)
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 143 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.10 Touchpen Interface
The touchpen interface controls a resistive touchpen. It has the following features:
Low Power Pen Detect
Measure pen X,Y position
Measure pen pressure (Z-position)
Interrupt, if X,Y,Z data is available; one dedicated output – CURR4_GPIO4 can be configured to be used as
touchpen interrupt output and/or standard interrupt output XINT
The conversion interval can be adjusted
Up to 16 ADC conversion can be averaged internally
The sample time of the ADC can be adjusted
The pin CURR3_GPIO3 can be configured to enable/disable the ADC conversion (useful if the processor updates
the LCD to avoid parallel reading of the touchpen positio n)
The touchpen interface shares th e pins with the SPDIF output and the I2S Output 3. If the touchpen interface is used,
the SPDIF and the I2S Output 3 cannot be used (and has to be disabled).
Note: The touchpen interface and the ‘General Purpose 10 Bit ADC’ can be used at the same time.
Figure 59. Touchpen Block diagram
;<;














 !"#$%"
"
"
"


&&&""
 '( !)




$
*+&*,-$.,
%"$$,"*+
$&,-&$
*+&*,-$.,
%"$$,"*+
/0"&
"1,0"2%3




$$$$ ,$)
$$$$)
'4
###
"*%+
' '5 ' !"
)-&
*6
*-6
'('7'8$"*%+"

0*1
6,"&
'
6,"&


0*1
6,"&
'
6,"&


'
6,"&


3%"9:; <
3+"9; <
=%"9:; <
=+"9; <
%"9:; <
+"9; <
9 ; <
3%"
&*$"*&
,%
>? >
6,
1*,
$>@A  
*$>A
*,-$0,60$&,6
1&,,6$$,"+*=
/0"&
&.*

,6,*+
&+









>(?( >
6,
,*$0"&
,&.*$,&&
&&
6,
/
&""&$,&&
$>(@A$
B6B$ $&$ 
*$>(A
.&%$
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 144 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
The touchpen controller is operating according to the following state diagram:
Figure 60. Touchpen State diagram
10.10.1 Software guidelines
1. Setup the configuration registers (tpen – control 1..3) according the hardware
2. Enable receiving of touchpen interrupts (either through XINT or GPIO4_CURR4)
3. Upon receiving of a touchpen interrupt, readout tpen_xmsb, tpen_ymsb (and if required tpen_pressmsb and
tpen_xypresslsb) with a single I2C blockread. This ensured, that the x,y,z is correctly readout and all data belong
to one single touchpen x,y,z conversion
4. Perform all the required processing with the data (e.g. accept a pen-down only if the pen is forced on to the
touchscreen with a minimum pressure [z-position])














 
!"#"$%#&#&"'
(&
))

(&
("












*+,
*+,
*+,




("
(&-
.
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 145 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
10.10.2 Touchpen Registers
Table 178. Touchpen Register Map
Register
Definition Addr Default Content
Name b7 b6 b5 b4 b3 b2 b1 b0
Note: The cells marked in color are Read only
Table 179. Touchpannel Result Register Bits
Addr:108 Touchpad_XMSB result
X-MSB result register
Bit Bit Name Default Access Description
Table 180. Touchpannel Result Register Bits
Addr:109 Touchpad_YMSB result
Y-MSB result register
Bit Bit Name Default Access Description
Table 181. Touchpannel Result Register Bits
Addr:110 Touchpad_Pressure result
Pressure result register
Bit Bit Name Default Access Description
Table 182. Touchpannel Result Register Bits
Addr:111 Touchpad_XY - LSB result
X - MSB result register
Bit Bit Name Default Access Description
tpen_xmsb 108 NA XD9 XD8 XD7 XD6 XD5 XD4 XD3 XD2
tpen_ymsb 109 NA YD9 YD8 YD7 YD6 YD5 YD4 YD3 YD2
tpen_pressmsb 110 NA PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2
tpen_xypresslsb 111 NA PD1 PD0 0 YD1 YD0 0 XD1 XD0
tpen – control 1 112 00h tpen_st_
pen tpen_eo
ctpen_avg tpen_soc tpen_convint tpen_on
tpen – control 2 113 00h tpen_so
cpd tpen_wa
it tpen_curr
press tpen_pu
tpen – control 3 114 00h tpen_timeo
ut _en tpen_deb
ounce tpen_sample
7:0 t pen_xmsb 00000000 R X – MSB Data
7:0 t pen_ymsb 00000000 R Y – MSB Data
7:0 tpen_pressmsb 00000000 R Pressure - Data
1:0 tpen_xlsb 00 R X – LSB Data
4:3 tpen_ylsb 00 R Y – LSB Data
7:6 tpen_presslsb 00 R Pressure – LSB Data
ams AG
Technical content still valid
Table 183. Touchpannel Control Register Bits
Addr:112 Touchpad – control 1
This register controls the different modes of the Touchpad
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 146 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
0 tpen_on 0 R/W
Enables Touch Pen Function
0 OFF (No wakeup on pen down)
1Pen Detect enabled wakes up Pen
Digitizer Check Pen_Status -> if pen-
detect or tpen_soc_pd=1 and tpen_soc=1
then perform X,Y,Z measurements
2:1 tpen_convint 00 R/W
Conversion Interval Timer
00 No delay between conversions
01 every 512 clock periods (0,5 ms) ADC –
Averaging limited to max. 4
10 every 1024 clock periods (1ms) ADC –
Averaging limited to max. 8
11 every 10240 clock periods (10ms)
3 tpen_soc 0 R/W
Start Conversion (x,y, and z conversion)
0 No Conversion if pen down detected
1Start Conversion if pen down detected or
tpen_soc_pd=1 and tpen_on=1 (X, Y and
Z-Pressure Measurement)
5:4 tpen_avg 0 R/W
Averaging of x and y measurement
00 no averaging
01 4 measurements (per channel)
10 8 measurements (per channel)
11 16 measurements (per channel)
6 tpen_eoc 0 R/W
ADC - End of Conversion bit
0 TP in Power down or Conversion ongoing
1Valid TP data available (x,y, and pressure)
generates an interrupt on GPIO4_CURR4
and/or XINT; the interrupt is released when
the readout from the tpen_xmsb is started
7 tpen_st_pen 0 R
Pen status
0 penup
1 pendown
ams AG
Technical content still valid
Table 184. Touchpannel Control Register Bits
Addr:113 Touchpad – control 2
This register controls the different modes of the Touchpad
Bit Bit Name Default Access Description
Table 185. Touchpannel Control Register Bits
Addr:114 Touchpad – control 3
This register controls the different modes of the Touchpad
Bit Bit Name Default Access Description
www.austriamicrosystems.com Revision 1v13 147 - 157
AS3658
Data Sheet Confidential - Detailed Description - System Functions
4:0 tpen_pu 00000 R/W
Internal Resistor used for Pen detection
00000 Do not use this Setting
00001 4kΩ
00010 8kΩ
...
00100 16kΩ
...
01000 32kΩ
...
10000 64kΩ (most sensitive)
...
11111 ~ 2kΩ
5 tpen_currpress 0 R/W
Current used for pressure measurement
0 200µA
1 400µA
6 tpen_wait 0 R/W 0 Do not wait until tpen_xmsb is readout
1Start next ADC – conversion after data is
read from Register tpen_xmsb
7 tpen_soc_pd 0 R/W 0Start conversion only if tpen_st_pen is 1
and tpen_so c=1 and tpen_on=1
1Measure regardless of pen Status (only if
tpen_soc=1 and tpen_on=1)
0:1 tpen_sample 00 R/W
Sample Time of ADC
0 3µs
110µs
250µs
3 200µs
2 tpen_debounce 0 R/W 0 Pen-down Debounce Time 100µs
1 Pen-down Debounce Time = 3ms
3 tpen_timeout _en 0 R/W
Enables Timeout Signal (ADC conversion is
stopped during tiemeout = 1)
0off
1GPIO3_CURR3 can be configured as input
for the timeout signal – see block diagram
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 148 - 157
AS3658
Data Sheet Confidential - Register map
11 Register map
Table 186. Register Map
Register
Definition
Addr
hex
Default
Content
Name b7 b6 b5 b4 b3 b2 b1 b0
Step Down
Voltage1 00hROM
sd1_clki
nv sd1_freq
ustep_down1_v
Step Down
Voltage2 11hROM
sd2_clki
nv sd2_freq
ustep_down2_v
Step Down
Voltage3 22hROM
sd3_clki
nv sd3_freq
ustep_down3_v
LDO_RF1
Voltage 33hROM rf1_swpr
ot_en rf1_lcurr
_en ldo_rf1_v
LDO_RF2
Voltage 44hROM
double_r
eset slow_sta
rtup rf2_lcurr
_en ldo_rf2_v
LDO_RF3
Voltage 55hROM rf3_hotpl
ug_en rf3_lcurr
_en ldo_rf3_v
LDO_DIG1
Voltage 6 6h ROM ldo_dig1_v
LDO_DIG2
Voltage 7 7h ROM ldo_dig2_v
LDO_DIG3
Voltage 8 8h ROM ldo_dig3_v
LDO_DIG4
Voltage 9 9h ROM ldo_dig4_v
USB Charger
Control 10 Ah ROM ext_bats
w_en No_char
ging dis_bats
w_temp
_prot usb_chg
En usb_Current
Charger
Control1 11 Bh ROM Isolate_b
at ch_det_
500ms charging
_tmax usb_hol
d_chdet Auto
Resume CHOVD
etEn Ch_pwr
off_en ChEn
Battery voltage
monitor 12 Ch ROM FastRes
En SupRes
En ResVoltFall ResVoltRise
Charger Config 13 Dh ROM ChVoltResume Vsup ply_min ChVoltEOC
Charger
supervision 14 Eh ROM ntc_type ntc_hyst ntc_high
_temp auto_sh
utdown ch_timeout
FuelGauge 15 Fh ROM ntc_on power_o
ff_at_vs
uplow CalMod CalReq UpdReq FGEn
Charger
Current 16 10h ROM ch_voltage ConstantCurrent TrickleCurrent
Charge Pump
Control 17 11h ROM sdx_1A_mode sd1_dvm_time cp_freq cp_puls
eskip
GPIO 1 18 12h ROM gp io1_pulls gpio1_in
vert gpio1_iosf gpio1_mode
GPIO 2 19 13h ROM gp io2_pulls gpio2_in
vert gpio2_iosf gpio2_mode
GPIO 3 20 14h ROM gp io3_pulls gpio3_in
vert gpio3_iosf gpio3_mode
GPIO 4 21 15h ROM gp io4_pulls gpio4_in
vert gpio4_iosf gpio4_mode
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 149 - 157
AS3658
Data Sheet Confidential - Register map
Reset Timer 22 16h ROM rtc_mode rtc_rep_
wakeup
_en
rtc_alar
m_wake
up_en xon_ena
ble res_timer
Reg Power1
Ctrl @ 6 msec 23 17h ROM cp_on sd3_on sd2_on sd1_on ldo_dig2
_on ldo_dig1
_on ldo_rf2_
on ldo_rf1_
on
Reg Power1
Ctrl @ 7 msec 24 18h ROM cp_on
@ 7
msec
sd3_on
@ 7
msec
sd2_on
@ 7
msec
sd1_on
@ 7
msec
ldo_dig2
_on
@ 7
msec
ldo_dig1
_on
@ 7
msec
ldo_rf2_
on
@ 7
msec
ldo_rf1_
on
@ 7
msec
Reg Power1
Ctrl @ 8 msec 25 19h ROM cp_on
@ 8
msec
sd3_on
@ 8
msec
sd2_on
@ 8
msec
sd1_on
@ 8
msec
ldo_dig2
_on
@ 8
msec
ldo_dig1
_on
@ 8
msec
ldo_rf2_
on
@ 8
msec
ldo_rf1_
on
@ 8
msec
Reg Power1
Ctrl @ 9 msec 26 1Ah ROM cp_on
@ 9
msec
sd3_on
@ 9
msec
sd2_on
@ 9
msec
sd1_on
@ 9
msec
ldo_dig2
_on
@ 9
msec
ldo_dig1
_on
@ 9
msec
ldo_rf2_
on
@ 9
msec
ldo_rf1_
on
@ 9
msec
Reg Power1
Ctrl @ 10 msec 27 1Bh ROM cp_on
@10
msec
sd3_on
@ 10
msec
sd2_on
@ 10
msec
sd1_on
@ 10
msec
ldo_dig2
_on
@ 10
msec
ldo_dig1
_on
@10
msec
ldo_rf2_
on
@10
msec
ldo_rf1_
on
@ 10
msec
Reg Power1
Ctrl @ 11 msec 28 1Ch ROM cp_on
@ 11
msec
sd3_on
@11
msec
sd2_on
@ 11
msec
sd1_on
@ 11
msec
ldo_dig2
_on
@ 11
msec
ldo_dig1
_on
@ 11
msec
ldo_rf2_
on
@ 11
msec
ldo_rf1_
on
@ 11
msec
Reg Power1
Ctrl @ 12 msec 29 1Dh ROM cp_on
@ 12
msec
sd3_on
@ 12
msec
sd2_on
@ 12
msec
sd1_on
@ 12
msec
ldo_dig2
_on
@ 12
msec
ldo_dig1
_on
@ 12
msec
ldo_rf2_
on
@ 12
msec
ldo_rf1_
on
@ 12
msec
Reg Power2
Ctrl 30 1Eh ROM rf3_sw stpup2_
on stpup1_
on rf2_sw rf1_sw ldo_dig4
_on ldo_dig3
_on ldo_rf3
Reg GPIO Ctrl 31 1F h ROM ldo_dig3
_gpio sd3_gpi
osd2_gpi
osd1_gpi
oldo_dig2
_gpio ldo_dig1
_gpio ldo_rf2_
gpio ldo_rf1_
gpio
Step Up DC/DC
Control 32 20h 00h stpup2_r
es stpup2_f
req stpup2_f
b_auto stpup1_r
es stpup1_f
req stpup2_
clkinv
Step Up1 DC/
DC Control 33 21h 00h stpup1_o
c_timeou
tstpup1_
shortprot stpup1_
clkinv stpup1_v
Step Up2 DC/
DC Control 34 22h 00h stpup2_p
rot stpup2_fb stpup2_v
Step Down
Control1 35 23h 00h sd2_nsw
_on sd2_psw
_on sd1_nsw
_on sd1_psw
_on
Step Down
Control2 36 24h 00h sd3_dis_
pon sd2_dis
_pon sd1_dis
_pon sdX_lpo sd3_nsw
_on sd3_psw
_on
Step down
charger control 37 25h 02h sd3_dis
_curmin sd2_dis
_curmin sd1_dis
_curmin sdc_pas
s_mode sdc_pon sdc_freq
u
Backup Battery
charger 38 26h 40h BBCPwr
Save BBCVolt BBCCur BBCRes
Off BBCMode
DCDC_CURR1
value 39 27h 00h dcdc_curr1_current
Table 186. Register Map
Register
Definition
Addr
hex
Default
Content
Name b7 b6 b5 b4 b3 b2 b1 b0
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 150 - 157
AS3658
Data Sheet Confidential - Register map
DCDC_CURR2
value 40 28h 00h dcdc_curr2_current
CURR1 value 41 29h 00h curr1_current
CURR2 value 42 2Ah 00h curr2_current
CURR3 value 43 2Bh 00h curr3_current
CURR4 value 44 2Ch 00h curr4_current
DCDC_CURR3
value 45 2Dh 00h dcdc_curr3_current
ADC idac 46 2Eh 00h adc_idac
Interrupt Mask1 47 2Fh FFh LowBat_i
nt_m ovtmp_
int_m onkey_
int_m chdet_
int_m usb_chd
et_
int_m
charging
_tmax_i
nt_m cheoc_i
nt_m chstate_
int_m
Interrupt Mask2 48 30h FFh stpup1_i
nt_m bat_tem
p_m hphcurr_
int_m dig2_lv_i
nt_m dig1_lv_i
nt_m sd3_lv_i
nt_m sd2_lv_i
nt_m sd1_lv_i
nt_m
Interrupt Mask3 49 31h FFh - voxm_in
t_m mic_rem
_int_m mic_con
_int_m rtc_rep_i
nt_m rtc_alar
m_int_m dig4_lv_i
nt_m dig3_lv_i
nt_m
Interrupt
Status1 50 32h NA LowBat_i ovtmp_i onkey_i chdet_i usb_chd
et_i charging
_tmax_i cheoc_i chstate_
i
Interrupt
Status2 51 33h NA stpup1_i bat_tem
p_i hphcurr_
idig2_lv_i dig1_lv_i sd3_lv_i sd2_lv_i sd1_lv_i
Interrupt
Status3 52 34h NA -voxm_i mic_rem
_i mic_con
_i rtc_rep_i rtc_alar
m_i dig4_lv_i dig3_lv_i
Low voltage
Status1 53 35h NA stpup1_d
et stpup1_
oc dig2_lv dig1_lv sd3_lv sd2_lv sd1_lv
Low voltage
Status2 54 36h NA bat_high
temp bat_lowt
emp dcdc_cu
rr3_lv dcdc_cu
rr2_lv dcdc_cu
rr1_lv dig4_lv dig3_lv
GPIO Signal 55 37h NA gpio4_in gpio3_in gpio2_in gpio1_in gpio4 gpio3 gpio2 gpio1
PWM
Frequency
Control High
Time 56 38h 00h pwm_h_time
PWM
Frequency
Control Low
Time 57 39h 00h pwm_l_time
CURR control 58 3Ah 00h pwm_div dcdc_curr3_ctrl dcdc_curr2_ctrl dcdc_curr1_ctrl
References
Control 59 3Bh 0ch Reg_low
_bias_m
ode clk_div2 standby
_mode_
on clk_int low_pow
er_on
Watchdog
Control 60 3Ch 02h wtdg_tri
gger wtdg_re
s_on wtdg_on
Watchdog_min
Timer 61 3Dh 00h wtdg_min_timer
Watchdog_max
Timer 62 3Eh FFh wtdg_max_timer
Watchdog
Software Signal 63 3Fh 00h wtdg_
sw_sig
Table 186. Register Map
Register
Definition
Addr
hex
Default
Content
Name b7 b6 b5 b4 b3 b2 b1 b0
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 151 - 157
AS3658
Data Sheet Confidential - Register map
RTCSecond 64 40h 00h second<7:0>
RTCMinute1 65 41h 00h minute<7:0>
RTCMinute2 66 42h 00h minute<15:8>
RTCMinute3 67 43h 00h minute<23:16>
RTCAlarmSeco
nd 68 44h 3Fh alarmsecond<7:0>
RTCAlarmMinu
te1 69 45h FFh alarmminute<7:0>
RTCAlarmMinu
te2 70 46h FFh alarmminute<15:8>
RTCAlarmMinu
te3 71 47h FFh alarmminute<23:16>
RTCT 72 48h 00h rtc_irq_
mode rtc_tbc<6:0>
SRAM 73 49h 00h sram<7:0>
Audio Set1 74 4Ah 00h equ_on mclk256 mclk_inv
ert aud_ldo
_on gnd_sw
_on mix_on dac_on lin_on
Audio Set2 75 4Bh 00h I2S_mclk
_en I2S_sele
ct ibr_hph I2S_3_o
ndith_on ibr_dac
Audio Set3 76 4Ch 00h linmix_of
fmicmix_
off dacmix_
off agc_off mic_on voxm_o
nhp_pulld
_en pll_mod
e
DAC_L 77 4Dh 00h dac_mut
e_off dal_vol
DAC_R 78 4Eh 00h dar_vol
ADC_L 79 4Fh 00h ad_fs2 adc_mut
_off adc_on adl_vol
ADC_R 80 50h 00h adcmux adc2dac adr_vol
HPH out R 81 51h 00h hp_ovc_to hpcm_of
fhpr_vol
HPH out L 82 5 2h 00h hp_mute hp_on hp_mux hpl_vol
Line out R 83 53h 00h ibr_line liner_vol
Line out L 84 54h 00h line_mut
eline_on dac2line
_on linel_vol
LINE_IN_R 85 55h 00h mute_mi
c_sf mute_off
_inr lir_vol
LINE_IN_L 86 56h 00h mute_off
_inl lil_vol
MIC_R 87 57h 00h mic_agc
_off pre_gain mr_vol
MIC_L 88 58h 00h msup_off mute_off
_d rdet_off ml_vol
SPDIF 89 59h 00h audio_off sclk_inv
ert sdo3_se
lect spdif_co
py_ok spdif_m
clk_inv spdif_inv
alid spdif_cntr
EQ_LP 90 5Ah 00h eq_lp_gain
Table 186. Register Map
Register
Definition
Addr
hex
Default
Content
Name b7 b6 b5 b4 b3 b2 b1 b0
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 152 - 157
AS3658
Data Sheet Confidential - Register map
EQ_Band1 91 5Bh 00h eq_band1_gain
EQ_Band2 92 5Ch 00h eq_band2_gain
EQ_Band3 93 5Dh 00h eq_band3_gain
EQ_HP 94 5Eh 00h eq_hp_gain
EQ_preamp 95 5Fh 00h eq_ pre_gain
ADC_control 96 60h 00h start_con
version adc_on adc_slo
wadc_select
ADC_MSB
result 97 61h NA result_no
t_ready D9 D8 D7 D6 D5 D4 D3
ADC_LSB
result 98 62h NA D2 D1 D0
ChargerStatus 99 63h NA ChLinear NoBat EOC CVM Trickle Resume ChAct ChDet
ChargerStatus_
usb 100 64h NA ch_over
voltage batsw_o
nbatsw_
mode USB_Ch
Act USB_Ch
Det
DeltaChargeMS
B101 65h NA sign 214 213 212 211 210 2928
DeltaChargeLS
B102 66h NA 2726252423222120
ElapsedTimeM
SB 103 67h NA 215 214 213 212 211 210 2928
ElapsedTimeLS
B104 68h NA 2726252423222120
Reset Control 105 69h NA Onkey_r
eset_5s reset_reason xon_inp
ut power_o
ff force_re
set
Overtemperatu
re Control 106 6Ah NA rst_ov_t
emp_14
0ov_temp
_140 ov_temp
_110 temp_p
mc_on
Boot_status 107 6Bh NA rom_
valid rom_adr
tpen_xmsb 108 6Ch NA XD9 XD8 XD7 XD6 XD5 XD4 XD3 XD2
tpen_ymsb 109 6Dh NA YD9 YD8 YD7 YD6 YD5 YD4 YD3 YD2
tpen_pressmsb 110 6Eh NA PD9 PD8 PD7 PD6 PD5 PD4 PD3 PD2
tpen_xypressls
b111 6Fh NA PD1 PD0 0 YD1 YD0 0 XD1 XD0
tpen – control 1 112 70h 00h tpen_st_
pen tpen_eo
ctpen_avg tpen_so
ctpen_convint tpen_on
tpen – control 2 113 71h 00h tpen_soc
pd tpen_wa
it tpen_cur
rpress tpen_pu
tpen – control 3 114 72h 00h tpen_tim
eout_en tpen_de
bounce tpen_sample
ASIC ID 1 127 7Fh NA 1 1 0 0 1 1 0 1
ASIC ID 2 128 80h NA 0 1 0 1 rev
Reg_ standby
mod 129 81h 00h cp_stby_
on sd3_stb
y_on sd2_stb
y_on sd1_stb
y_on ldo_dig2
_stby_o
n
ldo_dig1
_stby_o
nldo_rf2_
stby_on ldo_rf1_
stby_on
Table 186. Register Map
Register
Definition
Addr
hex
Default
Content
Name b7 b6 b5 b4 b3 b2 b1 b0
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 153 - 157
AS3658
Data Sheet Confidential - Register map
Usb_current_tri
m130 82h 00 usb_add_trim_current<2:0>
i2s master
control1 131 83h 00 i2s_clk_divider<7:0>
i2s master
control2 132 84h 00 pcm_mo
de sdo_on_
mclk1_e
ni2s_mclk
_out_en i2s_lrclk
_sclk_ou
t_en i2s_mas
ter_on i2s_clk_divider<10:8>
step Down
Control3 133 85h 00 sd3_uvli
mit sd2_uvli
mit sd1_uvli
mit
UniqueID0,
addrf0 197 C5h NA ID<7:0>, addrf<7:0>
UniqueID1,
addrf1 198 C6h NA ID<15:8>, addrf<15:8>
UniqueID2,
addrf2 199 C7h NA ID<23:16>, addrf<23:16>
UniqueID3,
addrf3 200 C8h NA ID<31:24>, addrf<31:24>
UniqueID4,
romf0 201 C9h NA ID<39:32>, romf0
UniqueID5,
romf1 202 CAh NA ID<47:40>, romf1
UniqueID6,
romf2 203 CBh NA ID<55:48>, romf2
UniqueID7,
romf3 204 CChNA ID<63:56>, romf3
UniqueID8,
romf4 205 CDhNA ID<71:64>, romf4
UniqueID9,
romf5 206 CEh NA ID<79:72>, romf5
UniqueID10,
romf6 207 CFh NA ID<87:80>, romf6
Entries marked are read only
Entries are not reset in power off mode
Table 186. Register Map
Register
Definition
Addr
hex
Default
Content
Name b7 b6 b5 b4 b3 b2 b1 b0
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 154 - 157
AS3658
Data Sheet Confidential - Package Drawings and Marking
12 Package Drawings and Marking
Figure 61. CTBGA124 8x8 0.5mm pitch
±0.
TOP VIEW BOTTOM VIEW
(124 SOLDER BALLS )
SIDE VIEW
Dimension & Tolerance
ASME Y14.5M
Unit : mm
Customer : AMS
COMPANY
SHEET
ASE KOREA
1 OF 2
ASE PACKAGE
OUTLINE
Advanced
Semiconductor
Engineering Korea, Inc.
DATE
ISSUE
DWG NO.
OCT.010, 2007
97SPP01046A
O
NOTE
1. GENERAL TOLERANCE : ± 0.10
TITLE : POD for FBGA 8mm X 8mm X 1.09mm,
2L, 0.65CAP, 124BGA, 0.50PITCH, 0.30BALL
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 155 - 157
AS3658
Data Sheet Confidential - Package Drawings and Marking
Figure 62. CTBGA124 Marking
12.1 Pinout Drawing (Top view) CTBGA 8x8mm
Figure 63. Pinout drawing
Table 187. Package Code AYW WZ ZZ
A Y WW ZZZ
B ... for Green year working week assembly / packaging free choice
Table 188. Boot ROM revison
x
B, C, D, E, E1 or F
Bottom View (Ball Side)
14
A
B
C
D
c
E
F
G
H
J
K
L
M
N
P
13 12 11 10 9 8 7 6 5 4 3 2
1
14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
cInner Balls PCB Layout
Example shown
with dotted blue lines
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 156 - 157
AS3658
Data Sheet Confidential - Orde ring Informatio n
13 Ordering Information
The device is available as the standard products listed in Table 189.
Table 189. Ordering Information
Model Marking Descriptiom Delivery Form Package
AS3658B-BCTP Tape and Reel in
Dry Pack BGA124
8x8mm, 0.5mm
pitch
AS3658C-BCTP Tape and Reel in
Dry Pack BGA124
8x8mm, 0.5mm
pitch
AS3658D-BCTP Tape and Reel in
Dry Pack BGA124
8x8mm, 0.5mm
pitch
AS3658E-BCTP Tape and Reel in
Dry Pack BGA124
8x8mm, 0.5mm
pitch
AS3658E1-BCTP Tape and Reel in
Dry Pack BGA124
8x8mm, 0.5mm
pitch
AS3658F-BCTP Tape and Reel in
Dry Pack BGA124
8x8mm, 0.5mm
pitch
Description: AS3658x-BCTP
x: Boot-ROM version
B: Teperature Range: Z = -40ºC to 85ºC
CT: Pacakage: CTBGA
P:Delivery Form: Tape and Reel in Dry Pack
AS3658B Power and Audio Management Unit for Portable
Devices, Boot-ROM Version B
AS3658C Power and Audio Management Unit for Portable
Devices, Boot-ROM Version C
AS3658D Power and Audio Management Unit for Portable
Devices, Boot-ROM Version D
AS3658E Power and Audio Management Unit for Portable
Devices, Boot-ROM Version E
AS3658E1 Power and Audio Management Unit for Portable
Devices, Boot-ROM Version E1
AS3658F Power and Audio Management Unit for Portable
Devices, Boot-ROM Version F
ams AG
Technical content still valid
www.austriamicrosystems.com Revision 1v13 157 - 157
AS3658
Data Sheet Confidential - Orde ring Informatio n
Copyrights
Copyright © 1997-2010, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe.
Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged,
translated, stored, or used without the prior written consent of the copyright own er.
All products and companies mentioned are trademarks or registered trademarks of their respective companies.
Disclaimer
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing
in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding
the information set forth he re i n or rega rd i ng th e fre e dom of the described devices from patent infringement.
austriamicrosystems AG reserves th e right to change specifications and prices at any time and without notice.
Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for
current information. This product is intended for use in normal commercial applications. Applications requiring
extended temperature range, unusual environmental requirements, or high reliability applications, such as military,
medical life-support or life-sustaining equipment are specifically not recommended without additional processing by
austriamicrosystems AG for each application. For shipments of less than 100 part s the manufacturing flow might show
deviations from the standard production flow, such as test flow or test locati on.
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However,
austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to
personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incide ntal or
consequential damages, of an y kind, in connection with or arising out of the furnishing, performance or use of the
technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of
austriamicrosystems AG rendering of technical or other services.
Cont act Information
Headquarters
austriamicrosystems AG
A-8141 Schloss Premstaetten, Austria
Tel: +43 (0) 3136 500 0
Fax: +43 (0) 3136 525 01
For Sales Offices, Distributors and Representatives, please visit:
http://www.austriamicrosystems.com/contact B
ams AG
Technical content still valid
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
ams:
AS3658-BCTP